JPH09229797A - Magnetostrictive strain sensor - Google Patents

Magnetostrictive strain sensor

Info

Publication number
JPH09229797A
JPH09229797A JP6003596A JP6003596A JPH09229797A JP H09229797 A JPH09229797 A JP H09229797A JP 6003596 A JP6003596 A JP 6003596A JP 6003596 A JP6003596 A JP 6003596A JP H09229797 A JPH09229797 A JP H09229797A
Authority
JP
Japan
Prior art keywords
force
force transmission
coil
strain sensor
transmission member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6003596A
Other languages
Japanese (ja)
Inventor
Mitsuaki Ikeda
満昭 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP6003596A priority Critical patent/JPH09229797A/en
Publication of JPH09229797A publication Critical patent/JPH09229797A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetostrictive strain sensor in which a measuring error is not generated by making the temperature of a detection coil follow the temperature of a magnetic film. SOLUTION: The magnetostrictive strain sensor is provided with a cylindrical force transmission member 1 which has a reverse magnetostrictive effect on its surface, a force transmission part 2 which is formed at the force transmission member 1, a force nontransmission part 3 which is formed at the force transmission member 1 so as to be adjancent to the force transmission part 2, and two coil groups 5A, 5B which are composed of exciting coils 51A, 51B and detection coils 52A, 52B which are installed respectively at the force transmission part 2 and the force nontransmission part 3 so as to be faced via gaps. In the magnetostrictive strain sensor, a nonmagnetic viscous fluid 8 whose thermal conductivity is at 10<-3> cal/cm.sec. deg.C or higher is filled into a space between the force transmission member 1 and the coil grouops 5A, 5B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁性体の逆磁歪効
果を利用して、温度変化の激しい油圧装置の作動油など
の流体の圧力や架線などの張力を検出する磁歪式歪セン
サに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetostrictive strain sensor which utilizes the inverse magnetostrictive effect of a magnetic material to detect the pressure of a fluid such as hydraulic fluid of a hydraulic device whose temperature changes drastically and the tension of an overhead wire.

【0002】[0002]

