JPH09229630A - Method for measuring image position formed on transparent substrate and apparatus therefor - Google Patents

Method for measuring image position formed on transparent substrate and apparatus therefor

Info

Publication number
JPH09229630A
JPH09229630A JP3790596A JP3790596A JPH09229630A JP H09229630 A JPH09229630 A JP H09229630A JP 3790596 A JP3790596 A JP 3790596A JP 3790596 A JP3790596 A JP 3790596A JP H09229630 A JPH09229630 A JP H09229630A
Authority
JP
Japan
Prior art keywords
substrate
point image
image
measured
reference point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3790596A
Other languages
Japanese (ja)
Inventor
Mineyuki Arikawa
峯幸 有川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP3790596A priority Critical patent/JPH09229630A/en
Publication of JPH09229630A publication Critical patent/JPH09229630A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure easily and precisely whether the image position on a substrate is precisely reproduced or not by measuring positional dislocation between a measurement point on a transparent reference substrate on which the measurement point is formed precisely and the position of the measurement point on an object substrate to be measured and corresponding to the former point. SOLUTION: A transparent reference substrate 1 on which a measurement point is precisely formed is supported in a stand 9 in parallel to an object substrate 2 to be measured at a prescribed distance through a supporting member 3 in a manner the reference substrate can be changed. The substrate 2 set on an x-y axially movable stand is moved in parallel to the substrate 1 and adjustment is so carried out as to almost conform the image positions of standard points on both substrates. A lighting system 4 illuminates an image to be observed and an image obtained by a camera 5 installed at position corresponding to the image position is sent to an image processing apparatus 8 through a signal switching apparatus 7. The difference between the measurement point of the substrate 1 and the measurement point on the substrate 2 corresponding to the former point is then measured to measure indirectly the position of the measurement point on the substrate 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、表面に画像を有す
る透明基板について、その画像の位置を精密に測定する
方法及びそのための装置に関するものである。特に本発
明は、透明基板上にマスクを用いた感光膜の露光処理を
経て形成された多数の画像から成る画像群を有する基板
について、これらの画像群が、本来あるべき位置からど
ちらの方向にどの程度づれて形成されたかを、精密に測
定する方法及びそのための装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for precisely measuring the position of an image on a transparent substrate having an image on its surface, and an apparatus therefor. In particular, the present invention relates to a substrate having an image group consisting of a large number of images formed through exposure processing of a photosensitive film using a mask on a transparent substrate, in which direction these image groups are supposed to be. The present invention relates to a method for precisely measuring the degree of stagger formation and an apparatus therefor.

【0002】[0002]

【従来の技術】マスクを用いた露光処理により、基板上
にマスクに対応する画像を形成する手法は公知である。
この方法では、感光膜を有する基板に画像を有するマス
クを重ね合わせ、マスクを通して光を照射して感光膜を
露光させる。露光により感光膜は化学変化してマスクの
画像に対応した潜像が形成されるので、適宜の手段によ
り現像すると、基板上にマスクの画像に対応した画像
(ポジ又はネガ)が形成される。
2. Description of the Related Art A method of forming an image corresponding to a mask on a substrate by exposure processing using a mask is known.
In this method, a mask having an image is superimposed on a substrate having a photosensitive film, and light is irradiated through the mask to expose the photosensitive film. Since the photosensitive film is chemically changed by exposure to form a latent image corresponding to the image of the mask, when developed by an appropriate means, an image (positive or negative) corresponding to the image of the mask is formed on the substrate.

【0003】この方法は、マスクの画像に正確に対応し
た画像を、効率よく且つ反復して容易に形成できるの
で、微細で且つ精密な加工を必要とする多くの分野で広
く用いられている。例えばカラー液晶表示装置では、透
明電極基板の各電極とカラーフィルターの青、赤、緑の
三原色とは正確に対応していなければならないので、透
明電極基板及びカラーフィルターの双方とも、上述のマ
スクを用いた露光処理により製作されている。
This method is widely used in many fields that require fine and precise processing because it can efficiently and repeatedly form an image that exactly corresponds to the image of the mask. For example, in a color liquid crystal display device, each electrode on the transparent electrode substrate and the three primary colors of the color filter, blue, red, and green, must correspond exactly, so both the transparent electrode substrate and the color filter must be masked as described above. It is manufactured by the exposure process used.

