JP3604276B2 - Induction motor and method of detecting wear of bearing thereof - Google Patents

Induction motor and method of detecting wear of bearing thereof Download PDF

Info

Publication number
JP3604276B2
JP3604276B2 JP11781398A JP11781398A JP3604276B2 JP 3604276 B2 JP3604276 B2 JP 3604276B2 JP 11781398 A JP11781398 A JP 11781398A JP 11781398 A JP11781398 A JP 11781398A JP 3604276 B2 JP3604276 B2 JP 3604276B2
Authority
JP
Japan
Prior art keywords
core
stator
magneto
induction motor
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11781398A
Other languages
Japanese (ja)
Other versions
JPH11299195A (en
Inventor
忍 石塚
幸雄 外山
智敏 平田
智行 山崎
政 戴
功一 大竹
隆行 黒沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP11781398A priority Critical patent/JP3604276B2/en
Publication of JPH11299195A publication Critical patent/JPH11299195A/en
Application granted granted Critical
Publication of JP3604276B2 publication Critical patent/JP3604276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Induction Machinery (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、すべり軸受により回転子を支持するキャンドモータ等の誘導電動機に係り、特にすべり軸受の摩耗進行等が原因で発生する回転子鉄心の移動を検出出力し、この出力をもって軸受の摩耗検出を可能とする軸受摩耗の検知方法に関するものである。
【0002】
【従来の技術】
従来、キャンドモータポンプ等、回転子を支持する軸受部に、すべり軸受を用いている誘導電動機においては、該誘導電動機を長期間使用した場合や異物の混入、噛み込み等が原因で発生するすべり軸受の摩耗という問題があった。摩耗の進行により、回転子部分が固定子内部で異常な振れ回りや、アキシャル方向或はラジアル方向への移動が発生し、このような事態が進行した場合には、回転子と固定子の接触など、誘導電動機自体に致命的な損傷が発生することがある。
【0003】
特に、キャンドモータポンプは、回転子と固定子にそれぞれ金属隔壁を設け、その隙間にポンプ取扱液を流すことにより、誘導電動機本体の発熱を押さえ、全体が一体の圧力容器となる構造をとっている。係るポンプにおいては、すべり軸受の摩耗により回転子に異常振れ回りが発生し、回転子と固定子が接触を起こした場合には、回転子、固定子それぞれの金属隔壁が損傷することがある。このような場合、固定子内部にポンプ取扱液が浸入することになり、この液の浸入は固定子巻線の絶縁を劣化させる原因となり、誘導電動機本体の致命的な故障を起こす原因になることも考えられる。
【0004】
また、キャンドモータポンプは、ポンプと誘導電動機間にシール部を持たない一体の圧力容器構造のため、軸受摺動面を本体外部より目視することが不可能である。長期の使用や異物の混入など、何等かの原因により軸受に摩耗が発生した場合においても、その変化を外部より確認することが出来ず、従来は軸受の交換も定期的な点検や保守を行う作業員の経験則によって行われてきた。
【0005】
これまで提案又は実施されてきた軸受の摩耗状況を検出する手段のうち、機械的検出法を用いた軸受摩耗検出機構の一例としては、電動機回転子端に回転子と一定の隙間を保った機械的接触部と、この接触部が回転体との接触摩耗によって内部に封入したガスが外部に排出される機能を備えた検出機構がある。このような検出機構の場合には、一度検出機構が動作した後は、検出機構内部に封入されたガスが放出されてしまうため、摩耗した軸受とともに検出機構自体の交換も必要となり、保守部品の増加を余儀なくされる等の問題点を有する。
【0006】
又、電気的検出機構の例としては、固定子巻線スロット内にサーチコイルを巻き込むもの、又は特殊な巻線構造の誘導電動機を用いてすべり軸受の摩耗状況を検出する方法等がある。しかしながらこれらの検出機構の場合、誘導電動機自体の構造が複雑で特殊なものとなってしまい、安価な製品の提供を妨げる原因となる。又、誘導電動機固定子鉄心の端面に磁気検出素子を設けた検出機構の場合、誘導電動機の負荷変動や電源変動による影響が大きく、摩耗状況が正確に表示されず信頼性の低下という問題を有していた。
【0007】
【発明が解決しようとする課題】
本発明は、上述した事情に鑑みて為されたもので、キャンドモータ等のすべり軸受により回転子を支持する機構を有する誘導電動機において、そのすべり軸受の摩耗進行状況を電気的な検出手法を用いて、容易に且つ確実に監視することのできる検出機構を備えた誘導電動機及びその軸受摩耗の検知方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1に記載の本発明の誘導電動機は、誘導電動機の固定子鉄心の端面の内周部に切り欠き部を設け、該固定子鉄心と回転子鉄心間の磁束の検出を行う磁気電気変換素子を、前記切り欠き部に配置した誘導電動機において、前記磁気電気変換素子は、鉄心と該鉄心に検出コイルが巻回された検出面とから構成され、該検出面が前記固定子鉄心の内周面および端面と略同一面に配置され、前記検出面の鉄心の一部は前記固定子鉄心の端面に接続され、前記鉄心の他の一部が前記固定子鉄心の端面から離れる方向に前記磁気電気変換素子の検出面を磁気的に遮蔽するように前記検出面よりも外側の位置まで延在した遮蔽構造を備えたことを特徴とする。
【0009】
上記本発明によれば、誘導電動機の固定子の一部を切り欠き、磁気電気変換素子を複数組両端面の該切り欠き部に備えることにより、軸受の摩耗に伴い、誘導電動機回転子がラジアル方向/又はアキシャル方向に移動した場合、回転子が近づく側の磁気電気変換素子の出力は大きくなり、又回転子が遠ざかる側の磁気電気変換素子の出力は小さくなる。従って、これらの磁気電気変換素子の出力に適当な演算を行うことで軸受のラジアル方向/アキシャル方向の摩耗量を求めることができる。
【0010】
又、本発明では磁気電気変換素子は特に誘導電動機回転子からの負荷電流の磁束変動成分の影響を防ぐように磁気遮蔽構造を備えている。これにより、磁気電気変換素子には、磁束の負荷変動信号成分が遮蔽されるため、誘導電動機の運転状態に関わらず軸受の摩耗量を直接的に検出することが可能となる。
【0011】
また、本発明磁気電気変換素子は、記鉄心は、検出面側から固定子外周側に延びて前記固定子端面の鉄心部分に接続し、さらにコの字形に屈曲し蔽構を備えたことを特徴とする。
【0012】
これにより、鉄心が固定子外周面側に延在してコの字形に屈曲して磁気電気変換素子の検出部分を遮蔽することから、誘導電動機回転子からの負荷変動成分による磁束が検出部分に入らなくなる。即ち、回転子の負荷電流による磁束成分は、回転子のエンドリング近傍に主として発生する。上述の遮蔽構造により、この磁束成分を磁気電気変換素子の検出部分に対して遮蔽することにより、回転子の負荷電流による影響を受けることなく、固定子・回転子間の本来の磁束の検出を行うことができ、これにより軸受の摩耗を安定に検知できる。
【0013】
また、本発明磁気電気変換素子は、前記鉄心は、検出面側から固定子外周側に延び、前記固定子端面より離れる方向に屈曲して固定子外周側に延び、更に逆方向に屈曲して前記固定子端面の鉄心部分に接続した蔽構を備えたことを特徴とする。
【0014】
これにより、磁気電気変換素子の鉄心が固定子端面より離れる方向に突出していることから、その屈曲部分で誘導電動機の回転子の主としてエンドリング近傍に流れる負荷電流による磁束を吸収することができる。このため、誘導電動機の負荷電流による磁束は、固定子端面の切り欠き部に配置された磁気電気変換素子の検出部分に影響を及ぼさなくなり、これにより固定子・回転子間の本来の磁束の検出を安定に行うことができる。
【0015】
また、本発明の誘導電動機の軸受摩耗の検知方法は、誘導電動機の固定子鉄心の端面の内周部に切り欠き部を設け、該固定子鉄心と回転子鉄心間の磁束の検出を行う磁気電気変換素子を該誘導電動機固定子鉄心端面の前記切り欠き部に配置し、前記磁気電気変換素子は前記回転子軸を中心として対向に複数個が円周方向及び軸方向に配置され、前記磁気電気変換素子は、鉄心と該鉄心に検出コイルが巻回された検出面とから構成され、該検出面が前記固定子鉄心の内周面および端面と略同一面に配置され、前記検出面の鉄心の一部は前記固定子鉄心の端面に接続され、前記鉄心の他の一部が前記固定子鉄心の端面から離れる方向に前記磁気電気変換素子の検出面を磁気的に遮蔽するように前記検出面よりも外側の位置まで延在した遮蔽構造を備え、前記回転子から誘導電動機負荷電流による磁束の影響を受けないように前記磁気電気変換素子は前記磁束から遮蔽されつつ、前記固定子と回転子間の磁束の変化を検出することにより前記誘導電動機の軸受の摩耗を検知することを特徴とするものである。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態について添付図面を参照しながら説明する。
図1は、本発明の一実施の形態の誘導電動機を備えたキャンドモータポンプの断面図である。図1において、回転子軸10を支持するためのすべり軸受3,4は回転子軸のアキシャル方向荷重をスラスト板7,9と、その接触面で支持し、ラジアル方向荷重を軸スリーブ6,8と、その接触面で支持している。
【0017】
図1中の符号S〜Sは誘導電動機の固定子鉄心両端面の切り欠き部に対向に設置された磁気電気変換素子であり、図2に示すように回転子軸を中心として対向に2個1組として、この場合は2組が約60゜の間隔を置いて配置されている。この間隔は90゜に直交に配置するようにしても勿論よい。
【0018】
通常、軸受等に何等異常がなく正規の状態で誘導電動機が運転されている場合は、該誘導電動機の固定子鉄心1の両端面に対向に設置された磁気電気変換素子S〜Sと回転子鉄心2両端でのアキシャル・ラジアル双方向の空間距離はそれぞれ等しく、回転子鉄心2からの磁束による磁気電気変換素子の出力信号もそれぞれの素子S〜Sで等しい値を有することになる。
【0019】
ここで、このキャンドモータポンプにおいて、何等かの原因で軸受スラスト板7,9と軸受部材との間で摩耗が発生進行し、回転子軸10がアキシャル方向(図1矢印Aで示される方向)に移動したとする。この場合、各磁気電気変換素子に対し回転子鉄心2が近づく側の素子の磁気電気変換出力信号は、回転子鉄心2が近づく距離に比例して増加し、回転子鉄心2が遠ざかる側の素子の変換出力は回転子鉄心2が遠ざかる距離に比例して減少する。
このとき、磁気電気変換素子それぞれの出力を比較した場合、次式が成立する。
(S,S)≦(S,S)・・・・・ (1)
