JPH09229507A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH09229507A
JPH09229507A JP8060228A JP6022896A JPH09229507A JP H09229507 A JPH09229507 A JP H09229507A JP 8060228 A JP8060228 A JP 8060228A JP 6022896 A JP6022896 A JP 6022896A JP H09229507 A JPH09229507 A JP H09229507A
Authority
JP
Japan
Prior art keywords
air conditioner
heat exchanger
temperature
indoor air
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8060228A
Other languages
Japanese (ja)
Other versions
JP3729552B2 (en
Inventor
Isato Mihira
勇人 三平
Hiroaki Miyazaki
裕明 宮崎
Naohisa Hayakawa
尚央 早川
Yasuhiro Kojima
康洋 小島
Takumasa Shinmachi
拓正 新町
Shuhei Yoshimoto
周平 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOPURE KK
TOUPURE KK
Original Assignee
TOPURE KK
TOUPURE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOPURE KK, TOUPURE KK filed Critical TOPURE KK
Priority to JP06022896A priority Critical patent/JP3729552B2/en
Publication of JPH09229507A publication Critical patent/JPH09229507A/en
Application granted granted Critical
Publication of JP3729552B2 publication Critical patent/JP3729552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/15Hunting, i.e. oscillation of controlled refrigeration variables reaching undesirable values

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable either a cooling operation or a heating operation to be carried out for every air-conditioned zone in a less-expensive manner. SOLUTION: A plurality of indoor air conditioners 50A to 50C are connected in parallel with an outdoor air conditioner 30 through a branch device 40, and blown air in the indoor air conditioners is guided into a plurality of air conditioned zones. The branch device is provided with a supercooling heat exchanger 12, and solenoid valves 13A to 13C, 23A to 23C capable of selecting a cooling operation and a heating operation through its changing-over operation. An outdoor air conditioner is provided with a supercooling heat exchanger 4, its liquid pipe side is provided with a flow rate adjusting valve 25 and an expansion valve 7. A liquid pipe side of an indoor air conditioner is provided with flow rate adjusting valves 14A to 14C and expansion valves 15A to 15C. An air supplying temperature is changed in response to an indoor air temperature in an air conditioned zone so as to control an indoor air temperature. With such an arrangement as above, it is possible to perform optionally a cooling operation or a heating operation in compliance with a respective request in each of the air conditioned zones and further an air supplying temperature is controlled, so that a comfortable air conditioning is carried out. In addition, when a cooling operation and a heating operation are carried out concurrently, thermal energy is transferred between the indoor air conditioners and a substantial energy saving can be attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、外調機と複数の室
内空調機とからなり、ビル等の空気調和に用いられるマ
ルチタイプの空気調和装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-type air conditioner comprising an air conditioner and a plurality of indoor air conditioners, which is used for air conditioning of a building or the like.

【0002】[0002]

【従来の技術】ビル等の空気調和には、冷温水を熱源と
してエアーハンドリングユニットやファンコイル等の空
気調和装置が一般に用いられている。特に、定風量単一
ダクト型エアーハンドリングユニットは、空調ゾーンに
定風量の風を送り、給気温度を変えることにより空調ゾ
ーンの室内温度を制御する空調機で、多くのビル等で採
用されている。しかし、近年水質の悪化が激しく、これ
により配管が腐食されるなどの問題が多く発生するよう
になり、できるだけ水の使用を控えたいという要望がで
てきている。このような要望に対する回答として、例え
ば冷媒を直接熱源とするヒートポンプマルチ方式などが
提案されている。一方、近年の空気調和は多様化し、夏
は冷房運転、冬は暖房運転といった単純なものではなく
なっている。つまりビル等の内部では季節、部屋の方位
や位置、OA機器等の負荷により空気調和システム内で
冷房運転と暖房運転とを同時に行いたい場合がある。例
えばビル内のインテリアゾーンでは冷房運転を、ペリメ
ータゾーンでは暖房運転を行いたい場合がある。
2. Description of the Related Art Air conditioners such as an air handling unit and a fan coil using cold and hot water as a heat source are generally used for air conditioning of buildings and the like. In particular, the constant air volume single duct type air handling unit is an air conditioner that controls the indoor temperature of the air conditioning zone by sending a constant amount of air to the air conditioning zone and changing the air supply temperature, and is used in many buildings. There is. However, in recent years, water quality has been severely degraded, and this has caused many problems such as corrosion of pipes, and there has been a demand to reduce the use of water as much as possible. As a response to such a request, for example, a heat pump multi-system in which a refrigerant is used as a direct heat source has been proposed. On the other hand, air conditioning in recent years has been diversified, and cooling operations in summer and heating operations in winter are no longer simple. That is, in a building or the like, there are cases where it is desired to simultaneously perform cooling operation and heating operation in the air conditioning system depending on the season, the direction and position of the room, the load of the office automation equipment, and the like. For example, there is a case where it is desired to perform a cooling operation in an interior zone in a building and perform a heating operation in a perimeter zone.

【0003】また、春、秋の中間期には朝夕に暖房運
転、昼間には冷房運転が求められる場合もある。そして
この場合、冷房運転と暖房運転の切換時期が空調ゾーン
の方角により異なり、南側では冷房運転に切り換わるべ
き条件に至っているのに、北側では依然暖房運転が維持
される必要があることもある。さらに、OA機器等の負
荷の大きい所では、冬でも一日中冷房運転しなければな
らない場合もある。そこでこの対策として4パイプ式エ
アーハンドリングユニットと呼ばれる冷却用熱交換器と
加熱用熱交換器を持ち、冷房から暖房まで任意の温度で
給気できる特殊な空調方式が採用される場合もある。
In the middle of spring and autumn, a heating operation is required in the morning and evening, and a cooling operation is required in the daytime in some cases. In this case, the switching timing between the cooling operation and the heating operation differs depending on the direction of the air conditioning zone, and although the condition to switch to the cooling operation is reached on the south side, the heating operation may still need to be maintained on the north side. . Further, in a place with a large load such as OA equipment, it may be necessary to perform cooling operation all day even in winter. Therefore, as a countermeasure against this, there is a case where a special air conditioning system having a cooling heat exchanger and a heating heat exchanger called a 4-pipe type air handling unit and capable of supplying air at any temperature from cooling to heating is adopted.

【0004】[0004]

【発明が解決しようとする課題】しかし、4パイプ式エ
アーハンドリングユニット方式は冷熱源と温熱源の2熱
源を持たねばならず設備費用、運転費用ともに高額にな
る欠点があった。さらに、2熱源の廃熱はそれぞれ捨て
られているため、省エネルギーに逆行するものとなる。
また、冷暖同時運転のできるヒートポンプマルチ方式
は、室内機を居住区域に設置することになり、そのメン
テナンス性が著しく低い。また、これは室内循環型の空
気調和方式であるため、外気処理機能のために新たに外
気処理装置を室内機ごとに設置しなければならず、高い
設備コストを要するという問題がある。
However, the 4-pipe type air handling unit system has a drawback in that it has to have two heat sources, a cold heat source and a warm heat source, and the facility cost and the operating cost are high. Further, since the waste heats of the two heat sources are respectively discarded, it is against energy saving.
In addition, the heat pump multi-type, which can be operated at the same time as cooling and heating, requires an indoor unit to be installed in a living area, and its maintainability is extremely low. Further, since this is an indoor circulation type air conditioning system, there is a problem in that an external air treatment device must be newly installed for each indoor unit for the outdoor air treatment function, and high equipment cost is required.

【0005】さらに、冷暖同時運転に、同じモードの複
数の室内機同志や、同じモードの室内機と室外機の間
で、適正に冷媒の分配ができないこと、また、コンプレ
ッサの容量制御も十分でないため吹き出し温度も室内機
ごとにまちまちであることから、設定温度に達すると室
内機の冷媒制御弁を閉じたりして機能を停止しているの
が現状で、室温制御性が良いとは言いがたい。
Further, in the simultaneous cooling and heating operation, it is impossible to properly distribute the refrigerant between a plurality of indoor units of the same mode or between the indoor unit and the outdoor unit of the same mode, and the capacity control of the compressor is not sufficient. Therefore, the blowing temperature is also different for each indoor unit, so when the set temperature is reached, the function is stopped by closing the refrigerant control valve of the indoor unit, and it is not said that room temperature controllability is good. I want to.

【0006】また、ビル内での空調ゾーンの方位や位
置、OA機器の偏在などにより負荷の異なる複数の空調
ゾーンに対しては、それぞれ個別の室外機および室内機
を設置しなければならないので、空調機の数が増加し、
そのため設置スペースの増大となる。さらに、冷暖同時
型ヒートポンプマルチ方式においては、単にコンプレッ
サの容量制御を行っても送風温度の制御はできない。こ
れは、冷暖同時運転型ヒートポンプマルチ方式では、室
外機から複数の室内機まで冷媒配管距離がまちまちであ
り、圧力損失は冷媒流速の2乗に比例することから、コ
ンプレッサの容量制御を行っても各室内機に到達する冷
媒圧力分布が大きく変化し、各室内機の冷媒流量も変化
してしまうからである。
Further, an outdoor unit and an indoor unit must be installed respectively for a plurality of air conditioning zones having different loads due to the direction and position of the air conditioning zone in the building, uneven distribution of OA equipment, and the like. The number of air conditioners increased,
Therefore, the installation space is increased. Further, in the simultaneous cooling and heating type heat pump multi system, the blast temperature cannot be controlled by simply controlling the capacity of the compressor. This is because in the simultaneous cooling / heating simultaneous operation heat pump multi system, the refrigerant piping distances from the outdoor unit to the plurality of indoor units are different, and the pressure loss is proportional to the square of the refrigerant flow velocity, so even if the compressor capacity control is performed. This is because the refrigerant pressure distribution reaching each indoor unit changes significantly and the refrigerant flow rate of each indoor unit also changes.

【0007】また、定風量単一ダクト型エアーハンドリ
ングユニットは空調ゾーンの室内温度を検出し、設定温
度との差により給気温度を制御する。たとえば冷房運転
時、室内温度が設定温度より高い場合は給気温度を一定
量下げ、室内温度が低い場合は給気温度を一定量上げる
ステップ制御を行っている。しかし、差が大きい場合は
室内温度が設定温度となるまでに長時間を要したり、給
気温度の変化量が大きすぎるとコールドドラフトを起こ
したり、室内温度がハンチングを起こしたりする。さら
に、起動時の給気温度は予め設定された温度であり、空
調ゾーンの負荷を考慮にいれたものではないため、負荷
が大きい場合は設定温度になるまで当然時間がかかるこ
とになり、冬期の朝など早急な立ち上がりを望む要望に
は応えられないという問題があった。
Further, the constant air volume single duct type air handling unit detects the room temperature in the air conditioning zone and controls the supply air temperature by the difference from the set temperature. For example, during cooling operation, step control is performed in which the supply air temperature is decreased by a certain amount when the room temperature is higher than the set temperature, and the supply air temperature is increased by a certain amount when the room temperature is low. However, if the difference is large, it takes a long time for the room temperature to reach the set temperature, and if the change amount of the supply air temperature is too large, cold draft occurs or the room temperature hunts. Furthermore, since the supply air temperature at startup is a preset temperature and does not take into consideration the load of the air conditioning zone, it will take some time to reach the set temperature when the load is large. There was a problem that it was not possible to meet the demand for a quick start such as in the morning.

【0008】したがって、本発明は、上記従来の問題点
に鑑み、外調機と複数の室内空調機を備える空気調和装
置において、高い設備コストを要することなく、個々の
空調ゾーンにおいて、その要求負荷に応じて個別に冷房
運転または暖房運転ができる空気調和装置、さらには、
個別に給気温度を任意の温度に変化できるようにし、省
エネルギー性にも優れた空気調和装置を提供することを
目的とする。
Therefore, in view of the above-mentioned conventional problems, the present invention is an air conditioner equipped with an outdoor air conditioner and a plurality of indoor air conditioners, which requires a high load cost in each air conditioning zone without requiring a high equipment cost. Air conditioner that can be individually cooled or heated according to the
It is an object of the present invention to provide an air conditioner that is capable of individually changing the supply air temperature to an arbitrary temperature and is excellent in energy saving.

【0009】[0009]

【課題を解決するための手段】このため、本発明は、熱
交換器、該熱交換器に付設された膨張弁、該膨張弁の手
前に設けられた流量調整手段、および該流量調整手段を
制御する第1の制御手段を備える外調機と、それぞれ熱
交換器、該熱交換器に付設された膨張弁、該膨張弁の手
前に設けられた流量調整手段、および該流量調整手段を
制御する第2の制御手段を備え、冷凍サイクルの液管と
高圧ガス管と低圧ガス管を形成する冷媒配管により外調
機に並列に接続された複数の室内空調機からなり、各室
内空調機の給気を各空調ゾーンごとに導くとともに、外
調機の熱交換器に接続されたガス管を該外調機の熱交換
器に向かう高圧ガス管または低圧ガス管に選択的に接続
可能の第1の切り換え手段と、各室内空調機の熱交換器
に接続されたガス管を前記高圧ガス管または低圧ガス管
に選択的に接続可能の第2の切り換え手段を有して、そ
れぞれの室内空調機を個別に冷房運転または暖房運転に
選択的に制御し、その給気温度を変更することによりそ
れぞれの空調ゾーンの室内温度を制御するように構成さ
れたものとした。
Therefore, the present invention provides a heat exchanger, an expansion valve attached to the heat exchanger, a flow rate adjusting means provided in front of the expansion valve, and a flow rate adjusting means. An external air conditioner having first control means for controlling, a heat exchanger, an expansion valve attached to the heat exchanger, a flow rate adjusting means provided in front of the expansion valve, and the flow rate adjusting means And a second control means for controlling the temperature of each indoor air conditioner, which is composed of a plurality of indoor air conditioners connected in parallel to the air conditioner by refrigerant pipes forming a liquid pipe of the refrigeration cycle, a high pressure gas pipe, and a low pressure gas pipe. First, which is capable of guiding the supply air to each air conditioning zone and selectively connecting the gas pipe connected to the heat exchanger of the external air conditioner to the high pressure gas pipe or the low pressure gas pipe that goes to the heat exchanger of the external air conditioner. Gas connected to the switching means of No. 1 and the heat exchanger of each indoor air conditioner Has a second switching means capable of being selectively connected to the high-pressure gas pipe or the low-pressure gas pipe, and selectively controls each indoor air conditioner to perform a cooling operation or a heating operation individually, and a supply air temperature thereof. Is configured to control the indoor temperature of each air conditioning zone.

【0010】上記室内空調機の第2の制御手段は、冷房
運転時には当該室内空調機の膨張弁にはいる冷媒の過冷
却度を給気温度に応じて変化させるように当該室内空調
機の流量調整手段を制御し、暖房運転時は当該室内空調
機の熱交換器を出た冷媒の過冷却度を給気温度に応じて
変化させるように当該室内空調機の流量調整手段を制御
するものとするのが望ましい。また、外調機の第1の制
御手段は、外調機の熱交換器が凝縮器として作用すると
きは該外調機の熱交換器を出る冷媒の過冷却度が該熱交
換器の負荷に応じて決定される値になるように前記外調
機の流量調整手段を制御し、外調機の熱交換器が蒸発器
として作用するときは外調機の膨張弁にはいる冷媒の過
冷却度が外調機の熱交換器の負荷に応じて決定される値
になるよう前記外調機の流量調整手段を制御するものと
するのが望ましい。
The second control means of the indoor air conditioner controls the flow rate of the indoor air conditioner so as to change the degree of supercooling of the refrigerant in the expansion valve of the indoor air conditioner according to the supply air temperature during the cooling operation. Controlling the adjusting means, and controlling the flow rate adjusting means of the indoor air conditioner so as to change the degree of supercooling of the refrigerant that has exited the heat exchanger of the indoor air conditioner during heating operation according to the supply air temperature. It is desirable to do. Further, the first control means of the external air conditioner is such that when the heat exchanger of the external air conditioner acts as a condenser, the degree of supercooling of the refrigerant exiting the heat exchanger of the external air conditioner is the load of the heat exchanger. The flow rate adjusting means of the external regulator is controlled so that the value becomes a value determined in accordance with the above, and when the heat exchanger of the external regulator acts as an evaporator, the excess of the refrigerant flowing in the expansion valve of the external regulator is exceeded. It is desirable to control the flow rate adjusting means of the external controller so that the cooling degree becomes a value determined according to the load of the heat exchanger of the external controller.