【0004】このようにして製作された画像の精度は、
マスクの精度に依存することは勿論であるが、露光操作
そのものの良否によっても影響される。すなわち、感光
膜を有する基板(=被露光基板)とマスクとを露光装置
にセットする際の不手際(基板及びマスクのセット状態
の不良、相互間の位置決め不良や相互間の間隙決め不良
など)や、温度、圧力による基板の膨張、収縮などによ
り、マスクの画像が基板上の所定位置に正確に再現され
ないことがある。従って基板上に形成された画像が、マ
スクの画像を、許容誤差範囲内で正確に再現しているか
否かを検査することが必要である。
The accuracy of the image thus produced is
It depends not only on the accuracy of the mask, but also on the quality of the exposure operation itself. That is, when the substrate having the photosensitive film (= the substrate to be exposed) and the mask are set in the exposure apparatus, it is inadequate (a defective state of setting the substrate and the mask, a positioning defect between them, a gap determination between them, etc.), The image of the mask may not be accurately reproduced at a predetermined position on the substrate due to expansion and contraction of the substrate due to temperature and pressure. Therefore, it is necessary to inspect whether or not the image formed on the substrate accurately reproduces the image of the mask within the allowable error range.

【0005】従来、この検査は、マスクに被露光基板上
に形成すべき画像群に加えて、更にその外側に検査用の
測定点画像をいくつか設けておき、基板上に再現された
この測定点画像間の位置関係、ないしは測定点画像と画
像群中の一部の画像との位置関係を測定することにより
なされている。すなわち、基板を極めて高精度を有する
X−Y軸駆動台に載置し、先ず基準測定点として選ばれ
た画像に正確に位置合せをする。次いで駆動台を移動さ
せて次の測定点に正確に位置合せをし、その間の移動量
を計測する。このような、計測をいくつかの測定点につ
いて行なうと、画像がどの程度正確に再現されたかを知
ることができる。
Conventionally, in this inspection, in addition to an image group to be formed on a substrate to be exposed on a mask, some measurement point images for inspection are further provided on the outside thereof, and the measurement is reproduced on the substrate. This is done by measuring the positional relationship between the point images or the positional relationship between the measurement point image and a part of the images in the image group. That is, the substrate is placed on an XY axis drive table having extremely high accuracy, and first, the image is accurately aligned with the image selected as the reference measurement point. Next, the drive base is moved to accurately align the next measurement point, and the amount of movement during that time is measured. By performing such measurement at several measurement points, it is possible to know how accurately the image is reproduced.

【0006】[0006]

【発明が解決しようとする課題】この従来の検査方法の
問題点は、極めて高精度、従って高価な測定装置を必要
とし、また、測定操作も煩雑となることである。例えば
カラーフィルターの場合には、基板の大きさは400×
500mmもあり、これに通常は4枚のカラーフィルタ
ー画像が形成される。従って測定に際しての移動距離は
100mm以上にもなる。これに対し、測定の精度はミ
クロンオーダーであることが要求されるので、ダイナミ
ックレンジが105 :1以上必要となる。このような要
求を満足させるには、特殊ボールネジのような極めて高
精度の駆動機構と、レーザー干渉計のような計測器を必
要とし、またこれらの機器の精度を維持するための特別
の測定室を必要とする。従って多額の設備投資を要し、
しかも測定にも多大の時間を要する。
The problem with this conventional inspection method is that it requires an extremely high-precision and therefore expensive measuring device, and that the measuring operation is also complicated. For example, in the case of a color filter, the size of the substrate is 400 x
It has a size of 500 mm, on which four color filter images are usually formed. Therefore, the moving distance at the time of measurement becomes 100 mm or more. On the other hand, since the measurement accuracy is required to be on the order of microns, a dynamic range of 10 5 : 1 or more is required. In order to satisfy such requirements, an extremely high precision drive mechanism such as a special ball screw and a measuring instrument such as a laser interferometer are required, and a special measuring room for maintaining the precision of these instruments is required. Need. Therefore, a large amount of capital investment is required,
Moreover, it takes a lot of time for measurement.

【0007】[0007]

【課題を解決するための手段】本発明は、基板上に形成
されている測定点間の位置を直接に測定する代りに、正
確に測定点が形成されている透明な標準基板を用い、こ
の標準基板上の測定点と、これに対応する被測定基板上
の測定点との位置のづれを計測することにより、間接的
に被測定基板上の測定点の位置を測定しようとするもの
である。本発明によれば、 露光処理が正確に行なわれた場合に被測定基板上に
形成される基準点画像及び測定点画像の位置に、それぞ
れ対応する基準点画像及び測定点画像を有する標準基板
を用意すること、標準基板の材質は、誤差を生じないよ
うに、露光処理で使用されるマスクと同じく熱膨張率が
極力小さいものであることが望ましい。
According to the present invention, instead of directly measuring the positions between the measuring points formed on the substrate, a transparent standard substrate on which the measuring points are accurately formed is used. The position of the measurement point on the measured substrate is indirectly measured by measuring the positional deviation between the measurement point on the standard substrate and the corresponding measured point on the measured substrate. . According to the present invention, a standard substrate having a reference point image and a measurement point image respectively corresponding to the positions of the reference point image and the measurement point image formed on the substrate to be measured when the exposure processing is performed accurately is performed. It is desirable that the material of the standard substrate is prepared so that the coefficient of thermal expansion is as small as possible in the same manner as the mask used in the exposure process so as not to cause an error.