【従来の技術】最近、油圧を利用したダイキャストマシ
ンや、アクチュエータの高性能化が進められている。例
えば、ダイキャストマシンで、油圧装置の油圧を正確に
コントロールすることにより、ダイキャスト材の不良率
を低下させている。また、アクチュエータの油圧を正確
にコントロールすることにより、正確な位置決め動作を
させることができる。したがって、油圧装置の圧力セン
サは安定した特性を必要とするが、このような要求に対
応したものとして、とくに耐熱性に優れている磁歪式歪
センサが開発されている(例えば、工業調査会発行:M
&E、1989年9月号、124ページ)。図3は、そ
の一例を示す断面図で、チタン製パイプからなる力伝達
部材1の内側に隔壁11を設けて、二つの空洞部12、
13を形成し、一方側を力検出部2、他方側を非力検出
部3とし、力検出部2の空洞部12を作動油の配管に接
続し、油圧を直接受けるようにしてある。この力検出部
2と非力検出部3の両方の外周表面に亙って、アモルフ
ァス磁性体からなる磁性膜4を設け、それぞれ励磁コイ
ル51Aと検出コイル52Aおよび励磁コイル51Bと
検出コイル52Bを同心円状に配置した二つのコイル群
5A,5Bを、磁性膜4に空隙を介して対向させてあ
る。6はコイル群5A,5Bの外周に設けたヨークであ
る。このような圧力センサにおいて、空洞部12の油圧
が変化すると、力検出部2を介して磁性膜4に歪が生
じ、磁気特性が変化し、それに伴い、検出コイル52A
のインピーダンスが変化する。非力検出部3の周囲に配
置した検出コイル52Bにはインピーダンスの変化はな
いので、検出コイル52Aと52Bの差を検出し、油圧
の変化として測定しする。
2. Description of the Related Art Recently, the performance of die cast machines and actuators utilizing hydraulic pressure has been improved. For example, in a die-casting machine, the defective rate of the die-cast material is reduced by accurately controlling the hydraulic pressure of the hydraulic device. Also, by accurately controlling the hydraulic pressure of the actuator, it is possible to perform an accurate positioning operation. Therefore, a pressure sensor of a hydraulic system needs stable characteristics, but a magnetostrictive strain sensor having excellent heat resistance has been developed to meet such requirements (for example, issued by Industrial Research Board). : M
& E, September 1989 issue, p. 124). FIG. 3 is a cross-sectional view showing an example thereof, in which a partition wall 11 is provided inside the force transmission member 1 made of a titanium pipe, and two cavity portions 12,
13 is formed, one side is used as the force detection unit 2 and the other side is used as the non-force detection unit 3, the cavity 12 of the force detection unit 2 is connected to the hydraulic oil pipe, and the hydraulic pressure is directly received. A magnetic film 4 made of an amorphous magnetic material is provided on the outer peripheral surfaces of both the force detecting unit 2 and the non-force detecting unit 3, and the exciting coil 51A and the detecting coil 52A and the exciting coil 51B and the detecting coil 52B are concentrically formed. The two coil groups 5A and 5B arranged in the above are opposed to the magnetic film 4 with a gap. Reference numeral 6 is a yoke provided on the outer circumference of the coil groups 5A and 5B. In such a pressure sensor, when the hydraulic pressure in the cavity 12 changes, the magnetic film 4 is distorted via the force detection unit 2 to change the magnetic characteristics, and the detection coil 52A accordingly.
Impedance changes. Since there is no change in impedance of the detection coil 52B arranged around the non-force detection unit 3, the difference between the detection coils 52A and 52B is detected and measured as a change in hydraulic pressure.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記従来技
術では、油圧装置の作動油の温度が変化した場合、力伝
達部材1が高い熱伝導率を持ったチタン製パイプから形
成されているため、作動油が入る力検出部2はただちに
作動油の温度と同じになり、力検出部2の外周に設けら
れた磁性膜4自体の温度も作動油の温度にすぐ追従す
る。しかし、検出コイル52A,52Bは力伝達部材1
に非接触で配置され、熱伝導率の低い空気を介して熱が
検出されるため、作動油の温度変化に直ちに追従できな
い。圧力センサとしての温度特性は、磁性膜4と検出コ
イル52A,52Bの温度が同じ場合のデータで求める
ため、磁性膜4と検出コイル52A,52Bの温度が異
なる場合には、実際と異なる測定結果となり、測定誤差
が生じるという問題があった。本発明は、力伝達部材ま
たは力伝達部材に設けた磁性膜の温度に検出コイルの温
度が追従するようにして、測定誤差の生じない磁歪式歪
センサを提供することを目的とするものである。
However, in the above-mentioned prior art, since the force transmission member 1 is formed of a titanium pipe having a high thermal conductivity when the temperature of the hydraulic oil of the hydraulic device changes, The force detector 2 into which the hydraulic oil enters immediately becomes the same temperature as the hydraulic oil, and the temperature of the magnetic film 4 itself provided on the outer periphery of the force detector 2 immediately follows the temperature of the hydraulic oil. However, the detection coils 52A and 52B are not
Since the heat is detected through the air, which is placed in a non-contact manner with low thermal conductivity, it cannot immediately follow the temperature change of the hydraulic oil. The temperature characteristic as the pressure sensor is obtained from the data when the temperatures of the magnetic film 4 and the detection coils 52A and 52B are the same. Therefore, when the temperatures of the magnetic film 4 and the detection coils 52A and 52B are different, different measurement results from the actual results. Therefore, there is a problem that a measurement error occurs. An object of the present invention is to provide a magnetostrictive strain sensor in which a measurement error does not occur by allowing the temperature of a detection coil to follow the temperature of a force transmission member or a magnetic film provided on the force transmission member. .