【0011】さらに、室内空調機の少なくとも1つにお
いて該熱交換器が蒸発器として作用するとき前記室内空
調機に向かう液管と外調機に向かう低圧ガス管の間に、
互いの間で熱交換を行う第1の過冷却熱交換器を設ける
のが好ましく、また、外調機の熱交換器が蒸発器として
作用するとき前記外調機の熱交換器に向かう液管と低圧
ガス管の間に、互いの間で熱交換を行う第2の過冷却熱
交換器を設けるのが好ましい。また、上記給気温度は、
室内空調機が起動時にはそれぞれの空調ゾーンの室内温
度と設定温度より決定される値に設定され、その後は設
定温度と室内温度とその室内温度の変化とにより決定さ
れる値に基づいて変更されるのが望ましい。
Further, in at least one of the indoor air conditioners, when the heat exchanger acts as an evaporator, between the liquid pipe toward the indoor air conditioner and the low pressure gas pipe toward the external air conditioner,
It is preferable to provide a first subcooling heat exchanger for exchanging heat between each other, and also a liquid pipe going to the heat exchanger of the external regulator when the heat exchanger of the external regulator acts as an evaporator. A second subcooling heat exchanger for exchanging heat between each other is preferably provided between the low pressure gas pipe and the low pressure gas pipe. Also, the supply temperature is
When the indoor air conditioner is started, it is set to a value determined by the indoor temperature and the set temperature of each air conditioning zone, and then changed based on the value determined by the set temperature, the indoor temperature and the change in the indoor temperature. Is desirable.

【0012】[0012]

【作用】各室内空調機から各空調ゾーンへダクトを介し
て給気し、各室内空調機の給気温度の変化でそれぞれの
空調ゾーンごとの室内温度調節が行われる。外調機およ
び室内空調機において、第1、第2の制御手段がそれぞ
れの膨張弁手前に配置された流量調整弁を用いて給気す
べき温度になるように過冷却度を制御するとともに、各
室内空調機と外調機の熱交換器のガス管を高圧ガス管ま
たは低圧ガス管と選択的に接続することにより、冷房運
転と暖房運転が同時的に混在する形でどの室内空調機も
いずれかを選択できる。また、冷暖同時運転時には、室
内空調機間で熱エネルギーの移動が行われ大幅な省エネ
ルギーとなる。
The air is supplied from each indoor air conditioner to each air conditioning zone through the duct, and the indoor temperature of each air conditioning zone is adjusted by the change of the air supply temperature of each indoor air conditioner. In the outdoor air conditioner and the indoor air conditioner, the first and second control means control the degree of supercooling so as to reach the temperature to be supplied by using the flow rate adjusting valves arranged in front of the respective expansion valves, By selectively connecting the gas pipes of each indoor air conditioner and the heat exchanger of the external controller with the high-pressure gas pipes or the low-pressure gas pipes, any indoor air conditioner can be used in a form in which cooling operation and heating operation are simultaneously mixed. You can choose either. Further, during the simultaneous cooling and heating operation, heat energy is transferred between the indoor air conditioners, resulting in significant energy saving.

【0013】さらに、室内空調機の第2の制御手段は、
室内温度に応じて決定される給気温度になるように流量
調整手段により冷媒の過冷却度を制御することにより、
給気温度が変化されても他の室内空調機との干渉を生じ
ないでそれぞれの室内空調機において、膨張弁に入る冷
媒の圧力を安定に保持でき、給気温度の安定した空気調
和が行われる。
Further, the second control means of the indoor air conditioner is
By controlling the degree of supercooling of the refrigerant by the flow rate adjusting means so that the supply temperature is determined according to the room temperature,
Even if the supply air temperature changes, it does not interfere with other indoor air conditioners, and in each indoor air conditioner, the pressure of the refrigerant entering the expansion valve can be stably maintained, and air conditioning with stable supply air temperature can be performed. Be seen.

【0014】なお、複数の室内空調機に向かう液管と低
圧ガス管の間に第1の過冷却熱交換器を設けたときに
は、流量調整手段による流量の制御幅が拡大される。さ
らに、外調機の熱交換器に向かう液管と低圧ガス管の間
に第2の過冷却熱交換器を設けたときは、外調機のコン
プレッサに入るガス冷媒の過熱度を大きくすることがで
き、暖房能力が向上する。
When the first supercooling heat exchanger is provided between the liquid pipes and the low pressure gas pipes which are directed to the plurality of indoor air conditioners, the control range of the flow rate by the flow rate adjusting means is expanded. Further, when a second supercooling heat exchanger is provided between the liquid pipe and the low-pressure gas pipe to the heat exchanger of the external pressure regulator, the degree of superheat of the gas refrigerant entering the compressor of the external pressure regulator should be increased. And the heating capacity is improved.

【0015】[0015]

【発明の実施の形態】図1は、本発明の第1の実施例の
システム構成を示す。この実施例においては、1機の外
調機30に対して、3機の室内空調機50A、50B、
50Cが分岐ユニット40を介して並列に接続されてい
る。各室内空調機からは熱交換された空気がダクト47
A、47B、47Cにより空調ゾーンZA、ZB、ZC
へ導かれる。各ダクトは対応する空調ゾーンの数に応じ
て適宜に分岐し、個別に空調ゾーンへ分かれて送られ
る。45A、45B、45Cは室内温度センサで、49
A、49B、49Cは室内温度設定器でそれぞれ室内空
調機50A、50B、50Cへ接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the system configuration of the first embodiment of the present invention. In this embodiment, three indoor air conditioners 50A and 50B are provided for one outdoor air conditioner 30.
50C are connected in parallel via the branching unit 40. The air that has undergone heat exchange from each indoor air conditioner is in the duct 47.
Air conditioning zones ZA, ZB, ZC by A, 47B, 47C
Be led to. Each duct is branched appropriately according to the number of corresponding air conditioning zones, and is individually sent to the air conditioning zones. 45A, 45B and 45C are indoor temperature sensors, which are 49
A, 49B and 49C are indoor temperature setting devices, which are connected to indoor air conditioners 50A, 50B and 50C, respectively.

【0016】図2は本実施例の冷媒回路を示す。3機の
室内空調機50A、50B、50Cは分岐ユニット40
を介して、液管、低圧ガス管および高圧ガス管を形成す
る冷媒配管R1、R2、R3により、外調機30に対し
て並列に接続されている。外調機30は、能力可変のコ
ンプレッサ1と熱交換器6を備える。コンプレッサ1の
吐出側と吸い込み側の配管には、それぞれ圧力センサ1
1A、11Bが設けられている。熱交換器6には、送風
機21が付設されるとともに、両端にはそれぞれ温度セ
ンサ10A、10Bが設けられている。
FIG. 2 shows the refrigerant circuit of this embodiment. The three indoor air conditioners 50A, 50B and 50C are branch units 40.
Through the refrigerant pipes R1, R2, and R3 that form a liquid pipe, a low-pressure gas pipe, and a high-pressure gas pipe, and are connected in parallel to the external conditioner 30. The external conditioner 30 includes the compressor 1 and the heat exchanger 6 with variable capacity. The pressure sensor 1 is installed on the discharge side and the suction side of the compressor 1, respectively.
1A and 11B are provided. A blower 21 is attached to the heat exchanger 6, and temperature sensors 10A and 10B are provided at both ends, respectively.

【0017】外調機30には、さらに過冷却熱交換器4
が備えられ、過冷却熱交換器4側から熱交換器6方向に
順に電子式の流量調整弁25、冷媒温度検出のための温
度センサ9、圧力センサ8、電子式の膨張弁7が設置さ
れている。過冷却熱交換器4の他端は、液タンク27を
介して冷媒配管R1に接続されている。熱交換器6の他
端側の冷媒配管(ガス管)は、電磁弁5Aを介して過冷
却熱交換器4の熱交換通路の入口に接続されるととも
に、電磁弁5Bを介して冷媒配管R3に接続されてい
る。上記過冷却熱交換器4の熱交換通路の出口は冷媒配
管R2に接続されている。冷媒配管R2はまたアキュム
レータ3に接続され、冷媒配管R3はコンプレッサ1の
吐出側に接続されている。
The external conditioner 30 further includes a subcooling heat exchanger 4
The electronic flow rate adjusting valve 25, the temperature sensor 9 for detecting the refrigerant temperature, the pressure sensor 8, and the electronic expansion valve 7 are installed in this order from the subcooling heat exchanger 4 side in the direction of the heat exchanger 6. ing. The other end of the supercooling heat exchanger 4 is connected to the refrigerant pipe R1 via the liquid tank 27. The refrigerant pipe (gas pipe) on the other end side of the heat exchanger 6 is connected to the inlet of the heat exchange passage of the supercooling heat exchanger 4 via the solenoid valve 5A, and is also connected to the refrigerant pipe R3 via the solenoid valve 5B. It is connected to the. The outlet of the heat exchange passage of the supercooling heat exchanger 4 is connected to the refrigerant pipe R2. The refrigerant pipe R2 is also connected to the accumulator 3, and the refrigerant pipe R3 is connected to the discharge side of the compressor 1.

【0018】分岐ユニット40は過冷却熱交換器12を
備える。過冷却熱交換器12は冷媒配管R1により外調
器30の液タンク27と接続されている。また、過冷却
熱交換器12の出口は室内空調機50A、50B、50
Cに分岐され接続されている。さらに、分岐ユニット4
0には、電磁弁13A、13B、13C、23A、23
B、23Cが備えられ、電磁弁13A、13B、13C
はそれぞれ室内空調機50A、50B、50Cを過冷却
熱交換器12のもう一方の冷媒配管R2系統に連通可能
とし、電磁弁23A、23B、23Cはそれぞれの室内
空調機50A、50B、50Cを冷媒配管R3に連通可
能とする。
The branch unit 40 includes the subcooling heat exchanger 12. The subcooling heat exchanger 12 is connected to the liquid tank 27 of the external conditioner 30 via the refrigerant pipe R1. In addition, the outlet of the subcooling heat exchanger 12 has indoor air conditioners 50A, 50B, 50
It is branched and connected to C. Furthermore, branch unit 4
0, solenoid valves 13A, 13B, 13C, 23A, 23
B, 23C are provided, and solenoid valves 13A, 13B, 13C
Enables the indoor air conditioners 50A, 50B, 50C to communicate with the other refrigerant pipe R2 system of the subcooling heat exchanger 12, and the solenoid valves 23A, 23B, 23C use the indoor air conditioners 50A, 50B, 50C as refrigerants. It is possible to communicate with the pipe R3.

【0019】室内空調機50Aは、熱交換器18Aと、
これに付設された送風機24Aを備える。熱交換器18
Aの一方の端は、分岐ユニット40の過冷却熱交換器1
2のR1系統に接続され、他端方は分岐ユニット40の
電磁弁13Aと23Aに接続される。上記熱交換器18
Aの一端側のR1配管には、過冷却熱交換器12側から
熱交換器18A方向に順に電子式の流調調整弁14A、
冷媒温度検出のための温度センサ17A、圧力センサ1
6A、電子式の膨張弁15Aが設けられている。
The indoor air conditioner 50A includes a heat exchanger 18A,
It has a blower 24A attached thereto. Heat exchanger 18
One end of A is the subcooling heat exchanger 1 of the branch unit 40.
2 is connected to the R1 system, and the other end is connected to the solenoid valves 13A and 23A of the branch unit 40. The heat exchanger 18
In the R1 pipe on one end side of A, an electronic flow control valve 14A in order from the subcooling heat exchanger 12 side to the heat exchanger 18A,
Temperature sensor 17A for detecting refrigerant temperature, pressure sensor 1
6A, an electronic expansion valve 15A is provided.

【0020】また、熱交換器18Aには、それぞれ室内
空調機の給気温度と還気温度を検出する温度センサ22
Aと26Aが付設されているとともに、両端には冷媒温
度を検出する温度センサ19A、20Aが設けられてい
る。熱交換器18Aで熱交換され、送風機24Aにより
吹き出される給気は、図1に示したようにダクト47A
により空調ゾーンZAへ導かれる。室内空調機50B、
50Cも室内空調機50Aと同じ構成を有し、以降、そ
れぞれ参照番号にB、Cを付して示す。
The heat exchanger 18A has a temperature sensor 22 for detecting the supply air temperature and the return air temperature of the indoor air conditioner, respectively.
A and 26A are attached, and temperature sensors 19A and 20A for detecting the refrigerant temperature are provided at both ends. The air supplied by the heat exchanger 18A and blown by the blower 24A has a duct 47A as shown in FIG.
Leads to the air conditioning zone ZA. Indoor air conditioner 50B,
50C also has the same configuration as the indoor air conditioner 50A, and hereinafter, reference numerals B and C are attached respectively.

【0021】図3は、上記室内空調機および外調機にお
ける制御装置を示す。制御装置は室内空調機および外調
機ともにマイクロコンピュータおよびその周辺機器から
なる。外調機制御部31には、コンプレッサ1用のイン
バータ32、外調機の送風機21用のインバータ33が
接続されている。また、周辺機器として、膨張弁7の駆
動制御部34、流調調整弁25の駆動制御部48、電磁
弁5A、5Bの駆動制御部35、温度センサ9、10
A、10Bのための温度変換器36、圧力センサ8、1
1A、11Bのための圧力変換器37が外調機制御部3
1に接続されている。
FIG. 3 shows a control device for the indoor air conditioner and the outdoor air conditioner. The control device is composed of a microcomputer and its peripheral devices for both the indoor air conditioner and the outdoor controller. The inverter 32 for the compressor 1 and the inverter 33 for the blower 21 of the external controller are connected to the external controller control unit 31. Further, as peripheral devices, the drive control unit 34 of the expansion valve 7, the drive control unit 48 of the flow adjustment valve 25, the drive control unit 35 of the solenoid valves 5A and 5B, and the temperature sensors 9 and 10.
Temperature transducers 36, pressure sensors 8, 1 for A, 10B
The pressure converter 37 for 1A and 11B is the external air conditioner controller 3
1 connected.

【0022】一方、室内空調機50Aの制御装置は、室
内空調機制御部51Aとこれに接続された給気温度設定
部46Aとを備える。室内空調機制御部51Aには、周
辺機器として、膨張弁15Aの駆動制御部39A、流量
調整弁14Aの駆動制御部41A、各温度センサ17
A、19A、20A、22Aおよび26Aのための温度
変換器42A、圧力センサ16Aのための圧力変換器4
3A、電磁弁13A、23Aのための駆動制御部48
A、ならびに温度変換器44Aが接続されている。温度
変換器44Aには空調ゾーンの室内温度を検出する温度
センサ45Aと検出された温度を保持する温度保持部5
2Aが接続されている。給気温度設定部46Aは、室温
設定器49Aから入力された設定室内温度に基づいて給
気温度を演算し、保持する。室内空調機50B、50C
における制御装置についても同様に構成され、室内空調
機制御部51B、51C、そのほか、それぞれ参照番号
にBおよびCを付して示す。
On the other hand, the control device for the indoor air conditioner 50A includes an indoor air conditioner control unit 51A and a supply air temperature setting unit 46A connected thereto. The indoor air conditioner control unit 51A includes, as peripheral devices, a drive control unit 39A for the expansion valve 15A, a drive control unit 41A for the flow rate adjusting valve 14A, and each temperature sensor 17.
Temperature transducer 42A for A, 19A, 20A, 22A and 26A, pressure transducer 4 for pressure sensor 16A
Drive controller 48 for 3A, solenoid valves 13A, 23A
A and a temperature converter 44A are connected. The temperature converter 44A includes a temperature sensor 45A that detects the indoor temperature of the air conditioning zone and a temperature holding unit 5 that holds the detected temperature.
2A is connected. The supply air temperature setting unit 46A calculates and holds the supply air temperature based on the set room temperature input from the room temperature setting device 49A. Indoor air conditioners 50B, 50C
The control device in (1) is also configured in the same manner, and the indoor air conditioner control units 51B and 51C, as well as the reference numbers B and C, respectively, are shown.

【0023】外調機制御部31と各室内空調機制御部5
1A、51B、51Cは、通信手段によって結ばれ、外
調機制御部31は各室内空調機制御部51A、51B、
51Cの状況を常時知ることができる。外調機制御部3
1は、上記室内空調機制御部51A、51B、51Cか
ら送られてきた室内空調機の負荷量を運転モード別に積
算し、大きい方の運転モードの負荷量に相当する制御信
号をコンプレッサ1用のインバータ32に送出する。イ
ンバータ32は、この制御信号に従いコンプレッサ1を
駆動する。また、外調機制御部31は、外調機の熱交換
器6が前記の全室内空調機の負荷量の小さい方の運転モ
ードと同じモードになるよう、すなわち、冷房運転の負
荷の方が小さい時は外調機30の熱交換器6が蒸発器と
して、また暖房運転の負荷の方が小さい時は凝縮器とし
て働くように周辺機器を制御する。
External air conditioner controller 31 and each indoor air conditioner controller 5
1A, 51B and 51C are connected by a communication means, and the external conditioner control unit 31 controls the indoor air conditioner control units 51A and 51B.
You can always know the situation of 51C. External conditioner control unit 3
Reference numeral 1 integrates the load amounts of the indoor air conditioners sent from the indoor air conditioner control units 51A, 51B, and 51C for each operation mode, and outputs a control signal corresponding to the load amount of the larger operation mode for the compressor 1. It is sent to the inverter 32. The inverter 32 drives the compressor 1 according to the control signal. In addition, the external air conditioner control unit 31 sets the heat exchanger 6 of the external air conditioner to be in the same mode as the operation mode in which the load amount of all the indoor air conditioners is smaller, that is, the load in the cooling operation is higher. The peripheral equipment is controlled so that the heat exchanger 6 of the external air conditioner 30 works as an evaporator when the load is small and as a condenser when the load for heating operation is smaller.

