CN101793458A - Vacuum freezing drying device with functions of DSC and microstructure observation - Google Patents

Vacuum freezing drying device with functions of DSC and microstructure observation Download PDF

Info

Publication number
CN101793458A
CN101793458A CN 201010144170 CN201010144170A CN101793458A CN 101793458 A CN101793458 A CN 101793458A CN 201010144170 CN201010144170 CN 201010144170 CN 201010144170 A CN201010144170 A CN 201010144170A CN 101793458 A CN101793458 A CN 101793458A
Authority
CN
China
Prior art keywords
dsc
freeze drying
drying chamber
vacuum
freezing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010144170
Other languages
Chinese (zh)
Other versions
CN101793458B (en
Inventor
王海燕
吕树申
伦照荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
National Sun Yat Sen University
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Priority to CN2010101441709A priority Critical patent/CN101793458B/en
Publication of CN101793458A publication Critical patent/CN101793458A/en
Priority to PCT/CN2011/070189 priority patent/WO2011120342A1/en
Application granted granted Critical
Publication of CN101793458B publication Critical patent/CN101793458B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/06Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/48Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation
    • G01N25/4846Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation for a motionless, e.g. solid sample
    • G01N25/4866Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on solution, sorption, or a chemical reaction not involving combustion or catalytic oxidation for a motionless, e.g. solid sample by using a differential method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0332Cuvette constructions with temperature control
    • G01N2021/0335Refrigeration of cells; Cold stages

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

The invention discloses a vacuum freezing drying device with functions of DSC and microstructure observation, which consists of a freezing drying system, a vacuum system, a DSC thermal analysis system, a micro imaging system, a residual moisture measurement system and a computer. The freezing drying system comprises a freezing drying chamber, a heating device and a refrigeration device, wherein the freezing drying chamber is a closed container, a transparent part is arranged on the wall of the container, and the heating device and the refrigeration device are arranged on the freezing drying chamber. The DSC thermal analysis system and the residual moisture measurement system are arranged in the freezing drying chamber; the micro imaging system is arranged outside the freezing drying chamber; and each system is connected with the computer respectively. The vacuum freezing drying device is suitable for the freezing drying research on biological products, medicaments and other thermosensitive substances, and can not only measure the thermal effect of the freezing system and analyze the pre-freezing quality by using the DSC thermal analysis function at the pre-freezing stage, but also observe ice crystal formation dimension and ice crystal sublimation condition in real time in the freezing drying system through the micro imaging system at the sublimation drying stage.