但し S=S,S=S
【0020】
次に前記と同様何等かの原因で軸スリーブ6,8と軸受部材との間で摩耗が発生進行し、回転子軸10がラジアル方向(図1矢印Bで示される方向)に移動した場合、各磁気電気変換素子に対し回転子鉄心2が近づく側の素子の変換出力信号は、回転子鉄心が近づく距離に比例して増加し、回転子鉄心2が遠ざかる側の素子の変換出力は回転子鉄心2が遠ざかる距離に比例して減少する。
このときには、先に記した場合と同様、磁気電気変換素子それぞれの出力を比較した場合、次式が成立する。
(S,S)≦ (S,S)・・・・・ (2)
但し S=S,S=S
【0021】
しかしながら、単に固定子鉄心の両端面に設置した各磁気電気変換素子出力には回転子移動成分の他に誘導電動機の負荷によって変動する負荷変動成分が含まれる。この負荷変動成分が存在するため、誘導電動機の運転点によって磁気電気変換素子出力が変化することとなり、摩耗検出に誤差を含むこととなる。この負荷変動成分は主として回転子のエンドリングより発生しているものと考えられるため、図3及び図4に示すように磁気電気変換素子に磁気遮蔽を一体とした構造を採用する。
【0022】
図3は、本発明の第1の実施の形態の磁気遮蔽一体型の磁気電気変換素子の構造を示す。図3に示す磁気電気変換素子13は、鉄心11とその鉄心に巻回された検出コイル12とからなる。そのコイル12が巻回された鉄心の検出面11aは、固定子内周面1aと略同一の面に配置されている。そして、磁気電気変換素子13は、固定子端面の切り欠き部分1bに配置されている。検出コイル12が巻回された鉄心11は、半径方向に固定子外周側に向かって延び、コの字形に屈曲して、再び固定子内周側に向かい(11s)、鉄心11の検出コイル12が巻回された部分を遮蔽するように配置されている。
【0023】
従って、回転子の主としてエンドリング2aの負荷電流によって形成される磁束Φは、鉄心の遮蔽部分11sに吸収されることになり、これにより検出コイル12が巻回された近傍の検出面にはほとんど入らなくなる。一方で、固定子巻線によって形成される固定子・回転子間の空隙の磁束Φの端部の成分ΦSLは、磁気電気変換素子13の検出面11aを通るように形成され、この磁束量を検出コイル12で検出することが可能である。従って、この磁気電気変換素子13は、回転子電流が形成する磁束Φの影響をほとんど受けないことになる。
【0024】
図4は、本発明の第2の実施の形態の磁気遮蔽一体型の磁気電気変換素子の構造を示す。この実施の形態においても、固定子1の端面の切り欠き部分1bに鉄心11とこれに巻回された検出コイル12とからなる磁気電気変換素子13bの検出部分が配置されている。この鉄心11は、検出コイル12が巻回された部分から半径方向に固定子外周側に延び、そこで固定子端面より離れる方向に屈曲して固定子外周側に延び(11c)、更に逆方向に屈曲して固定子外周の鉄心部分1eに接続されている。
【0025】
このような構造により、屈曲部分11cで誘導電動機の主としてエンドリング2aの近傍の負荷電流により形成される磁束Φを吸収することとなる。このため、誘導電動機の負荷電流により形成される磁束Φは、検出コイル12が巻回された鉄心11の検出面11aにはほとんど入らなくなり、この鉄心11の屈曲部分11cがいわば磁束Φの遮蔽作用をもたらすことになる。
【0026】
図5は、上述した磁気遮蔽一体型の磁気電気変換素子による検出出力の例を示す。(a)は磁気遮蔽構造を有さない場合であり、(b)は磁気遮蔽構造を有する場合である。(a)に示す磁気遮蔽構造を有さない場合には、ラジアル摩耗量及びスラスト摩耗量ともに、作動出力に軽負荷運転時と重負荷運転時において大きな差異がみられる。これに対して、(b)に示す磁気遮蔽構造を有する場合には、ラジアル摩耗量及びスラスト摩耗量ともに、その作動出力に軽負荷運転時と重負荷運転時とではほとんど差異が生じなくなる。これにより、磁気遮蔽構造を設けた磁気電気変換素子13a,13bにより、回転子の主としてエンドリング付近により発生する負荷変動に伴う磁束の成分Φは、磁気遮蔽構造11s,11cに遮蔽され、磁気電気変換素子13a,13bの検出部分にほとんど影響を与えない。このため、磁気電気変換素子13a,13bの検出コイル12には、回転子2の端部の磁束成分ΦSLのみが出力されることになる。このため、負荷電流の大小に関わらず、常に式(1)及び式(2)に従って、軸受の摩耗を検出することができる。
【0027】
磁気電気変換素子から出力された信号の処理回路例を図6に示す。この信号処理回路の構成は、磁気電気変換素子S,S,S,S等のそれぞれの信号を受ける入力部31〜34、比較のための差動アンプ部35〜38、比較後のオフセット調整を行うオフセット調整部39〜42、それぞれの信号処理結果から回転子位置の演算を行う判定回路部43、判定した結果を表示する表示回路部44から構成されている。従って、各素子S,S,S,Sの出力は、それぞれの出力信号を判別する為の比較回路に入力され、該磁気電気変換素子それぞれの出力によって回転子軸10の位置を検出し、この位置の変化から軸受の摩耗状況を判別する。
【0028】
よって、アキシャル方向の摩耗が発生したときと同様に差動出力を監視すれば、軸受の摩耗等により発生する回転子鉄心2のラジアル方向の移動を検出可能であり、回転子鉄心2のアキシャル方向、又はラジアル方向のそれぞれの方向に摩耗が進行したことを、それぞれ個別に検出することが可能である。
【0029】
尚、上述した実施の形態はすべり軸受を使用したキャンドモータポンプの例についてのものであるが、本発明の趣旨は本実施の形態に限らず、広く各種のすべり軸受等の摩耗の検出に利用できるのは、勿論のことである。又、磁気電気変換素子は、本実施の形態においては、回転子軸に対象な一対を一組として二組配置し、xy方向のラジアル摩耗量を検出し、回転子軸に沿って離隔した位置に更に同様に二組の磁気電気変換素子を配置している。これによりラジアル及びスラスト軸受の摩耗量が検出可能であるが、更に多数の磁気電気変換素子を配置するようにしてもよく、又磁気電気変換素子の数を減らすようにしてもよい。磁気電気変換素子の数を増加することにより、よりきめの細かな軸受摩耗の検出が可能となるが、磁気電気変換素子の数を減らすことにより、より経済的な装置とすることも可能である。
【0030】
【発明の効果】
以上説明したように、すべり軸受を用いた誘導電動機、特に、磁気遮蔽一体構造の磁気電気変換素子とすることにより、回転子の負荷電流により形成される磁束の影響を受けなくなり、これにより重負荷時でも軽負荷時でも常に安定した軸受摩耗の状況の検出が可能となる。
【図面の簡単な説明】
【図1】本発明の一実施の形態のキャンドモータポンプの断面図である。
【図2】図1における誘導電動機の磁気電気変換素子の取付部分を軸方向に見た図である。
【図3】本発明の第1の実施の形態の磁気電気変換素子の構造を示す説明図である。
【図4】本発明の第2の実施の形態の磁気電気変換素子の構造を示す説明図である。
【図5】軸受がラジアル方向及びアキシャル方向に摩耗した場合の磁気電気変換素子の出力特性を示す図であり、(a)はシールド構造を有さない場合を示し、(b)はシールド構造を有する場合を示す。
【図6】磁気電気変換素子の出力信号処理回路の一例を示す回路図である。
【符号の説明】
1 固定子鉄心
2 回転子鉄心
3,4 すべり軸受
6,8 軸スリーブ
7,9 軸受スラスト板
10 回転子軸
,S,S,S 磁気電気変換素子
A アキシャル移動方向
B ラジアル移動方向
11 鉄心
12 検出コイル
11c,11s 遮蔽構造部分
Φ 回転子負荷電流による磁束
Φ 固定子・回転子空隙の磁束
ΦSL 検出面に入る固定子・回転子空隙の磁束
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an induction motor such as a canned motor that supports a rotor by a slide bearing, and in particular, detects and outputs the movement of a rotor core caused by the progress of wear of the slide bearing and the like, and detects the wear of the bearing by using this output. The present invention relates to a method for detecting bearing wear, which enables the following.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in an induction motor using a sliding bearing in a bearing portion for supporting a rotor, such as a canned motor pump, a slip generated by using the induction motor for a long time, mixing of foreign matter, biting, or the like. There was a problem of wear of the bearing. Due to the progress of wear, the rotor portion abnormally whirls inside the stator or moves in the axial or radial direction. If such a situation progresses, the rotor and the stator may come into contact with each other. For example, fatal damage may occur to the induction motor itself.
[0003]
In particular, the canned motor pump has a structure in which metal walls are provided on the rotor and the stator, respectively, and a pump handling liquid is supplied to a gap therebetween to suppress heat generation of the induction motor main body, so that the whole becomes an integral pressure vessel. I have. In such a pump, abnormal whirling occurs in the rotor due to wear of the slide bearing, and when the rotor comes into contact with the stator, the metal partition walls of the rotor and the stator may be damaged. In such a case, the pump handling liquid will enter the inside of the stator, and this infiltration will cause deterioration of the insulation of the stator windings and cause a catastrophic failure of the induction motor body. Is also conceivable.