【0024】室内空調機制御部51A、51B、51C
は温度センサ45A、45B、45Cより空調ゾーンの
室内温度を検出して、それぞれの温度保持部52A、5
2B、52Cに保持させる。そして、起動時は給気温度
設定部46A、46B、46Cは室温設定器49A、4
9B、49Cから入力された設定室内温度と温度センサ
45A、45B、45Cで求めた検出室内温度の差に基
づいて、図4で示される関係表より給気温度を決定し、
保持する。図4では、設定室内温度と検出室内温度の差
に従って検出室内温度(室温)を中心に直線的に変化す
る給気温度が求められるようになっている。
Indoor air conditioner control units 51A, 51B, 51C
Detects the indoor temperature of the air-conditioning zone from the temperature sensors 45A, 45B, 45C, and the respective temperature holding sections 52A, 5A
2B and 52C. Then, at startup, the supply air temperature setting units 46A, 46B, and 46C have the room temperature setting units 49A and 4A, 4B.
Based on the difference between the set room temperature input from 9B and 49C and the detected room temperature obtained by the temperature sensors 45A, 45B, and 45C, the supply air temperature is determined from the relationship table shown in FIG.
Hold. In FIG. 4, the supply air temperature that changes linearly around the detection room temperature (room temperature) according to the difference between the set room temperature and the detection room temperature is obtained.

【0025】次に還気温度センサ26A、26B、26
Cで検出した温度データと給気温度設定部46A、46
B、46Cの温度データとの差を演算し、それぞれの室
内空調機50A、50B、50Cが冷房運転か暖房運転
かの運転モードを決定する。そして、室内空調機の給気
温度が室内空調機の還気温度や湿度に影響されるため、
それらを勘案した負荷増減量を加え、コンプレッサ1の
出力に相当する負荷量を室内空調機の運転モードととも
に外調機制御部31に送る。
Next, the return air temperature sensors 26A, 26B, 26
Temperature data detected by C and supply air temperature setting units 46A, 46
The difference with the temperature data of B and 46C is calculated, and each indoor air conditioner 50A, 50B, and 50C determines the operation mode of cooling operation or heating operation. And since the supply air temperature of the indoor air conditioner is affected by the return air temperature and humidity of the indoor air conditioner,
The load increase / decrease amount in consideration of them is added, and the load amount corresponding to the output of the compressor 1 is sent to the external air conditioner control unit 31 together with the operation mode of the indoor air conditioner.

【0026】起動からあらかじめ設定された給気温度変
更時間が経過するまでの間は、上記初期決定された給気
温度に基づいて制御が行なわれる。給気温度変更時間は
システム全体の規模やその他の条件を勘案して決められ
るが、通常起動から5〜30分程度の範囲で設定され
る。室内空調機制御部51A、51B、51Cは上記給
気温度変更時間が経過するたびに室内温度を検出し、こ
の検出室内温度と室温設定器49A、49B、49Cの
設定室内温度との差を演算するとともに、室内温度保持
部52A、52B、52Cの温度と比較し、室内温度が
上昇しているか下降しているか、あるいは変化がないの
かを判断する。そして、この室内温度の変化状態に応じ
て給気温度の変更量を決定する。
From the start-up until the preset supply air temperature change time elapses, control is performed based on the initially determined supply air temperature. The supply air temperature change time is determined in consideration of the scale of the entire system and other conditions, but is normally set within a range of about 5 to 30 minutes from startup. The indoor air conditioner control units 51A, 51B, 51C detect the indoor temperature each time the supply air temperature change time elapses, and calculate the difference between the detected indoor temperature and the set indoor temperatures of the room temperature setters 49A, 49B, 49C. At the same time, it is compared with the temperatures of the room temperature holding units 52A, 52B, and 52C to determine whether the room temperature is rising or falling, or whether there is no change. Then, the change amount of the supply air temperature is determined according to the change state of the room temperature.

【0027】図5は給気温度の変更量決定に用いられる
グラフで、検出室内温度と設定室内温度との差に対する
給気温度の変更量の関係が直線で示されている。(a)
は室内温度が上昇している場合、(b)は室内温度が変
化していない場合、(c)は室内温度が下降している場
合に適用され、(a)では(b)に比べて直線が低減方
向へシフトしており、検出室内温度と設定室内温度との
差が0でも給気温度を所定量下げるようになっている。
また、(c)では(b)に比べて直線が増大方向へシフ
トしており、検出室内温度と設定室内温度との差が0で
も給気温度を所定量上げるようになっている。
FIG. 5 is a graph used to determine the amount of change in the supply air temperature, and the relationship between the amount of change in the supply air temperature and the difference between the detected room temperature and the set room temperature is shown by a straight line. (A)
Is applied when the room temperature is increasing, (b) is applied when the room temperature is not changing, and (c) is applied when the room temperature is decreasing. In (a), a straight line is used as compared with (b). Is shifted in the decreasing direction, and the supply air temperature is lowered by a predetermined amount even if the difference between the detected indoor temperature and the set indoor temperature is zero.
Further, in (c), the straight line is shifted in the increasing direction as compared with (b), and the supply air temperature is increased by a predetermined amount even if the difference between the detected indoor temperature and the set indoor temperature is zero.

【0028】室内空調機制御部51A、51B、51C
は、こうして決定された給気温度を給気温度設定部46
A、46B、46Cに保持させる。また、電磁弁5Aと
5B、13Aと23A、13Bと23B、13Cと23
Cはそれぞれ一方が開状態の時、他方は閉状態となるよ
う制御される。ただし、室内空調機が運転の必要がない
場合は双方とも閉状態となる。
Indoor air conditioner control units 51A, 51B, 51C
The supply air temperature determined in this manner is used as the supply air temperature setting unit 46.
A, 46B and 46C are held. Further, the solenoid valves 5A and 5B, 13A and 23A, 13B and 23B, 13C and 23
C is controlled such that when one is open, the other is closed. However, when the indoor air conditioner does not need to be operated, both are closed.

【0029】つぎに、上記構成における作動について説
明する。図6は、すべての室内空調機が冷房運転される
全冷房運転時の冷媒の流れを示す。全ての室内空調機が
冷房運転されるときには、外調機においては電磁弁5B
が開状態、電磁弁5Aが閉状態となり、分岐ユニットに
おいては電磁弁13A、13B、13Cがそれぞれ開状
態、23A、23B、23Cが閉状態となるよう制御さ
れる。外調機の熱交換器6は凝縮器、各室内空調機の熱
交換器18A、18B、18Cは蒸発器として作用す
る。
Next, the operation of the above configuration will be described. FIG. 6 shows the flow of the refrigerant during the cooling only operation in which all the indoor air conditioners are cooled. When all indoor air conditioners are in cooling operation, the solenoid valve 5B
Is opened and the solenoid valve 5A is closed. In the branch unit, the solenoid valves 13A, 13B and 13C are controlled to be open and 23A, 23B and 23C are controlled to be closed. The heat exchanger 6 of the external air conditioner acts as a condenser, and the heat exchangers 18A, 18B, 18C of each indoor air conditioner act as evaporators.

【0030】すなわち、外調機30において、コンプレ
ッサ1からの高圧ガス冷媒は、矢示のように電磁弁5B
を通り、熱交換器6で液化する。それから過冷却熱交換
器4と液タンク27を経て、冷媒配管R1で分岐ユニッ
ト40の過冷却熱交換器12へ入る。冷媒は、過冷却熱
交換器12で各室内空調機50A、50B、50Cの熱
交換器18A、18B、18Cから出てきたガス冷媒と
熱交換され、過冷却度が増大した液冷媒となる。
That is, in the external conditioner 30, the high pressure gas refrigerant from the compressor 1 is supplied to the solenoid valve 5B as shown by the arrow.
And is liquefied in the heat exchanger 6. Then, after passing through the subcooling heat exchanger 4 and the liquid tank 27, the refrigerant pipe R1 enters the subcooling heat exchanger 12 of the branch unit 40. The refrigerant is heat-exchanged with the gas refrigerant discharged from the heat exchangers 18A, 18B, 18C of the indoor air conditioners 50A, 50B, 50C by the supercooling heat exchanger 12, and becomes a liquid refrigerant having an increased degree of supercooling.

【0031】さらに、冷媒は分岐配管により分岐され、
各流量調整弁14A、14B、14Cに並列に入り、続
いて膨張弁15A、15B、15Cにより減圧されて、
低温の気液混合状態になる。つぎに、冷媒は熱交換器1
8A、18B、18Cにおいて還気と熱交換され、ガス
状の冷媒となる。そして、電磁弁13A、13B、13
Cを経て過冷却熱交換器12へ戻り、外調機30から冷
媒配管R1より入ってくる液冷媒を冷却する。過冷却熱
交換器12を出た冷媒は、冷媒配管R2を経て、外調機
30のコンプレッサ1に戻る。流量調整弁14A、14
B、14Cが発明の室内空調機の流量調整手段を構成
し、過冷却熱交換器12が発明の第1の過冷却熱交換器
を構成している。
Further, the refrigerant is branched by a branch pipe,
Each of the flow rate adjusting valves 14A, 14B, 14C enters in parallel and is subsequently decompressed by the expansion valves 15A, 15B, 15C,
It becomes a low temperature gas-liquid mixed state. Next, the refrigerant is the heat exchanger 1
Heat is exchanged with the return air in 8A, 18B, and 18C to become a gaseous refrigerant. Then, the solenoid valves 13A, 13B, 13
It returns to the subcooling heat exchanger 12 via C, and cools the liquid refrigerant flowing in from the external pressure regulator 30 through the refrigerant pipe R1. The refrigerant that has left the subcooling heat exchanger 12 returns to the compressor 1 of the external air conditioner 30 via the refrigerant pipe R2. Flow rate adjusting valves 14A, 14
B and 14C constitute the flow rate adjusting means of the indoor air conditioner of the invention, and the supercooling heat exchanger 12 constitutes the first supercooling heat exchanger of the invention.

【0032】この間における外調機30の膨張弁7、流
量調整弁25、送風機21、各室内空調機50A、50
B、50Cの流量調整弁14A、14B、14C、膨張
弁15A、15B、15Cの制御は以下のように行われ
る。まず、外調機制御部31により膨張弁7は全開状態
に保持される。つぎに、外調機制御部31は、圧力セン
サ8で冷媒の圧力を検出し、流量調整弁25に入る冷媒
の飽和温度を演算する。そして、温度センサ9で検出し
た温度との差、つまり過冷却度が、あらかじめ定めた外
調機の負荷と過冷却度の関係式の演算から求めた値にな
るよう流量調整弁25を制御する。この外調機の負荷と
過冷却度レベルの関係式は演算式によるほか、例えば図
7に示されるようなレベルC1〜C10を示すグラフ形
式で記憶され、これから読みとるようにされる。
During this time, the expansion valve 7, the flow rate adjusting valve 25, the blower 21, and the indoor air conditioners 50A, 50 of the external air conditioner 30
The flow rate control valves 14A, 14B, 14C for B and 50C and the expansion valves 15A, 15B, 15C are controlled as follows. First, the expansion valve 7 is held in the fully opened state by the external pressure control unit 31. Next, the external air conditioner control unit 31 detects the pressure of the refrigerant with the pressure sensor 8 and calculates the saturation temperature of the refrigerant entering the flow rate adjusting valve 25. Then, the flow rate adjusting valve 25 is controlled so that the difference from the temperature detected by the temperature sensor 9, that is, the degree of supercooling becomes a value obtained from the calculation of the relational expression of the load and the degree of supercooling of the external controller that is determined in advance. . The relational expression between the load of the external air conditioner and the supercooling degree level is not only calculated but also stored in the form of a graph showing the levels C1 to C10 as shown in FIG. 7, and can be read from this.

【0033】また、コンプレッサ1の吐出側圧力センサ
11Aにより検出される圧力が予め設定された値になる
よう、例えばPID制御、あるいはステップ制御などに
よる信号が送風機用のインバータ33へ出力され、送風
機21が駆動されて風量を制御する。
Further, a signal by, for example, PID control or step control is output to the blower inverter 33 so that the pressure detected by the discharge side pressure sensor 11A of the compressor 1 becomes a preset value, and the blower 21 Is driven to control the air volume.

【0034】一方、室内空調機制御部51A、51B、
51Cでは、温度センサ22A、22B、22Cで検出
した給気温度が、先に求めて給気温度設定部46A、4
6B、46Cに保持されている温度となるに必要な過冷
却度を演算する。つぎに、圧力センサ16A、16B、
16Cで冷媒の圧力を検出し、各膨張弁15A、15
B、15Cに入る冷媒の飽和温度を演算し、温度センサ
17A、17B、17Cで検出した温度との差を演算し
て実際の過冷却度を求める。そして、必要な過冷却度に
なるように流量調整弁14A、14B、14Cを制御す
る。つまり検出した給気温度が給気温度設定部46A、
46B、46Cに保持されている温度より高い場合は冷
媒の過冷却度を大きくするよう流量調整弁14A、14
B、14Cを制御し、検出温度が保持されている温度よ
り低い場合は過冷却度を小さくするよう流量調整弁14
A、14B、14Cを制御することになる。
On the other hand, the indoor air conditioner control units 51A, 51B,
In 51C, the supply air temperature detected by the temperature sensors 22A, 22B, and 22C is calculated in advance to obtain the supply air temperature setting units 46A and 4A.
The degree of supercooling required to reach the temperatures held in 6B and 46C is calculated. Next, the pressure sensors 16A, 16B,
The pressure of the refrigerant is detected by 16C, and each expansion valve 15A, 15
The saturation temperature of the refrigerant entering B and 15C is calculated, and the difference with the temperature detected by the temperature sensors 17A, 17B and 17C is calculated to obtain the actual degree of supercooling. Then, the flow rate adjusting valves 14A, 14B and 14C are controlled so that the required degree of supercooling is achieved. That is, the detected supply air temperature is the supply air temperature setting unit 46A,
When the temperature is higher than that held in 46B and 46C, the flow rate adjusting valves 14A and 14A are set to increase the degree of supercooling of the refrigerant.
B and 14C are controlled, and when the detected temperature is lower than the maintained temperature, the flow control valve 14 is set to reduce the degree of supercooling.
A, 14B, 14C will be controlled.

【0035】さらに、温度センサ19A、19B、19
C、20A、20B、20Cの各検出温度により、熱交
換器18A、18B、18Cの入り口と出口の冷媒の温
度差、つまり過熱度が一定になるように、膨張弁15
A、15B、15Cを制御する。ここで、各室内空調機
50A、50B、50Cの負荷が同等であれば、各流量
調整弁14A、14B、14Cの開度は互いに同じとな
る。この場合、冷媒は分岐ユニット40から各室内空調
機50A、50B、50Cに均等に分配され、給気温度
は互いに同じとなる。
Further, temperature sensors 19A, 19B, 19
The expansion valve 15 is arranged so that the temperature difference between the refrigerant at the inlets and the outlets of the heat exchangers 18A, 18B, and 18C, that is, the degree of superheat is constant, depending on the detected temperatures of C, 20A, 20B, and 20C.
Control A, 15B, 15C. Here, if the loads on the indoor air conditioners 50A, 50B, and 50C are equal, the openings of the flow rate adjusting valves 14A, 14B, and 14C are the same. In this case, the refrigerant is evenly distributed from the branching unit 40 to the indoor air conditioners 50A, 50B, 50C, and the supply air temperatures are the same.

