JP2000088363A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JP2000088363A
JP2000088363A JP26116298A JP26116298A JP2000088363A JP 2000088363 A JP2000088363 A JP 2000088363A JP 26116298 A JP26116298 A JP 26116298A JP 26116298 A JP26116298 A JP 26116298A JP 2000088363 A JP2000088363 A JP 2000088363A
Authority
JP
Japan
Prior art keywords
expansion valve
indoor
compressor
degree
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26116298A
Other languages
Japanese (ja)
Inventor
Kazuhiko Machida
和彦 町田
Shigeo Aoyama
繁男 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP26116298A priority Critical patent/JP2000088363A/en
Publication of JP2000088363A publication Critical patent/JP2000088363A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To draw out performance of an indoor heat exchanger at the time of a cooling operation at a maximum limit. SOLUTION: A pulse type motor driven expansion valve EV is fully opened, and a compressor 1 is started to be driven. A temperature difference Δt between an inlet and an outlet from an indoor outlet piping temperature t2 and an indoor inlet piping temperature t1 at the time of elapsing a predetermined time Δτis set to a first reference temperature difference Δto1, and a result obtained by subtracting the difference Δto1 from the difference Δt during continuously operating of the compressor 1 thereafter is set as a sensed supercooling degree SH. Then, an opening of the valve EV is decreased so that the sensed degree SH becomes a first predetermined sensed supercooling degree SH1 or more, and when the degree SC becomes the first degree SC1 or more, the opening p1s1 of the valve EV is contrarily set to a large value by a first predetermined opening Δp1s1. Accordingly, a refrigerant supercooling degree of an outlet of an indoor heat exchanger 1 is not largely assured, but substantially supercooling degree SH=0 is approached, and hence the performance of the exchanger can be achieved to a maximum limit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気を熱源とする
ヒートポンプ式空気調和機の冷房運転において、室内熱
交換器が保有する性能を最大限引き出すことを図る冷凍
サイクルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle for maximizing the performance of an indoor heat exchanger in a cooling operation of a heat pump type air conditioner using air as a heat source.

【0002】[0002]

【従来の技術】ヒートポンプ式空気調和機については、
既にさまざまな開発がなされており、例えば、特開平3
−204568号公報に示されているようなヒートポン
プ式空気調和機の基本的な技術について以下述べる。
2. Description of the Related Art Heat pump type air conditioners are
Various developments have already been made.
The basic technology of a heat pump air conditioner as disclosed in JP-A-204568 will be described below.

【0003】上記従来のヒートポンプ式空気調和機は図
12に示すように、1台の室外ユニットAに対して3台
の室内ユニットB1,B2,B3から構成されている。
As shown in FIG. 12, the conventional heat pump type air conditioner is composed of one outdoor unit A and three indoor units B1, B2, B3.

【0004】室外ユニットAは、圧縮機1,インバータ
INV,室外熱交換器3とからなり、そして室内ユニッ
トB1は膨張弁EV1,室内熱交換器17,第1温度セ
ンサTh11,第2温度センサTh21から構成されて
おり、室内ユニットB2、及び室内ユニットB3も同様
に、各々、膨張弁EV2,室内熱交換器27,第1温度
センサTh12,第2温度センサTh22、及び膨張弁
EV3,室内熱交換器37,第1温度センサTh13,
第2温度センサTh23から構成されている。
The outdoor unit A includes a compressor 1, an inverter INV, and an outdoor heat exchanger 3. The indoor unit B1 includes an expansion valve EV1, an indoor heat exchanger 17, a first temperature sensor Th11, and a second temperature sensor Th21. Similarly, the indoor unit B2 and the indoor unit B3 also have the expansion valve EV2, the indoor heat exchanger 27, the first temperature sensor Th12, the second temperature sensor Th22, and the expansion valve EV3, respectively. Device 37, first temperature sensor Th13,
It comprises a second temperature sensor Th23.

【0005】そして、室外ユニットA、及び室内ユニッ
トB1,B2,B3は冷媒配管にて連通され、圧縮機
1、室外熱交換器3、膨張弁EV1、室内熱交換器1
7、圧縮機1を冷媒配管にて環状に順次接続し、膨張弁
EV1、及び室内熱交換器17に対して並列に膨張弁E
V2、室内熱交換器27、及び膨張弁EV3、室内熱交
換器37が接続されて冷凍サイクルを形成している。
[0005] The outdoor unit A and the indoor units B1, B2, B3 are communicated with each other by refrigerant pipes, and the compressor 1, the outdoor heat exchanger 3, the expansion valve EV1, and the indoor heat exchanger 1 are connected.
7. The compressor 1 is connected to the compressor 1 in an annular manner by a refrigerant pipe, and the expansion valve E1 and the expansion valve E are connected in parallel to the indoor heat exchanger 17.
V2, the indoor heat exchanger 27, the expansion valve EV3, and the indoor heat exchanger 37 are connected to form a refrigeration cycle.