[0004]
Further, since the canned motor pump has an integral pressure vessel structure without a seal portion between the pump and the induction motor, it is impossible to visually check the bearing sliding surface from outside the main body. Even if the bearings are worn out for any reason, such as long-term use or the entry of foreign matter, the changes cannot be confirmed from the outside. This has been done according to the rules of thumb of the workers.
[0005]
An example of a bearing wear detection mechanism using a mechanical detection method that has been proposed or implemented to detect the wear state of a bearing is an example of a machine in which a fixed gap is maintained between a rotor at an end of a motor rotor. There is a detection mechanism having a function of discharging the gas enclosed therein due to contact wear between the contact portion and the rotating body with the contact portion. In the case of such a detection mechanism, once the detection mechanism operates, the gas sealed inside the detection mechanism is released, so that the detection mechanism itself needs to be replaced together with the worn bearing, and maintenance parts are required. There is a problem that it has to be increased.
[0006]
Examples of the electrical detection mechanism include a method in which a search coil is wound in a stator winding slot, and a method of detecting a wear state of a slide bearing using an induction motor having a special winding structure. However, in the case of these detection mechanisms, the structure of the induction motor itself becomes complicated and special, which hinders the provision of inexpensive products. Also, in the case of a detection mechanism in which a magnetic detection element is provided on the end face of the stator core of the induction motor, the effect of load fluctuations and power supply fluctuations of the induction motor is large, and there is a problem that the wear state is not accurately displayed and reliability is reduced. Was.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described circumstances, and in an induction motor having a mechanism for supporting a rotor by a slide bearing such as a canned motor, using an electrical detection method of the progress of wear of the slide bearing. In addition, an object of the present invention is to provide an induction motor having a detection mechanism capable of easily and reliably monitoring, and a method of detecting bearing wear thereof.
[0008]
[Means for Solving the Problems]
In the induction motor according to the present invention, a notch is provided in an inner peripheral portion of an end face of a stator core of the induction motor, and a magneto-electric converter that detects a magnetic flux between the stator core and the rotor core. In the induction motor in which an element is arranged in the notch , the magnetoelectric conversion element includes an iron core and a detection surface on which a detection coil is wound around the iron core, and the detection surface is formed in the stator core. It is arranged on substantially the same plane as the peripheral surface and the end surface, a part of the core of the detection surface is connected to an end surface of the stator core, and another part of the core is separated from the end surface of the stator core in a direction away from the end surface of the stator core. It is characterized by comprising a shielding structure extending to a position outside the detection surface so as to magnetically shield the detection surface of the magneto-electric transducer .
[0009]
According to the present invention, a part of the stator of the induction motor is cut out, and a plurality of sets of magneto-electric conversion elements are provided in the cut-out portions on both end surfaces of the induction motor. When the rotor moves in the direction and / or axial direction, the output of the magneto-electric transducer on the side closer to the rotor increases, and the output of the magneto-electric transducer on the side closer to the rotor decreases. Therefore, by performing an appropriate operation on the output of these magneto-electric transducers, the radial / axial wear of the bearing can be obtained.
[0010]
Further, in the present invention, the magneto-electric conversion element is provided with a magnetic shielding structure so as to prevent the influence of the magnetic flux fluctuation component of the load current from the induction motor rotor. Thus, since the magneto-electric conversion element shields the load fluctuation signal component of the magnetic flux, the wear amount of the bearing can be directly detected regardless of the operation state of the induction motor.
[0011]
Moreover, in magneto-electric conversion element of the present invention, prior SL core is connected from the detection surface side iron core portion of the stator end faces extending the stator outer periphery, barrier further bent in a U-shape 蔽構 It is characterized by having a structure.
[0012]