【0036】ここで、例えば、室内空調機50Aの負荷
が重くて給気温度が低く設定され、室内空調機50Bお
よび50Cの負荷が軽くて給気温度が高く設定されたと
する。すると室内空調機50Aの室内空調機制御部51
Aは、外調機制御部31へ負荷量を増加させるべき信号
を送り、室内空調機50B、50Cの室内空調機制御部
51B、51Cは、外調機制御部31へ負荷量を減少さ
せるべき信号を送る。これに対応して外調機制御部31
は各室内空調機制御部からの負荷量を総和しコンプレッ
サ1の出力を上昇させるか減少させるかを判断し、制御
する。
Here, for example, it is assumed that the load of the indoor air conditioner 50A is heavy and the supply air temperature is set low, and the load of the indoor air conditioners 50B and 50C is light and the supply air temperature is set high. Then, the indoor air conditioner control unit 51 of the indoor air conditioner 50A
A sends a signal to increase the load amount to the external conditioner control unit 31, and the indoor air conditioner control units 51B and 51C of the indoor air conditioners 50B and 50C should decrease the load amount to the external conditioner control unit 31. Send a signal. In response to this, the external conditioner control unit 31
Controls the total amount of load from each indoor air conditioner control unit by determining whether to increase or decrease the output of the compressor 1.

【0037】また、室内空調機制御部51Aは過冷却度
を大きくするよう設定され、室内空調機制御部51B、
51Cは過冷却度を小さくするよう設定され、それぞれ
の流量調整弁14A、14B、14Cは変更された過冷
却度となるよう開度を制御する。
The indoor air conditioner control unit 51A is set to increase the degree of supercooling, and the indoor air conditioner control unit 51B,
51C is set to reduce the degree of supercooling, and the flow rate adjusting valves 14A, 14B, and 14C control the degree of opening so that the degree of supercooling is changed.

【0038】ここで、膨張弁15A、15B、15Cは
熱交換器18A、18B、18Cの過熱度を一定にする
だけで、給気温度や冷媒流量を直接制御していないが、
膨張弁15A、15B、15Cに入る冷媒の過冷却度を
変えるように流量調整弁14A、14B、14Cの開度
を制御することにより、膨張弁15A、15B、15C
の入口の圧力が制御され、熱交換器18A、18B、1
8Cを流れる冷媒流量が変化して、それに伴い熱交換量
も変化するので、給気温度が制御される。図8は上記の
制御要領を示す冷凍サイクルのモリエル線図である。図
中、(a)は流量調整弁14A、14B、14Cによる
圧力降下、(b)は制御された過冷却度、(c)は膨張
弁15A、15B、15Cによる圧力降下分を示し、
(d)は過冷却熱交換器12による過冷却部分である。
Here, the expansion valves 15A, 15B and 15C do not directly control the supply air temperature and the refrigerant flow rate, only by keeping the superheat degree of the heat exchangers 18A, 18B and 18C constant.
The expansion valves 15A, 15B, 15C are controlled by controlling the openings of the flow rate adjusting valves 14A, 14B, 14C so as to change the degree of supercooling of the refrigerant entering the expansion valves 15A, 15B, 15C.
The pressure at the inlet of the heat exchanger 18A, 18B, 1
Since the flow rate of the refrigerant flowing through 8C changes and the amount of heat exchange changes accordingly, the supply air temperature is controlled. FIG. 8 is a Mollier diagram of the refrigeration cycle showing the above control procedure. In the figure, (a) shows the pressure drop by the flow rate adjusting valves 14A, 14B, 14C, (b) shows the controlled supercooling degree, (c) shows the pressure drop by the expansion valves 15A, 15B, 15C,
(D) is a supercooling portion by the supercooling heat exchanger 12.

【0039】なお、分岐ユニット40は過冷却熱交換器
12を備えているので、各流量調整弁14A、14B、
14Cに入る液冷媒の過冷却度を大きくでき、流量調整
弁の開度を小さく絞り込んでも冷媒が膨張し始めること
がないから、流量調整弁の制御幅が拡大される。
Since the branching unit 40 includes the subcooling heat exchanger 12, the flow rate adjusting valves 14A, 14B,
The degree of supercooling of the liquid refrigerant entering 14C can be increased, and even if the opening degree of the flow rate adjusting valve is narrowed down, the refrigerant does not start to expand, so the control range of the flow rate adjusting valve is expanded.

【0040】また、この過冷却熱交換器12は、戻りの
冷媒を完全にガス化するのにも役立つ。すなわち、全て
の室内空調機50A、50B、50Cの給気が何らかの
問題で風量が急減した場合に、膨張弁15A、15B、
15Cの制御速度が追いつかず熱交換器18A、18
B、18Cで蒸発しきれなかった液冷媒が流れても、過
冷却熱交換器12が一時的な蓄熱器として働くので、液
冷媒がコンプレッサ1に入る液圧縮現象の発生が防止で
きる。同じく、過冷却熱交換器12によりコンプレッサ
1のガス冷媒の過熱度を確保できるので、各室内空調機
50A、50B、50Cの膨張弁15A、15B、15
Cによる過熱度を小さく設定でき、熱交換器18A、1
8B、18Cの利用効率を上げることができる。
The subcooling heat exchanger 12 also serves to completely gasify the returned refrigerant. That is, when the air volume of all the indoor air conditioners 50A, 50B, and 50C suddenly decreases due to some problem, the expansion valves 15A and 15B,
The control speed of 15C cannot keep up with the heat exchangers 18A, 18A.
Even if the liquid refrigerant that has not completely evaporated in B and 18C flows, the subcooling heat exchanger 12 functions as a temporary heat storage device, so that the liquid compression phenomenon of the liquid refrigerant entering the compressor 1 can be prevented. Similarly, since the degree of superheat of the gas refrigerant of the compressor 1 can be secured by the subcooling heat exchanger 12, the expansion valves 15A, 15B, 15 of the indoor air conditioners 50A, 50B, 50C are
The degree of superheat due to C can be set to be small, and heat exchangers 18A, 1
The utilization efficiency of 8B and 18C can be improved.

【0041】つぎに、全ての室内空調機が暖房運転され
る全暖房運転時の冷媒の流れを図9を参照して説明す
る。全ての室内空調機が暖房運転されるときには、外調
機においては電磁弁5Aが開状態、電磁弁5Bが閉状態
となり、分岐ユニットにおいては電磁弁23A、23
B、23Cが開状態となり、電磁弁13A、13B、1
3Cが閉状態となるよう制御される。外調機の熱交換器
6は蒸発器、各室内空調機の熱交換器18A、18B、
18Cが凝縮器として作用する。
Next, the flow of the refrigerant during the heating only operation in which all the indoor air conditioners are heated will be described with reference to FIG. When all the indoor air conditioners are in heating operation, the solenoid valve 5A is open and the solenoid valve 5B is closed in the external air conditioner, and the solenoid valves 23A, 23 in the branch unit.
B and 23C are opened, and solenoid valves 13A, 13B and 1
3C is controlled to be in a closed state. The heat exchanger 6 of the external air conditioner is an evaporator, the heat exchangers 18A and 18B of the indoor air conditioners,
18C acts as a condenser.

【0042】すなわち、外調機30のコンプレッサ1か
らの高圧ガス冷媒は、冷媒配管R3を経て、分岐ユニッ
ト40に入る。冷媒はここで分岐され、電磁弁23A、
23B、23Cを通って、各室内空調機50A、50
B、50Cの熱交換器18A、18B、18Cに入って
液化される。このあと、分岐ユニットの過冷却熱交換器
12を経て、冷媒配管R1で外調機30に戻り、液タン
ク27を経て過冷却熱交換器4に入る。冷媒は、過冷却
熱交換器4において熱交換器6からのガス冷媒と熱交換
され、過冷却度が増大した液冷媒となる。
That is, the high-pressure gas refrigerant from the compressor 1 of the external conditioner 30 enters the branch unit 40 through the refrigerant pipe R3. The refrigerant is branched here, and the solenoid valve 23A,
Each indoor air conditioner 50A, 50 through 23B, 23C
B and 50C heat exchangers 18A, 18B and 18C are liquefied. After that, it passes through the subcooling heat exchanger 12 of the branch unit, returns to the external regulator 30 through the refrigerant pipe R1, and enters the subcooling heat exchanger 4 through the liquid tank 27. The refrigerant is heat-exchanged with the gas refrigerant from the heat exchanger 6 in the supercooling heat exchanger 4 to become a liquid refrigerant having an increased degree of supercooling.

【0043】さらに、冷媒は膨張弁7により減圧され、
低温の気液混合状態になり熱交換器6に入る。冷媒は熱
交換器6で室外空気と熱交換されてガス状となり、電磁
弁5Aを経て過冷却熱交換器4へ進む。ここで前述のよ
うに液タンク27からきた液冷媒を冷却するとともに、
自らは過熱度の増したガス冷媒となる。このあと、冷媒
はアキュムレーター3を経てコンプレッサ1に戻る。こ
こでは、過冷却熱交換器4が発明の第2の過冷却熱交換
器を構成している。
Further, the refrigerant is decompressed by the expansion valve 7,
A low-temperature gas-liquid mixed state is established and the heat exchanger 6 is entered. The refrigerant is heat-exchanged with the outdoor air in the heat exchanger 6 to become a gas, and advances to the supercooling heat exchanger 4 via the solenoid valve 5A. Here, while cooling the liquid refrigerant coming from the liquid tank 27 as described above,
It becomes a gas refrigerant with increased superheat. After that, the refrigerant returns to the compressor 1 through the accumulator 3. Here, the subcooling heat exchanger 4 constitutes the second subcooling heat exchanger of the invention.

【0044】この間における膨張弁15A、15B、1
5C、流量調整弁25、送風機21、流量調整弁14
A、14B、14C、膨張弁7の制御は以下のように行
われる。 まず、各室内空調機制御部51A、51B、
51Cにより、膨張弁15A、15B、15Cは全開に
保持される。つぎに、外調機制御部31は、圧力センサ
8で冷媒の圧力を検出し、膨張弁7に入る冷媒の飽和温
度を演算する。そして、温度センサ9で検出した温度と
の差、つまり過冷却度を外調機の負荷と過冷却度の関係
式から求めた過冷却度になるように流量調整弁25を制
御する。上記関係式は図10のように負荷に応じてレベ
ルD1〜D10で示される過冷却度を与える。また、コ
ンプレッサ1の圧力センサ11Bにより検出される圧力
が予め設定された値になるよう、例えばPID制御、あ
るいはステップ制御などによる信号が送風機用インバー
タ33に出力され、送風機21が駆動されて風量を制御
する。
During this time, the expansion valves 15A, 15B, 1
5C, flow rate adjusting valve 25, blower 21, flow rate adjusting valve 14
Control of A, 14B, 14C and the expansion valve 7 is performed as follows. First, each indoor air conditioner control unit 51A, 51B,
The expansion valve 15A, 15B, 15C is held fully open by 51C. Next, the external air conditioner control unit 31 detects the pressure of the refrigerant with the pressure sensor 8 and calculates the saturation temperature of the refrigerant entering the expansion valve 7. Then, the flow rate adjusting valve 25 is controlled so that the difference from the temperature detected by the temperature sensor 9, that is, the degree of supercooling becomes the degree of supercooling obtained from the relational expression between the load of the external regulator and the degree of supercooling. The above relational expression gives the degree of supercooling indicated by levels D1 to D10 according to the load as shown in FIG. Further, a signal by, for example, PID control or step control is output to the blower inverter 33 so that the pressure detected by the pressure sensor 11B of the compressor 1 becomes a preset value, and the blower 21 is driven to change the air volume. Control.

【0045】一方、室内空調機制御部51A、51B、
51Cでは、温度センサ、22A、22B、22Cで検
出した給気温度が、先に求めて給気温度設定部46A、
46B、46Cに保持されている温度となるに必要な過
冷却度を演算する。つぎに、圧力センサ16A、16
B、16Cで冷媒の圧力を検出し、各流量調整弁14
A、14B、14Cに入る冷媒の飽和温度を演算して、
この飽和温度と温度センサ17A、17B、17Cで検
出した温度との差を演算して実際の過冷却度を求める。
つまり、検出した給気温度が給気温度設定部46A、4
6B、46Cに保持されている温度より高い場合は過冷
却度を大きくするよう流量調整弁14A、14B、14
Cを制御し、検出温度が保持されている温度より低い場
合は過冷却度を小さくするよう流量調整弁14A、14
B、14Cを制御する。
On the other hand, the indoor air conditioner control units 51A, 51B,
In 51C, the supply air temperature detected by the temperature sensor, 22A, 22B, 22C is calculated in advance, and the supply air temperature setting unit 46A,
The degree of supercooling required to reach the temperatures held in 46B and 46C is calculated. Next, the pressure sensors 16A, 16
The pressure of the refrigerant is detected by B and 16C, and each flow rate adjustment valve 14
Calculate the saturation temperature of the refrigerant entering A, 14B, 14C,
The difference between this saturation temperature and the temperatures detected by the temperature sensors 17A, 17B and 17C is calculated to obtain the actual degree of supercooling.
That is, the detected supply air temperature is the supply air temperature setting units 46A and 4A.
When the temperature is higher than that held in 6B and 46C, the flow control valves 14A, 14B and 14 are set to increase the degree of supercooling.
C is controlled, and when the detected temperature is lower than the maintained temperature, the flow control valves 14A and 14A, 14
B and 14C are controlled.

【0046】また、外調機制御部31では温度センサ1
0A、10Bの検出温度に基づいて、冷房運転時の室内
空調機と同様に、熱交換器6の過熱度が一定に保持され
るよう膨張弁7を制御する。ここで、各室内空調機50
A、50B、50Cの負荷が同等であれば、各流量調整
弁14A、14B、14Cの開度は互いに同じとなる。
この場合、冷媒は分岐ユニット40から各室内空調機5
0A、50B、50Cに均等に分配され、給気温度は互
いに同じとなる。
Further, in the external conditioner control section 31, the temperature sensor 1
Based on the temperatures detected by 0A and 10B, the expansion valve 7 is controlled so that the degree of superheat of the heat exchanger 6 is kept constant, as in the indoor air conditioner during the cooling operation. Here, each indoor air conditioner 50
If the loads of A, 50B, and 50C are equal, the openings of the flow rate adjusting valves 14A, 14B, and 14C are the same.
In this case, the refrigerant flows from the branch unit 40 to each indoor air conditioner 5
0A, 50B, 50C are evenly distributed, and the supply air temperatures are the same.

【0047】ここで、例えば、室内空調機50Aの負荷
が重くて給気温度が高く設定され、室内空調機50Bお
よび50Cの負荷が軽くて給気温度が低く設定されたと
する。すると室内空調機50Aの室内空調機制御部51
Aは、外調機制御部31へ負荷量を増加させるべき信号
を送り、室内空調機50B、50Cの室内空調機制御部
51B、51Cは、外調機制御部31へ負荷量を減少さ
せるべき信号を送る。これに対応して外調機制御部31
は各室内空調機制御部からの負荷量を総和しコンプレッ
サ1の出力を上昇させるか減少させるかを判断し、制御
する。
Here, for example, it is assumed that the load of the indoor air conditioner 50A is heavy and the supply air temperature is set high, and the load of the indoor air conditioners 50B and 50C is light and the supply air temperature is set low. Then, the indoor air conditioner control unit 51 of the indoor air conditioner 50A
A sends a signal to increase the load amount to the external conditioner control unit 31, and the indoor air conditioner control units 51B and 51C of the indoor air conditioners 50B and 50C should decrease the load amount to the external conditioner control unit 31. Send a signal. In response to this, the external conditioner control unit 31
Controls the total amount of load from each indoor air conditioner control unit by determining whether to increase or decrease the output of the compressor 1.

【0048】また、室内空調機制御部51Aは過冷却度
を小さくするよう設定され、室内空調機制御部51B、
51Cは過冷却度を大きくするよう設定され、それぞれ
の流量調整弁14A、14B、14Cは変更された過冷
却度となるよう開度を制御する。図11は上記の制御要
領を示す冷凍サイクルのモリエル線図である。図中、
(a)は膨張弁15A、15B、15Cによる圧力降
下、(b)は過冷却熱交換器12による過冷却部分、
(c)は流量調整弁14A、14B、14Cによる圧力
降下分を示し、(d)は制御された過冷却度である。
The indoor air conditioner controller 51A is set to reduce the degree of supercooling, and the indoor air conditioner controller 51B,
51C is set to increase the degree of supercooling, and the flow rate adjusting valves 14A, 14B, and 14C control the degree of opening so that the degree of supercooling is changed. FIG. 11 is a Mollier diagram of the refrigeration cycle showing the above control procedure. In the figure,
(A) is a pressure drop by the expansion valves 15A, 15B, 15C, (b) is a subcooling part by the subcooling heat exchanger 12,
(C) shows the amount of pressure drop by the flow control valves 14A, 14B, 14C, and (d) is the controlled degree of supercooling.

