JPH09229884A - Thermal analysis apparatus - Google Patents

Thermal analysis apparatus

Info

Publication number
JPH09229884A
JPH09229884A JP3378396A JP3378396A JPH09229884A JP H09229884 A JPH09229884 A JP H09229884A JP 3378396 A JP3378396 A JP 3378396A JP 3378396 A JP3378396 A JP 3378396A JP H09229884 A JPH09229884 A JP H09229884A
Authority
JP
Japan
Prior art keywords
sample
tank
heating furnace
cooling medium
liquid nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3378396A
Other languages
Japanese (ja)
Inventor
Tetsuzo Harigai
哲三 針谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP3378396A priority Critical patent/JPH09229884A/en
Publication of JPH09229884A publication Critical patent/JPH09229884A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily observe a sample by preventing dewing at a glass window or an optical system in a cooling medium tank. SOLUTION: A stop valve 13 of a gas feed pipe 14 is opened to send dry nitrogen gas. Air remaining in a cooling medium tank 4 is replaced with the dry nitrogen gas. Then, the stop valve 13 is closed and a liquid nitrogen tank 11 is pressurized by a pressurizing pump 12 to feed liquid nitrogen to the cooling medium tank 4 through an introduction pipe 10. While a sample is cooled to a predetermined temperature in this manner, a glass window 5 or an objective lens 6a is not fogged by dews because of the presence of only the liquid nitrogen and nitrogen gas. A heating furnace 1 is connected to a heater and temperatures of a reference sample and the measuring sample are measured by thermocouples 3a, 3b. Meanwhile, the measuring sample is observed through a microscope 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱分析装置で、特
に冷却された試料を顕微鏡等で観察する熱分析装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal analyzer, and more particularly to a thermal analyzer for observing a cooled sample with a microscope or the like.

【0002】[0002]

【従来の技術】熱分析装置のうち、特に、示差走査熱量
計(DSC)は、物質のエンタルピー変化を測定する装
置で、材料分野をはじめ医薬品分野などにおいて広く利
用されている。このDSCは、試料と基準物質を加熱炉
内に置き、加熱炉を昇降温させたときに試料に生じた吸
・発熱変化を測定するもので、その試料と基準物質との
温度差に基づくデータを時間(温度)をパラメータとし
てプロットすることによりDSC曲線が得られる。
2. Description of the Related Art Among thermal analyzers, a differential scanning calorimeter (DSC) is an apparatus for measuring the enthalpy change of a substance and is widely used in the field of materials as well as in the field of pharmaceuticals. This DSC measures the endothermic and exothermic changes that occur in the sample when the sample and the reference substance are placed in a heating furnace and the temperature of the heating furnace is raised and lowered. Data based on the temperature difference between the sample and the reference substance is used. A DSC curve can be obtained by plotting with the time (temperature) as a parameter.

【0003】このようなDSC測定において、昇降温過
程で試料に結晶形の変化(相転移)、融解、分解または
昇華などの変化が生じると、DSC曲線にピークが発生
し、その吸熱ピークから相転移や融解等の発生する温度
などを求めることができ、またピーク面積から吸・発熱
量を計算することができる。
In such a DSC measurement, when a change in crystal form (phase transition), a change such as melting, decomposition or sublimation occurs in the sample during the temperature raising / lowering process, a peak appears in the DSC curve, and the endothermic peak causes the phase change. It is possible to determine the temperature at which transition, melting, etc. occur, and it is also possible to calculate the amount of heat absorption and heat generation from the peak area.

【0004】ところで、DSC測定では、DSC曲線が
複雑になると、試料に生じた変化の内容を推測すること
が困難となる場合がある。例えば、スルファチアゾール
は、Form(I)、Form(II)、Form(III)と呼ば
れる三つの結晶多形を持つことで知られる物質で、この
スルファチアゾール(粉末)を試料としてDSC測定を
行ったときに得られたDSC曲線が、例えば、図4に示
す曲線であるとすると、二つの吸熱ピークのうち、高温
側の大きなピークT2はForm(I)[融点:201.0
゜C]の融解によるものだと推測できるが、低温側の小
さな吸熱ピークT1はForm(III)[融点:173.
6゜C]の融解によるものだと断定することは難しい。
By the way, in the DSC measurement, when the DSC curve becomes complicated, it may be difficult to estimate the content of the change occurring in the sample. For example, sulfathiazole is a substance known to have three crystal polymorphs called Form (I), Form (II) and Form (III), and this sulfathiazole (powder) is used as a sample for DSC measurement. If the DSC curve obtained at the time of performing is the curve shown in FIG. 4, for example, the large peak T2 on the high temperature side of the two endothermic peaks is Form (I) [melting point: 201.0
It can be assumed that this is due to melting of [C], but the small endothermic peak T1 on the low temperature side is Form (III) [melting point: 173.
It is difficult to determine that it was due to melting at 6 ° C.