【0008】 被測定基板と標準基板とを、双方の基
準点画像位置が少くともほぼ一致するように平行に重ね
て配置すること 被測定基板と標準基板との間に基準点画像間の位置
のづれがある場合には、それを測定すること 被測定基板と標準基板との測定点画像間の位置のづ
れを測定すること 基準点画像間の位置のづれの測定値と、測定点画像
間の位置のづれの測定値とから、標準基板における基準
点画像と測定点画像間の関係位置に基づいて、被測定基
板における基準点画像と測定点画像間の関係位置を算出
することの一連の手続を経ることにより、比較的簡単な
測定装置を用いて、被測定基板上の測定点の位置関係を
正確に且つ容易に測定することができる。
The substrate to be measured and the standard substrate are arranged in parallel so that the positions of the reference point images of both are at least substantially coincident. The position of the position between the reference point images is measured between the substrate to be measured and the standard substrate. If there is a deviation, measure it.Measure the deviation between the measurement point images of the substrate under measurement and the standard board.Measure the deviation of the position between the reference point images and the position between the measurement point images. A series of procedures for calculating the relational position between the reference point image and the measurement point image on the measured substrate based on the relational position between the reference point image and the measurement point image on the standard substrate from the measured value of the deviation As a result, the positional relationship of the measurement points on the substrate to be measured can be accurately and easily measured using a relatively simple measuring device.

【0009】[0009]

【発明の実施の形態】本発明について更に詳細に説明す
ると、本発明はカラーフィルターなどの透明な基板上に
形成されている画像の相対位置を極めて精度よく、通常
はミクロンないしはサブミクロンオーダーで測定する方
法である。本発明では、第1段階として、露光処理に用
いるマスクに基準点画像と測定点画像とを有するものを
用いて、被測定基板に基準点画像と測定点画像が形成さ
れるようにしておく。なお、マスクに本来的に形成され
ている画像を、これらの画像ないしはその一部として用
いることもできるが、計測が容易な形状の画像を形成す
るため、マスクに本来的に形成されている画像とは別に
基準点画像及び測定点画像を形成するのが好ましい。第
2段階として、測定のものさしとして、露光処理が正確
に行なわれた場合に被測定基板上に形成される基準点画
像及び測定点画像の位置に、それぞれ対応する基準点画
像及び測定点画像を有する標準基板を用意する。基準点
画像及び測定点画像は、いずれも標準基板と被測定基板
のそれぞれ対応する画像間で、画像位置のづれの測定が
容易な形状であれば、同一形状でも異なる形状でもよ
い。また、基準点画像及び測定点画像のそれぞれは、標
準基板と被測定基板とで、ポジとネガとの関係にあるの
が好ましい。これは双方の基板を重ねて光を照射したと
きに、双方の基板の対応する画像間の位置のづれの検出
を容易にするためである。更に双方の基板の対応する画
像の形状も、同一形状である必要は無く、むしろ異なる
形状として、対応する画像間の位置のづれの検出を容易
とするのが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail. The present invention is capable of extremely accurately measuring the relative position of an image formed on a transparent substrate such as a color filter, usually on the order of microns or submicrons. Is the way to do it. In the present invention, as the first step, a mask having a reference point image and a measurement point image is used for the mask used for the exposure processing so that the reference point image and the measurement point image are formed on the substrate to be measured. Although the images originally formed on the mask can be used as these images or a part thereof, the images originally formed on the mask are formed in order to form an image of a shape that can be easily measured. It is preferable to form the reference point image and the measurement point image separately from the above. In the second step, as a measure for measurement, a reference point image and a measurement point image respectively corresponding to the positions of the reference point image and the measurement point image formed on the substrate to be measured when the exposure processing is performed accurately are performed. A standard substrate having the above is prepared. The reference point image and the measurement point image may have the same shape or different shapes as long as it is easy to measure the deviation of the image position between the images corresponding to the standard substrate and the substrate to be measured. In addition, it is preferable that the reference point image and the measurement point image have a positive and negative relationship between the standard substrate and the substrate to be measured. This is to facilitate detection of positional deviation between corresponding images on both substrates when the two substrates are overlapped and irradiated with light. Further, the shapes of the images corresponding to both substrates do not have to be the same shape, but rather different shapes are preferably used to facilitate detection of positional deviation between the corresponding images.

【0010】図1 (a)は、被測定基板の模式的な例で
あり、本来の画像群が形成されている領域外の右上隅と
左下隅とにL字形の基準点画像ロが不透光部として形成
されている。また、画像群が形成されている領域部の四
隅と内部に測定点画像イが形成されている。四隅の測定
点画像は不透光部として、内部の測定点画像は透光部と
して形成されている。
FIG. 1A is a schematic example of a substrate to be measured, in which an L-shaped reference point image B is opaque in the upper right corner and the lower left corner outside the area where the original image group is formed. It is formed as a light section. Further, measurement point images B are formed at the four corners of the area where the image group is formed and inside. The measurement point images at the four corners are formed as non-light-transmitting portions, and the measurement point images inside are formed as light-transmitting portions.