【0049】なお、この暖房運転では、過冷却度を流量
調整弁で制御するので、過冷却度が大きくなって熱交換
器18A、18B、18C内に液冷媒が多く溜まり冷凍
サイクル全体が冷媒不足を起こすような不具合現象の発
生が防止される。さらに、外調機の過冷却熱交換器4
は、戻りの冷媒を完全に液化するのに役立つ。すなわ
ち、室内空調機50A、50B、50Cの給気が何らか
の問題で風量が急減した場合に、流量調整弁14A、1
4B、14Cの制御速度が追いつかず、外調機30に未
凝縮のガス冷媒が流れても、過冷却熱交換器4が一時的
な蓄熱器として働くので、ガス冷媒が膨張弁7に入るこ
とによる制御性の低下が防止できる。また、外調機30
の送風機21の制御により一時的に風量が減って未蒸発
の液冷媒がコンプレッサ1に流れることがあっても同様
に防止できる。同じく、過冷却熱交換器4によりコンプ
レッサ1に入るガス冷媒の過熱度を大きくすることがで
きるので、コンプレッサ1の吐出温度が高くなり、その
分暖房能力が向上する。
In this heating operation, since the degree of supercooling is controlled by the flow rate adjusting valve, the degree of supercooling becomes large and a large amount of liquid refrigerant accumulates in the heat exchangers 18A, 18B, 18C, and the entire refrigeration cycle lacks refrigerant. The occurrence of a trouble phenomenon that causes Furthermore, the subcooling heat exchanger 4 of the external air conditioner
Helps to completely liquefy the return refrigerant. That is, when the air volume of the indoor air conditioners 50A, 50B, and 50C is suddenly reduced due to some problem, the flow rate control valves 14A and 1A
Even if the control speeds of 4B and 14C do not catch up and the uncondensed gas refrigerant flows to the external controller 30, the subcooling heat exchanger 4 functions as a temporary heat storage device, so that the gas refrigerant enters the expansion valve 7. It is possible to prevent deterioration of controllability due to. In addition, the external conditioner 30
Even if the amount of air is temporarily reduced by the control of the blower 21 and the unevaporated liquid refrigerant flows into the compressor 1, it can be similarly prevented. Similarly, since the degree of superheat of the gas refrigerant entering the compressor 1 can be increased by the subcooling heat exchanger 4, the discharge temperature of the compressor 1 is increased and the heating capacity is improved accordingly.

【0050】次に、冷房運転と暖房運転が平行して行わ
れ、室内空調機の負荷が暖房運転より冷房運転の方が大
きい冷暖同時冷房主運転の作動について説明する。図1
2はこのときの冷媒の流れを示す。ここでは、たとえば
一例として室内空調機50Aが暖房運転、室内空調機5
0B、50Cが冷房運転されているものとする。まず、
外調機では電磁弁5Bが開状態、電磁弁5Aが閉状態と
なり、分岐ユニットでは電磁弁23A、13B、13C
が開状態、電磁弁13A、23B,23Cが閉状態とな
るよう制御される。外調機の熱交換器6と室内空調機1
8Aは凝縮器、室内空調機の熱交換器18B、18Cは
蒸発器として作用する。
Next, the operation of the simultaneous cooling / heating main cooling operation in which the cooling operation and the heating operation are performed in parallel and the load of the indoor air conditioner is larger in the cooling operation than in the heating operation will be described. FIG.
2 shows the flow of the refrigerant at this time. Here, for example, as an example, the indoor air conditioner 50A is in the heating operation, and the indoor air conditioner 5 is
It is assumed that 0B and 50C are in cooling operation. First,
The solenoid valve 5B is open and the solenoid valve 5A is closed in the external conditioner, and the solenoid valves 23A, 13B, 13C are in the branch unit.
Is controlled to be open, and the solenoid valves 13A, 23B, and 23C are controlled to be closed. Heat exchanger 6 of the outside air conditioner and indoor air conditioner 1
8A acts as a condenser, and the heat exchangers 18B and 18C of the indoor air conditioner act as evaporators.

【0051】外調機30において、コンプレッサ1から
の高圧ガス冷媒は、電磁弁5Bから熱交換器6に入りこ
こで液化される。熱交換器6を出た冷媒は過冷却熱交換
器4と液タンク27を経て冷媒配管R1で分岐ユニット
40の過冷却熱交換器12へ入る。コンプレッサ1から
の高圧ガス冷媒はまた、冷媒配管R3によって分岐ユニ
ット40に入る。冷媒配管R3経由の冷媒は電磁弁23
Aを経て室内空調機50Aの熱交換器18Aに入りここ
で液化する。
In the external air conditioner 30, the high pressure gas refrigerant from the compressor 1 enters the heat exchanger 6 through the solenoid valve 5B and is liquefied there. The refrigerant discharged from the heat exchanger 6 passes through the supercooling heat exchanger 4 and the liquid tank 27 and enters the supercooling heat exchanger 12 of the branch unit 40 through the refrigerant pipe R1. The high pressure gas refrigerant from the compressor 1 also enters the branching unit 40 via the refrigerant pipe R3. The refrigerant through the refrigerant pipe R3 is the solenoid valve 23.
After passing through A, it enters the heat exchanger 18A of the indoor air conditioner 50A and is liquefied there.

【0052】冷媒配管R1経由で分岐ユニットの過冷却
熱交換器12に入った冷媒は、室内空調機50B、50
Cの熱交換器18B、18Cから出てきたガス冷媒と熱
交換され過冷却度が増大した液冷媒となる。この冷媒は
分岐配管により室内空調機50Aの熱交換器18Aから
きた液冷媒と一旦合流した後、室内空調機50B、50
Cに並列に入る。ここでは、それぞれ流量調整弁14
B、14C、続いて膨張弁15B、15Cにより減圧さ
れて低温の気液混合状態になって、熱交換器18B、1
8Cに入る。
The refrigerant that has entered the subcooling heat exchanger 12 of the branching unit via the refrigerant pipe R1 is supplied to the indoor air conditioners 50B, 50.
The liquid refrigerant is heat-exchanged with the gas refrigerant coming out of the C heat exchangers 18B, 18C to become a liquid refrigerant having an increased degree of supercooling. This refrigerant once merges with the liquid refrigerant coming from the heat exchanger 18A of the indoor air conditioner 50A through the branch pipe, and then the indoor air conditioners 50B, 50
Enter C in parallel. Here, the flow rate adjusting valve 14
B, 14C, followed by decompression by the expansion valves 15B, 15C into a low temperature gas-liquid mixed state, and the heat exchangers 18B, 1C.
Enter 8C.

【0053】冷媒は熱交換器18B、18Cにおいて還
気と熱交換され、ガス状の冷媒となる。そして、電磁弁
13B、13Cを経て過冷却熱交換器12へ戻り、外調
機30から冷媒配管R1経由で入ってくる液冷媒を冷却
する。過冷却熱交換器12を出た冷媒は、冷媒配管R2
を経て外調機30のコンプレッサ1に戻る。
The refrigerant is heat-exchanged with the return air in the heat exchangers 18B and 18C to become a gaseous refrigerant. Then, it returns to the supercooling heat exchanger 12 via the solenoid valves 13B and 13C, and cools the liquid refrigerant that comes in from the external controller 30 via the refrigerant pipe R1. The refrigerant exiting the supercooling heat exchanger 12 is the refrigerant pipe R2.
And returns to the compressor 1 of the external conditioner 30.

【0054】この間における外調機30の膨張弁7、流
量調整弁25、送風機21、室内空調機50Aの流量調
整弁14A、膨張弁15A、室内空調機50B、50C
の流量調整弁14B、14C、膨張弁15B、15Cの
制御は以下のように行われる。まず、外調機制御部31
の膨張弁7は全開状態に保持される。流量調整弁25
は、冷房運転時の制御と同様に、圧力センサ8と温度セ
ンサ9より演算した過冷却度が、図7で求められる過冷
却度になるように制御される。
During this time, the expansion valve 7, the flow rate adjusting valve 25, the blower 21, the flow rate adjusting valve 14A of the indoor air conditioner 50A, the expansion valve 15A, the indoor air conditioners 50B, 50C of the external air conditioner 30 during this period.
The flow rate adjusting valves 14B and 14C and the expansion valves 15B and 15C are controlled as follows. First, the external conditioner control unit 31
The expansion valve 7 is held in the fully open state. Flow rate adjusting valve 25
Is controlled so that the degree of supercooling calculated by the pressure sensor 8 and the temperature sensor 9 becomes the degree of supercooling calculated in FIG. 7, similarly to the control during the cooling operation.

【0055】また、送風機21については、全冷房運転
の制御と同様に、吐出側圧力センサ11Aにより検出さ
れる圧力が予め設定された値になるようインバータ33
を駆動させて、その風量制御が行われる。一方、室内空
調機50Aの室内空調機制御部51Aでは膨張弁15A
を全開に保持する。そして、流量調整弁14Aは、全暖
房運転時の室内空調機の流量調整弁の制御と同様に、設
定された給気温度に基づいて必要な過冷却度となるよう
制御される。
As for the blower 21, similarly to the control of the cooling only operation, the inverter 33 controls the pressure detected by the discharge side pressure sensor 11A to a preset value.
Is driven to control the air volume. On the other hand, in the indoor air conditioner control unit 51A of the indoor air conditioner 50A, the expansion valve 15A
Hold it fully open. Then, the flow rate adjusting valve 14A is controlled so as to have a necessary degree of supercooling based on the set supply air temperature, similarly to the control of the flow rate adjusting valve of the indoor air conditioner during the heating only operation.

【0056】また、室内空調機50B、50Cの室内空
調機制御部51B、51Cでは、膨張弁15B、15C
が、全冷房運転時の室内空調機機の膨張弁の制御と同様
に、過熱度が一定になるよう制御され、流量調整弁14
B、14Cはこれもまた同じく、設定された給気温度に
基づいて必要な過冷却度となるよう制御される。なお、
それぞれの室内空調機の負荷が変化した場合は、全冷房
運転または全暖房運転における同じ運転モードの室内空
調機と同様であるから説明を省略する。図13は上記の
制御要領を示す冷凍サイクルのモリエル線図である。図
中、(a)は外調機または室内空調機50Aの流量調整
弁により制御される過冷却度、(b)は外調機または室
内空調機50Aの流量調整弁による圧力降下、(c)は
過冷却熱交換器12による過冷却部分、(d)は室内空
調機50Bまたは50Cの流量調整弁による圧力降下、
(e)は室内空調機50Bまたは50Cの流量調整弁に
より制御される過冷却度、(f)は室内空調機50Bま
たは50Cの膨張弁による圧力降下である。
In addition, in the indoor air conditioner control units 51B and 51C of the indoor air conditioners 50B and 50C, the expansion valves 15B and 15C are included.
However, similar to the control of the expansion valve of the indoor air conditioner during the cooling only operation, it is controlled so that the degree of superheat becomes constant, and the flow control valve 14
Similarly, B and 14C are controlled so as to obtain the required degree of supercooling based on the set supply air temperature. In addition,
When the load of each indoor air conditioner changes, the description is omitted because it is the same as that of the indoor air conditioner in the same operation mode in the cooling only operation or the heating only operation. FIG. 13 is a Mollier diagram of the refrigeration cycle showing the above control procedure. In the figure, (a) is the degree of supercooling controlled by the flow rate adjusting valve of the external air conditioner or the indoor air conditioner 50A, (b) is the pressure drop by the flow rate adjusting valve of the external air conditioner or the indoor air conditioner 50A, (c). Is a supercooling part by the supercooling heat exchanger 12, (d) is a pressure drop by the flow rate adjusting valve of the indoor air conditioner 50B or 50C,
(E) is the degree of supercooling controlled by the flow control valve of the indoor air conditioner 50B or 50C, and (f) is the pressure drop by the expansion valve of the indoor air conditioner 50B or 50C.

【0057】つぎに、冷暖同時運転で、室内空調機の負
荷が冷房運転より暖房運転の方が大きい冷暖同時暖房主
運転の作動について、冷媒の流れを示す図14を参照し
て説明する。ここでは、たとえば一例として室内空調機
50Aが冷房運転、室内空調機50B、50Cが暖房運
転されるものとする。まず、外調機では電磁弁5Aが開
状態、電磁弁5Bが閉状態となり、分岐ユニットでは電
磁弁13A、23B、23Cが開状態、電磁弁23A、
13B、13Cが閉状態となるよう制御される。外調機
の熱交換器6と室内空調機の熱交換器18Aは蒸発器、
室内空調機の熱交換器18B、18Cは凝縮器として作
用する。
Next, the operation of the cooling / heating simultaneous heating main operation in which the load of the indoor air conditioner is larger in the heating operation than in the cooling operation in the cooling / heating simultaneous operation will be described with reference to FIG. 14 showing the flow of the refrigerant. Here, for example, it is assumed that the indoor air conditioner 50A is in cooling operation and the indoor air conditioners 50B and 50C are in heating operation. First, in the external regulator, the solenoid valve 5A is open and the solenoid valve 5B is closed. In the branch unit, the solenoid valves 13A, 23B and 23C are open, and the solenoid valve 23A,
Control is performed so that 13B and 13C are closed. The heat exchanger 6 of the external air conditioner and the heat exchanger 18A of the indoor air conditioner are evaporators,
The heat exchangers 18B and 18C of the indoor air conditioner act as condensers.

【0058】この運転では、外調機30のコンプレッサ
1からの高圧ガス冷媒は、冷媒配管R3を経て分岐ユニ
ット40に入る。ここで冷媒は電磁弁23B、23Cを
経て、室内空調機50B、50Cの熱交換器18B、1
8Cに入り、液化される。熱交換器18B、18Cを出
た冷媒は、分岐ユニット40の分岐配管で合流し、一部
は室内空調機50Aへ、残りは過冷却熱交換器12、冷
媒配管R1を経て外調機の液タンク27に入り、続いて
過冷却熱交換器4に入る。
In this operation, the high-pressure gas refrigerant from the compressor 1 of the external air conditioner 30 enters the branch unit 40 via the refrigerant pipe R3. Here, the refrigerant passes through the solenoid valves 23B and 23C, and then the heat exchangers 18B and 1B of the indoor air conditioners 50B and 50C.
It enters 8C and is liquefied. The refrigerant discharged from the heat exchangers 18B and 18C merges in the branch pipe of the branch unit 40, part of which flows to the indoor air conditioner 50A, and the rest of the refrigerant flows from the subcooling heat exchanger 12 and the refrigerant pipe R1 to the liquid of the external air conditioner. It enters the tank 27 and then the supercooling heat exchanger 4.

【0059】外調機において、冷媒は過冷却熱交換器4
で熱交換器6からのガス冷媒と熱交換され、過冷却が増
大した液冷媒となる。そして、冷媒は膨張弁7で減圧さ
れ低温の気液混合状態になり、熱交換器6に入る。熱交
換器6で室外空気と熱交換され、ガス状となった冷媒
は、電磁弁5Aを経て過冷却熱交換器4を通過し、前述
のように液タンク27からきた液冷媒を冷却するととも
に、自らは過熱度が増したガス冷媒となる。
In the external air conditioner, the refrigerant is the subcooling heat exchanger 4
At this time, heat exchange is performed with the gas refrigerant from the heat exchanger 6, and the liquid refrigerant is increased in supercooling. Then, the refrigerant is decompressed by the expansion valve 7 into a low-temperature gas-liquid mixed state and enters the heat exchanger 6. The refrigerant that has been heat-exchanged with the outdoor air in the heat exchanger 6 and has become a gas passes through the subcooling heat exchanger 4 through the solenoid valve 5A and cools the liquid refrigerant that has come from the liquid tank 27 as described above. , Becomes a gas refrigerant with increased superheat.

【0060】一方、室内空調機50Aへ入った冷媒は、
膨張弁15Aで減圧されて低温の気液混合状態となる。
つぎに、熱交換器18Aで還気と熱交換され、ガス状の
冷媒となる。その後、電磁弁13Aを経て冷媒配管R2
を通り外調機30に向かう。冷媒は外調機30内で過冷
却熱交換器4を出た冷媒と合流し、アキュムレータ3を
経てコンプレッサ1に戻る。
On the other hand, the refrigerant entering the indoor air conditioner 50A is
The pressure is reduced by the expansion valve 15A and a low temperature gas-liquid mixed state is achieved.
Next, heat is exchanged with the return air in the heat exchanger 18A to become a gaseous refrigerant. After that, the refrigerant pipe R2 is passed through the solenoid valve 13A.
Head towards the outboard modulator 30. The refrigerant merges with the refrigerant that has left the subcooling heat exchanger 4 in the external conditioner 30, and returns to the compressor 1 via the accumulator 3.

