JPH09229434A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH09229434A
JPH09229434A JP6215696A JP6215696A JPH09229434A JP H09229434 A JPH09229434 A JP H09229434A JP 6215696 A JP6215696 A JP 6215696A JP 6215696 A JP6215696 A JP 6215696A JP H09229434 A JPH09229434 A JP H09229434A
Authority
JP
Japan
Prior art keywords
refrigerant
pumps
heat exchanger
pump
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6215696A
Other languages
Japanese (ja)
Inventor
Yasunori Nishio
安則 西尾
Shigeo Aoyama
繁男 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP6215696A priority Critical patent/JPH09229434A/en
Publication of JPH09229434A publication Critical patent/JPH09229434A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To control a plurality of refrigerant pumps installed at a refrigerant transporting device in such a way that a frequency of operation of each of the pumps may become uniform, prevent a stopping in operation caused by trouble and further to prevent a continuous operation from being carried out in an air conditioner which is comprised of a plurality of indoor and outdoor devices and the refrigerant transporting device. SOLUTION: This air conditioner is provided with a control device 16 which is comprised of a current sensing means 13 for sensing an input current for refrigerant pumps 8a, 8b, 8c and an accumulating means 14 for accumulating operation times, thereby the operation times when an input current more than a predetermined value are calculated. As the time reaches a predetermined calculated time, the refrigerant pump being operated at present is stopped and the refrigerant pump being stopped is energized. An operating frequency of each of a plurality of refrigerant pumps 8a, 8b and 8c is made uniform by changing-over the refrigerant pumps, a stopped state of operation of each of the pumps caused by trouble is prevented and then a continuous operation of the pumps can be carried out without prohibiting a comfortable feeling of an indoor environment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和装置に属
するもので、特に熱源側冷媒サイクルと利用側冷媒サイ
クルに分離された空気調和装置における冷媒を搬送する
冷媒ポンプの制御技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more particularly to a control technology for a refrigerant pump that conveys a refrigerant in an air conditioner separated into a heat source side refrigerant cycle and a use side refrigerant cycle. .

【0002】[0002]

【従来の技術】従来、熱源側冷媒サイクルと利用側冷媒
サイクルに分離した空気調和装置は特開平3−2365
36号公報に記載されたものが知られている。
2. Description of the Related Art Conventionally, an air conditioner separated into a heat source side refrigerant cycle and a use side refrigerant cycle is disclosed in JP-A-3-2365.
The one described in Japanese Patent Publication No. 36 is known.

【0003】以下、図面を参照しながら従来の空気調和
装置について説明する。図7は、従来の空気調和装置の
ブロック構成図である。
Hereinafter, a conventional air conditioner will be described with reference to the drawings. FIG. 7 is a block diagram of a conventional air conditioner.

【0004】図7において、1は室外ユニットである。
圧縮機2,第1四方弁3a,室外側熱交換器4,室外側
膨張弁5,第1補助熱交換器6aを環状に順次接続して
熱源側冷媒サイクルhを形成し、一方、第2補助熱交換
器6b,第2四方弁3b,冷媒タンク9,冷媒ポンプ8
a,8b,8c,室内側熱交換器10a,10bを環状
に順次接続して利用側冷媒サイクルkを構成している。
In FIG. 7, reference numeral 1 is an outdoor unit.
The compressor 2, the first four-way valve 3a, the outdoor heat exchanger 4, the outdoor expansion valve 5, and the first auxiliary heat exchanger 6a are sequentially connected annularly to form the heat source side refrigerant cycle h, while the second Auxiliary heat exchanger 6b, second four-way valve 3b, refrigerant tank 9, refrigerant pump 8
a, 8b, 8c and the indoor heat exchangers 10a, 10b are sequentially connected in an annular shape to form a utilization side refrigerant cycle k.

【0005】以上のように構成された空気調和装置の動
作について、以下に冷房運転の場合の動作を説明する。
[0005] The operation of the air conditioner configured as described above will be described below in the case of a cooling operation.

【0006】構成としては図中矢印の冷媒サイクルとな
り、熱源側冷媒サイクルhでは、圧縮機2からの高温高
圧ガスは、第1四方弁3aを通り室外側熱交換器4で放
熱して凝縮液化し室外側膨張弁5で減圧され第1補助熱
交換器6aで蒸発して第1四方弁3aを通り圧縮機2へ
循環することとなる。
In the refrigerant cycle indicated by the arrow in the figure, the high-temperature high-pressure gas from the compressor 2 passes through the first four-way valve 3a and radiates heat in the outdoor heat exchanger 4 to be condensed and liquefied. Then, the pressure is reduced by the outdoor expansion valve 5, evaporated in the first auxiliary heat exchanger 6a, and circulated to the compressor 2 through the first four-way valve 3a.

【0007】ここで、冷媒ポンプ8a,8b,8cの運
転台数は室外ユニット1と室内ユニットg,g’の運転
台数および必要冷媒流量に応じて運転する。
Here, the number of operating refrigerant pumps 8a, 8b, 8c depends on the number of operating outdoor units 1 and indoor units g, g'and the required refrigerant flow rate.

【0008】また、室外側膨張弁5,室外側流量弁7,
室内側流量弁11a,11bは、それぞれのユニットの
必要冷媒量を流通するように全開から全閉まで開度調整
され最適分流を行っている。
The outdoor expansion valve 5, the outdoor flow valve 7,
The opening degree of the indoor side flow valves 11a and 11b is adjusted from fully open to fully closed so that the required amount of refrigerant of each unit flows, thereby performing an optimal branch flow.