【0011】図1 (b)は、上記の被測定基板に対応す
る標準基板であり、それぞれ対応する基準点画像ロと測
定点画像イが形成されている。但し、基準点画像は透光
部として形成されており、四隅の測定点画像に対応する
測定点画像は透光部として、内部の測定点画像に対応す
る測定点画像は不透光部として形成されている。双方の
基板の対応する基準点画像及び測定点画像の形状は、相
互にきっちりと嵌合するようになっている。
FIG. 1B shows a standard substrate corresponding to the above-mentioned substrate to be measured, on which a corresponding reference point image B and measurement point image B are formed. However, the reference point image is formed as a light-transmitting portion, the measurement point images corresponding to the measurement point images at the four corners are formed as a light transmitting portion, and the measurement point images corresponding to the internal measurement point images are formed as a non-light transmitting portion. Has been done. The shapes of the corresponding reference point image and measurement point image on both boards are designed to fit each other tightly.

【0012】第3段階では、標準基板と被測定基板と
を、双方の基準点画像位置がほぼ一致するように、すな
わち図1の例では、標準基板と被測定基板の基準点画像
がほぼ嵌まり合うように、重ね合わせる。双方の基準点
画像位置が正確に一致するように、すなわち図1の例で
は双方の基準点画像がきっちりと嵌まり合うように、双
方の基板を重ね合わせても勿論差支えないが、そのため
には高精度の位置決め機構が必要である。本発明では双
方の基板の基準点を正確に一致させなくても、画像処理
により基準点間のづれを正確に測定できるので、敢て高
精度の位置決め機構を用いる必要は無い。なお、双方の
基板を重ね合わせる際は、双方の基板を接触させずに、
若干の間隙をおいて重ね合わせるのが好ましい。双方の
基板の表面は極めて平滑に仕上げられているので、両者
を接触させると密着してしまい、標準基板に傷がついた
り、異物が付着したりして、標準基板がその後の使用に
適さなくなる恐れがある。双方の基板は、若干の間隙を
おいてできるだけ高い平行度で重ね合わせることが必要
である。平行度が不良であると、双方の基板上の画像位
置のづれを正確に測定できない。通常は双方の基板の傾
きが0.03度以内になるようにする。
In the third step, the standard board and the measured board are set so that their reference point image positions substantially match each other, that is, in the example of FIG. 1, the standard board and the measured board reference point images are substantially fitted. Stack them so that they fit together. It is of course possible to superimpose the two substrates so that the positions of the reference point images exactly coincide with each other, that is, in the example of FIG. A highly accurate positioning mechanism is required. In the present invention, the deviation between the reference points can be accurately measured by the image processing even if the reference points of both substrates are not exactly matched, so that it is not necessary to use a highly accurate positioning mechanism. In addition, when stacking both substrates, without contacting both substrates,
It is preferable to overlap with a slight gap. The surfaces of both substrates are extremely smooth, so if they come into contact with each other, they will stick together, and the standard substrate will become scratched or foreign matter will adhere, making it unsuitable for future use. There is a fear. Both substrates should be superposed with a high degree of parallelism with some clearance. If the parallelism is poor, it is not possible to accurately measure the deviation of the image positions on both substrates. Normally, the inclinations of both substrates are set within 0.03 degrees.

【0013】被測定基板上の画像がマスクの画像をどの
程度正確に再現しているかを測定する必要が生ずるの
は、被測定基板の製作工程における工程検定ないしは製
作された被測定基板の出荷に際しての出荷検定において
であり、同一形状の画像を有する同一の大きさの被測定
基板を、流れ作業で次々と測定することが多い。従っ
て、この場合には、測定装置として、標準基板を載置す
る固定支持台と、この台上に固定支持された標準基板に
対向して被測定基板を支持する可動支持台と、この支持
台上に支持された被測定基板の基準点画像を標準基板の
基準点画像とほぼ一致させるべくこの支持台を前後左右
に移動させる駆動機構とを備えているものを用いるのが
好ましい。更には、被測定基板を、その支持台上に順次
送り込み且つ測定を終了した被測定基板を支持台上から
取外す、被測定基板の供給−排出機構も設けておくのが
好ましい。
It is necessary to measure how accurately the image on the substrate to be measured reproduces the image on the mask when performing the process verification in the manufacturing process of the substrate to be measured or when shipping the manufactured substrate to be measured. In many cases, the substrates to be measured having the same shape and the same size are measured one after another in a flow operation. Therefore, in this case, as a measuring device, a fixed support table on which a standard substrate is placed, a movable support table that supports the substrate to be measured facing the standard substrate fixedly supported on this table, and this support table. It is preferable to use one having a drive mechanism that moves the support table back and forth and left and right so that the reference point image of the substrate to be measured supported on the top substantially coincides with the reference point image of the standard substrate. Furthermore, it is preferable to provide a supply / discharge mechanism for the substrate to be measured, which sequentially feeds the substrate to be measured to the substrate and removes the substrate to be measured after the measurement is completed.