【0061】この間における外調機30の膨張弁7、流
量調整弁25、送風機21、室内空調機50Aの流量調
整弁14A、膨張弁15A、室内空調機50B、50C
の流量調整弁14B、14C、膨張弁15B、15Cの
制御は以下のように行われる。まず、外調機制御部31
は、全暖房運転時の制御と同様に、過熱度が一定になる
よう膨張弁7を制御する。流量調整弁25も同様に、図
10に示される過冷却度レベルと外調機負荷の関係より
求められる値になるように制御する。また、送風機21
については、全暖房運転時の制御と同様に、圧力センサ
11Bにより検出される圧力が予め設定された値になる
ように送風機用インバータ33を駆動させて、風量制御
が行なわれる。
During this period, the expansion valve 7, the flow rate adjusting valve 25, the blower 21, the flow rate adjusting valve 14A of the indoor air conditioner 50A, the expansion valve 15A, the indoor air conditioners 50B, 50C of the external air conditioner 30.
The flow rate adjusting valves 14B and 14C and the expansion valves 15B and 15C are controlled as follows. First, the external conditioner control unit 31
Controls the expansion valve 7 so that the degree of superheat becomes constant, similar to the control during the heating only operation. Similarly, the flow rate adjusting valve 25 is controlled to a value obtained from the relationship between the supercooling degree level and the external regulator load shown in FIG. 10. Also, the blower 21
With respect to, as in the control during the heating only operation, the blower inverter 33 is driven so that the pressure detected by the pressure sensor 11B reaches a preset value, and air volume control is performed.

【0062】室内空調機50Aの室内空調機制御部51
Aによる制御は、冷暖同時冷房主運転の室内空調機50
B、50Cの制御と同様であるので省略する。また、室
内空調機50B、50Cの室内空調機制御部51B、5
1Cの制御も冷暖同時冷房主運転時の室内空調機50A
と同様である。
Indoor air conditioner controller 51 of indoor air conditioner 50A
The control by A is performed by the indoor air conditioner 50 of the simultaneous cooling and heating main operation.
Since it is the same as the control of B and 50C, it is omitted. Also, the indoor air conditioner control units 51B, 5C of the indoor air conditioners 50B, 50C.
50A of indoor air conditioner at the time of main operation of simultaneous cooling and heating with 1C control
Is the same as

【0063】次に例えば室内空調機50Aが暖房運転、
室内空調機50B、50Cが冷房運転で、冷房負荷と暖
房負荷が同じときには、両負荷間の差分に対して外調機
30の熱交換器6を凝縮器あるいは蒸発器として働かせ
る必要がないから、流量調整弁25が閉じられ、同じく
送風機21も停止される。そして、室内空調機50Aを
流れた冷媒は全て、互いに並列の室内空調機50Bおよ
び50Cに流れて熱量がバランスする。
Next, for example, the indoor air conditioner 50A is operated for heating,
When the indoor air conditioners 50B and 50C are in the cooling operation and the cooling load and the heating load are the same, it is not necessary to operate the heat exchanger 6 of the external conditioner 30 as a condenser or an evaporator with respect to the difference between the loads. The flow rate adjusting valve 25 is closed and the blower 21 is also stopped. Then, all the refrigerant that has flowed through the indoor air conditioner 50A flows through the indoor air conditioners 50B and 50C that are parallel to each other, and the amount of heat is balanced.

【0064】上述した外調機制御部および室内空調機制
御部における制御の流れが図15、図16に簡潔に示さ
れる。すなわち、外調機制御部では、図15に示すよう
に、まずステップ101において、室内空調機制御部5
1A〜51Cからの室内空調機の負荷量など運転状況の
情報を入力し、ステップ102でこれらの運転モード別
に積算する。そしてステップ103において、モード別
積算負荷量を比較し、冷房負荷が大きいときはステップ
104に、暖房負荷が大きいときはステップ113に、
そして両負荷が同じときにはステップ124に進む。
The flow of control in the above-mentioned external air conditioner controller and indoor air conditioner controller is briefly shown in FIGS. 15 and 16. That is, in the external air conditioner control unit, as shown in FIG. 15, first, in step 101, the indoor air conditioner control unit 5
Information on operating conditions such as the load amount of the indoor air conditioner from 1A to 51C is input, and in step 102, these are integrated for each operating mode. Then, in step 103, the cumulative load amounts for each mode are compared, and when the cooling load is large, step 104 is performed, and when the heating load is large, step 113 is performed.
When both loads are the same, the routine proceeds to step 124.

【0065】冷房負荷が大きいときは、まずステップ1
04で、その冷房負荷の負荷量に相当する制御信号がイ
ンバータ32に送出されてコンプレッサ1が駆動される
とともに、ステップ105で、熱交換器6が凝縮器とし
て働くモードとされる。次のステップ106では、熱交
換器負荷量が冷房負荷と暖房負荷の差として求められ、
ステップ107において目標の過冷却度が演算あるいは
グラフ読み取りで求められる。
When the cooling load is large, first step 1
At 04, a control signal corresponding to the load amount of the cooling load is sent to the inverter 32 to drive the compressor 1, and at step 105, the heat exchanger 6 is set to a mode of working as a condenser. In the next step 106, the heat exchanger load amount is obtained as the difference between the cooling load and the heating load,
In step 107, the target degree of supercooling is obtained by calculation or graph reading.

【0066】ステップ108で、圧力センサ8の検出値
に基づく冷媒の飽和温度と温度センサ9の検出温度との
差により実際の過冷却度が求められる。そして、ステッ
プ109において、制御過冷却度と実際の過冷却度を一
致させるように流量調整弁25が制御される。このあと
ステップ110では、圧力センサ11Aによりコンプレ
ッサ1の吐出圧力が検出され、ステップ111におい
て、吐出圧力が予め設定された値になるようインバータ
33を駆動させて、送風機21の風量制御が行なわれ
る。このあと、ステップ101に戻る。
In step 108, the actual degree of supercooling is obtained from the difference between the saturation temperature of the refrigerant based on the value detected by the pressure sensor 8 and the temperature detected by the temperature sensor 9. Then, in step 109, the flow rate adjusting valve 25 is controlled so that the controlled supercooling degree and the actual supercooling degree match. After that, in step 110, the discharge pressure of the compressor 1 is detected by the pressure sensor 11A, and in step 111, the inverter 33 is driven so that the discharge pressure becomes a preset value, and the air volume of the blower 21 is controlled. Then, the process returns to step 101.

【0067】次に、暖房負荷が大きいときは、ステップ
113において、その暖房負荷の負荷量に相当する制御
信号がインバータ32に送出されてコンプレッサ1が駆
動されるとともに、ステップ114で、熱交換器6が蒸
発器として働くモードとされる。次のステップ115で
は、熱交換器負荷量が暖房負荷と冷房負荷の差として求
められ、ステップ116において目標の過冷却度が演算
あるいはグラフ読み取りで求められる。
Next, when the heating load is large, at step 113, the control signal corresponding to the load amount of the heating load is sent to the inverter 32 to drive the compressor 1, and at step 114, at the heat exchanger. The mode in which 6 operates as an evaporator is set. In the next step 115, the heat exchanger load amount is obtained as the difference between the heating load and the cooling load, and in step 116 the target degree of supercooling is obtained by calculation or graph reading.

【0068】ステップ117で、圧力センサ8の検出値
に基づく冷媒の飽和温度と温度センサ9の検出温度との
差により実際の過冷却度が求められる。そして、ステッ
プ118において、制御過冷却度と実際の過冷却度を一
致させるように流量調整弁25が制御される。続いてス
テップ119では、温度センサ10A、10Bの検出温
度から熱交換器6の過熱度が求められ、ステップ120
でこれを一定に保持するよう膨張弁7が制御される。こ
のあとステップ121では、圧力センサ11Bによりコ
ンプレッサ1の吸い込み圧力が検出され、ステップ12
2において、この圧力が予め設定された値になるよう送
風機21の風量制御が行なわれる。このあと、ステップ
101に戻る。
In step 117, the actual degree of supercooling is obtained from the difference between the saturation temperature of the refrigerant based on the value detected by the pressure sensor 8 and the temperature detected by the temperature sensor 9. Then, in step 118, the flow rate adjusting valve 25 is controlled so that the controlled supercooling degree and the actual supercooling degree match. Subsequently, in step 119, the degree of superheat of the heat exchanger 6 is obtained from the temperatures detected by the temperature sensors 10A and 10B, and step 120
The expansion valve 7 is controlled so as to keep this constant. After this, in step 121, the suction pressure of the compressor 1 is detected by the pressure sensor 11B, and step 12
In 2, the air flow rate of the blower 21 is controlled so that this pressure becomes a preset value. Then, the process returns to step 101.

【0069】冷房負荷と暖房負荷が同じときには、ステ
ップ124において、流量調整弁25が閉じられ、ステ
ップ125で送風機21が停止される。
When the cooling load and the heating load are the same, the flow rate adjusting valve 25 is closed in step 124, and the blower 21 is stopped in step 125.

【0070】一方、個々の室内空調機制御部では図1
6、図17に示すように、ステップ201においてまず
送風機24が起動される。次いでステップ202で、温
度センサ45より空調ゾーンの室内温度が検出され温度
保持部52に保持される。そして、ステップ203で、
室温設定器49より設定室内温度が入力される。次にス
テップ204で起動時の給気温度が演算される。さら
に、ステップ205で温度センサ26により室内空調機
の還気温度を検出し、ステップ206で演算で設定され
た給気温度と還気温度を比較して、冷房運転するか暖房
運転するかの運転モードを決定する。
On the other hand, the individual indoor air conditioner control units are shown in FIG.
6, as shown in FIG. 17, the blower 24 is first started in step 201. Next, at step 202, the temperature sensor 45 detects the indoor temperature of the air conditioning zone and the temperature is held in the temperature holding unit 52. Then, in step 203,
The set room temperature is input from the room temperature setting device 49. Next, at step 204, the supply air temperature at startup is calculated. Further, in step 205, the return air temperature of the indoor air conditioner is detected by the temperature sensor 26, and in step 206, the supply air temperature and the return air temperature set by the calculation are compared to determine whether to perform the cooling operation or the heating operation. Determine the mode.

【0071】冷房運転モードの場合には、ステップ20
7において、まず冷房モードに電磁弁を切り換え、ステ
ップ208で、温度センサ22により実給気温度を検出
し、ステップ209で検出した給気温度(検出温度)と
設定された給気温度(設定温度)を比較し、検出温度が
低くければステップ210へ、高かければステップ21
1へ、同じならステップ212へ進む。そして、ステッ
プ210では現在の過冷却度を小さくするよう設定さ
れ、ステップ211では過冷却度を大きくするよう設定
され、ステップ212で現在の過冷却度を検出し、ステ
ップ213で設定された過冷却度になるよう流量調整弁
14が制御される。さらに、ステップ214で現在の室
内空調機の運転状態の情報を外調機へ送出する。
In the case of the cooling operation mode, step 20
In step 7, first, the solenoid valve is switched to the cooling mode, in step 208, the actual supply air temperature is detected by the temperature sensor 22, and the supply air temperature (detection temperature) detected in step 209 and the set supply air temperature (set temperature) are detected. ) Are compared, and if the detected temperature is low, go to Step 210, and if it is high, Step 21.
1; if the same, proceed to step 212. Then, in step 210, the current degree of supercooling is set to be small, in step 211, the degree of supercooling is set to be large, the present degree of supercooling is detected in step 212, and the degree of supercooling set in step 213 is set. The flow rate adjusting valve 14 is controlled so that the flow rate is adjusted to 0. Further, in step 214, information on the current operating state of the indoor air conditioner is sent to the external controller.

【0072】つぎに、ステップ215で温度センサ1
9、20により過熱度を検出し、それに基づきステップ
216で膨張弁15を制御する。つぎに、ステップ21
7で給気温度の変更時間がきているかどうかがチェック
される。 給気温度変更時間が経過していない間はステ
ップ207へもどり、設定された給気温度変更時間がす
でに経過していればステップ218へ進む。ステップ2
18では、温度センサ45により室内温度を検出し、ス
テップ219で前回の検出温度と比較して室内温度の変
化方向を求める。そして、ステップ220で給気温度の
変更量を演算して、給気温度を更新したあと、ステップ
205へもどる。
Next, at step 215, the temperature sensor 1
The superheat degree is detected by 9 and 20, and the expansion valve 15 is controlled in step 216 based on the detected superheat degree. Next, step 21
At 7, it is checked whether the supply air temperature has changed. If the supply air temperature change time has not elapsed, the process returns to step 207, and if the set supply air temperature change time has already elapsed, the process proceeds to step 218. Step 2
At 18, the indoor temperature is detected by the temperature sensor 45, and at step 219, the direction of change of the indoor temperature is calculated by comparing with the previously detected temperature. Then, in step 220, the change amount of the supply air temperature is calculated, the supply air temperature is updated, and then the process returns to step 205.

【0073】一方、暖房モードの場合はステップ221
において暖房モードに電磁弁を切り換え、ステップ22
2で実給気温度を検出し、ステップ223で、検出され
た給気温度と設定された給気温度を比較し、検出した温
度が低ければステップ224へ、高ければステップ22
5へ、同じならばステップ226へ進む。そしてステッ
プ224では現在の過冷却度を小さくするよう設定さ
れ、ステップ225では過冷却度を大きくするよう設定
されたあと、ステップ226へ進む。ステップ226で
は現在の過冷却度を検出し、ステップ227で流量調整
弁を制御される。つぎに、ステップ228で室内空調機
の運転状態の情報を外調機へ送出する。
On the other hand, in the heating mode, step 221
In step 22, switch the solenoid valve to the heating mode.
2, the actual supply air temperature is detected, and in step 223, the detected supply air temperature is compared with the set supply air temperature. If the detected temperature is low, the operation proceeds to step 224, and if it is high, the operation proceeds to step 22.
5 and to step 226 if they are the same. Then, in step 224, the current degree of supercooling is set to be small, and in step 225, the degree of supercooling is set to be large, and then the routine proceeds to step 226. In step 226, the current degree of supercooling is detected, and in step 227, the flow rate adjusting valve is controlled. Next, in step 228, the information on the operating state of the indoor air conditioner is sent to the external controller.

【0074】このあと、ステップ229で給気温度変更
時間が経過しているかどうかがチェックされる。給気温
度変更時間がまだ経過していない場合にはステップ22
1へ戻り、経過していればステップ230へ進む。さら
に、ステップ230で室内温度を検出し、ステップ23
1で前回の検出温度と比較して室内温度の変化方向を求
める。そして、ステップ232で給気温度の変更量を演
算して、給気温度を更新したあと、ステップ205へも
どる。
Thereafter, in step 229, it is checked whether or not the supply air temperature changing time has elapsed. Step 22 if the supply air temperature change time has not elapsed yet
The process returns to step 1, and if the time has passed, the process proceeds to step 230. Further, in step 230, the room temperature is detected, and in step 23
In step 1, the change direction of the indoor temperature is calculated by comparing with the previously detected temperature. Then, in step 232, the change amount of the supply air temperature is calculated, the supply air temperature is updated, and then the process returns to step 205.

【0075】以上説明した本実施例を簡単にまとめると
次のようになる。まず、外調機から分岐ユニットを介し
て複数の室内空調機に並列に配管されたヒートポンプ式
空気調和装置において、室内空調機の送風をダクトによ
り複数の空調ゾーンに導き各空調ゾーンごとに給気温度
を変更可能とし、分岐ユニットに過冷却熱交換器と、そ
の切り換えにより冷房運転と暖房運転を選択可能の電磁
弁を備え、外調機に過冷却熱交換器を備えてその液管側
には流量調整弁と膨張弁を設けた。室内空調機の熱交換
器の液管側には流量調整弁と膨張弁を設け、各室内空調
機の負荷に応じて変更される給気温度になるよう流量調
整弁で過冷却度を制御し、冷房運転時は膨張弁を熱交換
器の過熱度が一定になるように制御するものとした。一
方、外調機においては、その流量調整弁を外調機の負荷
に応じた過冷却度になるよう制御し、その熱交換器が凝
縮モードのときは膨張弁を全開にし、蒸発モードのとき
は熱交換器の過熱度が一定になるよう制御するものとし
た。そして、室内空調機の給気温度は起動時に設定室内
温度と検出室内温度から決定されたもので開始し、所定
時間経過後は設定室内温度と検出室内温度とその変化量
に基づいて給気温度を順次変更するものとした。これに
より、各空調ゾーンの個別の要求にあわせて、冷房運転
および暖房運転が任意に実行でき、しかも給気温度を自
由に変更できるという効果を有する。また、他の室内空
調機の負荷状態の影響を受けることなく、給気温度の変
化により各空調ゾーンの室内温度を任意に制御できるた
め快適な環境を得られるという効果を有する。
The following briefly summarizes the present embodiment described above. First, in a heat pump type air conditioner that is connected in parallel to multiple indoor air conditioners from an external air conditioner via a branching unit, the air blow of the indoor air conditioners is guided to multiple air conditioning zones by ducts and air is supplied to each air conditioning zone. The temperature can be changed, the branch unit is equipped with a supercooling heat exchanger, and a solenoid valve that can select cooling operation and heating operation by switching between them is provided. Was equipped with a flow control valve and an expansion valve. A flow control valve and an expansion valve are installed on the liquid pipe side of the heat exchanger of the indoor air conditioner, and the supercooling degree is controlled by the flow control valve so that the supply air temperature changes according to the load of each indoor air conditioner. During the cooling operation, the expansion valve is controlled so that the degree of superheat of the heat exchanger is constant. On the other hand, in the external air conditioner, the flow rate control valve is controlled so that the degree of supercooling corresponds to the load of the external air conditioner, and when the heat exchanger is in the condensation mode, the expansion valve is fully opened, and in the evaporation mode. Is controlled so that the degree of superheat of the heat exchanger is constant. Then, the supply air temperature of the indoor air conditioner starts with the one determined from the set room temperature and the detected room temperature at startup, and after the elapse of a predetermined time, the supply air temperature is set based on the set room temperature, the detected room temperature and the change amount thereof. Are to be changed sequentially. As a result, there is an effect that the cooling operation and the heating operation can be arbitrarily executed and the supply air temperature can be freely changed according to the individual requirements of each air conditioning zone. In addition, the indoor temperature of each air conditioning zone can be arbitrarily controlled by the change of the supply air temperature without being affected by the load condition of other indoor air conditioners, so that a comfortable environment can be obtained.