【0009】[0009]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、利用側冷媒サイクルkに設けられた複数
の冷媒ポンプ8a,8b,8cにおいて、運転時間を管
理していないため運転頻度にバラツキがあり、運転頻度
の高い冷媒ポンプの寿命が極端に短くなり、最悪時は破
損,故障により正常な冷媒ポンプがあるにもかかわら
ず、全ての機器を停止し、利用側の快適性を著しく損ね
るという問題を有していた。
However, in the above-mentioned structure, since the operating time is not managed in the plurality of refrigerant pumps 8a, 8b, 8c provided in the use side refrigerant cycle k, the operating frequency varies. Yes, the life of a frequently operating refrigerant pump is extremely shortened, and at worst, even if there is a normal refrigerant pump due to damage or failure, all equipment is stopped and the comfort of the user side is significantly impaired. Had a problem.

【0010】本発明は上記課題に鑑み、複数の冷媒ポン
プへの入力電流値を検知し、入力電流値が所定値以上に
なった場合、その時間を積算することにより複数の冷媒
ポンプの運転頻度が均一になるよう冷媒ポンプの運転停
止を制御する。これにより、故障による運転停止を防止
でき、室内環境の快適性が継続できる。
In view of the above problems, the present invention detects the input current values to a plurality of refrigerant pumps and, when the input current values exceed a predetermined value, integrates the times to determine the operating frequency of the plurality of refrigerant pumps. The operation of the refrigerant pump is controlled to be uniform. As a result, it is possible to prevent an operation stop due to a failure, and to maintain the comfort of the indoor environment.

【0011】また、複数の室内ユニットの運転容量比が
所定値以上になった場合、その時間を積算することによ
り複数の冷媒ポンプの運転頻度が均一になるよう冷媒ポ
ンプの運転停止を制御する。これにより、故障による運
転停止を防止でき、安価に室内環境の快適性が継続でき
る。
Further, when the operating capacity ratio of the plurality of indoor units exceeds a predetermined value, the stoppage of the operation of the refrigerant pumps is controlled so that the operating frequency of the plurality of refrigerant pumps becomes uniform by integrating the time. As a result, it is possible to prevent an operation stop due to a failure, and it is possible to continue the comfort of the indoor environment at a low cost.

【0012】また、複数の冷媒ポンプ出口に取り付けら
れた圧力スイッチの動作回数が所定値以上になった場
合、一定の運転周期から該当冷媒ポンプを外すことによ
り、故障による運転停止を防止でき、室内環境の快適性
が継続できる空気調和装置を提供することを目的として
いる。
Further, when the number of operations of the pressure switches attached to the outlets of the plurality of refrigerant pumps exceeds a predetermined value, by removing the corresponding refrigerant pump from a certain operation cycle, it is possible to prevent an operation stop due to a failure, and It is an object of the present invention to provide an air conditioner that can maintain environmental comfort.

【0013】[0013]

【課題を解決するための手段】この課題を解決するため
に本発明は、圧縮機,室外側熱交換器,室外側膨張弁,
第1補助熱交換器を環状に連接した熱源側冷媒サイクル
と、前記第1補助熱交換器と一体に形成し冷媒を熱交換
する第2補助熱交換器を有する室外ユニットと、前記第
2補助熱交換器と、室外側流量弁と、室内ユニットに設
置されている複数の室内側熱交換器,複数の室内側流量
弁と、冷媒タンク,複数の冷媒ポンプとを環状に連接し
た利用側冷媒サイクルと、前記複数の冷媒ポンプの入力
電流を検知する冷媒ポンプの電源入力部に取り付けられ
た電流センサと、運転している前記冷媒ポンプの前記電
流センサの検出値が所定値以上になった場合に、積算開
始信号を出力する電流検知手段と、前記電流検知手段か
らの積算開始信号を受け、前記冷媒ポンプの運転時間を
積算演算する積算手段と、複数の冷媒ポンプについて前
記積算手段で演算された積算時間のうち、最も短い前記
冷媒ポンプから運転優先順位を設定し、優先順位の最も
高い前記冷媒ポンプの前記積算手段で演算された積算値
が所定値以上になった場合に前記冷媒ポンプを停止さ
せ、運転優先順位を最下位に設定し、次に運転優先順位
の高い前記冷媒ポンプを起動させるポンプ制御手段を有
する制御装置を備えている。
In order to solve this problem, the present invention provides a compressor, an outdoor heat exchanger, an outdoor expansion valve,
An outdoor unit having a heat source side refrigerant cycle in which a first auxiliary heat exchanger is connected in an annular shape, a second auxiliary heat exchanger that is formed integrally with the first auxiliary heat exchanger to exchange heat with the refrigerant, and the second auxiliary A heat exchanger, an outdoor flow valve, a plurality of indoor heat exchangers installed in an indoor unit, a plurality of indoor flow valves, a refrigerant tank, and a plurality of refrigerant pumps, which are annularly connected to each other A cycle, a current sensor attached to a power input portion of a refrigerant pump that detects input currents of the plurality of refrigerant pumps, and a detected value of the current sensor of the operating refrigerant pump is equal to or more than a predetermined value. In addition, a current detection unit that outputs an integration start signal, an integration unit that receives an integration start signal from the current detection unit, and integrates the operating time of the refrigerant pump, and a plurality of refrigerant pumps that are calculated by the integration unit. Of the accumulated cumulative time, the operation priority is set from the shortest refrigerant pump, and the refrigerant pump is operated when the integrated value calculated by the integrating means of the refrigerant pump having the highest priority becomes a predetermined value or more. Is provided, the operation priority is set to the lowest, and the refrigerant pump having the next highest operation priority is started up.