【0014】本発明の第4段階では、重ね合わされた標
準基板と被測定基板との基準点画像を観察し、標準基板
の基準点画像に対する被測定基板の基準点画像の位置の
づれを測定する。この位置のづれは、通常はサブミクロ
ンオーダーで極めて正確に計測する必要がある。この位
置づれの測定値に基づいて、後続する測定点での位置づ
れの測定値を補正し、最終的に被測定基板の測定点が、
基準点に対して、どの方向にどの程度づれているかを算
出する。従って、基準点画像は、位置づれ(どの方向
に、どの程度づれているか)の計測が容易なように、直
交する線で構成するのが好ましい。例えば、図2はこの
ような基準点画像の組合せの1例であり、標準基板に
は、直交する2本の直線に基づいて2個の正方形をその
直線の交点(ここが基準点となる)で接するように配置
した形状の基準点画像が形成されており、被測定基板に
はL字形(その外側の頂角が基準点となる)の形状の基
準点画像が形成されている。標準基板と被測定基板とが
図2の如く重なり合っているならば、バーOaとバーO
bとを測定することにより、被測定基板の基準点画像が
標準基板のそれに対し、どの方向にどの程度づれてお
り、且つその回転角(θ)がいくらであるかを容易に算
出することができる。そして、後続する測定点画像の位
置づれの検出に際しては、実際に検出された位置づれ
を、この基準点画像の位置づれのデータにより修正し
て、真の位置づれを算出する。
In the fourth step of the present invention, the reference point images of the superposed standard substrate and the measured substrate are observed, and the positional deviation of the reference point image of the measured substrate with respect to the reference point image of the standard substrate is measured. . This positional deviation usually needs to be measured extremely accurately on the order of submicrons. Based on the measurement value of this position deviation, the measurement value of the position deviation at the subsequent measurement point is corrected, and finally the measurement point of the measured substrate becomes
It is calculated in what direction and to what extent the reference point is offset. Therefore, it is preferable that the reference point image is composed of orthogonal lines so that the positional deviation (in which direction and to what extent) can be easily measured. For example, FIG. 2 is an example of such a combination of reference point images. On a standard substrate, two squares based on two orthogonal straight lines are intersected with each other (this is the reference point). A reference point image having a shape arranged so as to be in contact with is formed, and a reference point image having an L shape (the apex angle on the outer side thereof serves as a reference point) is formed on the substrate to be measured. If the standard substrate and the substrate to be measured are overlapped as shown in FIG. 2, bar Oa and bar O
By measuring b and b, it is possible to easily calculate in which direction and how much the reference point image of the measured substrate is relative to that of the standard substrate, and what the rotation angle (θ) is. . Then, when detecting the positional deviation of the subsequent measurement point image, the actual positional deviation is corrected by the positional deviation data of the reference point image to calculate the true positional deviation.

【0015】従って、基準点画像の位置を正確に一致さ
せておくと、後で測定点画像の位置づれを計測したとき
に、計測値を補正する必要が無い点では有利であるが、
前述の如く基準点画像の位置を正確に一致させなくても
位置づれを測定できるのが、本発明の特徴の一つであ
る。なお、被測定基板上の画像の回転角(θ)の算出に
際しては、複数ケ所での測定値の平均値を用いるように
してもよい。
Therefore, if the positions of the reference point images are made to match exactly, it is advantageous in that the measured values do not have to be corrected when the positional deviation of the measurement point images is measured later.
As described above, it is one of the features of the present invention that the misregistration can be measured without accurately matching the positions of the reference point images. When calculating the rotation angle (θ) of the image on the substrate to be measured, the average value of the measured values at a plurality of points may be used.

【0016】第5段階では、重ね合わされた標準基板と
被測定基板との測定点画像を観察し、標準基板の測定点
画像に対する被測定基板の測定点画像の位置づれを計測
する。測定点画像も、位置づれの検出が容易なように、
基準点画像と同じく直交する線で構成するのが好まし
い。この測定点画像の位置づれの計測値を、前述の基準
点画像の位置づれの計測値で補正すると、双方の基板間
における測定点画像の位置づれ、従って被測定基板の基
準点画像と測定点画像との位置関係が正確に求められ
る。
In the fifth step, the measurement point images of the superposed standard substrate and the measurement substrate are observed, and the positional deviation of the measurement point image of the measurement substrate with respect to the measurement point image of the standard substrate is measured. Also in the measurement point image, it is easy to detect misalignment,
It is preferable that the reference point image is composed of lines that are orthogonal to each other. When the measurement value of the positional deviation of the measurement point image is corrected by the measurement value of the positional deviation of the reference point image described above, the positional deviation of the measurement point image between both boards, and thus the reference point image and the measurement point image of the board under measurement, The positional relationship of is accurately obtained.