【0076】したがって、多数の個別の空調ゾーン内に
空調機を設置する必要がなく、簡単なダクト接続だけで
済むから、メンテナンス性が向上する。また、冷房運転
時には、とくに過冷却熱交換器12により室内空調機の
流量調整弁に入る冷媒の過冷却度が増大されるので、流
量調整弁の調整幅が拡大でき、安定した冷凍サイクルが
得られる。さらに、冷房運転時に室内空調機の給気風量
が急減したとき、過冷却熱交換器12が一時的な蓄熱器
として作用し、液冷媒が外調機のコンプレッサ1に入る
液圧縮現象が防止され、暖房運転時に給気風量が急減し
たときにも、外調機の過冷却熱交換器4が一時的な蓄熱
器として作用し、冷媒の確実な液化を促進して膨張弁7
での制御性の低下が防止される。
Therefore, it is not necessary to install an air conditioner in a large number of individual air conditioning zones, and only a simple duct connection is required, thus improving maintainability. Further, during cooling operation, since the degree of supercooling of the refrigerant entering the flow rate adjusting valve of the indoor air conditioner is increased by the supercooling heat exchanger 12, the adjustment range of the flow rate adjusting valve can be expanded and a stable refrigeration cycle can be obtained. To be Furthermore, when the supply air volume of the indoor air conditioner suddenly decreases during the cooling operation, the subcooling heat exchanger 12 acts as a temporary heat storage device, and the liquid compression phenomenon in which the liquid refrigerant enters the compressor 1 of the external air conditioner is prevented. Even when the supply air volume suddenly decreases during the heating operation, the subcooling heat exchanger 4 of the external air conditioner acts as a temporary heat storage device to promote the reliable liquefaction of the refrigerant and the expansion valve 7
The controllability is prevented from decreasing.

【0077】また、各室内空調機50A、50B、50
Cの設置場所がまちまちで、外調機30からの配管長に
差があっても、各室内空調機の膨張弁と流量調整弁間の
冷媒の状態を同じにできるので、設置工事に際して配管
圧損を考慮に入れなくても同じ空調能力が得られる。
The indoor air conditioners 50A, 50B, 50
Even if the installation location of C is different and there is a difference in the pipe length from the external air conditioner 30, the refrigerant state between the expansion valve and the flow rate adjustment valve of each indoor air conditioner can be made the same, so the pipe pressure loss during installation work. The same air conditioning capacity can be obtained without taking into consideration.

【0078】なお、実施例では各室内空調機で熱交換さ
れた空気がダクトにより各空調ゾーンへ導かれている
が、これに限定されず、例えばビル内の天井や床下をサ
プライチャンバーとして利用して給気を導くダクトレス
方式の場合にも同様に適用することができる。また、こ
の実施例では、設定室内温度と検出室内温度の差より起
動時給気温度を決定するのに図4で示される関係表を用
いるものとしたが、このほか例えば、検出室内温度と設
定室内温度の差が0を挟む所定範囲内のときは室温(検
出室内温度)のままとし、差が所定範囲を越えたら室温
に対して加減した値とする、図18に示すような関係表
など適宜のものを設定できる。
In the embodiment, the air that has undergone heat exchange in each indoor air conditioner is guided to each air conditioning zone by a duct. However, the present invention is not limited to this. For example, a ceiling or an underfloor in a building is used as a supply chamber. The same can be applied to the case of a ductless system that guides air supply. Further, in this embodiment, the relational table shown in FIG. 4 is used to determine the supply air temperature at startup based on the difference between the set room temperature and the detected room temperature. When the temperature difference is within a predetermined range with 0 in between, the room temperature (detection room temperature) is kept as it is, and when the difference exceeds the predetermined range, the value is adjusted with respect to the room temperature. You can set

【0079】図19は、本発明の第2の実施例を示す。
この実施例は、上述の第1の実施例の冷媒回路に対し
て、分岐ユニットを廃止し、分岐ユニットにあった過冷
却熱交換器を各室内空調機毎に設けるようにしたもので
ある。すなわち、外調機30から延びる冷媒配管R
1’、R2’、R3’が分岐されて、各室内空調機50
A’、50B’、50C’へ並列に接続されている。そ
して、各室内空調機内において、冷媒配管R1’が過冷
却熱交換器12A、12B、12Cを通ったあと、流量
調整弁14A、14B、14Cに接続される。また、冷
媒配管R2’は過冷却熱交換器12A、12B、12C
の他の通路に入り、電磁弁13A’、13B’、13
C’を介して熱交換器18A、18B、18Cのガス管
側に接続されている。さらに、冷媒配管R3’は電磁弁
23A’、23B’、23C’を介して熱交換器18
A、18B、18Cのガス管に接続されている。
FIG. 19 shows a second embodiment of the present invention.
In this embodiment, the branch circuit is eliminated from the refrigerant circuit of the first embodiment, and a subcooling heat exchanger that was in the branch unit is provided for each indoor air conditioner. That is, the refrigerant pipe R extending from the external conditioner 30
1 ', R2', R3 'are branched and each indoor air conditioner 50
A ', 50B', 50C 'are connected in parallel. Then, in each indoor air conditioner, the refrigerant pipe R1 ′ passes through the supercooling heat exchangers 12A, 12B, 12C, and then is connected to the flow rate adjusting valves 14A, 14B, 14C. In addition, the refrigerant pipe R2 'is the subcooling heat exchanger 12A, 12B, 12C.
Into the other passage of the solenoid valve 13A ', 13B', 13
The heat exchangers 18A, 18B and 18C are connected to the gas pipe side via C '. Further, the refrigerant pipe R3 'is connected to the heat exchanger 18 via the solenoid valves 23A', 23B ', 23C'.
It is connected to A, 18B, and 18C gas pipes.

【0080】そして、電磁弁13A’と23A’、13
B’と23B’、13C’と23C’は、第1の実施例
と同様にそれぞれ一方が開状態のとき、他方が閉状態と
なるよう制御される。その他の構成は第1の実施例と同
じである。各運転モードにおける冷媒の流れも第1の実
施例と同じであるから、作動についての説明は省略す
る。
Then, the solenoid valves 13A 'and 23A', 13
Similar to the first embodiment, B ′ and 23B ′ and 13C ′ and 23C ′ are controlled so that when one is in the open state, the other is in the closed state. Other configurations are the same as those of the first embodiment. The flow of the refrigerant in each operation mode is also the same as that in the first embodiment, so the description of the operation will be omitted.

【0081】この実施例によれば、第1の実施例と同じ
効果を有するとともに、過冷却熱交換器を各室内空調機
毎に分割して設けるから、膨張弁に向かう全ての冷媒が
いずれかの過冷却熱交換器を通過し、過冷却度を増すこ
とができ、過冷却熱交換器も取り扱いが簡単で小型、安
価なものが使用できる利点がある。
According to this embodiment, the same effect as that of the first embodiment is obtained, and since the subcooling heat exchanger is provided separately for each indoor air conditioner, all the refrigerant flowing to the expansion valve is It is possible to increase the degree of supercooling by passing through the subcooling heat exchanger of No. 3, and there is an advantage that a supercooling heat exchanger that is easy to handle, small, and inexpensive can be used.

【0082】なお、上記実施例では、室内空調機が3台
接続されたものを示したが、室内空調機の台数はこれに
限定されることなく、2台でもあるいは4台以上でも同
様に実施可能であり、給気しない室内空調機があれば流
量調整弁を全閉にして作動させないことも可能である。
また、分岐ユニットを複数設けて、それぞれの分岐ユニ
ットに複数の室内空調機を接続することもでき、さらに
は第1の実施例と第2の実施例を組み合わせてもよい。
In the above embodiment, three indoor air conditioners are connected, but the number of indoor air conditioners is not limited to this, and two or four or more indoor air conditioners can be similarly used. It is possible, and if there is an indoor air conditioner that does not supply air, it is possible to fully close the flow rate control valve and not operate it.
It is also possible to provide a plurality of branch units and connect a plurality of indoor air conditioners to each of the branch units. Furthermore, the first embodiment and the second embodiment may be combined.

【0083】[0083]

【発明の効果】以上のとおり本発明は、外調機に複数の
室内空調機が並列に接続された空気調和装置において、
各室内空調機と外調機の熱交換器のガス管を高圧ガス管
または低圧ガス管と選択的に接続することにより、各室
内空調機ごとに冷房運転と暖房運転を選択できるように
し、各室内空調機の給気をダクトにより複数の空調ゾー
ンに導き、各空調ゾーンごとに給気温度変化でそれぞれ
空調ゾーンの室内温度調節が行われ、全ての空調ゾーン
の要求に応じられ、かつ快適な環境が得られるという効
果を有する。そして、個別に多数の空調機を設置を設置
する必要がないからメンテナンス性が向上するととも
に、冷暖同時運転時には、室内空調機間で熱エネルギー
の移動が行われるので大幅な省エネルギー効果が得られ
る。
As described above, the present invention relates to an air conditioner in which a plurality of indoor air conditioners are connected in parallel to an outside air conditioner.
By selectively connecting the gas pipes of each indoor air conditioner and the heat exchanger of the external air conditioner to the high pressure gas pipes or the low pressure gas pipes, it becomes possible to select cooling operation and heating operation for each indoor air conditioner. The air supply of the indoor air conditioner is guided to multiple air conditioning zones by ducts, and the indoor temperature of each air conditioning zone is adjusted by changing the air supply temperature for each air conditioning zone. It has the effect of providing the environment. Further, since it is not necessary to individually install a large number of air conditioners, maintainability is improved, and during simultaneous cooling / heating operation, thermal energy is transferred between the indoor air conditioners, so that a large energy saving effect is obtained.

【0084】さらに、冷媒の過冷却度が当該室内空調機
の給気温度に応じて決定される値になるようにその流量
調整手段を制御することにより任意の給気温度で給気で
きる空気調和が行われる。また、これにより、室内空調
機の膨張弁が他の室内空調機の影響を受けないので、各
室内空調機の設置場所による能力差がなくなり、空調設
計時に能力補正する必要がなく、また、設置工事が簡略
化できるという効果がある。
Further, by controlling the flow rate adjusting means so that the degree of supercooling of the refrigerant becomes a value determined in accordance with the supply air temperature of the indoor air conditioner, the air conditioner capable of supplying air at an arbitrary supply air temperature. Is done. In addition, the expansion valve of the indoor air conditioner is not affected by other indoor air conditioners, so there is no difference in capacity depending on the installation location of each indoor air conditioner, and there is no need to correct the capacity when designing the air conditioner. The effect is that the construction can be simplified.

【0085】なお、複数の室内空調機に向かう液管と低
圧ガス管の間に第1の過冷却熱交換器を設けることによ
り、流量調整手段による流量の制御幅が拡大される。こ
れにより、例えば室内空調機の給気風量を急減させて
も、過冷却熱交換器の蓄熱器作用で戻りの冷媒が確実に
ガス化され、コンプレッサの破損が防止される。また、
外調機の熱交換器に向かう液管と低圧ガス管の間に第2
の過冷却熱交換器を設けることにより、外調機のコンプ
レッサに入るガス冷媒の過熱度を大きくすることがで
き、暖房能力が向上するとともに、室内空調機の給気温
度を急変させた場合にも、過冷却熱交換器の蓄熱器作用
で戻り冷媒の確実な液化を促進させることができる。
By providing the first supercooling heat exchanger between the liquid pipes and the low pressure gas pipes which are directed to the plurality of indoor air conditioners, the control range of the flow rate by the flow rate adjusting means is expanded. Thus, for example, even if the supply air volume of the indoor air conditioner is suddenly reduced, the returning refrigerant is surely gasified by the heat storage function of the subcooling heat exchanger, and damage to the compressor is prevented. Also,
Second between the low pressure gas pipe and the liquid pipe that goes to the heat exchanger of the external air conditioner
By installing the subcooling heat exchanger of the above, it is possible to increase the degree of superheat of the gas refrigerant entering the compressor of the external air conditioner, improve the heating capacity, and when the supply air temperature of the indoor air conditioner is suddenly changed. Also, the reliable liquefaction of the return refrigerant can be promoted by the heat storage function of the supercooling heat exchanger.

【0086】さらに、室内空調機の給気温度を起動時に
空調ゾーンの検出した室内温度と設定温度により決定さ
れる給気温度で給気を始め、また、給気温度を室内温度
と室内温度の変化と設定温度により決定される温度で給
気することにより室内温度を速やかに設定温度にするこ
とができ、またハンチングを起こすこともなく快適な空
気調和を得られる効果がある。
Further, the air supply temperature of the indoor air conditioner is started at the air supply temperature determined by the room temperature detected in the air conditioning zone and the set temperature at the time of start-up, and the air supply temperature is changed between the room temperature and the room temperature. By supplying the air at the temperature determined by the change and the set temperature, the indoor temperature can be quickly set to the set temperature, and comfortable air conditioning can be obtained without causing hunting.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例のシステム構成を示す図
である。
FIG. 1 is a diagram showing a system configuration according to a first embodiment of the present invention.

【図2】実施例における冷媒回路図である。FIG. 2 is a refrigerant circuit diagram in the embodiment.

【図3】室内空調機および外調機における制御装置を示
す図である。
FIG. 3 is a diagram showing a control device in an indoor air conditioner and an outdoor air conditioner.

【図4】起動時の検出室内温度と設定室内温度と給気温
度の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the detected indoor temperature, the set indoor temperature, and the supply air temperature at startup.

【図5】運転中の検出室内温度と設定室内温度と給気温
度の変化量関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the detected indoor temperature, the set indoor temperature, and the supply air temperature during operation.

【図6】全冷房運転時の冷媒の流れを示す図である。FIG. 6 is a diagram showing a refrigerant flow during a cooling only operation.

【図7】全冷房運転時の外調機の負荷と過冷却度の関係
を示すグラフである。
FIG. 7 is a graph showing the relationship between the load of the external air conditioner and the degree of supercooling during the cooling only operation.

【図8】全冷房運転時の制御要領を示す冷凍サイクルの
モリエル線図である。
FIG. 8 is a Mollier diagram of a refrigeration cycle showing a control procedure during a cooling only operation.

【図9】全暖房運転時の冷媒の冷媒の流れを示す図であ
る。
FIG. 9 is a diagram showing a refrigerant flow of a refrigerant during a heating only operation.

【図10】全暖房運転時の外調機の負荷と過冷却度の関
係を示すグラフである。
FIG. 10 is a graph showing the relationship between the load of the external air conditioner and the degree of supercooling during the heating only operation.

【図11】全暖房運転時の制御要領を示す冷凍サイクル
のモリエル線図である。
FIG. 11 is a Mollier diagram of the refrigeration cycle showing the control procedure during the heating only operation.

【図12】冷暖同時冷房主運転時の冷媒の流れを示す図
である。
FIG. 12 is a diagram showing the flow of a refrigerant during the main cooling / heating simultaneous cooling main operation.

【図13】冷暖同時冷房主運転時の制御要領を示す冷凍
サイクルのモリエル線図である。
FIG. 13 is a Mollier diagram of a refrigerating cycle showing a control procedure during simultaneous cooling / heating main operation.

【図14】冷暖同時暖房主運転の冷媒の流れを示す図で
ある。
FIG. 14 is a diagram showing a refrigerant flow in a main operation for simultaneous heating / cooling heating.

【図15】外調機制御部における制御の流れを示すフロ
ーチャートである。
FIG. 15 is a flowchart showing a control flow in an external conditioner control section.