【0014】また、複数の室内ユニットの運転信号を取
り込み、前記複数の室内機の接続合計容量と前記複数の
室内機の運転容量の比である運転容量比を演算し、前記
運転容量比が所定値以上になった場合に、積算開始信号
を出力する運転容量比演算手段と、前記運転容量比演算
手段からの積算開始信号を受け、前記冷媒ポンプの運転
時間を積算演算する積算手段と、複数の冷媒ポンプにつ
いて前記積算手段で演算された積算時間のうち、最も短
い前記冷媒ポンプから運転優先順位を設定し、優先順位
の最も高い前記冷媒ポンプの前記積算手段で演算された
積算値が所定値以上になった場合に、前記冷媒ポンプを
停止させ、運転優先順位を最下位に設定し、次に運転優
先順位の高い前記冷媒ポンプを起動させるポンプ制御手
段を有する制御装置を備えている。
Further, the operating capacity ratio, which is the ratio of the operating capacity of the plurality of indoor units to the total connected capacity of the plurality of indoor units, is calculated by taking in the operating signals of the plurality of indoor units, and the operating capacity ratio is predetermined. A plurality of operating capacity ratio calculating means for outputting an integrating start signal when the value is equal to or more than a value, and an integrating means for receiving an integrating start signal from the operating capacity ratio calculating means and integrating the operating time of the refrigerant pump. Of the integrated time calculated by the integrating means for the refrigerant pump, the operation priority is set from the shortest refrigerant pump, and the integrated value calculated by the integrating means of the refrigerant pump having the highest priority is a predetermined value. In the case of the above, the control device having pump control means for stopping the refrigerant pump, setting the operation priority to the lowest, and activating the refrigerant pump having the next highest operation priority. It is equipped with a.

【0015】また、複数の冷媒ポンプの出口配管に取り
付けられ、所定圧力以上になった場合にオン信号を出力
する圧力スイッチと、前記圧力スイッチの信号を取り込
み、オン信号回数が所定値以上になった場合に異常信号
を出力する異常検知手段と、複数の前記冷媒ポンプの運
転順位を決定する運転順位決定手段と、前記異常検知手
段からの信号を受け、異常に該当する前記冷媒ポンプを
前記運転順位決定手段で決められた一定の運転周期から
外し、正常な冷媒ポンプを優先して運転させるポンプ制
御手段を有する制御装置を備えている。
Further, a pressure switch which is attached to the outlet pipes of a plurality of refrigerant pumps and outputs an ON signal when the pressure exceeds a predetermined pressure, and the signal of the pressure switch is taken in, and the number of ON signals exceeds a predetermined value. In the case of an abnormality, an abnormality detection unit that outputs an abnormality signal, an operation order determination unit that determines the operation order of the plurality of refrigerant pumps, and a signal from the abnormality detection unit are received, and the refrigerant pump that is in an abnormality is operated. A control device is provided that has a pump control unit that deviates from the fixed operation cycle determined by the order determination unit and preferentially operates a normal refrigerant pump.

【0016】[0016]

【発明の実施の形態】本発明の請求項1に記載の発明
は、複数の冷媒ポンプへの入力電流値を検知し、入力電
流値が所定値以上になった場合、現在運転している冷媒
ポンプを停止し、運転優先順位を最下位に設定する。次
に、停止している複数の冷媒ポンプの中で積算手段で演
算された積算時間が最も短い冷媒ポンプを起動させるこ
とにより、複数の冷媒ポンプの運転頻度が均一になるよ
う冷媒ポンプの運転停止を制御する。これにより、故障
による運転停止を防止でき、室内環境の快適性が継続で
きる。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention detects the input current values to a plurality of refrigerant pumps, and when the input current values exceed a predetermined value, the refrigerant currently operating. Stop the pump and set the operation priority to the lowest. Next, among the plurality of refrigerant pumps that are stopped, by starting the refrigerant pump that has the shortest integration time calculated by the integrating means, the operation of the refrigerant pumps is stopped so that the operation frequency of the plurality of refrigerant pumps becomes uniform. To control. As a result, it is possible to prevent an operation stop due to a failure, and to maintain the comfort of the indoor environment.

【0017】また、請求項2記載の発明は、複数の室内
ユニットの運転容量比を検知し運転容量比が所定値以上
になった場合、現在運転している冷媒ポンプを停止し、
運転優先順位を最下位に設定する。次に、停止している
複数の冷媒ポンプの中で積算手段で演算された積算時間
が最も短い冷媒ポンプを起動させることにより、複数の
冷媒ポンプの運転頻度が均一になるよう冷媒ポンプの運
転停止を制御する。これにより、故障による運転停止を
防止でき、安価に室内環境の快適性が継続できる。
Further, the invention according to claim 2 detects the operating capacity ratio of a plurality of indoor units, and when the operating capacity ratio exceeds a predetermined value, stops the refrigerant pump currently operating,
Set the driving priority to the lowest. Next, among the plurality of refrigerant pumps that are stopped, by starting the refrigerant pump that has the shortest integration time calculated by the integrating means, the operation of the refrigerant pumps is stopped so that the operation frequency of the plurality of refrigerant pumps becomes uniform. To control. As a result, it is possible to prevent an operation stop due to a failure, and it is possible to continue the comfort of the indoor environment at a low cost.

【0018】また、請求項3記載の発明は、複数の冷媒
ポンプ出口に取り付けられた圧力スイッチの動作回数が
所定値以上になった場合、一定の運転周期から該当冷媒
ポンプを外すことにより、故障による運転停止を防止で
き、室内環境の快適性が継続できる。
Further, in the invention according to claim 3, when the number of operations of the pressure switches attached to the outlets of the plurality of refrigerant pumps exceeds a predetermined value, the corresponding refrigerant pumps are removed from a certain operation cycle to cause a failure. It is possible to prevent operation stop due to, and to continue the comfort of the indoor environment.

【0019】[0019]

【実施例】以下、本発明の実施例について図1から図6
を用いて説明する。なお従来と同一構成部分については
同一符号を付け、その詳細な説明を省略する。
FIG. 1 to FIG. 6 show an embodiment of the present invention.
This will be described with reference to FIG. The same components as those of the related art are designated by the same reference numerals and detailed description thereof will be omitted.

【0020】(実施例1)図1は、実施例1におけるブ
ロック構成図である。
(First Embodiment) FIG. 1 is a block diagram of the first embodiment.

【0021】図1において、12a,12b,12cは
電流センサであり、冷媒ポンプ8a,8b,8cの電源
入力部に取り付けられ冷媒ポンプ8a,8b,8cの入
力電流を検知する。13は電流検知手段であり、電流セ
ンサ12a,12b,12cからの電流検出値を演算
し、所定値以上になった場合に積算開始信号を出力す
る。14は積算手段であり、電流検知手段13からの積
算開始信号を受け、冷媒ポンプ8a,8b,8cの運転
時間を積算演算する。15はポンプ制御手段であり、積
算手段14で演算された積算時間のうち、冷媒ポンプ8
a,8b,8cのうちの最も短い冷媒ポンプから運転優
先順位を設定し、冷媒ポンプ8a,8b,8cのうちの
優先順位の最も高い冷媒ポンプの積算値が所定値以上に
なった場合に該当する優先順位の最も高い冷媒ポンプを
停止させ、運転優先順位を最下位に設定し、次に運転優
先順位の高い冷媒ポンプを起動させる。これらは、制御
装置16内に構成されている。
In FIG. 1, reference numerals 12a, 12b and 12c denote current sensors, which are attached to the power input portions of the refrigerant pumps 8a, 8b and 8c and detect the input currents of the refrigerant pumps 8a, 8b and 8c. Reference numeral 13 is a current detecting means, which calculates a current detection value from the current sensors 12a, 12b, 12c, and outputs an integration start signal when it exceeds a predetermined value. Reference numeral 14 denotes an integrating means, which receives an integrating start signal from the current detecting means 13 and cumulatively calculates the operating time of the refrigerant pumps 8a, 8b, 8c. Reference numeral 15 denotes a pump control means, which is included in the refrigerant pump 8 during the integration time calculated by the integration means 14.
Applicable when the operation priority is set from the shortest refrigerant pump among a, 8b, and 8c, and the integrated value of the highest priority refrigerant pump among the refrigerant pumps 8a, 8b, and 8c is equal to or greater than a predetermined value. Stop the refrigerant pump having the highest priority, set the operation priority to the lowest, and activate the refrigerant pump having the next highest priority. These are configured in the control device 16.

【0022】以上のように構成された本実施例1の空気
調和装置の具体的な動作について、図2のフローチャー
トを用いて説明する。
The specific operation of the air conditioner of the first embodiment constructed as above will be described with reference to the flowchart of FIG.

【0023】図2においてステップ1では、従来と同
様、冷媒ポンプ8a,8b,8cの運転台数を室外ユニ
ット1と室内ユニットg,g’の運転台数および必要冷
媒流量に応じて決定し、システム全体の運転を行ってい
る。
In step 1 in FIG. 2, the number of operating refrigerant pumps 8a, 8b, 8c is determined in accordance with the number of operating outdoor units 1 and indoor units g, g'and the required refrigerant flow rate, as in the conventional case. Are driving.

【0024】ステップ2では、冷媒ポンプ8a,8b,
8cの電源入力部に取り付けられた入力電流を検知する
電流センサ12a,12b,12cにより、冷媒ポンプ
8a,8b,8cのなかで運転優先度が最も高い運転中
の冷媒ポンプの入力電流を検知する。
In step 2, the refrigerant pumps 8a, 8b,
The current sensor 12a, 12b, 12c for detecting the input current attached to the power input unit of 8c detects the input current of the refrigerant pump 8a, 8b, 8c which is in operation and has the highest operation priority among the refrigerant pumps 8a, 8b, 8c. .

【0025】次にステップ3では、電流検知手段13に
より、ステップ2で検知した入力電流センサからの電流
検出値を演算し、所定値(ここでは3A)以上になった
場合に、積算開始信号を出力する。
Next, in step 3, the current detection means 13 calculates the current detection value from the input current sensor detected in step 2, and when the current detection value exceeds a predetermined value (here, 3 A), an integration start signal is given. Output.

【0026】次にステップ4では、積算手段14が、電
流検知手段13からの積算開始信号を受け、運転優先順
位の最も高い冷媒ポンプの運転時間を積算演算する。
Next, at step 4, the integrating means 14 receives the integration start signal from the current detecting means 13 and integrates the operating time of the refrigerant pump having the highest operation priority.

【0027】次にステップ5では、ポンプ制御手段15
が、積算手段14で演算された積算値が所定値以上(こ
こでは8h)になった場合に、運転優先順位が最も高い
冷媒ポンプを停止させて、その該当冷媒ポンプの運転優
先順位を最下位に設定し、次に運転優先順位の高い冷媒
ポンプの優先順位を最も高く設定し起動させ、以降これ
らの動作を繰り返す。
Next, in step 5, the pump control means 15
However, when the integrated value calculated by the integrating means 14 becomes equal to or larger than a predetermined value (here, 8h), the refrigerant pump having the highest operation priority is stopped and the operation priority of the corresponding refrigerant pump is set to the lowest. Is set, the priority of the refrigerant pump having the next highest operation priority is set to the highest priority and the refrigerant pump is activated, and thereafter these operations are repeated.

【0028】(実施例2)ここで実施例2について、図
面を参照しながら説明するが実施例1と同一構成の部分
は同一符号を付け、その詳細な説明を省略する。
(Embodiment 2) Embodiment 2 will now be described with reference to the drawings. The same components as those in Embodiment 1 are designated by the same reference numerals and detailed description thereof will be omitted.

【0029】図3は、実施例2における冷凍サイクル図
である。図3において、17は運転容量比演算手段であ
り、複数の室内ユニットg,g’の運転信号を取り込
み、複数の室内ユニットg,g’の接続合計容量と複数
の室内ユニットg,g’の運転容量の比である運転容量
比を演算し、運転容量比が所定値以上になった場合に、
積算開始信号を出力する。18は積算手段であり、運転
容量比演算手段17からの積算開始信号を受け、冷媒ポ
ンプの8a,8b,8cの運転時間を積算演算する。1
9はポンプ制御手段であり、冷媒ポンプ8a,8b,8
cについて積算手段18で演算された積算時間のうち、
最も積算時間が短い冷媒ポンプから運転優先順位を設定
し、運転優先順位の最も高い冷媒ポンプの積算手段18
で演算された積算値が所定値以上になった場合に、当該
運転優先順位の最も高い冷媒ポンプを停止させ、運転優
先順位を最下位に設定し、次に運転優先順位の高い冷媒
ポンプを起動させる。これらは、制御装置20内に構成
されている。
FIG. 3 is a refrigeration cycle diagram in the second embodiment. In FIG. 3, reference numeral 17 denotes an operating capacity ratio calculating means, which takes in the operating signals of the plurality of indoor units g and g ′, and calculates the total connection capacity of the plurality of indoor units g and g ′ and the plurality of indoor units g and g ′. The operating capacity ratio, which is the ratio of operating capacity, is calculated, and when the operating capacity ratio exceeds a specified value,
Output the integration start signal. Reference numeral 18 denotes an integrating means, which receives an integrating start signal from the operating capacity ratio computing means 17 and cumulatively calculates the operating time of the refrigerant pumps 8a, 8b, 8c. 1
Reference numeral 9 denotes pump control means, which are refrigerant pumps 8a, 8b, 8
Of the integrated time calculated by the integrating means 18 for c,
The operation priority is set from the refrigerant pump having the shortest integration time, and the integration means 18 of the refrigerant pump having the highest operation priority is set.
When the integrated value calculated in step 3 is greater than or equal to the specified value, the refrigerant pump with the highest operation priority is stopped, the operation priority is set to the lowest, and the refrigerant pump with the next highest operation priority is started. Let These are configured in the control device 20.

【0030】次に、実施例2の動作を図4を用いて説明
する。図4においてステップ1では、従来と同様、冷媒
ポンプ8a,8b,8cの運転台数を室外ユニット1と
室内ユニットg,g’の運転台数および必要冷媒流量に
応じて決定し、システム全体の運転を行っている。
Next, the operation of the second embodiment will be described with reference to FIG. In step 1 in FIG. 4, the number of operating refrigerant pumps 8a, 8b, 8c is determined in accordance with the number of operating outdoor units 1 and indoor units g, g ′ and the required refrigerant flow rate as in the conventional case, and the operation of the entire system is performed. Is going.

【0031】ステップ2では、運転容量比演算手段17
が、複数の室内ユニットg,g’の運転信号を取り込
み、複数の室内ユニットg,g’の接続合計容量と複数
の室内ユニットg,g’の運転容量の比である運転容量
比を演算し、運転容量比が所定値以上(ここでは25%
から30%)になった場合に、積算開始信号を出力す
る。
In step 2, the operating capacity ratio calculating means 17
Takes in the operating signals of the plurality of indoor units g, g ', and calculates the operating capacity ratio, which is the ratio of the connected total capacity of the plurality of indoor units g, g' to the operating capacity of the plurality of indoor units g, g '. , The operating capacity ratio is more than a predetermined value (here, 25%
To 30%), an integration start signal is output.

【0032】次にステップ3では、積算手段18が、運
転容量比演算手段17からの積算開始信号を受け、運転
優先順位の最も高い冷媒ポンプの運転時間を積算演算す
る。
Next, in step 3, the integrating means 18 receives the integration start signal from the operating capacity ratio calculating means 17, and integrates and calculates the operating time of the refrigerant pump having the highest operation priority.

【0033】次にステップ4では、ポンプ制御手段19
が、積算手段18で演算された積算値が所定値以上(こ
こでは8h)になった場合に、運転優先順位の最も高い
冷媒ポンプを停止させ、当該冷媒ポンプの運転優先順位
を最下位に設定し、次に運転優先順位の高い冷媒ポンプ
の優先順位を最も高く設定し起動させ、以降これらの動
作を繰り返す。
Next, in step 4, the pump control means 19
However, when the integrated value calculated by the integrating means 18 becomes equal to or more than a predetermined value (here, 8h), the refrigerant pump having the highest operation priority is stopped and the operation priority of the refrigerant pump is set to the lowest. Then, the refrigerant pump having the next highest operation priority is set to the highest priority and activated, and thereafter these operations are repeated.

【0034】(実施例3)ここで実施例3について、図
面を参照しながら説明するが実施例1と同一構成の部分
は同一符号を付け、その詳細な説明を省略する。
(Third Embodiment) A third embodiment will be described below with reference to the drawings. The same components as those in the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted.

【0035】図5は、実施例3における冷凍サイクル図
である。図5において、21a,21b,21cは圧力
スイッチであり、複数の冷媒ポンプ8a,8b,8cの
出口配管に取り付けられ、所定圧力以上になった場合に
オン信号を出力する。22は異常検知手段であり、圧力
スイッチ21a,21b,21cの信号を取り込み、オ
ン信号回数が所定値以上になった場合に異常信号を出力
する。23は運転順位決定手段であり、複数の冷媒ポン
プ8a,8b,8cの運転順位を決定する。24は異常
検知手段22からの信号を受け、異常に該当する冷媒ポ
ンプを運転順位決定手段23で決められた一定の運転周
期から外し、正常な冷媒ポンプを優先して運転させるポ
ンプ制御手段で、これらは制御装置25内に構成されて
いる。
FIG. 5 is a refrigeration cycle diagram in the third embodiment. In FIG. 5, 21a, 21b, and 21c are pressure switches, which are attached to the outlet pipes of the plurality of refrigerant pumps 8a, 8b, and 8c, and output an ON signal when the pressure exceeds a predetermined pressure. Reference numeral 22 is an abnormality detecting means which takes in signals from the pressure switches 21a, 21b and 21c and outputs an abnormality signal when the number of ON signals exceeds a predetermined value. Reference numeral 23 denotes an operation order determination means, which determines the operation order of the plurality of refrigerant pumps 8a, 8b, 8c. A pump control unit 24 receives a signal from the abnormality detection unit 22, removes the refrigerant pump corresponding to the abnormality from the constant operation cycle determined by the operation order determination unit 23, and preferentially operates the normal refrigerant pump. These are configured in the control device 25.

【0036】次に、実施例3の動作を図6を用いて説明
する。図6においてステップ1では、従来と同様、冷媒
ポンプ8a,8b,8cの運転台数を室外ユニット1と
室内ユニットg,g’の運転台数および必要冷媒流量に
応じて決定し、システム全体の運転を行っている。
Next, the operation of the third embodiment will be described with reference to FIG. In step 1 in FIG. 6, the number of operating refrigerant pumps 8a, 8b, 8c is determined in accordance with the number of operating outdoor units 1 and indoor units g, g ′ and the required refrigerant flow rate as in the conventional case, and the operation of the entire system is performed. Is going.

【0037】ステップ2では、異常検知手段22が、複
数の冷媒ポンプの出口配管に取り付けられ所定圧力(こ
こでは1.5Mpa)以上になった場合に、オン信号を
出力する圧力スイッチの信号を取り込み、オン信号回数
が所定値(ここでは10回)以上になった場合に異常信
号を出力する。
In step 2, the abnormality detecting means 22 is attached to the outlet pipes of a plurality of refrigerant pumps and fetches the signal of the pressure switch which outputs an ON signal when the pressure exceeds a predetermined pressure (here, 1.5 MPa). When the number of ON signals exceeds a predetermined value (here, 10 times), an abnormal signal is output.

【0038】次にステップ3では、運転順位決定手段2
3が、室外ユニット1と室内ユニットg,g’の運転台
数および必要冷媒流量に応じて、複数の冷媒ポンプ8
a,8b,8cの運転台数および運転優先順位を決定す
る。
Next, in step 3, the driving order determining means 2
3 indicates a plurality of refrigerant pumps 8 according to the number of operating outdoor units 1 and indoor units g, g ′ and the required refrigerant flow rate.
The operating numbers and operating priorities of a, 8b, and 8c are determined.

【0039】次にステップ4では、ポンプ制御手段24
が、運転順位決定手段23からの信号と、異常検知手段
22からの信号を受け、異常に該当する冷媒ポンプを運
転順位決定手段23で決められた一定の運転周期から外
し、正常な冷媒ポンプを優先して運転させる。以降これ
らの動作を繰り返す。
Next, in step 4, the pump control means 24
Receives a signal from the driving order determining means 23 and a signal from the abnormality detecting means 22, removes the refrigerant pump corresponding to the abnormality from the constant operation cycle determined by the operating order determining means 23, and operates the normal refrigerant pump. Give priority to driving. After that, these operations are repeated.

【0040】[0040]

【発明の効果】以上のように本発明によれば、複数の冷
媒ポンプへの入力電流値を検知し、入力電流値が所定値
以上になった場合、その時間を積算することにより複数
の冷媒ポンプの運転頻度が均一になるよう冷媒ポンプの
運転停止を制御する。これにより、故障による運転停止
を防止し、室内環境の快適性が継続できる。
As described above, according to the present invention, when the input current values to a plurality of refrigerant pumps are detected, and when the input current values exceed a predetermined value, the time is integrated so that the plurality of refrigerants are integrated. The stoppage of operation of the refrigerant pump is controlled so that the operation frequency of the pump becomes uniform. As a result, it is possible to prevent the operation from being stopped due to a failure and to maintain the comfort of the indoor environment.

【0041】また、複数の室内ユニットの運転容量比が
所定値以上になった場合、その時間を積算することによ
り複数の冷媒ポンプの運転頻度が均一になるよう冷媒ポ
ンプの運転停止を制御する。これにより、故障による運
転停止を防止し、安価に室内環境の快適性が継続でき
る。
Further, when the operating capacity ratio of the plurality of indoor units exceeds a predetermined value, the stoppage of the operation of the refrigerant pumps is controlled so that the operating frequency of the plurality of refrigerant pumps becomes uniform by integrating the time. As a result, it is possible to prevent the operation from being stopped due to a failure and continue the comfort of the indoor environment at low cost.

【0042】また、複数の冷媒ポンプ出口に取り付けら
れた圧力スイッチの動作回数が所定値以上になった場
合、一定の運転周期から該当冷媒ポンプを外すことによ
り、故障による運転停止を防止し、室内環境の快適性が
継続できるという有利な効果が得られる。
When the number of operations of the pressure switches attached to the outlets of a plurality of refrigerant pumps exceeds a predetermined value, the refrigerant pumps are removed from a certain operation cycle to prevent operation stop due to a failure, and An advantageous effect that environmental comfort can be continued is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1による空気調和装置のブロッ
ク構成図
FIG. 1 is a block configuration diagram of an air conditioner according to a first embodiment of the present invention.

【図2】同空気調和装置の動作を示すフローチャートFIG. 2 is a flowchart showing the operation of the air conditioner.

【図3】本発明の実施例2による空気調和装置のブロッ
ク構成図
FIG. 3 is a block configuration diagram of an air conditioner according to a second embodiment of the present invention.

【図4】同空気調和装置の動作を示すフローチャートFIG. 4 is a flowchart showing the operation of the air conditioner.

【図5】本発明の実施例3による空気調和装置のブロッ
ク構成図
FIG. 5 is a block configuration diagram of an air conditioner according to a third embodiment of the present invention.

【図6】同空気調和装置の動作を示すフローチャートFIG. 6 is a flowchart showing the operation of the air conditioner.