Description

Vacuum freezing drying device with DSC and microstructure observation
Technical field
The present invention relates to a kind of vacuum freezing drying device, specifically, relate to the vacuum freezing drying device of a kind of DSC of having and microstructure observation.
Background technology
Vacuum freeze drying is that the material that will contain water freezes to form ice at low temperatures, under vacuum condition frozen materials is heated then, makes the ice distillation, thereby obtains a kind of drying means of dried product.For heat-sensitive substances such as biological products, medicines, in order to prevent to make its sex change owing to temperature is too high when producing, Vacuum Freezing ﹠ Drying Technology is undoubtedly ideal production and processing method.The biological products of freeze-drying, medicine generally all are made into injection, for the convenience of its storage and use, adopt the form of bottled material freeze-drying usually.
Freeze dryer is the normal device that adopts of vacuum freeze drying, because the contact area of its heated barrier and bottled material is little, feasible heat transfer often becomes the major control step of freeze-drying process, and the one dimensional heat transfer model that move at the bottom of bottle equably at the distillation interface becomes the main model that instructs of testing and producing.The heat that the one dimensional heat transfer model has been ignored the bottle side imports into, yet in practice, the thickness of bottled material and bottleneck size can be comparable, and it radially conducts heat the influence of freeze-drying process be can not ignore.In addition, the influence factor of freeze-drying process is more and interrelated, freeze-drying parameter and technology that the method that therefore can only study by experiment obtains to suit.
Successful freeze-drying process not only depends on the structure cognizing of freeze-drying prods, also depends on heat, the dynamic process of freeze-drying.Wherein, the structural research and the thermoanalytical method of normal employing are differential scanning calorimetry (DSC), this method can be measured the difference of temperature changing process between sample and the sensor probe, its thermal behavior goes on record, according to the record the DSC curve, can analyze the freeze-drying sample freezing point, freeze characteristic and glass transition characteristic.In addition, microscope is a kind of structural research method the most intuitively, and it can observe directly the microstructure of sample.
In order in depth to study and obtain to have the data of practical value comprehensively to the freeze drying of heat-sensitive substances such as bottled biological products, medicine, so that provide more efficiently reference and guidance, need a kind of vacuum freezing drying device with DSC and microstructure observation to its actual production.
Summary of the invention
The object of the present invention is to provide and a kind ofly can measure the vacuum freezing drying device of freeze-drying sample fuel factor and structural change in real time.
To achieve these goals, the present invention adopts following technical scheme:
A kind of vacuum freezing drying device with DSC and microstructure observation is made up of lyophilization system, vacuum system, DSC TAS, microscope camera system, residual moisture measuring system and computer; Described lyophilization system comprises freeze drying chamber, heater element and refrigeration device, and freeze drying chamber is a closed container, and chamber wall is provided with transparent part, and heater element and refrigeration device are located on the freeze drying chamber; Freeze drying chamber connects vacuum system; The DSC TAS is located at the freeze drying chamber interior; Microscope camera system is located at the freeze drying outdoor, and the transparent part that can see through on the freeze drying locular wall is observed the inner sample microstructure; The residual moisture measuring system is located at the freeze drying chamber interior, by measuring the indoor steam dividing potential drop of freeze drying to measure the residual moisture content of freeze-dried material; DSC TAS, microscope camera system and residual moisture measuring system are connected with computer respectively.
In above-mentioned vacuum freezing drying device with DSC and microstructure observation, described refrigeration device comprises heat conductive bar and liquid nitrogen, the bottom of freeze drying chamber is connected with heat conductive bar one end, the other end of heat conductive bar immerses in the liquid nitrogen, thereby cold is reached hothouse, and dry indoor sample is lowered the temperature with freezing with this.
In above-mentioned vacuum freezing drying device with DSC and microstructure observation, described liquid nitrogen is located on the lifting platform.The degree of depth that heat conductive bar immerses in the liquid nitrogen can be passed through the lifting platform free adjustment.
In above-mentioned vacuum freezing drying device with DSC and microstructure observation, described heater element comprises electrical heating wire and temperature controller.Electrical heating wire evenly is installed in the hothouse container outer surface, regulates heating power by temperature controller according to the temperature program(me) of setting, for the indoor sample of freeze drying provides thermal source.
In above-mentioned vacuum freezing drying device with DSC and microstructure observation, described freeze drying is indoor to be provided with a plurality of sample cells, can place a plurality of bottled samples.
In above-mentioned vacuum freezing drying device with DSC and microstructure observation, described DSC TAS is made up of sample platform and reference platform, and is fixed by bolts to by securing member on the bottom of freeze drying chamber.
In above-mentioned vacuum freezing drying device with DSC and microstructure observation, described vacuum system comprises vacuum pipe, vavuum pump, hand-operated valve, vacuum meter and atmospheric valve; Vacuum pipe has two, is connected with freeze drying chamber respectively; Be connected with vavuum pump, hand-operated valve and vacuum meter on the vacuum pipe that freeze drying chamber is connected, be connected with atmospheric valve on another vacuum pipe that is connected with freeze drying chamber.