As a result, since the iron core extends toward the outer peripheral surface of the stator and bends in a U-shape to shield the detection portion of the magneto-electric conversion element, the magnetic flux due to the load fluctuation component from the induction motor rotor is applied to the detection portion. Will not enter. That is, the magnetic flux component due to the load current of the rotor mainly occurs near the end ring of the rotor. With the above shielding structure, this magnetic flux component is shielded from the detection portion of the magneto-electric conversion element, so that the detection of the original magnetic flux between the stator and the rotor can be performed without being affected by the load current of the rotor. The bearing wear can be stably detected.
[0013]
Moreover, in magneto-electric conversion element of the present invention, the core extends from the detection surface on the stator outer periphery, extending the stator outer periphery is bent in a direction away from the stator end surface, further bent in the reverse direction to that comprising the 蔽構 Concrete shielding connected to the core portion of the stator end face.
[0014]
Thereby, since the iron core of the magneto-electric conversion element protrudes in a direction away from the end face of the stator, it is possible to absorb a magnetic flux due to a load current mainly flowing near the end ring of the rotor of the induction motor at the bent portion. For this reason, the magnetic flux due to the load current of the induction motor does not affect the detection portion of the magneto-electric conversion element arranged in the cutout portion of the stator end face, thereby detecting the original magnetic flux between the stator and the rotor. Can be performed stably.
[0015]
In addition, the method for detecting bearing wear of an induction motor according to the present invention includes providing a notch at an inner peripheral portion of an end face of a stator core of the induction motor, and detecting a magnetic flux between the stator core and the rotor core. An electric conversion element is disposed in the notch on the end face of the induction motor stator core, and a plurality of the magneto-electric conversion elements are disposed in a circumferential direction and an axial direction so as to face each other around the rotor axis. The electric conversion element includes an iron core and a detection surface on which a detection coil is wound around the iron core. The detection surface is disposed on substantially the same plane as an inner peripheral surface and an end surface of the stator core. A part of the iron core is connected to the end face of the stator core, and the other part of the iron core magnetically shields the detection surface of the magneto-electric transducer in a direction away from the end face of the stator core. A shielding structure that extends to a position outside the detection surface For example, the above magneto-electric conversion element so as not to be affected by the magnetic flux due to the induction motor load current from said rotor said induction by detecting a change in magnetic flux between being shielded from said magnetic flux, and the stator rotor it is characterized in that for detecting the wear of the bearings of the motor.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a sectional view of a canned motor pump including an induction motor according to an embodiment of the present invention. In FIG. 1, sliding bearings 3 and 4 for supporting a rotor shaft 10 support the axial load of the rotor shaft on the thrust plates 7 and 9 and the contact surfaces thereof, and support the radial load on the shaft sleeves 6 and 8. And the contact surface.
[0017]
Reference numerals S 1 to S 4 in FIG. 1 denote magneto-electric transducers that are installed opposite to the cutouts on both end faces of the stator core of the induction motor, and face each other around the rotor axis as shown in FIG. As a set of two pieces, in this case, two sets are arranged at an interval of about 60 °. Of course, this interval may be arranged orthogonally at 90 °.
[0018]
Usually, when the induction motor is operated in a normal state without any abnormality in the bearings or the like, the magneto-electric conversion elements S 1 to S 4 installed opposite to both end faces of the stator core 1 of the induction motor are used. The spatial distances in both axial and radial directions at both ends of the rotor core 2 are equal, and the output signals of the magneto-electric conversion elements due to the magnetic flux from the rotor core 2 have the same value in the respective elements S 1 to S 4. Become.
[0019]
Here, in this canned motor pump, wear occurs between the bearing thrust plates 7, 9 and the bearing member for some reason, and the rotor shaft 10 is moved in the axial direction (the direction indicated by arrow A in FIG. 1). Let's say you moved to In this case, the magneto-electric conversion output signal of the element closer to the rotor core 2 with respect to each magneto-electric conversion element increases in proportion to the distance that the rotor core 2 approaches, and the element closer to the rotor core 2 moves away. Is reduced in proportion to the distance that the rotor core 2 moves away.