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、少なくとも表面に逆磁歪効果を有する円
筒状または円柱状の力伝達部材と、前記力伝達部材と空
隙を介して対向して設けた励磁コイルおよび検出コイル
からなるコイル群とを備えた磁歪式歪センサにおいて、
前記力伝達部材と前記コイル群との間の空間に熱伝導度
が10-3cal/cm・sec・℃以上である非磁性の
粘性流体を充填したものである。また、前記コイル群の
両端に、前記空間から前記粘性流体の流出を防ぐOリン
グ部材を設けたものである。また、前記力伝達部材は、
その内部に流体を導入し得る空洞部を設けた円筒状のも
のからなり、前記流体の圧力を測定するものである。ま
た、前記伝達部材は、円柱状のものからなり、軸方向の
力を測定するものである。
In order to solve the above problems, the present invention provides a cylindrical or cylindrical force transmitting member having at least a surface having an inverse magnetostrictive effect, and facing the force transmitting member with a gap. In a magnetostrictive strain sensor including a coil group including an exciting coil and a detection coil provided as
A space between the force transmission member and the coil group is filled with a nonmagnetic viscous fluid having a thermal conductivity of 10 −3 cal / cm · sec · ° C. or more. Further, O-ring members that prevent the viscous fluid from flowing out from the space are provided at both ends of the coil group. Further, the force transmission member,
The pressure of the fluid is measured by a cylindrical body having a cavity into which the fluid can be introduced. Further, the transmission member is made of a cylindrical shape and measures the force in the axial direction.

【0005】[0005]

【発明の実施の形態】以下、本発明を図に示す実施例に
ついて説明する。図1は本発明の第1の実施例を示す正
断面図である。図において、1は中空円筒状のチタン製
パイプなどの非磁性体からなる力伝達部材、11は力伝
達部材1の内側に設けた隔壁で、その両側に二つの空洞
部12、13を形成してある。隔壁11を境に、一方の
空洞部12側を力検出部2、他方の空洞部13側を非力
検出部3とし、力検出部2の空洞部12を作動油の配管
に接続して、作動油を空洞部12に導入し、油圧を直接
受けるようにしてある。4は力検出部2と非力検出部3
の両方の外周表面に亙って、力伝達部材1の表面に逆磁
歪効果を有するアモルファス磁性体からなる磁歪材料
で、真空蒸着法やスパッタ法などにより設けた磁性膜で
ある。5A,5Bは、それぞれ励磁コイル51Aと検出
コイル52Aおよび励磁コイル51Bと検出コイル52
Bを同心円状に配置した二つのコイル群で、それぞれ、
磁性膜4に空隙を介して対向させてある。6は検出コイ
ル52A,52Bの外側に設けたヨーク、7はヨーク6
の力伝達部材1に対向する部分に設けたOリング、8は
力伝達部材1とコイル群5Aおよびコイル群5BとOリ
ング7によって囲まれた空間Sに充填された非磁性の粘
性流体で、Oリング7によって粘性流体8の空間Sから
の流出を防いである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below with reference to embodiments shown in the drawings. FIG. 1 is a front sectional view showing a first embodiment of the present invention. In the figure, 1 is a force transmission member made of a non-magnetic material such as a hollow cylindrical titanium pipe, 11 is a partition wall provided inside the force transmission member 1, and two cavities 12 and 13 are formed on both sides thereof. There is. With the partition wall 11 as a boundary, one cavity 12 side is used as the force detection unit 2 and the other cavity 13 side is used as the non-force detection unit 3, and the cavity 12 of the force detection unit 2 is connected to a hydraulic oil pipe to operate. Oil is introduced into the hollow portion 12 to directly receive hydraulic pressure. 4 is a force detector 2 and a non-force detector 3
A magnetostrictive material made of an amorphous magnetic material having an inverse magnetostrictive effect on the surface of the force transmitting member 1 over both outer peripheral surfaces of the force transmitting member 1, and is a magnetic film provided by a vacuum deposition method or a sputtering method. 5A and 5B are an exciting coil 51A and a detecting coil 52A, and an exciting coil 51B and a detecting coil 52, respectively.
Two coil groups in which B is arranged concentrically,
The magnetic film 4 is opposed to the magnetic film 4 via a gap. 6 is a yoke provided outside the detection coils 52A and 52B, and 7 is a yoke 6
Is an O-ring provided in a portion facing the force transmission member 1, and 8 is a non-magnetic viscous fluid filled in a space S surrounded by the force transmission member 1, the coil group 5A, the coil group 5B and the O ring 7. The O-ring 7 prevents the viscous fluid 8 from flowing out of the space S.