In above-mentioned vacuum freezing drying device with DSC and microstructure observation, be separately installed with the temperature thermocouple line on described sample platform and the reference platform, the temperature thermocouple line connects moisture recorder, and moisture recorder connects computer again.
In above-mentioned vacuum freezing drying device with DSC and microstructure observation, described chamber wall is provided with transparent part and is meant that freeze drying chamber adopts transparent seal cover.
In above-mentioned vacuum freezing drying device with DSC and microstructure observation, described residual moisture measuring system is meant humidity sensor.
Compared with prior art, the present invention has following beneficial effect: freeze drying plant of the present invention is applicable to the freeze drying research of heat-sensitive substances such as biological products, medicine, not only can utilize the DSC function of thermal analysis to measure the fuel factor of freezing system and analyze the pre-freeze quality in the pre-freeze stage, can also the lyophilization stage by microscope camera system Real Time Observation freeze-drying system in ice crystal form size and the ice crystal situation that distils, for the Freeze Drying Technique of heat-sensitive substances such as biological products, medicine provides a kind of comprehensive research platform.
Description of drawings
Fig. 1 is the vacuum freezing drying device structural representation that embodiment 1 has DSC and microstructure observation.
Fig. 2 is the freeze drying chamber structural representation of embodiment 1.
The specific embodiment
Embodiment 1
As depicted in figs. 1 and 2, have the vacuum freezing drying device of DSC and microstructure observation, form by lyophilization system, vacuum system, DSC TAS, microscope camera system, residual moisture measuring system and computer.
Described lyophilization system comprises freeze drying chamber 1, heater element and refrigeration device.Freeze drying chamber 1 is a closed container, adopts transparent seal cover 17 on the chamber wall, and freeze drying chamber 1 is fixed on the support 2, avoids sliding when operation.。Described heater element comprises electrical heating wire 6 and temperature controller 7, electrical heating wire 6 is wrapped in freeze drying chamber 1 outer surface, and be connected with temperature controller 7, in temperature-fall period, also need freeze drying chamber 1 is carried out temperature control, therefore at the container outer surface uniform winding electrical heating wire 6 of freeze drying chamber 1, this electrical heating wire 6 is by temperature controller 7 controls, regulate heating power according to the temperature program(me) of setting, thereby consume too much cold, to realize heating or thermostatic control to sample in the freeze drying chamber 1 by the liquid nitrogen input.Be provided with a plurality of sample cells 22 in the freeze drying chamber 1, bottled sample to be detected just is located in the sample cell 22.Described refrigeration device comprises heat conductive bar 3 and liquid nitrogen 5, heat conductive bar 3 and liquid nitrogen 5 all are located under the support 2, the bottom of freeze drying chamber 1 is connected with heat conductive bar 3 one ends, the other end of heat conductive bar 3 immerses in the liquid nitrogen 5, cold being reached freeze drying chamber 1, and sample in the freeze drying chamber 1 is lowered the temperature and freezing with this.Described liquid nitrogen 5 is located on the lifting platform 4, and the degree of depth that heat conductive bar 3 immerses in the liquid nitrogen 5 can be passed through lifting platform 4 free adjustment.
Freeze drying chamber 1 connects vacuum system; Described vacuum system comprises vacuum pipe 816, vavuum pump 9, hand-operated valve 10, vacuum meter 11 and atmospheric valve 15; Vacuum pipe 816 is connected with freeze drying chamber 1 respectively; Be connected with vavuum pump 9, hand-operated valve 10 and vacuum meter 11 on the vacuum pipe 8 that freeze drying chamber 1 is connected, be connected with atmospheric valve 15 on another vacuum pipe 16 that is connected with freeze drying chamber 1, when opening atmospheric valve 15 freeze drying chamber 1 is charged into air.When cutting out, hand-operated valve 10 can protect sample in the freeze drying chamber 1 to avoid pollution from vavuum pump 9 and external environment condition.
The DSC TAS is located at freeze drying chamber 1 inside; Described DSC TAS is made up of sample platform 18 and reference platform 19, and is fixed by bolts to by securing member 21 on the bottom of freeze drying chamber 1.Be separately installed with temperature thermocouple line 20 on described sample platform 18 and the reference platform 19, temperature thermocouple line 20 passes freeze drying chamber 1 and connects moisture recorder 14, and moisture recorder 14 connects computer 13 again.When sample when pre-freeze stage and lyophilization stage undergo phase transition crystallization and ice crystal distillation, can produce the release of heat and the variation of thermal capacitance, thereby cause the variation of local temperature on the sample platform, just can detect sample platform this temperature changing process with respect to reference platform by the temperature thermocouple line 20 on the sample platform this moment, and data are presented on the moisture recorder, transfer to then and carry out data in the computer 13 and preserve.
Microscope camera system 12 is located at freeze drying chamber 1 outside.The seal cover 17 of freeze drying chamber 1 container adopts transparent material to make, by transparent sealing lid 17, can photograph the microstructure of sample in the freeze drying chamber 1 by the microscope camera system 12 that is installed in freeze drying chamber 1 container top, and deposit data in computer 13.
The residual moisture measuring system is located at freeze drying chamber 1 inside; Described residual moisture measuring system is meant humidity sensor 23, steam dividing potential drop in the humidity sensor 23 energy measurement freeze drying chambers 1, and by data wire 24 with transfer of data to the humidity display instrument, deposit computer 13 then in, change according to the steam dividing potential drop in the freeze drying chamber 1 at last, can calculate the change in concentration of residual moisture in the freeze-dried material.