【0006】また、室内ユニットB1,B2,B3内の
各膨張弁EV1,EV2,EV3の出口、及び各室内熱
交換器17,27,37の出口には第1温度センサTh
11,Th12,Th13、及び第2温度センサTh2
1,Th22,Th23を設けられ、室内ユニットB
1,B2,B3近傍には室温を検知する室温センサ3,
13,23を設けている。
A first temperature sensor Th is provided at the outlet of each expansion valve EV1, EV2, EV3 in the indoor units B1, B2, B3 and at the outlet of each indoor heat exchanger 17, 27, 37.
11, Th12, Th13, and second temperature sensor Th2
1, Th22, Th23, and the indoor unit B
1, room temperature sensor 3 for detecting room temperature near B2, B3
13 and 23 are provided.

【0007】以上のように構成されたヒートポンプ式空
気調和機について、その動作を説明する。
The operation of the heat pump type air conditioner configured as described above will be described.

【0008】まず、冷房運転の場合、図中の実線矢印の
方向に冷媒が流れて冷房サイクルが形成され、室外熱交
換器3を凝縮器、室内熱交換器17,27,37を蒸発
器として作用させる。
First, in the cooling operation, the refrigerant flows in the direction of the solid line arrow in the figure to form a cooling cycle, and the outdoor heat exchanger 3 is used as a condenser, and the indoor heat exchangers 17, 27, and 37 are used as evaporators. Let it work.

【0009】上記冷房サイクルにおいて、圧縮機1を出
た高温高圧のガス冷媒は室外熱交換器3にて凝縮して高
温高圧の液冷媒となり、室外ユニットAを出て、その後
各室内ユニットB1,B2,B3へ分配されて流入し、
各膨張弁EV1,EV2,EV3にて減圧膨張されて二
相冷媒となった冷媒は、室内熱交換器17,27,37
にて蒸発することにより室内空気から吸熱(冷房運転)
するというサイクルを繰り返す。
In the above cooling cycle, the high-temperature and high-pressure gas refrigerant that has exited the compressor 1 is condensed in the outdoor heat exchanger 3 to become a high-temperature and high-pressure liquid refrigerant. It is distributed to B2 and B3 and flows in,
The refrigerant which has been decompressed and expanded by each of the expansion valves EV1, EV2, EV3 and has become a two-phase refrigerant is supplied to the indoor heat exchangers 17, 27, 37.
Absorbs heat from indoor air by evaporating (cooling operation)
Repeat the cycle of doing.

【0010】制御装置は各室の室温を室温センサ3,1
3,23により検出し、各室の熱負荷に応じて冷媒を分
配する。膨張弁EV1,EV2,EV3の入口の温度を
第1温度センサTh11,Th12,Th13で測定
し、かつ室内熱交換器17,27,37の出口の温度を
第2温度センサTh21,Th22,Th23で測定し
て、室内熱交換器17,27,37毎の過熱度を算出す
る。
The control device detects the room temperature of each room by using the room temperature sensors 3 and 1.
The refrigerant is detected according to 3, 23, and the refrigerant is distributed according to the heat load of each room. The temperatures of the inlets of the expansion valves EV1, EV2, EV3 are measured by the first temperature sensors Th11, Th12, Th13, and the temperatures of the outlets of the indoor heat exchangers 17, 27, 37 are measured by the second temperature sensors Th21, Th22, Th23. By measuring, the degree of superheat is calculated for each of the indoor heat exchangers 17, 27, 37.

【0011】過熱度の不足する室内機があれば、その室
内機の膨張弁の開度を絞ることにより、冷媒循環量を調
整し、過熱度を確保し、常に最適な過熱度での運転を可
能にする。
If there is an indoor unit having a degree of superheat deficiency, the degree of opening of the expansion valve of the indoor unit is reduced to adjust the amount of refrigerant circulated, maintain the degree of superheat, and always operate at the optimum degree of superheat. enable.