【0006】粘性流体8はグリースに、例えば、Al2
3 ,Zr23 ,BeOなどの非磁性酸化物の粒子を
混合し、混合量を変えることにより熱伝導度を高めてあ
る。ここで、非磁性酸化物の粒子の混合量を変えて、熱
伝導度の異なる粘性流体8を作製し、この粘性流体8を
空間Sの中に充填し、作動油の温度を50℃から70℃
に変化させたときに、コイル群5A,5Bの温度が70
℃付近に達する時間を求め、コイル群5A,5Bの作動
油の温度変化への追従性を調べた結果を次の表1に示
す。空間Sに充填した条件は、粘性流体8を充填しない
状態、すなわち、空気(熱伝導度が0.06×10-3
al/cm・sec・℃)が充填された状態と、粘性流
体8の熱伝導度が0.5×10-3cal/cm・sec
・℃〜2×10-3cal/cm・sec・℃まで4段階
に変えて、測定した。なお、温度測定は銅−コンスタン
タン熱電対で行った。
The viscous fluid 8 may be grease such as Al 2
The thermal conductivity is increased by mixing non-magnetic oxide particles such as O 3 , Zr 2 O 3 and BeO and changing the mixing amount. Here, the viscous fluid 8 having different thermal conductivity is prepared by changing the mixing amount of the particles of the non-magnetic oxide, the viscous fluid 8 is filled in the space S, and the temperature of the hydraulic oil is changed from 50 ° C. to 70 ° C. ℃
When the temperature of the coil groups 5A and 5B is changed to 70
The following Table 1 shows the results of investigating the time required to reach the temperature of about 0 ° C. and examining the ability of the coil groups 5A and 5B to follow the temperature change of the hydraulic oil. The condition in which the space S is filled is a state in which the viscous fluid 8 is not filled, that is, air (heat conductivity is 0.06 × 10 −3 c
Al / cm · sec · ° C.) and the viscous fluid 8 has a thermal conductivity of 0.5 × 10 −3 cal / cm · sec.
Measurement was carried out in 4 steps from-° C to 2 x 10 -3 cal / cm-sec- ° C. The temperature was measured with a copper-constantan thermocouple.

【0007】[0007]

【表1】 [Table 1]

【0008】この結果より、作動油の温度を50℃から
70℃に変化させた時間から10秒以内にコイル群5
A,5Bの温度が追従したのは、粘性流体8の熱伝導度
が10-3cal/cm・sec・℃以上であった。これ
は、粘性流体8を充填しない場合に、追従時間が50秒
かかったときに比べて比べて、著しく速く追従してお
り、測定上、許される遅れ時間である10秒以内に入っ
ていることがわかる。このような構成により、作動油の
温度変化が生じても、両方の検出コイルの温度が追随す
るので、測定誤差が生じなくなる。
From these results, the coil group 5 was heated within 10 seconds from the time when the temperature of the hydraulic oil was changed from 50 ° C to 70 ° C.
The temperatures of A and 5B followed when the thermal conductivity of the viscous fluid 8 was 10 −3 cal / cm · sec · ° C. or higher. This follows that when the viscous fluid 8 is not filled, the follow-up time is significantly faster than when the follow-up time takes 50 seconds, and it is within the allowable delay time of 10 seconds in measurement. I understand. With such a configuration, even if the temperature of the hydraulic oil changes, the temperatures of both detection coils follow each other, so that a measurement error does not occur.