At this time, when the outputs of the magneto-electric transducers are compared, the following equation is established.
(S 1 , S 3 ) ≦ (S 2 , S 4 ) (1)
Where S 1 = S 3 , S 2 = S 4
[0020]
Next, when wear occurs between the shaft sleeves 6 and 8 and the bearing member for some reason as described above, and the rotor shaft 10 moves in the radial direction (the direction indicated by the arrow B in FIG. 1), The conversion output signal of the element closer to the rotor core 2 with respect to each magneto-electric conversion element increases in proportion to the distance that the rotor core approaches, and the conversion output of the element closer to the rotor core 2 is the rotor. It decreases in proportion to the distance that the iron core 2 moves away.
At this time, as in the case described above, when the outputs of the magneto-electric transducers are compared, the following equation is established.
(S 1 , S 2 ) ≦ (S 3 , S 4 ) (2)
However, S 1 = S 2 , S 3 = S 4
[0021]
However, the output of each magneto-electric conversion element simply installed on both end faces of the stator core includes a load variation component that varies depending on the load of the induction motor in addition to the rotor movement component. Since this load fluctuation component exists, the output of the magneto-electric conversion element changes depending on the operating point of the induction motor, and the wear detection includes an error. Since this load fluctuation component is considered to be mainly generated from the end ring of the rotor, a structure in which a magnetic shield is integrated with the magneto-electric transducer as shown in FIGS. 3 and 4 is employed.
[0022]
FIG. 3 shows a structure of a magneto-electric transducer integrated with a magnetic shield according to the first embodiment of the present invention. The magneto-electric transducer 13 shown in FIG. 3 includes an iron core 11 and a detection coil 12 wound around the iron core. The detection surface 11a of the iron core around which the coil 12 is wound is disposed on substantially the same surface as the inner peripheral surface 1a of the stator. And the magneto-electric conversion element 13 is arrange | positioned at the notch part 1b of a stator end surface. The iron core 11 around which the detection coil 12 is wound extends in the radial direction toward the outer peripheral side of the stator, bends in a U-shape, and returns to the inner peripheral side of the stator (11s). Are arranged so as to shield the wound part.
[0023]
Therefore, the magnetic flux [Phi R formed by the load current largely end ring 2a of the rotor, would be absorbed in the shielding portion 11s of the core, thereby the detection surface in the vicinity of the detection coil 12 is wound is I can hardly enter. On the other hand, the component Φ SL of the end of the magnetic flux Φ S in the air gap between the stator and the rotor formed by the stator winding is formed so as to pass through the detection surface 11 a of the magneto-electric transducer 13. The amount can be detected by the detection coil 12. Therefore, the magneto-electric conversion element 13 would hardly affected by the magnetic flux [Phi R the rotor current is formed.
[0024]
FIG. 4 shows a structure of a magneto-electric transducer integrated with a magnetic shield according to a second embodiment of the present invention. Also in this embodiment, the detection portion of the magneto-electric conversion element 13b including the iron core 11 and the detection coil 12 wound around the core 1 is arranged in the cutout portion 1b on the end face of the stator 1. The iron core 11 extends radially outward from the portion where the detection coil 12 is wound, and extends therefrom in a direction away from the stator end face to extend toward the stator outer periphery (11c). It is bent and connected to the iron core portion 1e on the outer periphery of the stator.
[0025]
Such a structure becomes possible to absorb the magnetic flux [Phi R formed by the load current in the vicinity of the largely end ring 2a of the induction motor at the bent portion 11c. Therefore, the magnetic flux [Phi R formed by the load current of the induction motor is almost no longer enter into the detection surface 11a of the iron core 11 of the detection coil 12 is wound, the bent portion 11c of the iron core 11 is so to speak the magnetic flux [Phi R It will provide a shielding effect.
[0026]