【0017】第4段階及び第5段階の画像位置の観察
は、通常は高倍率観察が可能な顕微鏡付カメラで行な
い、得られた画像データを画像処理装置で処理して、標
準基板に対する被測定基板の画像位置のづれを算出する
のが有利である。カメラの同一視野内に双方の基板の画
像が収まる限り、カメラはできるだけ固定しておくの
が、装置が簡単となり、且つ測定精度を低下させないの
で有利である。通常は、双方の基板の基準点画像が同一
視野内に収まるように双方の基板を重ねて、基準点画像
は固定カメラで撮影し、測定点画像は固定カメラ又は移
動カメラで測定するのが有利である。
Observation of the image positions in the fourth step and the fifth step is usually performed by a camera with a microscope capable of high-magnification observation, and the obtained image data is processed by an image processing device to measure the standard substrate. It is advantageous to calculate the deviation of the image position of the substrate. As long as the images of both substrates fit within the same field of view of the camera, it is advantageous to fix the camera as much as possible because it simplifies the device and does not reduce measurement accuracy. Normally, it is advantageous to stack both boards so that the reference point images of both boards fit within the same field of view, take the reference point image with a fixed camera, and measure the measurement point image with a fixed camera or a moving camera. Is.

【0018】本発明を実施するための装置の1例を図3
に基づいて説明すると、1は標準基板、2は被測定基板
である。3は標準基板の支持装置の支持部材であり、標
準基板1を被測定基板2と平行に、かつこれと一定の間
隔をへだてて、架台9に交換可能に固定支持している。
被測定基板2は、図示されていないX−Y軸駆動台上に
載置されており、標準基板に対し被測定基板を平行に移
動させて、双方の基準点画像位置がほぼ一致するように
調整しうるようになっている。なお、装置にはX−Y軸
駆動台上への被測定基板の供給及び台上からの被測定基
板の排出を自動的に行なう、被測定基板の供給−排出手
段を付設するのが好ましい。
One example of an apparatus for carrying out the present invention is shown in FIG.
1 is a standard substrate and 2 is a substrate to be measured. Reference numeral 3 denotes a supporting member of a supporting device for the standard substrate, which is fixed to the pedestal 9 so as to be replaceable, in parallel with the substrate 2 to be measured and at a certain interval from the substrate 2.
The substrate to be measured 2 is placed on an XY axis drive table (not shown), and the substrate to be measured is moved in parallel with the standard substrate so that the reference point image positions of both are substantially the same. It can be adjusted. In addition, it is preferable that the apparatus is provided with a supply / discharge means for the substrate to be measured, which automatically supplies the substrate to be measured onto the X-Y axis drive table and discharges the substrate to be measured from the table.

【0019】4は照明装置であり、観察しようとする画
像部分だけを個別に照明するものでも、基板全体を照明
するものでもよい。照明は重なり合った画像の計測が可
能なように、どの位置においても拡散光または平行光で
あるのが望ましい。5はカメラである。前述の如く、カ
メラは測定すべき画像位置に対応させて固定配置してお
くのが望ましい。カメラとしては2次元CCDカメラ、
撮像管型カメラなどが用いられる。カメラの焦点が正し
く合っていないと計測精度が低下するので、オートフォ
ーカス装置6を取付けておき、計測毎に焦点合せを行な
うのが好ましい。カメラにより得られた画像信号は、信
号切替装置7を経て画像処理装置8に入力される。画像
処理装置8では、各測定点画像位置での位置づれを、基
準点画像位置での位置づれと、標準基板における基準点
と各測定点との関係位置に基づいて補正し、被測定画像
における基準点と各測定点との関係位置を算出する。
Reference numeral 4 denotes an illuminating device, which may illuminate only the image portion to be observed individually or illuminate the entire substrate. The illumination is preferably diffuse light or parallel light at any position so that overlapping images can be measured. 5 is a camera. As described above, it is desirable that the camera is fixedly arranged corresponding to the image position to be measured. The camera is a two-dimensional CCD camera,
An image pickup tube type camera or the like is used. Since the measurement accuracy decreases if the camera is not properly focused, it is preferable to mount the autofocus device 6 and perform the focus for each measurement. The image signal obtained by the camera is input to the image processing device 8 via the signal switching device 7. In the image processing device 8, the positional deviation at each measurement point image position is corrected based on the positional deviation at the reference point image position and the relational position between the reference point and each measurement point on the standard substrate, and the corrected image is measured. The relative position between the reference point and each measurement point is calculated.