【0005】すなわち、Form(III)の粉体を加熱す
ると、Form(I)へと変化し、しかもその結晶転移の吸
熱ピークがForm(III)の融点よりも少し低い温度に
あらわれるので、図4に示したDSC曲線だけでは、低
温側の吸熱ピークT1が、Form(III)の融点に相当
するのか、結晶転移によるものかを特定することは困難
である。
That is, when the powder of Form (III) is heated, it changes to Form (I), and the endothermic peak of its crystal transition appears at a temperature slightly lower than the melting point of Form (III). It is difficult to specify whether the endothermic peak T1 on the low temperature side corresponds to the melting point of Form (III) or the crystal transition based only on the DSC curve shown in FIG.

【0006】そこで、加熱炉内に配置した試料を観察
し、試料の結晶状態を特定できるよう、顕微鏡等の光学
系を配置し、さらに顕微鏡にはCCDカメラ等の撮像手
段を備え、この試料の画像データとDSC曲線とを照合
して、試料の特性を解析している。
Therefore, an optical system such as a microscope is arranged so that the crystal state of the sample can be specified by observing the sample placed in the heating furnace, and the microscope is equipped with an image pickup means such as a CCD camera. The characteristics of the sample are analyzed by comparing the image data with the DSC curve.

【0007】このようなDSCにおける試料の低温領域
(−100゜C以下)までの冷却方法としては、一部に
試料観察窓を有する冷媒槽で加熱炉を囲繞し、この冷媒
槽に液体窒素等の冷媒を供給することによって、試料の
冷却が行われている。
As a method of cooling the sample to a low temperature region (-100 ° C. or lower) in such a DSC, a refrigerant tank partially having a sample observation window is used to surround the heating furnace, and the refrigerant tank is provided with liquid nitrogen or the like. The sample is cooled by supplying the above refrigerant.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、室温以
下に試料を冷却すると、顕微鏡による観察用のガラス窓
や顕微鏡の対物レンズも冷却され、空気中の水蒸気が、
ガラス窓やレンズに結露し、試料の観察が困難となると
いう問題があった。
However, when the sample is cooled below room temperature, the glass window for observation by the microscope and the objective lens of the microscope are also cooled, and the water vapor in the air is
There is a problem that it becomes difficult to observe the sample due to dew condensation on the glass window or the lens.

【0009】本発明は、上記した問題点を解決するため
に創案されたもので、その目的は、冷媒槽内にあるガラ
ス窓や光学系における結露を防止し、低温領域であって
も、試料の観察が行えるようにした熱分析装置を提供す
ることにある。
The present invention was devised to solve the above-mentioned problems, and its purpose is to prevent dew condensation on a glass window or an optical system in a refrigerant tank, and to provide a sample even in a low temperature region. The object of the present invention is to provide a thermal analysis device capable of observing.

【0010】[0010]

【課題を解決するための手段】そこで、本発明の熱分析
装置では、内部に試料を載置し、この試料を加熱する加
熱炉を、一部に試料の観察窓を有する冷媒槽で囲繞し、
冷媒槽に冷媒を導入して試料を冷却するのに先立って、
乾燥ガスを冷媒槽に供給し、同乾燥ガスで冷媒槽内の空
気を置換するようにして、観察手段や試料観察窓におけ
る水蒸気の結露を防止したものである。
Therefore, in the thermal analysis apparatus of the present invention, a sample is placed inside and a heating furnace for heating the sample is surrounded by a refrigerant tank having an observation window for the sample. ,
Prior to cooling the sample by introducing the refrigerant into the refrigerant tank,
The dry gas is supplied to the refrigerant tank, and the air in the refrigerant tank is replaced with the dry gas to prevent the dew condensation of water vapor in the observation means and the sample observation window.