【0012】[0012]

【発明が解決しようとする課題】しかしながら上記従来
の構成は、膨張弁出口と室内熱交換器出口との間の管内
圧力損失が大きい場合は、膨張弁EV1,EV2,EV
3の入口の温度と室内熱交換器17,27,37の出口
の温度との出入口温度差が、室内熱交換器17,27,
37の出口の過熱度を表すことにはならず、正確な室内
熱交換器17,27,37の出口過熱度を算出すること
はできないという欠点があった。
However, in the above-mentioned conventional structure, when the pressure loss in the pipe between the outlet of the expansion valve and the outlet of the indoor heat exchanger is large, the expansion valves EV1, EV2, EV are used.
The temperature difference between the inlet and outlet of the indoor heat exchangers 17, 27 and 37 and the temperature of the outlets of the indoor heat exchangers 17, 27 and 37,
There is a drawback that the degree of superheat at the outlet of 37 cannot be represented, and the degree of superheat at the outlet of the indoor heat exchangers 17, 27, and 37 cannot be calculated accurately.

【0013】即ち、室内熱交換器17,27,37内の
の冷媒経路(以下、冷媒パスと称する)が複数存在する
場合には、冷媒を各冷媒パス毎に分流するための冷媒分
流器が膨張弁EV1,EV2,EV3と室内熱交換器と
17,27,37の間に設置する必要がある。
That is, when there are a plurality of refrigerant paths (hereinafter, referred to as refrigerant paths) in the indoor heat exchangers 17, 27, and 37, a refrigerant flow divider for dividing the refrigerant for each refrigerant path is provided. It is necessary to install between expansion valves EV1, EV2, EV3 and the indoor heat exchangers 17, 27, 37.

【0014】冷媒分流器は膨張弁入口、及び出口の集合
配管径より小さい内径の細管複数本で構成されているた
め、その部分での圧力損失は大きく、決して無視するこ
とはできない。
[0014] Since the refrigerant flow divider is composed of a plurality of small tubes having an inner diameter smaller than the diameter of the collecting pipe at the inlet and outlet of the expansion valve, the pressure loss at that portion is large and cannot be neglected.

【0015】あるいは、室内熱交換器本体についても各
冷媒パスにおける圧力損失が必ず存在し、過熱度を算出
する際には決して無視することはできない。
Alternatively, there is always a pressure loss in each refrigerant path in the indoor heat exchanger body, and it cannot be ignored when calculating the degree of superheat.

【0016】以上に示したような圧力損失が存在する場
合、膨張弁EV1,EV2,EV3の入口の圧力(冷媒
は二相状態であるため飽和圧力)が室内熱交換器17,
27,37の出口における飽和圧力に相当しない。
When the pressure loss as described above exists, the pressures at the inlets of the expansion valves EV1, EV2, EV3 (saturation pressure because the refrigerant is in a two-phase state) are changed by the indoor heat exchanger 17,
It does not correspond to the saturation pressure at the outlet of 27,37.

【0017】従って、膨張弁出口と室内熱交換器出口と
の間の管内圧力損失が大きい場合は、単純に膨張弁EV
1,EV2,EV3の入口の温度と室内熱交換器17,
27,37の出口の温度との出入口温度差が、室内熱交
換器17,27,37の出口の過熱度を表すことにはな
らず、正確な室内熱交換器17,27,37の出口過熱
度を算出することはできないという欠点があった。
Therefore, when the pipe pressure loss between the expansion valve outlet and the indoor heat exchanger outlet is large, the expansion valve EV
1, the temperature of the inlet of EV2, EV3 and the indoor heat exchanger 17,
The difference between the inlet and outlet temperatures of the outlets of the indoor heat exchangers 17, 27 and 37 does not indicate the degree of superheat at the outlets of the indoor heat exchangers 17, 27 and 37. There was a drawback that the degree could not be calculated.

【0018】更に、上記従来の構成は、冷房サイクルを
安定して制御するために、室内熱交換器出口における冷
媒過熱度を確保しているが、熱交換器を蒸発器として用
いる場合、熱交換器出口の冷媒過熱度が飽和蒸気状態、
即ち、ほぼ過熱度=0の状態の時に熱交換器の保有して
いる性能は最大限に発揮され得るという、理想状態から
外れた運転をしているという欠点があった。
Further, in the above-mentioned conventional configuration, the degree of superheat of the refrigerant at the outlet of the indoor heat exchanger is ensured in order to stably control the cooling cycle. The superheat of the refrigerant at the outlet of the vessel is in a saturated vapor state,
That is, when the superheat degree is almost zero, the performance possessed by the heat exchanger can be maximized.