【0020】[0020]

【発明の効果】本発明によれば、マスクを用いた露光処
理により形成された画像を有する基板上の画像位置が正
しく再現されているか否かを、簡単に且つ精度よく測定
することができる。
According to the present invention, it is possible to easily and accurately measure whether or not the image position on the substrate having the image formed by the exposure process using the mask is correctly reproduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】基板上に形成される画像の配置の1例を模式的
に示すものである。
FIG. 1 schematically shows an example of an arrangement of images formed on a substrate.

【図2】基準点画像の位置づれの算出方法の1例を示す
ものである。
FIG. 2 shows an example of a method for calculating positional deviation of a reference point image.

【図3】本発明を実施するための装置の1例の基本的構
成を示す図である。
FIG. 3 is a diagram showing a basic configuration of an example of an apparatus for carrying out the present invention.

【符号の説明】[Explanation of symbols]

イ 測定点画像 ロ 基準点画像 1 標準基板 2 被測定基板 3 標準基板の支持装置の部材 4 照明装置 5 カメラ 6 オートフォーカス装置 7 信号切替装置 8 画像処理装置 9 架台 B Measurement point image B Reference point image 1 Standard substrate 2 Substrate to be measured 3 Standard substrate supporting device members 4 Illumination device 5 Camera 6 Autofocus device 7 Signal switching device 8 Image processing device 9 Frame

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 透明基板上に、感光膜の露光処理を経て
形成された測定点画像及び基準点画像を有する被測定基
板の基準点画像に対する測定点画像の関係位置を測定す
る方法であって、 露光処理が正確に行なわれた場合に被測定基板上に
形成される基準点画像及び測定点画像の位置に、それぞ
れ対応する基準点画像及び測定点画像を有する標準基板
を用意すること 被測定基板と標準基板とを、双方の基準点画像位置
が少くともほぼ一致するように、平行に重ねて配置する
こと 被測定基板と標準基板との間で、基準点画像間の位
置のづれがある場合には、それを測定すること 被測定基板と標準基板との間で測定点画像間の位置
のづれを測定すること 双方の基板の基準点画像間の位置のづれの測定値
と、測定点画像間の位置のづれの測定値とから、標準基
板における基準点画像と測定点画像間の関係位置に基づ
いて、被測定基板における基準点画像と測定点画像間の
関係位置を算出することを特徴とする方法。
1. A method for measuring a relative position of a measurement point image with respect to a reference point image of a substrate to be measured having a measurement point image and a reference point image formed on a transparent substrate by exposing a photosensitive film. , Prepare a standard substrate having the reference point image and the measurement point image corresponding to the positions of the reference point image and the measurement point image formed on the substrate to be measured when the exposure process is performed accurately. The board and the standard board should be placed in parallel so that the reference point image positions of both are at least approximately the same. There is a positional deviation between the reference point images between the board to be measured and the standard board. In that case, measure it.Measure the positional deviation between the measurement point images between the board to be measured and the standard board.Measurement value of the positional deviation between the reference point images of both boards and the measurement point image. Such as the measured value of the gap between the positions , Based on a relationship position between the measurement point image and the reference point images in the standard substrate, wherein the calculating the relationship position between the measurement point image and the reference point images in the substrate to be measured.
【請求項2】 標準基板と被測定基板との間における基
準点画像及び測定点画像の位置のづれの測定を、双方の
基板上のこれらの画像を含む部分を、高倍率観察が可能
なカメラで撮影し、得られた画像データを画像処理装置
により処理して、位置のづれを算出することを特徴とす
る請求項1記載の方法。
2. A camera capable of high-magnification observation of a position of a reference point image and a position of a measurement point image between a standard substrate and a substrate to be measured, and a portion including these images on both substrates. 2. The method according to claim 1, wherein the image data obtained by photographing is processed by an image processing device to calculate the positional deviation.
【請求項3】 標準基板と被測定基板とを平行に重ねて
配置するに際し、双方の基板が接触しないように若干の
間隙を置いて配置することを特徴とする請求項1又は2
記載の方法。
3. The standard substrate and the substrate to be measured are arranged parallel to each other with a slight gap so that the two substrates do not come into contact with each other.
The described method.
【請求項4】 透明基板上に測定点画像及び基準点画像
を有する被測定基板の、基準点画像に対する測定点画像
の関係位置を、対応する測定点画像及び基準点画像が正
確に配置されている標準基板との対比において測定する
装置であって、被測定基板と標準基板とを両者間に若干
の間隙を置いて平行に重ねて支持する手段と、双方の基
板をその間隙を維持したまま相対的に移動させる手段
と、双方の基板を通して基板面に垂直に光を照射する手
段と、基準点画像部分及び測定点画像部分を通過してき
た光を受けるカメラと、カメラで得られた画像信号を処
理して得られた双方の基板間の基準点画像間の位置づれ
及び測定点画像画間の位置づれ、並びに標準基板におけ
る基準点画像と測定点画像との関係位置に基づいて、被
測定基板の基準点画像と測定点画像の関係位置を算出す
る画像処理手段とを備えていることを特徴とする装置。
4. The relative position of the measurement point image with respect to the reference point image of the substrate to be measured having the measurement point image and the reference point image on the transparent substrate is determined such that the corresponding measurement point image and the reference point image are accurately arranged. A device for measuring in comparison with a standard substrate which is present, a means for supporting the substrate under measurement and the standard substrate in parallel with each other with a slight gap between them, and maintaining the gap between both substrates. Means for relatively moving, means for irradiating light perpendicularly to the substrate surface through both substrates, a camera for receiving light passing through the reference point image portion and the measurement point image portion, and an image signal obtained by the camera Based on the position between the reference point images between both boards and the position between the measurement point image images obtained by processing, and the relative position between the reference point image and the measurement point image on the standard board, Board reference point image And an image processing means for calculating a relative position of the measurement point image.
【請求項5】 被測定基板と標準基板とを支持する手段
と、双方の基板を相対的に移動させる手段とが、標準基
板を載置する固定支持台、被測定基板を載置する可動支
持台及びこの可動支持台を前後左右に移動させる駆動機
構とから成ることを特徴とする請求項4記載の装置。
5. A fixed support for mounting the standard substrate and a movable support for mounting the substrate to be measured include a means for supporting the substrate to be measured and the standard substrate, and a means for relatively moving both substrates. The apparatus according to claim 4, comprising a table and a drive mechanism for moving the movable support table in the front-rear and left-right directions.
【請求項6】 基準点画像部分を通過してきた光を受け
るカメラが固定カメラであることを特徴とする請求項4
又は5記載の装置。
6. The camera for receiving light passing through the reference point image portion is a fixed camera.
Or the device according to item 5.
JP3790596A 1996-02-26 1996-02-26 Method for measuring image position formed on transparent substrate and apparatus therefor Pending JPH09229630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3790596A JPH09229630A (en) 1996-02-26 1996-02-26 Method for measuring image position formed on transparent substrate and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3790596A JPH09229630A (en) 1996-02-26 1996-02-26 Method for measuring image position formed on transparent substrate and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH09229630A true JPH09229630A (en) 1997-09-05