【図7】従来の空気調和装置のブロック構成図FIG. 7 is a block diagram of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

2 圧縮機 3a 第1四方弁 3b 第2四方弁 4 室外側熱交換器 5 室外側膨張弁 6a 第1補助熱交換器 6b 第2補助熱交換器 7 室外側流量弁 8a,8b,8c 冷媒ポンプ 10a,10b 室内側熱交換器 12a,12b,12c 電流センサ 13 電流検知手段 14,18 積算手段 15,19,24 ポンプ制御手段 16,20,25 制御装置 17 運転容量比演算手段 21a,21b,21c 圧力スイッチ 22 異常検知手段 23 運転順位決定手段 g,g’ 室内ユニット h 熱源側冷媒サイクル k 利用側冷媒サイクル 2 compressor 3a first four-way valve 3b second four-way valve 4 outdoor heat exchanger 5 outdoor expansion valve 6a first auxiliary heat exchanger 6b second auxiliary heat exchanger 7 outdoor flow valve 8a, 8b, 8c refrigerant pump 10a, 10b Indoor heat exchanger 12a, 12b, 12c Current sensor 13 Current detection means 14, 18 Integration means 15, 19, 24 Pump control means 16, 20, 25 Control device 17 Operating capacity ratio calculation means 21a, 21b, 21c Pressure switch 22 Abnormality detection means 23 Operation order determination means g, g'Indoor unit h Heat source side refrigerant cycle k Use side refrigerant cycle

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機,室外側熱交換器,室外側膨張
弁,第1補助熱交換器を環状に連接した熱源側冷媒サイ
クルと、前記第1補助熱交換器と一体に形成し冷媒を熱
交換する第2補助熱交換器を有する室外ユニットと、前
記第2補助熱交換器と、室外側流量弁と、室内ユニット
に設置されている複数の室内側熱交換器,複数の室内側
流量弁と、冷媒タンク,複数の冷媒ポンプとを環状に連
接した利用側冷媒サイクルと、前記複数の冷媒ポンプの
入力電流を検知する冷媒ポンプの電源入力部に取り付け
られた電流センサと、運転している前記冷媒ポンプの前
記電流センサの検出値が所定値以上になった場合に、積
算開始信号を出力する電流検知手段と、前記電流検知手
段からの積算開始信号を受け、前記冷媒ポンプの運転時
間を積算演算する積算手段と、複数の冷媒ポンプについ
て前記積算手段で演算された積算時間のうち、最も短い
前記冷媒ポンプから運転優先順位を設定し、優先順位の
最も高い前記冷媒ポンプの前記積算手段で演算された積
算値が所定値以上になった場合に前記冷媒ポンプを停止
させ、運転優先順位を最下位に設定し、次に運転優先順
位の高い前記冷媒ポンプを起動させるポンプ制御手段と
を有する制御装置を備えたことを特徴とする空気調和装
置。
1. A heat source side refrigerant cycle in which a compressor, an outdoor heat exchanger, an outdoor expansion valve, and a first auxiliary heat exchanger are connected in an annular shape, and a refrigerant formed integrally with the first auxiliary heat exchanger An outdoor unit having a second auxiliary heat exchanger for exchanging heat, the second auxiliary heat exchanger, an outdoor flow valve, a plurality of indoor heat exchangers installed in the indoor unit, and a plurality of indoor flow rates. A valve, a refrigerant tank, a utilization-side refrigerant cycle in which a plurality of refrigerant pumps are connected in an annular shape, a current sensor attached to a power supply input portion of the refrigerant pump that detects an input current of the plurality of refrigerant pumps, and is operated. When the detected value of the current sensor of the refrigerant pump exceeds a predetermined value, a current detection unit that outputs an integration start signal and an integration start signal from the current detection unit are received, and the operation time of the refrigerant pump Totalizing Means and a plurality of refrigerant pumps, among the integration times calculated by the integrating means, the operation priority is set from the refrigerant pump having the shortest, and the integration calculated by the integrating means of the refrigerant pump having the highest priority. When the value becomes equal to or more than a predetermined value, the refrigerant pump is stopped, the operation priority is set to the lowest, and a pump control means for activating the refrigerant pump having the next highest operation priority is provided. An air conditioner characterized by that.
【請求項2】 圧縮機,室外側熱交換器,室外側膨張
弁,第1補助熱交換器を環状に連接した熱源側冷媒サイ
クルと、前記第1補助熱交換器と一体に形成し冷媒を熱
交換する第2補助熱交換器を有する室外ユニットと、前
記第2補助熱交換器と、室外側流量弁と、室内ユニット
に設置されている複数の室内側熱交換器,複数の室内側
流量弁と、冷媒タンク,複数の冷媒ポンプとを環状に連
接した利用側冷媒サイクルと、前記複数の室内ユニット
の運転信号を取り込み、前記複数の室内機の接続合計容
量と前記複数の室内機の運転容量の比である運転容量比
を演算し、前記運転容量比が所定値以上になった場合
に、積算開始信号を出力する運転容量比演算手段と、前
記運転容量比演算手段からの積算開始信号を受け、前記
冷媒ポンプの運転時間を積算演算する積算手段と、複数
の冷媒ポンプについて前記積算手段で演算された積算時
間のうち、最も短い前記冷媒ポンプから運転優先順位を
設定し、優先順位の最も高い前記冷媒ポンプの前記積算
手段で演算された積算値が所定値以上になった場合に、
前記冷媒ポンプを停止させ、運転優先順位を最下位に設
定し、次に運転優先順位の高い前記冷媒ポンプを起動さ
せるポンプ制御手段とを有する制御装置を備えたことを
特徴とする空気調和装置。
2. A heat source side refrigerant cycle in which a compressor, an outdoor heat exchanger, an outdoor expansion valve, and a first auxiliary heat exchanger are connected in an annular shape, and a refrigerant formed integrally with the first auxiliary heat exchanger An outdoor unit having a second auxiliary heat exchanger for exchanging heat, the second auxiliary heat exchanger, an outdoor flow valve, a plurality of indoor heat exchangers installed in the indoor unit, and a plurality of indoor flow rates. A valve, a refrigerant tank, and a usage-side refrigerant cycle in which a plurality of refrigerant pumps are connected in an annular shape, and operation signals of the plurality of indoor units are fetched, and the total connection capacity of the plurality of indoor units and the operation of the plurality of indoor units An operating capacity ratio, which is a ratio of capacity, is calculated, and when the operating capacity ratio exceeds a predetermined value, an operating capacity ratio calculating means for outputting an integration start signal, and an integrating start signal from the operating capacity ratio calculating means The operating time of the refrigerant pump Integrating means for performing integral calculation, and among the integrating times calculated by the integrating means for a plurality of refrigerant pumps, an operation priority order is set from the shortest refrigerant pump, and the integrating means of the refrigerant pump having the highest priority order is used. If the calculated integrated value exceeds a specified value,
An air conditioner comprising: a control device having pump control means for stopping the refrigerant pump, setting the operation priority to the lowest, and activating the refrigerant pump having the next highest operation priority.
【請求項3】 圧縮機,室外側熱交換器,室外側膨張
弁,第1補助熱交換器を環状に連接した熱源側冷媒サイ
クルと、前記第1補助熱交換器と一体に形成し冷媒を熱
交換する第2補助熱交換器を有する室外ユニットと、前
記第2補助熱交換器と、室外側流量弁と、室内ユニット
に設置されている複数の室内側熱交換器,複数の室内側
流量弁と、冷媒タンク,複数の冷媒ポンプとを環状に連
接した利用側冷媒サイクルと、前記複数の冷媒ポンプの
出口配管に取り付けられ、所定圧力以上になった場合に
オン信号を出力する圧力スイッチと、前記圧力スイッチ
の信号を取り込み、オン信号回数が所定値以上になった
場合に異常信号を出力する異常検知手段と、複数の前記
冷媒ポンプの運転順位を決定する運転順位決定手段と、
前記異常検知手段からの信号を受け、異常に該当する前
記冷媒ポンプを前記運転順位決定手段で決められた一定
の運転周期から外し、正常な冷媒ポンプを優先して運転
させるポンプ制御手段とを有する制御装置を備えたこと
を特徴とする空気調和装置。
3. A heat source side refrigerant cycle in which a compressor, an outdoor heat exchanger, an outdoor expansion valve, and a first auxiliary heat exchanger are connected in an annular shape, and a refrigerant formed integrally with the first auxiliary heat exchanger. An outdoor unit having a second auxiliary heat exchanger for exchanging heat, the second auxiliary heat exchanger, an outdoor flow valve, a plurality of indoor heat exchangers installed in the indoor unit, and a plurality of indoor flow rates. A valve, a refrigerant tank, a utilization side refrigerant cycle in which a plurality of refrigerant pumps are connected in an annular shape, and a pressure switch that is attached to the outlet piping of the plurality of refrigerant pumps and that outputs an ON signal when the pressure exceeds a predetermined pressure. An abnormality detection unit that takes in the signal of the pressure switch and outputs an abnormality signal when the number of ON signals exceeds a predetermined value, and an operation order determination unit that determines the operation order of the plurality of refrigerant pumps,
A pump control unit that receives a signal from the abnormality detection unit, removes the refrigerant pump corresponding to the abnormality from a constant operation cycle determined by the operation order determination unit, and preferentially operates a normal refrigerant pump. An air conditioner comprising a control device.
JP6215696A 1996-02-22 1996-02-22 Air conditioner Pending JPH09229434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6215696A JPH09229434A (en) 1996-02-22 1996-02-22 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6215696A JPH09229434A (en) 1996-02-22 1996-02-22 Air conditioner