FIG. 5 shows an example of a detection output by the above-described magnetic shield integrated type magneto-electric transducer. (A) shows a case without a magnetic shielding structure, and (b) shows a case with a magnetic shielding structure. When the magnetic shielding structure shown in (a) is not provided, there is a large difference in the operation output between the light load operation and the heavy load operation in both the radial wear amount and the thrust wear amount. On the other hand, when the magnetic shielding structure shown in (b) is used, there is almost no difference in the operation output between the light load operation and the heavy load operation in both the radial wear amount and the thrust wear amount. As a result, the components Φ R of the magnetic flux accompanying the load fluctuation generated mainly near the end ring of the rotor are shielded by the magnetic shield structures 11 s and 11 c by the magneto-electric conversion elements 13 a and 13 b provided with the magnetic shield structure. It hardly affects the detection parts of the electric conversion elements 13a and 13b. For this reason, only the magnetic flux component Φ SL at the end of the rotor 2 is output to the detection coils 12 of the magneto-electric conversion elements 13a and 13b. Therefore, regardless of the magnitude of the load current, it is possible to always detect the wear of the bearing according to the equations (1) and (2).
[0027]
FIG. 6 shows an example of a processing circuit for a signal output from the magneto-electric transducer. The configuration of this signal processing circuit includes input units 31 to 34 for receiving respective signals of the magneto-electric conversion elements S 1 , S 2 , S 3 , S 4, etc., differential amplifier units 35 to 38 for comparison, , An offset adjustment section 39 to 42 for performing the offset adjustment, a determination circuit section 43 for calculating the rotor position from the respective signal processing results, and a display circuit section 44 for displaying the determined result. Therefore, the output of each element S 1 , S 2 , S 3 , S 4 is input to a comparison circuit for determining each output signal, and the position of the rotor shaft 10 is determined by the output of each magneto-electric conversion element. Then, the wear state of the bearing is determined from the change in the position.
[0028]
Therefore, by monitoring the differential output in the same manner as when the axial wear occurs, it is possible to detect the radial movement of the rotor core 2 caused by the wear of the bearing and the like, and the axial direction of the rotor core 2 can be detected. , Or that the wear has progressed in each of the radial directions can be individually detected.
[0029]
Although the above-described embodiment is directed to an example of a canned motor pump using a slide bearing, the gist of the present invention is not limited to this embodiment, and is widely used for detecting wear of various types of slide bearings. What you can do is, of course. Further, in the present embodiment, two sets of the magneto-electric transducers are arranged as a pair corresponding to the rotor shaft, a radial wear amount in the xy directions is detected, and a position separated along the rotor shaft is detected. Further, two sets of magneto-electric transducers are similarly arranged. This makes it possible to detect the wear amount of the radial and thrust bearings. However, a larger number of magneto-electric conversion elements may be provided, or the number of magneto-electric conversion elements may be reduced. By increasing the number of magneto-electric transducers, finer detection of bearing wear is possible, but by reducing the number of magneto-electric transducers, a more economical device can be obtained. .
[0030]
【The invention's effect】
As described above, the induction motor using the slide bearing, in particular, the magneto-electric conversion element having a magnetic shield integrated structure eliminates the influence of the magnetic flux formed by the load current of the rotor, thereby reducing the heavy load. It is possible to always detect the state of the bearing wear stably even at the time of light load.
[Brief description of the drawings]
FIG. 1 is a sectional view of a canned motor pump according to an embodiment of the present invention.
FIG. 2 is a view of a mounting portion of a magneto-electric conversion element of the induction motor in FIG. 1 viewed in an axial direction.
FIG. 3 is an explanatory diagram showing a structure of the magneto-electric transducer according to the first embodiment of the present invention.
FIG. 4 is an explanatory diagram illustrating a structure of a magneto-electric transducer according to a second embodiment of the present invention.
5A and 5B are diagrams showing output characteristics of a magneto-electric transducer when a bearing is worn in a radial direction and an axial direction, wherein FIG. 5A shows a case without a shield structure, and FIG. The case where it has is shown.
FIG. 6 is a circuit diagram showing an example of an output signal processing circuit of the magneto-electric transducer.
[Explanation of symbols]
1 stator core 2 rotor core 3 and 4 slide bearing 6,8 shaft sleeve 7 and 9 the bearing thrust plate 10 rotor axis S 1, S 2, S 3 , S 4 magnetoelectric conversion element A axial movement direction B radial movement Direction 11 Iron core 12 Detection coils 11c, 11s Shielding structure part Φ R Magnetic flux Φ S due to rotor load current Magnetic flux Φ SL of stator / rotor gap Magnetic flux in the air gap between the stator and rotor entering the detection surface