【0009】図2は本発明の第2の実施例を示す正断面
図である。上記第1の実施例では、円筒状の力伝達部材
に空洞部を設けて圧力を加える場合について説明した
が、この場合は、力伝達部材を中実の円柱状に形成し、
温度変化がある熱が検出される状態で加えられる張力を
非接触で検出する張力センサに適用したものである。す
なわち、力伝達部材1は電線や回転軸などの非磁性体の
円柱状部材で、力伝達部材1の一部分である力検出部
2’の表面に逆磁歪効果を有するアモルファス磁性体か
らなる磁歪材料で、真空蒸着法やスパッタ法などにより
磁性膜4を設けてある。磁性膜4のない部分は非力検出
部3’である。コイル群5A,5Bは、それぞれ励磁コ
イル51Aと検出コイル52Aおよび励磁コイル51B
と検出コイル52Bとからなり、それぞれ力検出部2’
と非力検出部3’の外周に空隙を介して同心円状に配置
してある。検出コイル52A,52Bの外側にはヨーク
6を設け、ヨーク6の力伝達部材1に対向する部分にO
リング7を設けてある。力伝達部材1とコイル群5Aお
よびコイル群5BとOリング7によって囲まれた空間S
には非磁性の粘性流体を充填し、Oリング7によって粘
性流体8が空間Sから流出するのを防いでいる。このよ
うな構成により、検出コイル52A,52Bの差をと
り、力伝達部材1に軸方向に加えられる張力または圧力
を検出することができる。しかも、力伝達部材1と磁性
膜4とコイル群5Aおよびコイル群5Bとによって囲ま
れる空間Sに粘性流体8が充填されているので、力伝達
部材1からのコイル群5Aおよびコイル群5Bの温度変
化への追従性が、粘性流体8を充填しない場合に比べて
数倍速くなる。したがって、力伝達部材1の温度変化が
生じても、両方の検出コイル52A,52Bの温度が追
随するので、測定誤差が生じなくなる。
FIG. 2 is a front sectional view showing a second embodiment of the present invention. In the above-described first embodiment, the case where the hollow portion is provided in the cylindrical force transmission member to apply pressure has been described, but in this case, the force transmission member is formed in a solid columnar shape,
This is applied to a tension sensor that detects the tension applied in a state where heat with temperature change is detected in a non-contact manner. That is, the force transmitting member 1 is a non-magnetic columnar member such as an electric wire or a rotating shaft, and a magnetostrictive material made of an amorphous magnetic substance having an inverse magnetostrictive effect on the surface of the force detecting portion 2 ′ which is a part of the force transmitting member 1. Then, the magnetic film 4 is provided by the vacuum deposition method, the sputtering method, or the like. The portion without the magnetic film 4 is the non-force detecting portion 3 '. The coil groups 5A and 5B include an exciting coil 51A, a detecting coil 52A, and an exciting coil 51B, respectively.
And a detection coil 52B, each of which has a force detection unit 2 '.
And are arranged concentrically on the outer periphery of the non-force detection portion 3'through a gap. A yoke 6 is provided outside the detection coils 52A and 52B, and O is provided in a portion of the yoke 6 facing the force transmission member 1.
A ring 7 is provided. Space S surrounded by force transmission member 1 and coil group 5A and coil group 5B and O-ring 7
Is filled with a non-magnetic viscous fluid, and the viscous fluid 8 is prevented from flowing out of the space S by the O-ring 7. With such a configuration, the tension or pressure applied to the force transmission member 1 in the axial direction can be detected by taking the difference between the detection coils 52A and 52B. Moreover, since the viscous fluid 8 is filled in the space S surrounded by the force transmission member 1, the magnetic film 4, the coil group 5A, and the coil group 5B, the temperature of the coil group 5A and the coil group 5B from the force transmission member 1 is increased. The ability to follow changes is several times faster than when the viscous fluid 8 is not filled. Therefore, even if the temperature of the force transmitting member 1 changes, the temperatures of both the detection coils 52A and 52B follow, so that a measurement error does not occur.

【0010】[0010]

【発明の効果】以上述べたように、本発明によれば、力
伝達部材とコイル群の間に熱伝導度の高い粘性流体を充
填して、力検出部の温度変化に対するコイル群の温度の
追従性をよくしてあるので、作動油などによる力検出部
の温度変化に基づく測定精度の低下が生じることがな
く、高精度の磁歪式歪センサを提供できる効果がある。
As described above, according to the present invention, a viscous fluid having high thermal conductivity is filled between the force transmitting member and the coil group to prevent the temperature of the coil group from changing with respect to the temperature change of the force detecting portion. Since the followability is improved, there is an effect that a high-precision magnetostrictive strain sensor can be provided without a decrease in measurement accuracy due to a temperature change of the force detection unit due to hydraulic oil.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施例を示す正断面図であ
る。
FIG. 1 is a front sectional view showing a first embodiment of the present invention.

【図2】 本発明の第2の実施例を示す正断面図であ
る。
FIG. 2 is a front sectional view showing a second embodiment of the present invention.

【図3】 従来例を示す正断面図である。FIG. 3 is a front sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1:力伝達部材、11:隔壁、12、13:空洞部、
2、2’:力検出部、21:雌螺子、31:雄螺子、
3、3’:非力検出部、4:磁性膜、5A,5B:コイ
ル群、51A,51B:励磁コイル、52A,52B:
検出コイル、6:ヨーク、7:Oリング、8:粘性流体
1: force transmission member, 11: partition wall, 12, 13: hollow portion,
2, 2 ': force detector, 21: female screw, 31: male screw,
3, 3 ': Non-force detection part, 4: Magnetic film, 5A, 5B: Coil group, 51A, 51B: Excitation coil, 52A, 52B:
Detection coil, 6: Yoke, 7: O-ring, 8: Viscous fluid

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも表面に逆磁歪効果を有する円
筒状または円柱状の力伝達部材と、前記力伝達部材と空
隙を介して対向して設けた励磁コイルおよび検出コイル
からなるコイル群とを備えた磁歪式歪センサにおいて、
前記力伝達部材と前記コイル群との間の空間に熱伝導度
が10-3cal/cm・sec・℃以上である非磁性の
粘性流体を充填したことを特徴とする磁歪式歪センサ。
1. A cylindrical or cylindrical force transmitting member having an inverse magnetostrictive effect on at least a surface thereof, and a coil group including an exciting coil and a detecting coil, which are opposed to the force transmitting member via a gap. In a magnetostrictive strain sensor,
A magnetostrictive strain sensor characterized in that a space between the force transmitting member and the coil group is filled with a non-magnetic viscous fluid having a thermal conductivity of 10 −3 cal / cm · sec · ° C. or more.
【請求項2】 前記コイル群の両端に、前記空間から前
記粘性流体の流出を防ぐOリング部材を設けた請求項1
記載の磁歪式歪センサ。
2. An O-ring member for preventing the viscous fluid from flowing out from the space is provided at both ends of the coil group.
The magnetostrictive strain sensor described.
【請求項3】 前記力伝達部材は、その内部に流体を導
入し得る空洞部を設けた円筒状のものからなり、前記流
体の圧力を測定する請求項1または2記載の磁歪式歪セ
ンサ。
3. The magnetostrictive strain sensor according to claim 1, wherein the force transmission member is a cylindrical member having a hollow portion into which a fluid can be introduced, and measures the pressure of the fluid.
【請求項4】 前記力伝達部材は、円柱状のものからな
り、軸方向の力を測定する請求項1または2記載の磁歪
式歪センサ。
4. The magnetostrictive strain sensor according to claim 1, wherein the force transmission member is formed of a cylindrical shape and measures the force in the axial direction.
JP6003596A 1996-02-21 1996-02-21 Magnetostrictive strain sensor Pending JPH09229797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6003596A JPH09229797A (en) 1996-02-21 1996-02-21 Magnetostrictive strain sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6003596A JPH09229797A (en) 1996-02-21 1996-02-21 Magnetostrictive strain sensor