Publications (1)

Publication Number Publication Date
JPH09229434A true JPH09229434A (en) 1997-09-05

Family

ID=13191979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6215696A Pending JPH09229434A (en) 1996-02-22 1996-02-22 Air conditioner

Country Status (1)

Country Link
JP (1) JPH09229434A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275458A (en) * 2005-03-30 2006-10-12 Mitsubishi Electric Corp Air conditioner
WO2014091572A1 (en) * 2012-12-12 2014-06-19 三菱電機株式会社 Air conditioner device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275458A (en) * 2005-03-30 2006-10-12 Mitsubishi Electric Corp Air conditioner
JP4527583B2 (en) * 2005-03-30 2010-08-18 三菱電機株式会社 Air conditioner
WO2014091572A1 (en) * 2012-12-12 2014-06-19 三菱電機株式会社 Air conditioner device
CN104838218A (en) * 2012-12-12 2015-08-12 三菱电机株式会社 Air conditioner device
JP5933031B2 (en) * 2012-12-12 2016-06-08 三菱電機株式会社 Air conditioner
CN104838218B (en) * 2012-12-12 2016-09-14 三菱电机株式会社 Air-conditioning device
EP2933582A4 (en) * 2012-12-12 2016-10-05 Mitsubishi Electric Corp Air conditioner device

Similar Documents

Publication Publication Date Title
US9103557B2 (en) Air conditioner and method for controlling the same based on a calculated value of a malfunctioning sensor
US4932220A (en) Air conditioner system with optimum high pressure control function
JPS6334459A (en) Air conditioner
EP2413065B1 (en) Refrigerator
JP2003314907A (en) Control apparatus of expansion valve
JP2006250440A (en) Air conditioning system
CA2888507C (en) Solenoid control methods for dual flow hvac systems
JP2966786B2 (en) Air conditioner
JPH02298770A (en) Multiple type air conditioner
JP2009192096A (en) Air conditioner
JPH09229434A (en) Air conditioner
JP2004278813A (en) Air-conditioner and its controlling method
JPH11173628A (en) Air conditioner
JP3320631B2 (en) Cooling and heating equipment
JP3920508B2 (en) Air conditioner
JPH04273949A (en) Refrigerating cycle device
JPH06317360A (en) Multi-chamber type air conditioner
JP6444536B2 (en) Compressor deterioration diagnosis device and compressor deterioration diagnosis method
JPH11201572A (en) Multiroom air conditioner
JP3128480B2 (en) Refrigeration apparatus and air conditioner using the refrigeration apparatus
JP2000088363A (en) Heat pump type air conditioner
JPH09287844A (en) Air conditioner
JPH06341696A (en) Air conditioner
KR20240036385A (en) Chiller system and a control method the same
JP2719456B2 (en) Air conditioner