Claims (4)

誘導電動機の固定子鉄心の端面の内周部に切り欠き部を設け、該固定子鉄心と回転子鉄心間の磁束の検出を行う磁気電気変換素子を、前記切り欠き部に配置した誘導電動機において、前記磁気電気変換素子は、鉄心と該鉄心に検出コイルが巻回された検出面とから構成され、該検出面が前記固定子鉄心の内周面および端面と略同一面に配置され、前記検出面の鉄心の一部は前記固定子鉄心の端面に接続され、前記鉄心の他の一部が前記固定子鉄心の端面から離れる方向に前記磁気電気変換素子の検出面を磁気的に遮蔽するように前記検出面よりも外側の位置まで延在した遮蔽構造を備えたことを特徴とする誘導電動機。In the induction motor, a notch is provided in the inner peripheral portion of the end face of the stator core of the induction motor, and a magneto-electric conversion element for detecting a magnetic flux between the stator core and the rotor core is arranged in the notch. The magneto-electric conversion element includes an iron core and a detection surface on which a detection coil is wound around the iron core, and the detection surface is disposed on substantially the same plane as an inner peripheral surface and an end surface of the stator core. A part of the core of the detection surface is connected to an end surface of the stator core, and another part of the core magnetically shields the detection surface of the magneto-electric conversion element in a direction away from the end surface of the stator core. An induction motor having a shielding structure extending to a position outside the detection surface as described above . 記鉄心は、検出面側から固定子外周側に延びて前記固定子端面の鉄心部分に接続し、さらにコの字形に屈曲し蔽構を備えたことを特徴とする請求項1に記載の誘導電動機。 Before SL core is claim, characterized in that extending from the detection surface on the stator outer periphery connected to the core portion of the stator end surface, further comprising a 蔽構 Concrete shielding bent in shape of U 1 2. The induction motor according to claim 1. 前記鉄心は、検出面側から固定子外周側に延び、前記固定子端面より離れる方向に屈曲して固定子外周側に延び、更に逆方向に屈曲して前記固定子端面の鉄心部分に接続した蔽構を備えたことを特徴とする請求項1に記載の誘導電動機。 The core extends from the detection surface on the stator outer periphery, extending the stator outer periphery is bent in a direction away from the stator end surface, and connected to the core portion of the stator end face and further bent in the opposite direction induction motor according to claim 1, characterized in that with a 蔽構 concrete shielding. 誘導電動機の固定子鉄心の端面の内周部に切り欠き部を設け、該固定子鉄心と回転子鉄心間の磁束の検出を行う磁気電気変換素子を該誘導電動機固定子鉄心端面の前記切り欠き部に配置し、前記磁気電気変換素子は前記回転子軸を中心として対向に複数個が円周方向及び軸方向に配置され、
前記磁気電気変換素子は、鉄心と該鉄心に検出コイルが巻回された検出面とから構成され、該検出面が前記固定子鉄心の内周面および端面と略同一面に配置され、前記検出面の鉄心の一部は前記固定子鉄心の端面に接続され、前記鉄心の他の一部が前記固定子鉄心の端面から離れる方向に前記磁気電気変換素子の検出面を磁気的に遮蔽するように前記検出面よりも外側の位置まで延在した遮蔽構造を備え、
前記回転子から誘導電動機負荷電流による磁束の影響を受けないように前記磁気電気変換素子は前記磁束から遮蔽されつつ、前記固定子と回転子間の磁束の変化を検出することにより前記誘導電動機の軸受の摩耗を検知することを特徴とする誘導電動機の軸受摩耗の検知方法。
A notch is provided in the inner peripheral portion of the end face of the stator core of the induction motor, and the magneto-electric conversion element for detecting magnetic flux between the stator core and the rotor core is provided with the notch on the end face of the stator core of the induction motor. Arranged, a plurality of the magneto-electric conversion elements are arranged in a circumferential direction and an axial direction facing each other around the rotor axis,
The magneto-electric conversion element includes an iron core and a detection surface on which a detection coil is wound around the iron core, and the detection surface is disposed on substantially the same plane as an inner peripheral surface and an end surface of the stator core. A part of the surface iron core is connected to the end face of the stator core, and another part of the iron core magnetically shields the detection surface of the magneto-electric transducer in a direction away from the end face of the stator core. A shielding structure extending to a position outside the detection surface,
The magneto-electric conversion element is shielded from the magnetic flux so as not to be affected by the magnetic flux due to the induction motor load current from the rotor, and detects a change in the magnetic flux between the stator and the rotor by detecting a change in the magnetic flux. A method for detecting bearing wear of an induction motor, comprising detecting bearing wear.
JP11781398A 1998-04-13 1998-04-13 Induction motor and method of detecting wear of bearing thereof Expired - Lifetime JP3604276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11781398A JP3604276B2 (en) 1998-04-13 1998-04-13 Induction motor and method of detecting wear of bearing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11781398A JP3604276B2 (en) 1998-04-13 1998-04-13 Induction motor and method of detecting wear of bearing thereof