【0019】そこで、本発明は従来の課題を解決するも
ので、膨張弁出口と室内熱交換器出口との間の管内圧力
損失が大きい場合でも、その圧力損失の大小の影響を受
けずに、簡易的に、かつ精度良く、室内熱交換器出口の
過熱度を算出し、かつ冷房運転において室内熱交換器が
保有する性能を最大限引き出し得るヒートポンプ式空気
調和機を提供することを目的とする。
Therefore, the present invention solves the conventional problem. Even when the pressure loss in the pipe between the outlet of the expansion valve and the outlet of the indoor heat exchanger is large, the pressure loss is not affected by the magnitude of the pressure loss. It is an object of the present invention to provide a heat pump type air conditioner that can simply and accurately calculate the degree of superheat at an outlet of an indoor heat exchanger and can maximize the performance possessed by the indoor heat exchanger in a cooling operation. .

【0020】[0020]

【課題を解決するための手段】この目的を達成するため
に本発明は、第1の技術的手段として、圧縮機と室外熱
交換器と室外送風機と膨張弁とからなる室外ユニット
と、冷媒分流器と室内熱交換器と室内送風機とからなる
室内ユニットとから構成され、かつ前記圧縮機,前記室
外熱交換器,前記膨張弁,前記冷媒分流器,前記室内熱
交換器,前記圧縮機を順次冷媒配管にて環状に接続して
冷媒を循環させる冷房サイクルにおいて、冷房モードで
の圧縮機の運転開始時は、前記膨張弁を全開にさせ、そ
の後前記圧縮機の運転開始から所定時間経過した時点で
の室内出口配管温度と室内入口配管温度との出入口温度
差を第1基準温度差とし、その後の前記圧縮機の運転継
続中における室内出口配管温度と室内入口配管温度との
出入口温度差から前記第1基準温度差を減算した結果を
検知過熱度として、前記検知過熱度が第1所定過熱度以
上になるまで前記膨張弁の開度を小さくしていき、前記
検知過熱度が前記第1所定過熱度以上になった時点での
前記膨張弁の開度より第1所定開度だけ大きい開度を求
め、その求められた開度をその後の前記膨張弁の開度に
するよう構成したのである。
In order to achieve this object, the present invention provides, as a first technical means, an outdoor unit comprising a compressor, an outdoor heat exchanger, an outdoor blower, and an expansion valve; And an indoor unit including an indoor heat exchanger and an indoor blower, and sequentially includes the compressor, the outdoor heat exchanger, the expansion valve, the refrigerant flow divider, the indoor heat exchanger, and the compressor. In a cooling cycle in which a refrigerant pipe is connected in a ring to circulate the refrigerant, at the start of operation of the compressor in the cooling mode, the expansion valve is fully opened, and thereafter, when a predetermined time has elapsed from the start of operation of the compressor. The temperature difference between the indoor outlet pipe temperature and the indoor inlet pipe temperature at the inlet and outlet is defined as a first reference temperature difference, and the difference between the indoor outlet pipe temperature and the indoor inlet pipe temperature during the subsequent continuation of the operation of the compressor is calculated from the inlet / outlet temperature difference. The result of subtracting the first reference temperature difference is defined as a detected superheat degree, and the opening degree of the expansion valve is reduced until the detected superheat degree becomes equal to or more than a first predetermined superheat degree. An opening larger by a first predetermined opening than the opening of the expansion valve at the time when the degree of superheating or more is obtained is obtained, and the obtained opening is used as the opening of the subsequent expansion valve. .

【0021】これにより、冷媒分流器入口と室内熱交換
器出口との間の管内圧力損失の影響を差し引いた室内熱
交換器出口の正味の過熱度を検知できる。また、蒸発器
として機能する室内熱交換器出口の冷媒過熱度が大きく
確保されることがなく、飽和蒸気状態、即ち、ほぼ過熱
度=0の状態に近づけることが可能となるため、熱交換
器の保有している性能は最大限に発揮され得るという、
理想状態に近い制御を実現可能となる。
Thus, it is possible to detect the net degree of superheat at the outlet of the indoor heat exchanger by subtracting the influence of the pressure loss in the pipe between the inlet of the refrigerant distributor and the outlet of the indoor heat exchanger. In addition, the refrigerant superheat degree at the outlet of the indoor heat exchanger functioning as an evaporator is not largely secured, and it is possible to approach a saturated vapor state, that is, a state where the superheat degree is almost zero. That the performance possessed can be maximized,
Control close to the ideal state can be realized.