【図16】室内空調機制御部における制御の流れを示す
フローチャートである。
FIG. 16 is a flowchart showing a control flow in an indoor air conditioner control unit.

【図17】室内空調機制御部における制御の流れを示す
フローチャートである。
FIG. 17 is a flowchart showing a control flow in an indoor air conditioner control unit.

【図18】起動時の検出室内温度と設定室内温度と給気
温度の関係の変形例を示すグラフである。
FIG. 18 is a graph showing a modified example of the relationship between the detected indoor temperature at startup, the set indoor temperature, and the supply air temperature.

【図19】第2の実施例を示すシステム構成図である。FIG. 19 is a system configuration diagram showing a second embodiment.

【符号の説明】[Explanation of symbols]

1 コンプレッサ 3 アキュムレータ 4 過冷却熱交換器 5A、5B 電磁弁 6 熱交換器 7 膨張弁 8 圧力センサ 9 温度センサ 10A、10B 温度センサ 11A、11B 圧力センサ 12 過冷却熱交換器 13A、13B、13C、23A、23B、23C
電磁弁 13A’、13B’、13C’、23A’、23B’、
23C’ 電磁弁 14A、14B、14C 流量調整弁 15A、15B、15C 膨張弁 16A、16B、16C 圧力センサ 17A、17B、17C 温度センサ 18A、18B、18C 熱交換器 19A、19B、19C、20A、20B、20C
温度センサ 21 送風機 22A、22B、22C、26A、26B、26C
温度センサ 24A、24B、24C 送風機 25 流量調整弁 27 液タンク 30 外調機 31 外調機制御部 34、35、48 駆動制御部 36 温度変換器 37 圧力変換器 39A、39B、39C、41A、41B、41C
駆動制御部 40 分岐ユニット 42A、42B、42C、44A、44B、44C
温度変換器 43A、43B、43C 圧力変換器 45A、45B、45C 温度センサ 46A、46B、46C 給気温度設定部 47A、47B、47C ダクト 48A、48B、48C 駆動制御部 49A、49B、49C 室温設定器 50A、50B、50C、50A’、50B’、50
C’ 室内空調機 51A、51B、51C 室内空調機制御部 52A、52B、52C 温度保持部 R1、R2、R3、R1’、R2’、R3’ 冷媒配
管 ZA、ZB、ZC 空調ゾーン
1 Compressor 3 Accumulator 4 Supercooling heat exchanger 5A, 5B Solenoid valve 6 Heat exchanger 7 Expansion valve 8 Pressure sensor 9 Temperature sensor 10A, 10B Temperature sensor 11A, 11B Pressure sensor 12 Supercooling heat exchanger 13A, 13B, 13C, 23A, 23B, 23C
Solenoid valves 13A ', 13B', 13C ', 23A', 23B ',
23C 'Solenoid valve 14A, 14B, 14C Flow rate adjusting valve 15A, 15B, 15C Expansion valve 16A, 16B, 16C Pressure sensor 17A, 17B, 17C Temperature sensor 18A, 18B, 18C Heat exchanger 19A, 19B, 19C, 20A, 20B , 20C
Temperature sensor 21 Blower 22A, 22B, 22C, 26A, 26B, 26C
Temperature sensor 24A, 24B, 24C Blower 25 Flow rate control valve 27 Liquid tank 30 External regulator 31 External regulator controller 34, 35, 48 Drive controller 36 Temperature converter 37 Pressure transducer 39A, 39B, 39C, 41A, 41B , 41C
Drive control unit 40 Branch unit 42A, 42B, 42C, 44A, 44B, 44C
Temperature converter 43A, 43B, 43C Pressure converter 45A, 45B, 45C Temperature sensor 46A, 46B, 46C Air supply temperature setting part 47A, 47B, 47C Duct 48A, 48B, 48C Drive control part 49A, 49B, 49C Room temperature setting device 50A, 50B, 50C, 50A ', 50B', 50
C'Indoor air conditioner 51A, 51B, 51C Indoor air conditioner control unit 52A, 52B, 52C Temperature holding unit R1, R2, R3, R1 ', R2', R3 'Refrigerant pipe ZA, ZB, ZC Air conditioning zone

フロントページの続き (72)発明者 小島 康洋 神奈川県相模原市南橋本3丁目2番25号 東プレ株式会社相模原事業所内 (72)発明者 新町 拓正 神奈川県相模原市南橋本3丁目2番25号 東プレ株式会社相模原事業所内 (72)発明者 吉本 周平 神奈川県相模原市南橋本3丁目2番25号 東プレ株式会社相模原事業所内Front page continuation (72) Inventor Yasuhiro Kojima 3-2-25 Minamihashimoto, Sagamihara-shi, Kanagawa Topre Co., Ltd.Sagamihara Works (72) Inventor Takumasa Shinmachi 3-2-25, Minamihashimoto, Sagamihara-shi, Kanagawa Topre Co., Ltd. Sagamihara Works (72) Inventor Shuhei Yoshimoto 3-2-25 Minamihashimoto, Sagamihara City, Kanagawa Prefecture Topre Sagamihara Works

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 熱交換器、該熱交換器に付設された膨張
弁、該膨張弁の手前に設けられた流量調整手段、および
該流量調整手段を制御する第1の制御手段を備える外調
機と、それぞれ熱交換器、該熱交換器に付設された膨張
弁、該膨張弁の手前に設けられた流量調整手段、および
該流量調整手段を制御する第2の制御手段を備え、冷凍
サイクルの液管と高圧ガス管と低圧ガス管を形成する冷
媒配管により前記外調機に並列に接続された複数の室内
空調機からなり、各室内空調機の給気を各空調ゾーンご
とに導くとともに、外調機の熱交換器に接続されたガス
管を該外調機の熱交換器に向かう高圧ガス管または低圧
ガス管に選択的に接続可能の第1の切り換え手段と、各
室内空調機の熱交換器に接続されたガス管を前記高圧ガ
ス管または低圧ガス管に選択的に接続可能の第2の切り
換え手段を有して、それぞれの室内空調機を個別に冷房
運転または暖房運転に選択的に制御し、その給気温度を
変更することによりそれぞれの空調ゾーンの室内温度を
制御するように構成されたことを特徴とする空気調和装
置。
1. An external conditioner comprising: a heat exchanger, an expansion valve attached to the heat exchanger, a flow rate adjusting means provided in front of the expansion valve, and a first control means for controlling the flow rate adjusting means. And a heat exchanger, an expansion valve attached to the heat exchanger, a flow rate adjusting means provided in front of the expansion valve, and a second control means for controlling the flow rate adjusting means. Of a plurality of indoor air conditioners connected in parallel to the external air conditioner by a refrigerant pipe forming a liquid pipe, a high pressure gas pipe and a low pressure gas pipe, and guides the air supply of each indoor air conditioner to each air conditioning zone. A first switching means capable of selectively connecting a gas pipe connected to the heat exchanger of the external air conditioner to a high pressure gas pipe or a low pressure gas pipe directed to the heat exchanger of the external air conditioner, and each indoor air conditioner The high pressure gas pipe or the low pressure gas pipe connected to the heat exchanger of A second switching means that can be selectively connected to the pipe is provided, and each indoor air conditioner is selectively controlled to an air-cooling operation or a heating operation individually, and each air-conditioner is changed by changing its supply air temperature. An air conditioner configured to control the indoor temperature of a zone.
【請求項2】 前記室内空調機の第2の制御手段は、冷
房運転時には当該室内空調機の膨張弁にはいる冷媒の過
冷却度を給気温度に応じて変化させるように当該室内空
調機の流量調整手段を制御し、暖房運転時は当該室内空
調機の熱交換器を出た冷媒の過冷却度を給気温度に応じ
て変化させるように当該室内空調機の流量調整手段を制
御するものであることを特徴とする請求項1記載の空気
調和装置。
2. The second control means of the indoor air conditioner so as to change the degree of supercooling of the refrigerant contained in the expansion valve of the indoor air conditioner according to the supply air temperature during the cooling operation. And controlling the flow rate adjusting means of the indoor air conditioner so as to change the degree of supercooling of the refrigerant exiting the heat exchanger of the indoor air conditioner during heating operation in accordance with the supply air temperature. The air conditioner according to claim 1, wherein the air conditioner is a thing.
【請求項3】 前記外調機の第1の制御手段は、外調機
の熱交換器が凝縮器として作用するときは該外調機の熱
交換器を出る冷媒の過冷却度が該熱交換器の負荷に応じ
て決定される値になるように前記外調機の流量調整手段
を制御し、外調機の熱交換器が蒸発器として作用すると
きは外調機の膨張弁にはいる冷媒の過冷却度が外調機の
熱交換器の負荷に応じて決定される値になるよう前記外
調機の流量調整手段を制御するものであることを特徴と
する請求項1または2記載の空気調和装置。
3. The first control means of the external air conditioner is configured such that when the heat exchanger of the external air conditioner acts as a condenser, the degree of supercooling of the refrigerant leaving the heat exchanger of the external air conditioner is equal to that of the heat exchanger. The flow rate adjusting means of the external controller is controlled so that the value is determined according to the load of the exchanger, and when the heat exchanger of the external controller acts as an evaporator, the expansion valve of the external controller is 3. The flow control means of the external air conditioner is controlled so that the degree of supercooling of the existing refrigerant becomes a value determined according to the load of the heat exchanger of the external air conditioner. The air conditioner described.
【請求項4】 前記室内空調機の少なくとも1つにおい
てその熱交換器が蒸発器として作用するとき前記室内空
調機に向かう液管と外調機に向かう低圧ガス管の間に、
互いの間で熱交換を行う第1の過冷却熱交換器が設けら
れていることを特徴とする請求項1、2または3記載の
空気調和装置。
4. In at least one of the indoor air conditioners, between the liquid pipe to the indoor air conditioner and the low pressure gas pipe to the external air conditioner when the heat exchanger acts as an evaporator,
The air conditioner according to claim 1, 2 or 3, wherein a first subcooling heat exchanger that exchanges heat with each other is provided.
【請求項5】 前記外調機の熱交換器が蒸発器として作
用するとき前記外調機の熱交換器に向かう液管と低圧ガ
ス管の間に、互いの間で熱交換を行う第2の過冷却熱交
換器が設けられていることを特徴とする請求項1、2、
3または4記載の空気調和装置。
5. A second heat exchanger between the liquid pipe and the low-pressure gas pipe, which goes to the heat exchanger of the external regulator when the heat exchanger of the external regulator acts as an evaporator. 3. A subcooling heat exchanger according to claim 1 or 2,
The air conditioner according to 3 or 4.
【請求項6】 前記給気温度は、室内空調機が起動時に
はそれぞれの空調ゾーンの室内温度と設定温度より決定
される値に設定され、その後は設定温度と室内温度とそ
の室内温度の変化とにより決定される値に基づいて変更
されるものであることを特徴とする請求項1、2、3、
4または5記載の空気調和装置。
6. The supply air temperature is set to a value determined by the indoor temperature and the set temperature of each air conditioning zone when the indoor air conditioner is activated, and thereafter, the set temperature, the indoor temperature and the change in the indoor temperature are set. It is changed based on the value determined by
4. The air conditioner according to 4 or 5.
JP06022896A 1996-02-22 1996-02-22 Air conditioner Expired - Fee Related JP3729552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06022896A JP3729552B2 (en) 1996-02-22 1996-02-22 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06022896A JP3729552B2 (en) 1996-02-22 1996-02-22 Air conditioner

Publications (2)

Publication Number Publication Date
JPH09229507A true JPH09229507A (en) 1997-09-05
JP3729552B2 JP3729552B2 (en) 2005-12-21

Family

ID=13136112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06022896A Expired - Fee Related JP3729552B2 (en) 1996-02-22 1996-02-22 Air conditioner

Country Status (1)

Country Link
JP (1) JP3729552B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112773A (en) * 2004-09-14 2006-04-27 Daikin Ind Ltd Refrigeration device
JP2006242515A (en) * 2005-03-04 2006-09-14 Daikin Ind Ltd Refrigerating device
KR100733295B1 (en) * 2004-12-28 2007-06-28 엘지전자 주식회사 Subcooling apparatus for simultaneous cooling and heating type multi-air-conditioner
JP2010159896A (en) * 2009-01-06 2010-07-22 Fuji Electric Retail Systems Co Ltd Refrigerant circuit device
JP2010169361A (en) * 2009-01-26 2010-08-05 Fuji Electric Retail Systems Co Ltd Cooling heating device
JP2012007793A (en) * 2010-06-24 2012-01-12 Topre Corp Refrigerator
CN103017403A (en) * 2011-09-23 2013-04-03 东普雷股份有限公司 Refrigeration device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9528713B2 (en) * 2010-12-22 2016-12-27 Mitsubishi Electric Corporation Combined hot water supply and air-conditioning device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226293Y2 (en) * 1973-11-29 1977-06-15
JPS61107410A (en) * 1984-10-31 1986-05-26 Yamatake Honeywell Co Ltd Air-conditioning control system
JPS62288441A (en) * 1986-06-06 1987-12-15 Mitsubishi Electric Corp Multichamber air conditioner
JPH04217755A (en) * 1990-12-17 1992-08-07 Matsushita Refrig Co Ltd Multiroom type air-conditioner
JPH04244544A (en) * 1991-01-10 1992-09-01 Sharp Corp Air conditioner
JPH0526501A (en) * 1991-07-15 1993-02-02 Toupure Kk Air conditioning facility
JPH0539965A (en) * 1991-08-06 1993-02-19 Hitachi Plant Eng & Constr Co Ltd Heat pump arrangement

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226293Y2 (en) * 1973-11-29 1977-06-15
JPS61107410A (en) * 1984-10-31 1986-05-26 Yamatake Honeywell Co Ltd Air-conditioning control system
JPS62288441A (en) * 1986-06-06 1987-12-15 Mitsubishi Electric Corp Multichamber air conditioner
JPH04217755A (en) * 1990-12-17 1992-08-07 Matsushita Refrig Co Ltd Multiroom type air-conditioner
JPH04244544A (en) * 1991-01-10 1992-09-01 Sharp Corp Air conditioner
JPH0526501A (en) * 1991-07-15 1993-02-02 Toupure Kk Air conditioning facility
JPH0539965A (en) * 1991-08-06 1993-02-19 Hitachi Plant Eng & Constr Co Ltd Heat pump arrangement

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112773A (en) * 2004-09-14 2006-04-27 Daikin Ind Ltd Refrigeration device
KR100733295B1 (en) * 2004-12-28 2007-06-28 엘지전자 주식회사 Subcooling apparatus for simultaneous cooling and heating type multi-air-conditioner
JP2006242515A (en) * 2005-03-04 2006-09-14 Daikin Ind Ltd Refrigerating device
JP4665560B2 (en) * 2005-03-04 2011-04-06 ダイキン工業株式会社 Refrigeration equipment
JP2010159896A (en) * 2009-01-06 2010-07-22 Fuji Electric Retail Systems Co Ltd Refrigerant circuit device
JP2010169361A (en) * 2009-01-26 2010-08-05 Fuji Electric Retail Systems Co Ltd Cooling heating device
JP2012007793A (en) * 2010-06-24 2012-01-12 Topre Corp Refrigerator
CN103017403A (en) * 2011-09-23 2013-04-03 东普雷股份有限公司 Refrigeration device

Also Published As

Publication number Publication date
JP3729552B2 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
CN102112818B (en) Air conditioner
US7578137B2 (en) Air-conditioning system with multiple indoor and outdoor units and control system therefor
EP1091178A2 (en) Multiroom air conditioner and control method therefor
JP2004085193A (en) Multi air conditioner and its operation method
EP2927611B1 (en) Air conditioning device
US20150253020A1 (en) Air-conditioning apparatus
EP2963353B1 (en) Air conditioning device
JP3529449B2 (en) Air conditioner
JP2001248937A (en) Heat pump hot water supply air conditioner
JP3643162B2 (en) Air conditioner
KR20190088692A (en) Method for controlling multi-type air conditioner
JP3729552B2 (en) Air conditioner
KR19990081638A (en) Multi type air conditioner and control method
JP2000018766A (en) Air conditioner
JP3626517B2 (en) Air conditioner
JP3936757B2 (en) Air conditioner
JPH1183128A (en) Highly efficient multiple air conditioning system
JP4391188B2 (en) Air conditioner
JPH02223757A (en) Air conditioner
KR100246894B1 (en) Multi type air conditioner and control method therefor
KR101144805B1 (en) Multi-air conditioner and the control method for the same
JPH08136078A (en) Multi-room cooling and heating device
KR20200006261A (en) Air Conditioning system
JP3748620B2 (en) Air conditioner
JP2911253B2 (en) Refrigerant heating multi refrigeration cycle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees