JPH0626521A - Magnetic bearing device - Google Patents

Magnetic bearing device

Info

Publication number
JPH0626521A
JPH0626521A JP4204446A JP20444692A JPH0626521A JP H0626521 A JPH0626521 A JP H0626521A JP 4204446 A JP4204446 A JP 4204446A JP 20444692 A JP20444692 A JP 20444692A JP H0626521 A JPH0626521 A JP H0626521A
Authority
JP
Japan
Prior art keywords
magnetic
rotor yoke
bearing
bearing device
rotary shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4204446A
Other languages
Japanese (ja)
Inventor
Susumu Osawa
將 大沢
Yoichi Kanemitsu
陽一 金光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP4204446A priority Critical patent/JPH0626521A/en
Publication of JPH0626521A publication Critical patent/JPH0626521A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0442Active magnetic bearings with devices affected by abnormal, undesired or non-standard conditions such as shock-load, power outage, start-up or touchdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To provide a magnetic bearing device which can be controlled even if a part of an insulated electric wire of a bearing coil is broken so that a rotary unit is not damaged. CONSTITUTION:A magnetic bearing device is provided with a rotor yoke made of a magnetic material, fixed to a rotary shaft, an electromagnetic stator secured to a casing with a slight clearance between the rotor yoke and the same, and a deviation sensor for measuring a deviation quantity of the rotary shaft. Magnetic force applying between the rotor yoke and the electromagnetic stator is controlled on the basis of a signal output from the deviation sensor so that the rotary shaft can be supported in magnetic non-contact. Bearing coils 15b, 16b are such constituted that a plurality of copper wires 41 electrically connected at both ends 100, 200 are wound around electromagnetic stators 15c, 16c.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回転軸を非接触状態で
支持する磁気軸受装置に関し、特に電磁石の軸受コイル
の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic bearing device for supporting a rotary shaft in a non-contact state, and more particularly to improvement of a bearing coil of an electromagnet.

【0002】[0002]

【従来の技術】磁気軸受装置は、ターボ機械や工作機械
等の回転軸を磁力によって非接触で支持している。この
装置は、機械的な摩擦部分がないため、エネルギーロス
が微小で温度発生が皆無であるうえ潤滑油が不要のた
め、保守が容易である等の特長をもっている。そのた
め、近年パワーエレクトロニクス技術の進歩に伴って実
用化されることが多くなってきている。
2. Description of the Related Art A magnetic bearing device supports a rotating shaft of a turbo machine, a machine tool or the like in a non-contact manner by magnetic force. Since this device has no mechanical frictional part, it has small energy loss, no temperature is generated, and no lubricating oil is required. Therefore, maintenance is easy. Therefore, in recent years, it has been increasingly put into practical use with the progress of power electronics technology.

【0003】かかる磁気軸受装置は、回転子ヨークを有
する回転軸を中心位置に配設し、この回転軸の周囲に
は、図4に示すように、軸受コイル1が巻回された複数
の電磁石固定子2を均等に配置して、この各電磁石固定
子2が上記回転子ヨークを吸引するように制御すること
により、回転軸はラジアル方向に非接触で回転自在に支
持されている。一方、スラスト方向については、図5に
示すように、軸受コイル3が巻回された一対の電磁石固
定子4を対向配置し、この一対の電磁石固定子4の間に
回転軸のロータを介装させて各電磁石固定子4によりロ
ータを吸引することにより、このロータをスラスト方向
に非接触で支持している。
In such a magnetic bearing device, a rotary shaft having a rotor yoke is arranged at a central position, and a plurality of electromagnets around which a bearing coil 1 is wound are provided around the rotary shaft, as shown in FIG. By arranging the stators 2 evenly and controlling each of the electromagnet stators 2 to attract the rotor yoke, the rotary shaft is rotatably supported in the radial direction without contact. On the other hand, in the thrust direction, as shown in FIG. 5, a pair of electromagnet stators 4 around which the bearing coil 3 is wound are arranged so as to face each other, and a rotor of a rotary shaft is interposed between the pair of electromagnet stators 4. Then, the electromagnet stators 4 attract the rotor, thereby supporting the rotor in the thrust direction in a non-contact manner.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
磁気軸受装置における電磁石固定子2,4には、絶縁被
膜を有する一本の銅線5を巻回して軸受コイル1,3に
しており、この軸受コイル1,3が、回転軸の回転子ヨ
ークやロータを吸引する起磁力を発生させている。
However, the electromagnet stators 2 and 4 in the conventional magnetic bearing device are wound with the single copper wire 5 having the insulating coating to form the bearing coils 1 and 3. The bearing coils 1 and 3 generate a magnetomotive force that attracts the rotor yoke of the rotating shaft and the rotor.

【0005】この場合、いずれかの軸受コイル1,3の
銅線5が何らかの原因で破断した場合には、この軸受コ
イル1,3の磁力は零となりこの磁気軸受装置の正常な
制御は不可能となる。例え、上記銅線5を太い線にした
場合でも、一度その銅線5の一部にクラック等が入った
場合にはこの銅線5の破断は急激に進行すると考えてお
く方が妥当である。
In this case, if the copper wire 5 of one of the bearing coils 1 and 3 breaks for some reason, the magnetic force of the bearing coils 1 and 3 becomes zero and normal control of this magnetic bearing device is impossible. Becomes For example, even if the copper wire 5 is a thick wire, it is appropriate to consider that the breakage of the copper wire 5 will rapidly progress if a crack or the like occurs in a part of the copper wire 5. .

【0006】このような場合には、磁気軸受装置の制御
は不可能となるため、回転中の回転軸及び回転子ヨーク
等の回転部が、静止している電磁石固定子2,4等に接
触することとなり、接触した部分は大きなダメージを受
けてしまうという課題があった。
In such a case, the control of the magnetic bearing device becomes impossible, so that the rotating shaft such as the rotating shaft and the rotating portion such as the rotor yoke come into contact with the stationary electromagnet stators 2 and 4. Therefore, there is a problem that the contacted portion is greatly damaged.

【0007】本発明は、かかる課題を解決するためにな
されたもので、軸受コイルの絶縁電線の一部が破断して
も磁気軸受装置の制御が可能で回転部がダメージを受け
ることのない磁気軸受装置を提供することを目的とす
る。
The present invention has been made in order to solve the above problems, and it is possible to control the magnetic bearing device even if a part of the insulated wire of the bearing coil is broken, and the rotating part is not damaged. An object is to provide a bearing device.

【0008】[0008]

【課題を解決するための手段】本発明に係る磁気軸受装
置は、回転軸に取付けられた磁性材料の回転子ヨーク
と、起磁力を発生させる軸受コイルが巻回され、上記回
転子ヨークとの間に微小間隙を有してケーシングに取付
けられた電磁石固定子と、上記回転軸の変位量を測定す
る変位センサとを備え、この変位センサからの出力信号
に基づいて、上記回転子ヨークと上記電磁石固定子との
間に作用する磁力を制御して、上記回転軸を磁気的に非
接触で支持する磁気軸受装置であって、上記軸受コイル
は、両端部で電気的に接合された並列の複数の絶縁電線
を上記電磁石固定子に巻回して構成されたものである。
In a magnetic bearing device according to the present invention, a rotor yoke made of a magnetic material attached to a rotary shaft and a bearing coil for generating a magnetomotive force are wound around the rotor yoke. An electromagnet stator attached to the casing with a minute gap therebetween and a displacement sensor for measuring the displacement amount of the rotary shaft are provided, and the rotor yoke and the rotor yoke are provided on the basis of an output signal from the displacement sensor. A magnetic bearing device for controlling the magnetic force acting between an electromagnet stator and magnetically supporting the rotating shaft in a non-contact manner, wherein the bearing coils are connected in parallel at both ends. A plurality of insulated wires are wound around the electromagnet stator.

【0009】また、上記軸受コイルのインピーダンスを
監視する監視装置を備えることが好ましい。
Further, it is preferable to provide a monitoring device for monitoring the impedance of the bearing coil.

【0010】[0010]

【作用】本発明においては、複数の絶縁電線の両端部を
電気的に接合して一束の並列状にし、この束状の絶縁電
線を電磁石固定子に巻回して軸受コイルにした場合に
は、束状の銅線のうちの例えば一本が破断されても残り
の絶縁電線は電流を流し続けることができ、軸受コイル
は磁力を発生し続けることとなる。なお、この場合には
軸受コイルのインピーダンスが変化するので、この変化
の有無を監視装置により監視することにより、上記絶縁
電線の破断の状況を検出することができる。
In the present invention, both ends of a plurality of insulated wires are electrically joined to form a bundle of parallel wires, and the bundled insulated wires are wound around an electromagnet stator to form a bearing coil. Even if, for example, one of the bundled copper wires is broken, the remaining insulated wire can continue to flow current, and the bearing coil will continue to generate magnetic force. In this case, since the impedance of the bearing coil changes, it is possible to detect the state of breakage of the insulated wire by monitoring the presence or absence of this change with a monitoring device.

【0011】[0011]

【実施例】以下、本発明の一実施例を図1乃至図3によ
り説明する。図1は、本実施例に係る磁気軸受装置の全
体構造を示している。図示するように、磁気軸受装置1
0は円筒状のケーシング11を有しており、その内部の
縦方向の中心位置には、棒状の回転軸12が一方向又は
正逆方向に回転自在に配置されている。この回転軸12
にはモータ13の回転子14が固定され、このモータ1
3により回転軸12は回転駆動される。回転軸12は、
2個のラジアル磁気軸受15,16によりラジアル方向
(半径方向)に対して磁気的に非接触で支持され、スラ
スト磁気軸受17によりスラスト方向(軸方向)に対し
て磁気的に非接触で支持されている。ラジアル磁気軸受
15,16の磁力は、回転子12とケーシング11との
間のラジアル方向の相対変位を測定する変位センサとし
てのラジアル変位センサ18,19の出力に基づいて制
御されるようになっている。また、スラスト磁気軸受1
7の磁力は、回転子12とケーシング11との間のスラ
スト方向の相対変位を測定する変位センサとしてのスラ
スト変位センサ20の出力に基づいて制御されるように
なっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows the overall structure of the magnetic bearing device according to this embodiment. As shown, the magnetic bearing device 1
Reference numeral 0 has a cylindrical casing 11, and a rod-shaped rotating shaft 12 is rotatably arranged in one direction or in the forward and reverse directions at the center position in the vertical direction inside the casing. This rotating shaft 12
The rotor 14 of the motor 13 is fixed to the motor 1.
The rotary shaft 12 is rotationally driven by 3. The rotary shaft 12 is
The two radial magnetic bearings 15 and 16 magnetically support the radial direction (radial direction) in a non-contact manner, and the thrust magnetic bearing 17 magnetically supports the thrust direction (axial direction) in a non-contact manner. ing. The magnetic forces of the radial magnetic bearings 15 and 16 are controlled based on the outputs of radial displacement sensors 18 and 19 as displacement sensors that measure the relative displacement between the rotor 12 and the casing 11 in the radial direction. There is. Also, thrust magnetic bearing 1
The magnetic force of 7 is controlled based on the output of a thrust displacement sensor 20 as a displacement sensor that measures the relative displacement in the thrust direction between the rotor 12 and the casing 11.

【0012】ラジアル磁気軸受15,16は、それぞれ
回転軸12に取付けられて磁性材料たる珪素鋼板を積層
してなる回転子ヨーク15a,16aと、起磁力を発生
させる軸受コイル15b,16bが巻回され、回転子ヨ
ーク15a,16aとの間に微小間隙を有してケーシン
グ11に取付けられた電磁石固定子15c,16cとを
備えている。この電磁石固定子15c,16cは、ケー
シング11の内周面31に円周方向に均等に複数個配置
されているが、例えば図2に示すように、環状の電磁石
固定子本体32の内周面33に円周方向に均等に配置さ
れた凸部34を中心方向に突出させてこの凸部34に軸
受コイル15b,16bを巻回している。
The radial magnetic bearings 15 and 16 are wound around rotor yokes 15a and 16a, which are attached to the rotary shaft 12 and are formed by laminating silicon steel plates which are magnetic materials, and bearing coils 15b and 16b which generate magnetomotive force. And the electromagnet stators 15c and 16c attached to the casing 11 with a minute gap between the rotor yokes 15a and 16a. A plurality of the electromagnet stators 15c and 16c are evenly arranged in the circumferential direction on the inner peripheral surface 31 of the casing 11. For example, as shown in FIG. Protrusions 34, which are evenly arranged in the circumferential direction on 33, are projected in the center direction, and the bearing coils 15b and 16b are wound around the protrusions 34.

【0013】スラスト磁気軸受17は、回転軸12に取
付けられた磁性材料からなる回転子ヨーク17aと、図
1及び図3に示すように起磁力を発生させる軸受コイル
17bが巻回され、回転子ヨーク17aとの間に微小間
隙を有してケーシング11に取付けられた電磁石固定子
17cとを備えている。この電磁石固定子17cにおい
て軸受コイル17bが巻回された方の面17dが、それ
ぞれ回転子ヨーク17aに対峙するように、各電磁石固
定子17cはケーシング11に取付けられている。
The thrust magnetic bearing 17 is formed by winding a rotor yoke 17a made of a magnetic material attached to the rotary shaft 12 and a bearing coil 17b for generating a magnetomotive force as shown in FIGS. It has an electromagnet stator 17c attached to the casing 11 with a minute gap between it and the yoke 17a. Each electromagnet stator 17c is attached to the casing 11 so that the surface 17d of the electromagnet stator 17c on which the bearing coil 17b is wound faces the rotor yoke 17a.

【0014】ラジアル変位センサ18,19は、各ラジ
アル磁気軸受15,16の近傍にそれぞれ位置してケー
シング11に固定されたセンサ用コア18a,19a
と、このセンサ用コア18a,19aにそれぞれ絶縁電
線が巻回されてなるセンサコイル18b,19bとを有
しており、回転軸12に取付けられた環状のセンサター
ゲット18c,19cの表面を測定することにより、回
転軸12のラジアル方向の変位量を検出して、その検出
結果を出力している。
The radial displacement sensors 18 and 19 are located near the radial magnetic bearings 15 and 16, respectively, and are fixed to the casing 11. The sensor cores 18a and 19a are fixed to the casing 11.
And sensor coils 18b and 19b in which insulated wires are wound around the sensor cores 18a and 19a, respectively, and the surfaces of annular sensor targets 18c and 19c attached to the rotary shaft 12 are measured. As a result, the displacement amount of the rotary shaft 12 in the radial direction is detected, and the detection result is output.

【0015】スラスト変位センサ20は、ケーシング1
1の蓋部材11aに取付けられたセンサ用コア20a
と、このセンサ用コア20aに絶縁電線が巻回されてな
るセンサコイル20bとを有しており、回転軸12の一
方の軸方向端部12aに取付けられたセンサターゲット
20cの表面を測定することにより、回転軸12のスラ
スト方向の変位量を検出して、その検出結果を出力して
いる。
The thrust displacement sensor 20 includes the casing 1
Sensor core 20a attached to the lid member 11a of No. 1
And a sensor coil 20b in which an insulated wire is wound around the sensor core 20a, and the surface of a sensor target 20c attached to one axial end 12a of the rotary shaft 12 is measured. Thus, the amount of displacement of the rotary shaft 12 in the thrust direction is detected, and the detection result is output.

【0016】上記各軸受コイル15b,16b,17b
は、図2及び図3に示すように、両端部100,200
で電気的に接合された並列の複数(本実施例では3本)
の可撓性を有する絶縁電線41を電磁石固定子15c,
16c,17cにそれぞれ巻回して構成されている。本
実施例の絶縁電線41としては、絶縁被膜を有する銅線
41を用いているが、その他例えばアルミニウム線等、
導電性の優れた金属又はその合金等からなる線材でもよ
い。
Each bearing coil 15b, 16b, 17b
2 and 3, as shown in FIGS.
A plurality of parallel connections (three in this embodiment) electrically connected by
The flexible insulated wire 41 of the electromagnet stator 15c,
16c and 17c, respectively. As the insulated wire 41 of this embodiment, a copper wire 41 having an insulating coating is used, but in addition, for example, an aluminum wire, etc.
A wire made of a metal having excellent conductivity or an alloy thereof may be used.

【0017】なお、各軸受コイル15b,16b,17
bは、別々に巻回して製作したコイルを電磁石固定子に
取付けて、入口側端部100と出口側端部200でそれ
ぞれまとめてもよいが、複数本の銅線41を同時に巻回
したコイルを用いて入口側端部100と出口側端部20
0でそれぞれまとめてもよい。このように本実施例で
は、軸受コイルに巻回する銅線41を細い線に分割して
巻けるので、巻回作業も容易になる。
Each bearing coil 15b, 16b, 17
As for b, a coil manufactured by separately winding may be attached to the electromagnet stator and may be grouped at the inlet end 100 and the outlet end 200 respectively, but a coil in which a plurality of copper wires 41 are wound at the same time is used. Using the inlet end 100 and the outlet end 20
You may collect 0 respectively. As described above, in the present embodiment, the copper wire 41 wound around the bearing coil can be divided into thin wires and wound, so that the winding operation becomes easy.

【0018】さらに、本実施例装置においては、並列に
接合された3本の銅線41がいわゆるパラレルに巻回さ
れた軸受コイル15b,16b,17bの銅線41のう
ち例えば1本が破断した場合に、この異常をいち早く検
出するために、各軸受コイル15b,16b,17bの
インピーダンスを監視する監視装置を備えている。これ
により、軸受コイル15b,16b,17bのインピー
ダンスの変化から、銅線41の破断の有無の状況を判断
し、異常があれば制御可能な時に磁気軸受装置を停止し
て目的の軸受コイルの交換を速やかに行うことができ
る。各軸受コイルは、複数の導線がパラレルに巻回され
たものであるために、その異常の判断を容易に行うこと
ができる。したがって、磁気軸受装置の運転を、タッチ
などの故障もなく速やかに修理できるとともに再び正常
に運転を再開できるシステムとすることができる。
Furthermore, in the apparatus of this embodiment, for example, one of the copper wires 41 of the bearing coils 15b, 16b, 17b in which the three copper wires 41 joined in parallel are wound in parallel is broken. In this case, in order to quickly detect this abnormality, a monitoring device for monitoring the impedance of each bearing coil 15b, 16b, 17b is provided. Thus, the presence or absence of breakage of the copper wire 41 is judged from the change in impedance of the bearing coils 15b, 16b, 17b, and if there is an abnormality, the magnetic bearing device is stopped and the target bearing coil is replaced when control is possible. Can be done promptly. Since each bearing coil is formed by winding a plurality of conductive wires in parallel, the abnormality can be easily determined. Therefore, the operation of the magnetic bearing device can be promptly repaired without trouble such as touch and the system can be resumed normally.

【0019】上記のように構成された磁気軸受装置にお
いて、回転軸12の変位量を測定するラジアル変位セン
サ18,19及びスラスト変位センサ20から出力され
る検出信号は、各磁気軸受15,16,17用の各セン
サアンプにより処理される。この各センサアンプからの
出力信号は補償装置に送られ、この補償装置は、入力れ
さたこの信号と所定の目標値とに基づいて、回転軸12
の変位量を制御する制御信号を電力増幅器に出力する。
この電力増幅器は、入力れさた上記制御信号に基づい
て、各磁気軸受15,16,17の各軸受コイル15
b,16b,17bを励磁する。励磁された各軸受コイ
ル15b,16b,17bと各電磁石固定子15c,1
6c,17cは、各回転子ヨーク15a,16a,17
aを吸引する磁気吸引力を生成して、回転軸12をケー
シング11の中心位置に非接触状態で支持する。これに
より、回転軸12は磁力により非接触状態に支持されな
がら、モータ13により回転駆動されることとなる。な
お、各図中同一符号は同一又は相当部分を示す。
In the magnetic bearing device configured as described above, the detection signals output from the radial displacement sensors 18 and 19 and the thrust displacement sensor 20 for measuring the displacement of the rotary shaft 12 are the magnetic bearings 15 and 16, respectively. It is processed by each sensor amplifier for 17. The output signal from each of the sensor amplifiers is sent to a compensator, which composes the rotary shaft 12 based on the input signal and a predetermined target value.
A control signal for controlling the amount of displacement of the power amplifier is output to the power amplifier.
This power amplifier uses the control signals that have been input to each bearing coil 15 of each magnetic bearing 15, 16 and 17.
Excite b, 16b, and 17b. Excited bearing coils 15b, 16b, 17b and electromagnet stators 15c, 1
6c and 17c are rotor yokes 15a, 16a and 17c.
A magnetic attraction force for attracting a is generated to support the rotating shaft 12 at the central position of the casing 11 in a non-contact state. As a result, the rotating shaft 12 is rotationally driven by the motor 13 while being supported by the magnetic force in a non-contact state. In the drawings, the same reference numerals indicate the same or corresponding parts.

【0020】[0020]

【発明の効果】本発明は上記のように構成したので、軸
受コイルの絶縁電線の一部が破断しても破断した電線と
並列接続されている他の絶縁電線が電流を流し続けるの
で軸受コイルの磁力は零にならず、軸受装置の制御は可
能であり回転部がダメージを受けることがない。
Since the present invention is configured as described above, even if a part of the insulated wire of the bearing coil is broken, another insulated wire connected in parallel with the broken wire continues to flow current, so that the bearing coil Does not become zero, the bearing device can be controlled, and the rotating part is not damaged.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1乃至図3は本発明の一実施例を示す図で、
図1は本実施例に係る磁気軸受装置の全体構造を示す断
面図である。
1 is a diagram showing an embodiment of the present invention, FIG.
FIG. 1 is a sectional view showing the overall structure of the magnetic bearing device according to this embodiment.

【図2】上記磁気軸受装置に装着されたラジアル磁気軸
受の電磁石の構造を示す部分破断斜視図である。
FIG. 2 is a partially cutaway perspective view showing a structure of an electromagnet of a radial magnetic bearing mounted on the magnetic bearing device.

【図3】上記磁気軸受装置に装着されたスラスト磁気軸
受の電磁石の構造を示す部分破断斜視図である。
FIG. 3 is a partially cutaway perspective view showing a structure of an electromagnet of a thrust magnetic bearing mounted on the magnetic bearing device.

【図4】図4及び図5は従来技術を示す図で、図4は従
来のラジアル磁気軸受の電磁石の構造を示す部分破断斜
視図である。
4 and 5 are views showing a conventional technique, and FIG. 4 is a partially cutaway perspective view showing a structure of an electromagnet of a conventional radial magnetic bearing.

【図5】従来のスラスト磁気軸受の電磁石の構造を示す
部分破断斜視図である。
FIG. 5 is a partially cutaway perspective view showing a structure of an electromagnet of a conventional thrust magnetic bearing.

【符号の説明】[Explanation of symbols]

10 磁気軸受装置 11 ケーシング 12 回転軸 15a,16a,17a 回転子ヨーク 15b,16b,17b 軸受コイル 15c,16c,17c 電磁石固定子 18,19 ラジアル変位センサ(変位センサ) 20 スラスト変位センサ(変位センサ) 41 銅線(絶縁電線) 100,200 軸受コイルの両端部 10 Magnetic Bearing Device 11 Casing 12 Rotating Shafts 15a, 16a, 17a Rotor Yoke 15b, 16b, 17b Bearing Coil 15c, 16c, 17c Electromagnet Stator 18, 19 Radial Displacement Sensor (Displacement Sensor) 20 Thrust Displacement Sensor (Displacement Sensor) 41 Copper wire (insulated wire) 100,200 Both ends of bearing coil

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 回転軸に取付けられた磁性材料の回転子
ヨークと、 起磁力を発生させる軸受コイルが巻回され、上記回転子
ヨークとの間に微小間隙を有してケーシングに取付けら
れた電磁石固定子と、 上記回転軸の変位量を測定する変位センサとを備え、 この変位センサからの出力信号に基づいて、上記回転子
ヨークと上記電磁石固定子との間に作用する磁力を制御
して、上記回転軸を磁気的に非接触で支持する磁気軸受
装置であって、 上記軸受コイルは、両端部で電気的に接合された並列の
複数の絶縁電線を上記電磁石固定子に巻回して構成され
たことを特徴とする磁気軸受装置。
1. A rotor yoke made of a magnetic material attached to a rotary shaft and a bearing coil for generating a magnetomotive force are wound, and the rotor yoke is attached to a casing with a minute gap between the rotor yoke and the rotor yoke. An electromagnet stator and a displacement sensor that measures the amount of displacement of the rotating shaft are provided, and the magnetic force acting between the rotor yoke and the electromagnet stator is controlled based on the output signal from the displacement sensor. A magnetic bearing device for magnetically supporting the rotating shaft in a non-contact manner, wherein the bearing coil is configured by winding a plurality of parallel insulated wires electrically joined at both ends around the electromagnet stator. A magnetic bearing device characterized by being configured.
【請求項2】 上記軸受コイルのインピーダンスを監視
する監視装置を備えたことを特徴とする請求項1記載の
磁気軸受装置。
2. The magnetic bearing device according to claim 1, further comprising a monitoring device for monitoring impedance of the bearing coil.
JP4204446A 1992-07-08 1992-07-08 Magnetic bearing device Pending JPH0626521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4204446A JPH0626521A (en) 1992-07-08 1992-07-08 Magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4204446A JPH0626521A (en) 1992-07-08 1992-07-08 Magnetic bearing device

Publications (1)

Publication Number Publication Date
JPH0626521A true JPH0626521A (en) 1994-02-01

Family

ID=16490667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4204446A Pending JPH0626521A (en) 1992-07-08 1992-07-08 Magnetic bearing device

Country Status (1)

Country Link
JP (1) JPH0626521A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6757097B1 (en) 1999-11-12 2004-06-29 Bookham Technology Plc Wavelength dependent isolator
EP2006558A2 (en) 2007-06-22 2008-12-24 JTEKT Corporation Magnetic bearing device and machine tool with such a device
CN104373352A (en) * 2014-11-05 2015-02-25 北京石油化工学院 Magnetic suspension uniaxial direct-driven compressor
CN105202026A (en) * 2015-09-22 2015-12-30 荣成复合材料有限公司 Electromagnet bearing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6757097B1 (en) 1999-11-12 2004-06-29 Bookham Technology Plc Wavelength dependent isolator
EP2006558A2 (en) 2007-06-22 2008-12-24 JTEKT Corporation Magnetic bearing device and machine tool with such a device
CN104373352A (en) * 2014-11-05 2015-02-25 北京石油化工学院 Magnetic suspension uniaxial direct-driven compressor
CN104373352B (en) * 2014-11-05 2016-08-24 北京石油化工学院 Magnetic suspension single shaft direct-drive compressor
CN105202026A (en) * 2015-09-22 2015-12-30 荣成复合材料有限公司 Electromagnet bearing

Similar Documents

Publication Publication Date Title
JP4852609B2 (en) Rotor shaft for magnetic bearing device
JP4938468B2 (en) Device for magnetically levitating a rotor
JP3923696B2 (en) Substrate rotating device
US5126610A (en) Axially stabilized magnetic bearing having a permanently magnetized radial bearing
US7800268B2 (en) Device to relieve thrust load in a rotor-bearing system using permanent magnets
EP1188943B1 (en) Magnetic levitation rotating machine
EP0366217B1 (en) Torque sensor
JPS6366150B2 (en)
JP2001093967A5 (en)
JP2001234929A (en) Magnetic bearing and circulating fan device
US20080317398A1 (en) Magnetic bearing device and machine tool provided with the same
JPH0626521A (en) Magnetic bearing device
JP5192271B2 (en) Magnetic bearing device
US20230089823A1 (en) Motor with electromagnetic brake
JPH06249286A (en) Vibration restraining device for rotor
US6809448B2 (en) Excimer laser apparatus
JP2002039088A (en) Device for body of revolution
JP3793863B2 (en) Manufacturing method of stator unit of magnetic bearing
CN112324802A (en) Radial magnetic suspension bearing without position sensor
JPH06261498A (en) Vibration suppressor for rotating machine
JPH1028354A (en) Motor with torque sensor
JP2001023766A (en) Induction heating roller apparatus
JPH0921420A (en) Magnetic bearing device for high speed rotary machine
JPH0231020A (en) Magnetic bearing device
JP3604276B2 (en) Induction motor and method of detecting wear of bearing thereof