Publications (1)

Publication Number Publication Date
JPH09229797A true JPH09229797A (en) 1997-09-05

Family

ID=13130424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6003596A Pending JPH09229797A (en) 1996-02-21 1996-02-21 Magnetostrictive strain sensor

Country Status (1)

Country Link
JP (1) JPH09229797A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007004472A1 (en) * 2005-07-01 2009-01-29 ヤマハ発動機株式会社 Magnetostrictive load sensor and moving body having the same
JP2012510631A (en) * 2008-12-03 2012-05-10 ローズマウント インコーポレイテッド Pressure measuring method and apparatus using magnetic characteristics
JP2012510632A (en) * 2008-12-03 2012-05-10 ローズマウント インコーポレイテッド Pressure measuring method and apparatus using filled tube
CN110187002A (en) * 2019-06-03 2019-08-30 南昌航空大学 A kind of non-electrical quantitatively feels magnetic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007004472A1 (en) * 2005-07-01 2009-01-29 ヤマハ発動機株式会社 Magnetostrictive load sensor and moving body having the same
JP4731557B2 (en) * 2005-07-01 2011-07-27 ヤマハ発動機株式会社 Magnetostrictive load sensor and moving body having the same
JP2012510631A (en) * 2008-12-03 2012-05-10 ローズマウント インコーポレイテッド Pressure measuring method and apparatus using magnetic characteristics
JP2012510632A (en) * 2008-12-03 2012-05-10 ローズマウント インコーポレイテッド Pressure measuring method and apparatus using filled tube
CN110187002A (en) * 2019-06-03 2019-08-30 南昌航空大学 A kind of non-electrical quantitatively feels magnetic device
CN110187002B (en) * 2019-06-03 2023-01-06 南昌航空大学 Non-electric quantitative magnetic induction device

Similar Documents

Publication Publication Date Title
US20140198824A1 (en) Sensor, System Having A Sensor and A Measurement Object, and Method For Temperature Measurement By Means of A Sensor
US5137128A (en) Magnetic particle type electromagnetic clutch with torque detector
JP4892153B2 (en) Torque sensor
US4968151A (en) Temperature measurement for flowing fluids
JPH09229797A (en) Magnetostrictive strain sensor
CA2098867A1 (en) Method and Apparatus for Measuring Fluid Thermal Conductivity
CN107300425B (en) Temperature sensor and temperature measuring method
JPH07294541A (en) Measurement device
JP2001311473A (en) Shaft sealing apparatus
Allebrandi et al. Capillary rheometer for magnetic fluids
JP2005522656A (en) Rolling bearing with sensor
JPH09166506A (en) Magnetostrictive distortion sensor
EP0209495A2 (en) A fluid pressure transmitter for use in potentially explosive atmospheres
CN105868450B (en) The acquisition methods of the more substance domain thermal coefficients of air gap when a kind of rotor bias
KR100355758B1 (en) Non-contact touque measurement system
JPH1028354A (en) Motor with torque sensor
JPS63317734A (en) Magnetostriction type torque sensor
CN113324669A (en) Film thermocouple temperature sensor capable of following abrasion and manufacturing method thereof
Wadley et al. Simulation of the eddy current sensing of gallium arsenide Czochralski crystal growth
RU2098756C1 (en) Method determining thickness of wall and conductivity pickup of heat flow for implementation of it
JPS5910578Y2 (en) electromagnetic flow meter
Pal et al. Sensor electronics for digital twin
JPH0626521A (en) Magnetic bearing device
JPH10185714A (en) Magnetostriction type torque sensor
Erben et al. Smart Pressure Film Sensor for Machine Tool Optimization and Characterization of the Dynamic Pressure Field on Machine Surfaces