Claims (7)

1. the vacuum freezing drying device that has DSC and microstructure observation is characterized in that being made up of lyophilization system, vacuum system, DSC TAS, microscope camera system, residual moisture measuring system and computer; Described lyophilization system comprises freeze drying chamber, heater element and refrigeration device, and freeze drying chamber is a closed container, and chamber wall is provided with transparent part, and heater element and refrigeration device are located on the freeze drying chamber; Freeze drying chamber connects vacuum system; The DSC TAS is located at the freeze drying chamber interior; Microscope camera system is located at the freeze drying outdoor, and the transparent part that can see through on the freeze drying locular wall is observed the inner sample microstructure; The residual moisture measuring system is located at the freeze drying chamber interior, by measuring the indoor steam dividing potential drop of freeze drying to measure the residual moisture content of freeze-dried material; DSC TAS, microscope camera system and residual moisture measuring system are connected with computer respectively.
2. according to the described vacuum freezing drying device of claim 1, it is characterized in that described freeze drying is indoor to be provided with a plurality of sample cells with DSC and microstructure observation.
3. according to the described vacuum freezing drying device of claim 1, it is characterized in that described DSC TAS is made up of sample platform and reference platform, and be fixed on by securing member on the bottom of freeze drying chamber with DSC and microstructure observation.
4. according to the described vacuum freezing drying device of claim 1, it is characterized in that described vacuum system comprises vacuum pipe, vavuum pump, hand-operated valve, vacuum meter and atmospheric valve with DSC and microstructure observation; Vacuum pipe has two, is connected with freeze drying chamber respectively; Be connected with vavuum pump, hand-operated valve and vacuum meter on the vacuum pipe that freeze drying chamber is connected, be connected with atmospheric valve on another vacuum pipe that is connected with freeze drying chamber.
5. according to the described vacuum freezing drying device of claim 3 with DSC and microstructure observation, it is characterized in that being separately installed with the temperature thermocouple line on described sample platform and the reference platform, the temperature thermocouple line connects moisture recorder, and moisture recorder connects computer again.
6. according to the described vacuum freezing drying device of claim 1, it is characterized in that described chamber wall is provided with transparent part and is meant that freeze drying chamber adopts transparent seal cover with DSC and microstructure observation.
7. according to the described vacuum freezing drying device of claim 1, it is characterized in that described residual moisture measuring system is meant humidity sensor with DSC and microstructure observation.
CN2010101441709A 2010-04-02 2010-04-02 Vacuum freezing drying device with functions of DSC and microstructure observation Expired - Fee Related CN101793458B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010101441709A CN101793458B (en) 2010-04-02 2010-04-02 Vacuum freezing drying device with functions of DSC and microstructure observation
PCT/CN2011/070189 WO2011120342A1 (en) 2010-04-02 2011-01-11 Vacuum freeze-drying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101441709A CN101793458B (en) 2010-04-02 2010-04-02 Vacuum freezing drying device with functions of DSC and microstructure observation

Publications (2)

Publication Number Publication Date
CN101793458A true CN101793458A (en) 2010-08-04
CN101793458B CN101793458B (en) 2012-03-21

Family

ID=42586288

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101441709A Expired - Fee Related CN101793458B (en) 2010-04-02 2010-04-02 Vacuum freezing drying device with functions of DSC and microstructure observation

Country Status (2)

Country Link
CN (1) CN101793458B (en)
WO (1) WO2011120342A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011120342A1 (en) * 2010-04-02 2011-10-06 中山大学 Vacuum freeze-drying apparatus
WO2015024141A1 (en) * 2013-08-22 2015-02-26 国玺干细胞应用技术股份有限公司 Biological product storage device provided with observation element
WO2019085734A1 (en) * 2017-10-31 2019-05-09 王一田 Steam pasteurization method for freeze-dried food
CN110057821A (en) * 2019-04-16 2019-07-26 上海交通大学 Cryo-microscope imaging system for mankind's gamete fast freeze-thaw process observation
CN110132791A (en) * 2019-05-17 2019-08-16 杭州仰仪科技有限公司 Liquid cryogen fluidity testing conduction cooling vibration isolation sample container
CN110530925A (en) * 2019-08-08 2019-12-03 西安交通大学 A kind of DSC heat analysis method applying electric field action

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2551687A (en) * 2016-03-04 2018-01-03 Linkam Scient Instruments Ltd Freeze drying apparatus
CN110108690B (en) * 2019-06-10 2023-11-24 中国科学院生物物理研究所 Ultralow-temperature sample-changeable microscopic imaging system and working method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229884A (en) * 1996-02-21 1997-09-05 Shimadzu Corp Thermal analysis apparatus
CN1818738A (en) * 2006-03-10 2006-08-16 浙江大学 Microscope observation system during freezing dry process
CN201083735Y (en) * 2007-06-26 2008-07-09 上海理工大学 Low-temperature microscopic differential scanning calorimetry system main apparatus
CN201387412Y (en) * 2009-03-24 2010-01-20 山西农业大学 Water content online monitoring device during freeze drying process of fresh products
CN201615678U (en) * 2010-04-02 2010-10-27 中山大学 Vacuum freeze drying device with DSC and microstructure observation functions