【0022】また、第2の技術的手段として、第1の技
術的手段で、圧縮機の運転開始から所定時間経過した時
点での室内出口配管温度と室内入口配管温度との出入口
温度差を基準温度差としていた部分を、室内出口配管温
度と室内入口配管温度との出入口温度差に対して所定温
度差を加算したものを基準温度差とするものに置換える
ことにより、冷媒分流器入口と室内熱交換器出口との間
の管内圧力損失に相当する冷媒の飽和温度差に生じる差
異を補正することが可能になる。
As a second technical means, in the first technical means, a difference between an inlet / outlet pipe temperature and an indoor / outlet pipe temperature at a time when a predetermined time has elapsed from the start of operation of the compressor is used as a reference. By replacing the temperature difference portion with the reference temperature difference obtained by adding a predetermined temperature difference to the inlet / outlet temperature difference between the indoor outlet pipe temperature and the indoor inlet pipe temperature, the refrigerant flow divider inlet and the indoor It is possible to correct the difference that occurs in the saturation temperature difference of the refrigerant corresponding to the pressure loss in the pipe between the outlet of the heat exchanger and the heat exchanger.

【0023】即ち、圧縮機起動所定時間経過後の飽和温
度差と、その所定時間経過以降に膨張弁開度を小さくし
た時点での飽和温度差との間に生じる差異を、前記第2
基準温度差に加算することにより、室内熱交換器出口の
検知過熱度を精度良く検出することが可能となる。
That is, the difference between the saturation temperature difference after the elapse of a predetermined time from the start of the compressor and the saturation temperature difference at the time when the opening degree of the expansion valve is reduced after the elapse of the predetermined time is determined by the second temperature.
By adding to the reference temperature difference, the degree of superheat detected at the outlet of the indoor heat exchanger can be accurately detected.

【0024】また、第3の技術的手段として、第2の技
術的手段に加えて、膨張弁の開度設定後、検知過熱度が
第1所定過熱度より小なる第2所定過熱度以上である場
合は前記膨張弁の開度を第2所定開度だけ大きく設定す
るようにし、検知過熱度が0より小さい場合は前記膨張
弁の開度を前記第2所定開度だけ小さく設定するように
することにより、室内の冷房負荷に応じて変化する室内
熱交換器出口の冷媒過熱度をほぼ0付近に収めるように
膨張弁の開度を制御できるために、冷房負荷が変動した
場合でも、熱交換器の保有している性能は最大限に発揮
され得るという、理想状態に近い制御を実現可能とな
る。
Further, as a third technical means, in addition to the second technical means, after the opening degree of the expansion valve is set, the detected superheat degree is not less than a second predetermined superheat degree which is smaller than the first predetermined superheat degree. In some cases, the opening of the expansion valve is set to be larger by a second predetermined opening, and when the detected superheat is smaller than 0, the opening of the expansion valve is set to be smaller by the second predetermined opening. By doing so, the opening degree of the expansion valve can be controlled so that the degree of superheat of the refrigerant at the outlet of the indoor heat exchanger, which varies according to the cooling load in the room, is kept close to zero, so that even if the cooling load fluctuates, It is possible to realize a control close to an ideal state in which the performance possessed by the exchanger can be maximized.

【0025】また、第4の技術的手段として、第1の技
術的手段に加えて、膨張弁の開度設定後、冷房サイクル
のままで圧縮機が一旦停止し再起動する場合、膨張弁の
開度を、前記圧縮機が停止状態になる直前における前記
膨張弁の開度に対して第3所定開度だけ大きく設定して
前記圧縮機の運転を再起動し、前記圧縮機の運転開始か
ら所定時間経過した時点での室内入口配管温度と室内出
口配管温度との出入口温度差を第3基準温度差とし、そ
の後の前記圧縮機の運転継続中における室内出口配管温
度と室内入口配管温度との出入口温度差から前記第3基
準温度差を減算した結果を新たな検知過熱度とすること
により、室内の冷房負荷が変化することにより、冷房サ
イクル内を循環する冷媒の循環量が変動することによる
前記第3基準温度差の変化に対応することが可能とな
る。
As a fourth technical means, in addition to the first technical means, when the compressor is temporarily stopped and restarted in the cooling cycle after the opening degree of the expansion valve is set, the expansion valve may be used. The opening is set to be larger by a third predetermined opening than the opening of the expansion valve immediately before the compressor is stopped, and the operation of the compressor is restarted. The inlet / outlet temperature difference between the indoor inlet pipe temperature and the indoor outlet pipe temperature at the time when a predetermined time has elapsed is defined as a third reference temperature difference, and the indoor outlet pipe temperature and the indoor inlet pipe temperature during the subsequent continuation of operation of the compressor. By subtracting the third reference temperature difference from the entrance / exit temperature difference as a new detected superheat degree, the indoor cooling load changes, and the amount of refrigerant circulating in the cooling cycle fluctuates. The third reference temperature It is possible to correspond to the change.