Family

ID=12510568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3790596A Pending JPH09229630A (en) 1996-02-26 1996-02-26 Method for measuring image position formed on transparent substrate and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH09229630A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515157A (en) * 1999-11-24 2003-04-22 ナムローゼ フェンノートシャップ クリプトン エレクトロニック エンジニアリング A method for measuring the dynamic behavior of a vehicle on a test bench
JP2020165785A (en) * 2019-03-29 2020-10-08 大日本印刷株式会社 Size measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515157A (en) * 1999-11-24 2003-04-22 ナムローゼ フェンノートシャップ クリプトン エレクトロニック エンジニアリング A method for measuring the dynamic behavior of a vehicle on a test bench
JP2020165785A (en) * 2019-03-29 2020-10-08 大日本印刷株式会社 Size measuring apparatus

Similar Documents

Publication Publication Date Title
KR100389976B1 (en) Alignment method and device therefor
JP2008270649A (en) Surface mounting equipment, and camera position correction method thereof
US6219442B1 (en) Apparatus and method for measuring distortion of a visible pattern on a substrate by viewing predetermined portions thereof
US5640243A (en) Position detection method
JP3882588B2 (en) Mark position detection device
KR20040002540A (en) Apparatus and method of detecting a mark position
KR101234932B1 (en) Maskless exposure apparatus and method, and method for manufacturing flat display panel
JPS5918950A (en) Apparatus for projection transfer of mask on work piece and adjusting method thereof
JPS61222128A (en) Projection exposure method
JPH09229630A (en) Method for measuring image position formed on transparent substrate and apparatus therefor
JPH03211812A (en) Exposure aligner
JPH09236425A (en) Face position detector
US4007988A (en) Manufacture of multi-layer structures
JPH09312248A (en) Exposure device
JP3337499B2 (en) Printed circuit board inspection equipment
JP4664463B2 (en) Board inspection equipment
JPH09320920A (en) Adjustment method of aligner
JPH0756183A (en) Aligning method
JPH08330219A (en) Scanning-type exposure device
JPH1152545A (en) Reticle and pattern transferred by the same as well as method for aligning reticle and semiconductor wafer
JPH0259615B2 (en)
JPH08227845A (en) Method for inspecting projection optical system and projection exposure apparatus for executing method thereof
JPH09129540A (en) Orthogonality measuring method of stage system
JP5166681B2 (en) Step-type proximity exposure system
JPH10208991A (en) Projection aligner