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101419015B (en) * 2008-09-02 2010-12-22 上海理工大学 Method for judging once lyophilization drying end point and secondary drying end point
CN101793458B (en) * 2010-04-02 2012-03-21 中山大学 Vacuum freezing drying device with functions of DSC and microstructure observation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229884A (en) * 1996-02-21 1997-09-05 Shimadzu Corp Thermal analysis apparatus
CN1818738A (en) * 2006-03-10 2006-08-16 浙江大学 Microscope observation system during freezing dry process
CN201083735Y (en) * 2007-06-26 2008-07-09 上海理工大学 Low-temperature microscopic differential scanning calorimetry system main apparatus
CN201387412Y (en) * 2009-03-24 2010-01-20 山西农业大学 Water content online monitoring device during freeze drying process of fresh products
CN201615678U (en) * 2010-04-02 2010-10-27 中山大学 Vacuum freeze drying device with DSC and microstructure observation functions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《低温工程》 20050630 左建国等 冷冻干燥过程中溶液冻结特性的DSC研究 48-51,64 , 第145期 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011120342A1 (en) * 2010-04-02 2011-10-06 中山大学 Vacuum freeze-drying apparatus
WO2015024141A1 (en) * 2013-08-22 2015-02-26 国玺干细胞应用技术股份有限公司 Biological product storage device provided with observation element
WO2019085734A1 (en) * 2017-10-31 2019-05-09 王一田 Steam pasteurization method for freeze-dried food
US10849341B2 (en) 2017-10-31 2020-12-01 Yitian Wang Steam pasteurization method for freeze-dried food
CN110057821A (en) * 2019-04-16 2019-07-26 上海交通大学 Cryo-microscope imaging system for mankind's gamete fast freeze-thaw process observation
CN110132791A (en) * 2019-05-17 2019-08-16 杭州仰仪科技有限公司 Liquid cryogen fluidity testing conduction cooling vibration isolation sample container
CN110132791B (en) * 2019-05-17 2021-11-26 杭州仰仪科技有限公司 Cold-conducting vibration-isolating sample container for testing low-temperature fluidity of liquid
CN110530925A (en) * 2019-08-08 2019-12-03 西安交通大学 A kind of DSC heat analysis method applying electric field action

Also Published As

Publication number Publication date
CN101793458B (en) 2012-03-21
WO2011120342A1 (en) 2011-10-06

Similar Documents

Publication Publication Date Title
CN101793458B (en) Vacuum freezing drying device with functions of DSC and microstructure observation
Fissore et al. Process analytical technology for monitoring pharmaceuticals freeze-drying–A comprehensive review
CN102520003A (en) Device for testing ambient-temperature gradient freezing and thawing processes
Putranto et al. Mathematical modeling of intermittent and convective drying of rice and coffee using the reaction engineering approach (REA)
JP6718879B2 (en) Process monitoring and control using battery-less multi-point wireless product condition sensing
CN204154664U (en) Soil sample freezing-thawing test device
Nakagawa et al. A mathematical model of multi-dimensional freeze-drying for food products
JP2016523353A (en) Using surface heat flux measurements to monitor and control freeze-drying processes
Fissore Freeze-drying of pharmaceuticals
CN106644653A (en) Device and method for preparing and measuring frozen soil sample
JP2022033989A (en) Apparatus and method of developing freeze drying protocol using small batch of product
CN2651678Y (en) Multifunctional experimental refrigerating drier
Umayal Sundari et al. Performance of evacuated tube collector solar dryer with and without heat sources
CN101419015B (en) Method for judging once lyophilization drying end point and secondary drying end point
CN101936939A (en) Saturated saline solution method for humidity calibration of humidity sensitive element for measuring micro-water contained in SF6 gas and device thereof
JP2018504971A (en) Process control using non-invasive printed product sensors
CN201615678U (en) Vacuum freeze drying device with DSC and microstructure observation functions
Assegehegn et al. An experimental-based approach to construct the process design space of a freeze-drying process: an effective tool to design an optimum and robust freeze-drying process for pharmaceuticals
CN206670234U (en) The vacuum freeze drier of ponderable quantity
Hottot et al. Experimental study and modeling of freeze-drying in syringe configuration. Part II: Mass and heat transfer parameters and sublimation end-points
Rajagopal et al. Development of solar dryer incorporated with evacuated tube collector
CN103411914B (en) A kind of controllable temperature plunder corner reflection infrared spectrum device
Hemhirun et al. Cross-flow paddy dryer application using infrared gas burner
CN209302775U (en) A kind of chamber for thermocycling
CN203838090U (en) Thermal expansion material performance testing device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120321

Termination date: 20210402