Publications (2)

Publication Number Publication Date
JPH11299195A JPH11299195A (en) 1999-10-29
JP3604276B2 true JP3604276B2 (en) 2004-12-22

Family

ID=14720906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11781398A Expired - Lifetime JP3604276B2 (en) 1998-04-13 1998-04-13 Induction motor and method of detecting wear of bearing thereof

Country Status (1)

Country Link
JP (1) JP3604276B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103075350B (en) * 2011-10-26 2015-05-27 协磁股份有限公司 Structure improvement of permanent magnet canned pump
TW201317459A (en) * 2011-10-26 2013-05-01 Assoma Inc Permanent magnet canned pump structure improvement
WO2018123452A1 (en) 2016-12-26 2018-07-05 株式会社 荏原製作所 Pump device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087142Y2 (en) * 1991-02-15 1996-03-04 日機装株式会社 Bearing wear monitoring device
JPH0865975A (en) * 1994-08-24 1996-03-08 Ebara Corp Induction motor provided with detector for axial displacement of rotor
JP2745452B2 (en) * 1995-02-15 1998-04-28 マルチ計測器株式会社 Split-type zero-phase current transformer for DC
JPH09137828A (en) * 1995-11-14 1997-05-27 Ebara Corp Magnetic bearing for ultra-low temperature

Also Published As

Publication number Publication date
JPH11299195A (en) 1999-10-29

Similar Documents

Publication Publication Date Title
JP5792346B2 (en) Permanent magnet motor pump
Finley et al. An analytical approach to solving motor vibration problems
US8698363B2 (en) Electric rotating machine for vehicle
Bellini et al. Diagnosis of bearing faults of induction machines by vibration or current signals: A critical comparison
EP0943082B1 (en) Sealless pump rotor position and bearing monitor
JPS6052654B2 (en) Bearing wear detection device for AC rotating electric machines
Finley et al. Motor vibration problems: How to diagnose and correct vibration errors
JP3604276B2 (en) Induction motor and method of detecting wear of bearing thereof
US4334189A (en) Operation supervisory apparatus of canned motor
JP2001304180A (en) Canned motor pump
EP3211771B1 (en) Rotating electric machine and defect detection method for rotating electric machine
US9441942B2 (en) Resolver and multiple-rotation detector
JPS5854580B2 (en) Kaitendenkiuntenkanshisouchi
JP3504424B2 (en) Bearing wear detector for induction motors
US11719569B2 (en) Method of identifying fault in synchronous reluctance electric machine, monitoring system and synchronous reluctance electric machine
US7772870B2 (en) Method and apparatus for layer short detection of electric rotating machine
JP3370230B2 (en) Operation monitoring device for induction motor
JP3023283B2 (en) Axial displacement detector for canned motor
US4563905A (en) Shaft torquemeter
JPH11148819A (en) Adjustment method and device for axial zero point in bearing abrasion monitor of motor
JP2022018754A (en) Abnormality detection system for rotary electric machine
JP3573248B2 (en) motor
JPH0865975A (en) Induction motor provided with detector for axial displacement of rotor
US7279890B2 (en) Tandem rotation detector for high precision detection
KR102535724B1 (en) Apparatus for monitoring gap for exciter of generator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040928

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term