【0011】冷媒槽に導入される冷媒としては、通常、
液体窒素が使用され、また、乾燥ガスとしては不活性ガ
ス、例えば窒素ガスが用いられる。
The refrigerant introduced into the refrigerant tank is usually
Liquid nitrogen is used, and an inert gas such as nitrogen gas is used as the dry gas.

【0012】[0012]

【発明の実施の形態】図1は本発明に係る示差走査熱量
計の概略構成を示す図である。
1 is a diagram showing a schematic configuration of a differential scanning calorimeter according to the present invention.

【0013】1は加熱炉で、加熱炉1の内部には、基準
試料用セル2a及び測定試料用セル2bと、それぞれの
測温用熱電対3a,3bとが設けられる。
Reference numeral 1 denotes a heating furnace. Inside the heating furnace 1, a reference sample cell 2a and a measurement sample cell 2b, and temperature measuring thermocouples 3a and 3b are provided.

【0014】4は冷媒槽で、その底面には、加熱炉1を
囲繞する凹部4aが形成されている。そして、凹部4a
の水平部分には、加熱炉1上の試料を観察するためのガ
ラス窓5が、冷媒槽4内とのシール状態が保たれるよう
嵌合されている。なお、ガラス窓5の代わりに、石英製
窓など光透過性かつ耐熱性のあるものを使用してもよ
い。
Reference numeral 4 denotes a coolant tank, and a recess 4a surrounding the heating furnace 1 is formed on the bottom surface thereof. And the concave portion 4a
A glass window 5 for observing the sample on the heating furnace 1 is fitted to the horizontal portion of the so as to keep a sealed state with the inside of the coolant tank 4. Instead of the glass window 5, a quartz window having a light transmitting property and heat resistance may be used.

【0015】6は顕微鏡で、冷媒槽4に対して昇降する
支持管7に取り付けられ、この支持管7には排気口7a
が形成されている。また、冷媒槽4には光源6Aが試料
に対して備えられ、顕微鏡6による試料の観察を助長す
る。なお、本実施例では、光源6Aを冷媒槽に挿入して
取り付けたが、支持管7の摺動部7bを透明アクリル樹
脂で構成し、冷媒槽4の外部に光源6Aを設けてもよ
い。この場合、冷媒槽4における光源6Aの取り付け構
造が簡略化される。
Reference numeral 6 denotes a microscope, which is attached to a support pipe 7 that moves up and down with respect to the refrigerant tank 4, and the support pipe 7 has an exhaust port 7a.
Are formed. Further, the coolant tank 4 is provided with a light source 6A for the sample to facilitate observation of the sample by the microscope 6. In this embodiment, the light source 6A is inserted and attached to the refrigerant tank, but the sliding portion 7b of the support tube 7 may be made of transparent acrylic resin and the light source 6A may be provided outside the refrigerant tank 4. In this case, the mounting structure of the light source 6A in the refrigerant tank 4 is simplified.

【0016】この顕微鏡6は、昇降機構(図示省略)に
よって上下動され、冷媒槽4内にある対物レンズ6aは
試料に対して昇降され、ピント合わせが行われる。支持
管7は冷媒槽4に備えたOリング8を摺動して昇降する
ので、冷媒槽4とのシール状態が保たれる。なお、図2
に示すように、支持管7の一部をベローズ16で伸縮す
るよう構成して冷媒槽4に取りつけても、本実施例と同
様に、冷媒槽4とはシールされた状態で、支持管7を自
由に昇降させることができる。
The microscope 6 is moved up and down by an elevating mechanism (not shown), and the objective lens 6a in the coolant tank 4 is moved up and down with respect to the sample for focusing. Since the support pipe 7 slides up and down the O-ring 8 provided in the refrigerant tank 4, the support tube 7 is kept in a sealed state with the refrigerant tank 4. Note that FIG.
As shown in FIG. 6, even if a part of the support tube 7 is expanded and contracted by the bellows 16 and attached to the refrigerant tank 4, the support tube 7 is sealed with the refrigerant tube 4 as in the present embodiment. Can be raised and lowered freely.

【0017】また、接眼レンズ側6bには、撮像装置と
してCCDカメラ9等が取りつけられ、この撮像情報は
CRTに表示されるとともに、コンピュータ(図示省
略)で画像処理することもできる。
Further, a CCD camera 9 or the like is attached as an image pickup device to the eyepiece side 6b, and this image pickup information can be displayed on a CRT and processed by a computer (not shown).

【0018】一方、冷媒槽4には導入口4bが形成さ
れ、この導入口4bには、冷媒槽4に液体窒素を供給す
る導入管10が取り付けられる。この導入管10の他端
側10aには液体窒素タンク11が取り付けられ、液体
窒素タンク11に設けた加圧ポンプ12の空気圧による
追い出しや、ヒータ(図示省略)の加熱による追い出し
によって、導入管10を通じて冷媒槽4に液体窒素を送
り込む。また、導入管10の途中には、ストップバルブ
13を介して乾燥窒素ガスが冷媒槽に送り込まれるよ
う、ガス供給管14がコネクタ15を介して接続されて
いる。
On the other hand, an inlet 4b is formed in the refrigerant tank 4, and an inlet pipe 10 for supplying liquid nitrogen to the refrigerant tank 4 is attached to the inlet 4b. A liquid nitrogen tank 11 is attached to the other end 10a of the introduction pipe 10, and the introduction pipe 10 is driven by air pressure of a pressure pump 12 provided in the liquid nitrogen tank 11 or by heating a heater (not shown). Liquid nitrogen is fed into the refrigerant tank 4 through. Further, a gas supply pipe 14 is connected via a connector 15 in the middle of the introduction pipe 10 so that the dry nitrogen gas is fed into the refrigerant tank via the stop valve 13.

【0019】次に、図1の示差走査熱量計の動作を説明
する。基準試料及び測定試料を、それぞれ基準試料セル
2a及び測定試料セル2bに載置し、加熱炉1を冷媒槽
4の凹部4aにセットした後、測定試料の表面が観察で
きるように、顕微鏡6のピント合わせを行う。そして、
まず、冷媒槽4内に残留する空気に含まれた水蒸気を追
い出すために、ガス供給管14に設けられたストップバ
ルブ13を開き、乾燥窒素ガスを送り出す。すると、乾
燥窒素ガスは、コネクタ15通過し導入管10を通じ、
導入口4bを経て冷媒槽4内へ供給される。やがて、冷
媒槽4内は乾燥窒素ガスで充満し、一部の乾燥窒素ガス
は排気口7aを通じて大気中へ排出される。しばらく、
このような乾燥窒素ガスの供給を続けることによって、
冷媒槽4内の残留空気も大気中へ追い出されるので、冷
媒槽4内はすべて乾燥窒素ガスに置換される。なお、本
実施例では、乾燥窒素ガスを使用したが、他の乾燥不活
性ガス(He,Ar等)を使用してよい。
Next, the operation of the differential scanning calorimeter of FIG. 1 will be described. After placing the reference sample and the measurement sample in the reference sample cell 2a and the measurement sample cell 2b, respectively, and setting the heating furnace 1 in the concave portion 4a of the coolant tank 4, the surface of the measurement sample can be observed so that the surface of the microscope 6 can be observed. Focus the subject. And
First, in order to expel the water vapor contained in the air remaining in the refrigerant tank 4, the stop valve 13 provided in the gas supply pipe 14 is opened and the dry nitrogen gas is sent out. Then, the dry nitrogen gas passes through the connector 15 and the introduction pipe 10,
It is supplied into the refrigerant tank 4 through the inlet 4b. Eventually, the refrigerant tank 4 is filled with dry nitrogen gas, and a part of the dry nitrogen gas is discharged into the atmosphere through the exhaust port 7a. for a while,
By continuing to supply such dry nitrogen gas,
The residual air in the refrigerant tank 4 is also expelled to the atmosphere, so that the entire refrigerant tank 4 is replaced with dry nitrogen gas. Although dry nitrogen gas is used in this embodiment, other dry inert gas (He, Ar, etc.) may be used.

【0020】そして、冷媒槽4内の残留空気がすべて乾
燥窒素ガスに置換された後、ストップバルブ13を閉
じ、次に加圧ポンプ12によって、液体窒素タンク11
内を加圧し、液体窒素を導入管10を通じて、冷媒槽4
へ供給する。所定量の液体窒素を供給した後、加圧ポン
プ12の作動を停止し、試料を所定の温度まで冷却す
る。ここで、冷媒槽4内は、液体窒素及び窒素ガスしか
存在しないので、ガラス窓5や対物レンズが結露によっ
てくもることがない。また、ガラス窓5の加熱炉1面に
ついては、高純度の不活性ガス(He,Ar,N2 )の
雰囲気にあるので、水蒸気による結露が起こらない。さ
らに、顕微鏡6内部に乾燥不活性ガスを導入すること
で、顕微鏡6内部のレンズ等の結露を防止することもで
きる。
After all the residual air in the refrigerant tank 4 is replaced with the dry nitrogen gas, the stop valve 13 is closed, and then the pressurizing pump 12 is used to drive the liquid nitrogen tank 11 into the liquid nitrogen tank 11.
The inside of the refrigerant tank 4 is pressurized and liquid nitrogen is introduced through the introduction pipe 10.
Supply to After supplying a predetermined amount of liquid nitrogen, the operation of the pressure pump 12 is stopped and the sample is cooled to a predetermined temperature. Here, since only liquid nitrogen and nitrogen gas are present in the refrigerant tank 4, the glass window 5 and the objective lens are not fogged by dew condensation. Further, since the surface of the heating furnace 1 of the glass window 5 is in an atmosphere of high-purity inert gas (He, Ar, N2), dew condensation due to water vapor does not occur. Furthermore, by introducing a dry inert gas into the inside of the microscope 6, it is possible to prevent dew condensation on the lens inside the microscope 6.

【0021】そして、加熱炉1の加熱ヒータに通電し、
基準試料及び測定試料を所定の温度に加熱する。このと
き、基準試料及び測定試料の温度情報は、熱電対3a,
3bによって検出されており、従来同様、DSC曲線が
得られる。一方、測定される試料の状態変化は、リアル
タイムで顕微鏡6を通じて観察されており、DSC曲線
を測定しながら、測定試料の結晶構造の変化を追跡する
ことができる。なお、試料の状態変化はCCDカメラ9
等で撮像されているので、CRT等に表示されるととも
に、コンピュータ等の処理によって、図3に示すよう
に、CRTにDSC曲線と撮像情報とを重ねて表示する
こともできるし、これらデータを利用した各種の解析も
可能である。また、記憶装置に保存することもできる。
さらに、本実施例では、示差走査熱量計への適用例を説
明したが、その他熱分析装置でも実施可能である。
Then, the heater of the heating furnace 1 is energized,
The reference sample and the measurement sample are heated to a predetermined temperature. At this time, the temperature information of the reference sample and the measurement sample is the thermocouple 3a,
3b, the DSC curve is obtained as in the conventional case. On the other hand, the change in the state of the measured sample is observed in real time through the microscope 6, and the change in the crystal structure of the measured sample can be traced while measuring the DSC curve. In addition, the change of the state of the sample is measured by the CCD camera 9.
Since it is imaged by a CRT or the like, it can be displayed on a CRT or the like, and by a process of a computer or the like, the DSC curve and the imaging information can be displayed on the CRT in an overlapping manner as shown in FIG. Various analyzes used are also possible. It can also be stored in a storage device.
Furthermore, in the present embodiment, an example of application to a differential scanning calorimeter has been described, but other thermal analysis devices can be used.

【0022】なお、本発明の変形として、次の態様のも
のも含まれる。
As modifications of the present invention, the following aspects are also included.

【0023】(1)内部に載置された試料を加熱する加
熱炉と、加熱炉を囲繞し、一部に試料の観察窓を有し
て、冷媒を導入することにより加熱炉内の試料を冷却す
る冷媒槽と、観察窓を通して試料を観察する観察手段と
を備えてなる熱分析装置において、冷媒槽に冷媒を供給
するのに先立って冷媒槽を乾燥ガスで置換する手段を、
前記冷媒の導入経路に設けたことを特徴とする熱分析装
置。すなわち、冷媒の導入経路に乾燥ガス置換手段を設
けることによって、冷媒槽へ接続する配管本数が少なく
なり、構造が簡単になると共に、冷媒槽のシール性が向
上する。
(1) A heating furnace for heating a sample placed inside, and a heating furnace surrounding the heating furnace, and having an observation window for the sample in a part thereof, by introducing a refrigerant, the sample in the heating furnace is removed. In a thermal analysis device comprising a cooling medium tank for cooling and an observing means for observing a sample through an observation window, means for replacing the cooling medium tank with a dry gas prior to supplying the cooling medium to the cooling medium tank,
A thermal analyzer provided in the introduction path of the refrigerant. That is, by providing the dry gas replacement means in the introduction path of the refrigerant, the number of pipes connected to the refrigerant tank is reduced, the structure is simplified, and the sealing performance of the refrigerant tank is improved.

【0024】[0024]

【発明の効果】本発明の熱分析装置は、室温以下に試料
を冷却する場合、冷媒槽内に残留する空気を、乾燥窒素
ガスに置換した後、液体窒素による冷却を開始するの
で、冷媒槽内の水蒸気がガラス窓や顕微鏡の対物レンズ
に結露することがなくなり、試料の観察が容易となる。
According to the thermal analyzer of the present invention, when a sample is cooled to room temperature or lower, air remaining in the refrigerant tank is replaced with dry nitrogen gas, and then cooling with liquid nitrogen is started. The water vapor inside does not condense on the glass window or the objective lens of the microscope, and the sample can be easily observed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る示差走査熱量計の概略構成を示す
図である。
FIG. 1 is a diagram showing a schematic configuration of a differential scanning calorimeter according to the present invention.

【図2】本発明に係る示差走査熱量計の変形例を示す図
である。
FIG. 2 is a diagram showing a modified example of the differential scanning calorimeter according to the present invention.

【図3】CRT上におけるDSC曲線と撮像情報との重
ね合わせ表示を示す図である。
FIG. 3 is a diagram showing a superimposed display of a DSC curve and imaging information on a CRT.

【図4】DSC曲線の例を示す図である。FIG. 4 is a diagram showing an example of a DSC curve.

【符号の説明】[Explanation of symbols]

1・・・・・加熱炉 4・・・・・冷媒槽 4a・・・・凹部 5・・・・・ガラス窓 6・・・・・顕微鏡 6a・・・・対物レンズ 10・・・・導入管 11・・・・液体窒素タンク 14・・・・ガス供給管 15・・・・コネクタ 1 ... Heating furnace 4 ... Refrigerant tank 4a ... Recess 5 ... Glass window 6 ... Microscope 6a ... Objective lens 10 ... Introduction Pipe 11 ・ ・ ・ ・ Liquid nitrogen tank 14 ・ ・ ・ ・ ・ ・ Gas supply pipe 15 ・ ・ ・ ・ Connector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内部に載置された試料を加熱する加熱炉
と、加熱炉を囲繞し、一部に試料の観察窓を有して、冷
媒を導入することにより加熱炉内の試料を冷却する冷媒
槽と、観察窓を通して試料を観察する観察手段とを備え
てなる熱分析装置において、冷媒槽に冷媒を供給するの
に先立って、冷媒槽を乾燥ガスで置換する手段を設けた
ことを特徴とする熱分析装置。
1. A heating furnace that heats a sample placed inside, and a heating furnace that surrounds the heating furnace and has a sample observation window in a part thereof to cool the sample in the heating furnace by introducing a refrigerant. In the thermal analysis device comprising a cooling medium tank for observing and a observing means for observing the sample through the observation window, a means for replacing the cooling medium tank with the dry gas is provided prior to supplying the cooling medium to the cooling medium tank. Characteristic thermal analysis device.
JP3378396A 1996-02-21 1996-02-21 Thermal analysis apparatus Pending JPH09229884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3378396A JPH09229884A (en) 1996-02-21 1996-02-21 Thermal analysis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3378396A JPH09229884A (en) 1996-02-21 1996-02-21 Thermal analysis apparatus

Publications (1)

Publication Number Publication Date
JPH09229884A true JPH09229884A (en) 1997-09-05

Family

ID=12396071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3378396A Pending JPH09229884A (en) 1996-02-21 1996-02-21 Thermal analysis apparatus

Country Status (1)

Country Link
JP (1) JPH09229884A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014674A (en) * 2001-07-03 2003-01-15 Sumitomo Chem Co Ltd Method for controlling calorimeter installing atmosphere
WO2006025268A1 (en) * 2004-09-03 2006-03-09 Sii Nanotechnology Inc. Heat analysis device
JP2006308746A (en) * 2005-04-27 2006-11-09 Olympus Corp Cultivation microscope
CN1314957C (en) * 2004-09-28 2007-05-09 东南大学 Detector for drawing nano emulsion temperature control phase picture
JP2008032441A (en) * 2006-07-26 2008-02-14 Sii Nanotechnology Inc Thermal analysis device and drying method thereof
CN101793458A (en) * 2010-04-02 2010-08-04 中山大学 Vacuum freezing drying device with functions of DSC and microstructure observation
CN104698025A (en) * 2013-12-04 2015-06-10 日本株式会社日立高新技术科学 Thermal Analyzer
CN109342496A (en) * 2018-11-30 2019-02-15 北京宇航系统工程研究所 A kind of vacuum conveyer tube Cryo Heat Insulation performance measurement test method
KR20190058233A (en) * 2017-11-20 2019-05-29 금오공과대학교 산학협력단 Apparatus for removing condensation from observation windows

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014674A (en) * 2001-07-03 2003-01-15 Sumitomo Chem Co Ltd Method for controlling calorimeter installing atmosphere
WO2006025268A1 (en) * 2004-09-03 2006-03-09 Sii Nanotechnology Inc. Heat analysis device
CN1314957C (en) * 2004-09-28 2007-05-09 东南大学 Detector for drawing nano emulsion temperature control phase picture
JP2006308746A (en) * 2005-04-27 2006-11-09 Olympus Corp Cultivation microscope
JP2008032441A (en) * 2006-07-26 2008-02-14 Sii Nanotechnology Inc Thermal analysis device and drying method thereof
DE102007026046B4 (en) * 2006-07-26 2014-09-04 Sii Nano Technology Inc. Thermal analysis system and method for drying a thermal analysis system
CN101793458A (en) * 2010-04-02 2010-08-04 中山大学 Vacuum freezing drying device with functions of DSC and microstructure observation
WO2011120342A1 (en) * 2010-04-02 2011-10-06 中山大学 Vacuum freeze-drying apparatus
CN104698025A (en) * 2013-12-04 2015-06-10 日本株式会社日立高新技术科学 Thermal Analyzer
KR20190058233A (en) * 2017-11-20 2019-05-29 금오공과대학교 산학협력단 Apparatus for removing condensation from observation windows
CN109342496A (en) * 2018-11-30 2019-02-15 北京宇航系统工程研究所 A kind of vacuum conveyer tube Cryo Heat Insulation performance measurement test method

Similar Documents

Publication Publication Date Title
CN101692012B (en) Device for synchronously measuring temperature, surface tension and contact angle of droplet by controlling temperature and humidity
JPH09229884A (en) Thermal analysis apparatus
JP6053113B2 (en) Method for evaluating and studying samples in ETEM
US20150153292A1 (en) Thermal Analyzer
JP2009194255A (en) Defect inspection apparatus
WO2007145233A1 (en) Microscope device
CN105706219A (en) Low temperature RTP control using IR camera
CN111189552B (en) Methane hydrate flame temperature testing device and temperature measurement correction method
CN201060192Y (en) Low-temperature microscopic and difference type scanning calorimetry composite testing system
JP3409259B2 (en) High temperature observation device
JP2001183319A (en) Thermal analyzer
US11460425B2 (en) Thermal analyzer
CN116929913A (en) Double-pressure-head double-microscope hydrate nano-pressure/scratch experiment mechanism and experiment method
TW201317567A (en) System and method of detecting sublimation point
JP3053731B2 (en) Biological sample preparation method for scanning electron microscope and biological sample observation method
JP2005227188A (en) Observation device
CN107976589A (en) A kind of quasi-static d33 tests system of width temperature range
KR101167566B1 (en) Dry pumping system for transfer-holder of TEM equipped with a thermometer using infrared imaging system
US20170323762A1 (en) Charged particle beam apparatus, electron microscope and sample observation method
CN113720701A (en) Mechanical property testing device and system based on DIC technology
JP4094447B2 (en) Gas concentration measuring apparatus and method
CN201083735Y (en) Low-temperature microscopic differential scanning calorimetry system main apparatus
JPH0460452A (en) Apparatus for thermal analysis
CN211263259U (en) Heat resistance detection device for automobile parts
JPH05118973A (en) Sample cooling device