【0026】即ち、室内温度が設定温度に達した場合
や、冷凍サイクルが異常運転状態になって冷凍サイクル
に保護制御が動作する場合等によって、圧縮機が運転状
態から停止状態になった後、再度、圧縮機の運転を開始
する場合には、圧縮機が停止する直前の膨張弁の開度に
対して第3所定開度だけ大きく設定して、圧縮機を再起
動し、配管温検出手段により検出した室内入口配管温度
と室内出口配管温度との出入口温度差である第3基準温
度差を更新することにより、室内の冷媒負荷変動に対応
した運転制御が可能になる。
That is, after the compressor is changed from the operating state to the stopped state, for example, when the indoor temperature has reached the set temperature, or when the refrigeration cycle is in an abnormal operation state and the protection control is operated in the refrigeration cycle, etc. When the operation of the compressor is started again, the opening degree of the expansion valve immediately before the stop of the compressor is set to be larger by a third predetermined opening degree, the compressor is restarted, and the pipe temperature detecting means By updating the third reference temperature difference, which is the difference between the inlet / outlet pipe temperature and the indoor / outlet pipe temperature detected by the above, the operation control corresponding to the change in the refrigerant load in the room becomes possible.

【0027】[0027]

【発明の実施の形態】請求項1に記載の発明は、圧縮機
と室外熱交換器と室外送風機と膨張弁とからなる室外ユ
ニットと、冷媒分流器と室内熱交換器と室内送風機とか
らなる室内ユニットとから構成され、かつ前記圧縮機,
前記室外熱交換器,前記膨張弁,前記冷媒分流器,前記
室内熱交換器,前記圧縮機を順次冷媒配管にて環状に接
続して冷媒を循環させる冷房サイクルにおいて、前記膨
張弁と前記冷媒分流器との間の冷媒配管に設置した室内
入口配管温センサと、前記室内熱交換器の出口集合配管
に設置した室内出口配管温センサと、前記室内入口配管
温センサ、及び前記室内出口配管温センサからの出力を
温度信号に変換する配管温検出手段と、前記冷房サイク
ルの運転モードを検出する運転モード検出手段と、前記
圧縮機の運転開始から所定時間経過した時に信号を出力
する時間検出手段と、前記圧縮機の運転/停止を行う圧
縮機制御手段と、前記膨張弁の開度制御を行う膨張弁制
御手段と、前記配管温検出手段と前記運転モード検出手
段と前記時間検出手段とからの信号をもとに前記圧縮機
制御手段と前記膨張弁制御手段とを制御する第1制御手
段とを備え、前記第1制御手段は、前記運転モード検出
手段により冷房モードを検出した時に、前記膨張弁制御
手段により前記膨張弁を全開にさせて前記圧縮機制御手
段により前記圧縮機の運転を開始させ、その後前記時間
検出手段により前記圧縮機の運転開始から所定時間経過
したことを検知した時点での前記配管温検出手段により
検出した室内出口配管温度と室内入口配管温度との出入
口温度差を第1基準温度差とし、その後の前記圧縮機の
運転継続中における前記配管温検出手段により検出した
室内出口配管温度と室内入口配管温度との出入口温度差
から前記第1基準温度差を減算した結果を検知過熱度と
して、前記検知過熱度が第1所定過熱度以上になるまで
前記膨張弁制御手段により前記膨張弁の開度を小さくし
ていき、前記検知過熱度が前記第1所定過熱度以上にな
った時点での前記膨張弁の開度より第1所定開度だけ大
きい開度を求め、その求められた開度をその後の前記膨
張弁の開度にするよう前記膨張弁制御手段を制御するも
のである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 comprises an outdoor unit comprising a compressor, an outdoor heat exchanger, an outdoor blower and an expansion valve, a refrigerant diverter, an indoor heat exchanger and an indoor blower. An indoor unit, and the compressor,
In a cooling cycle in which the outdoor heat exchanger, the expansion valve, the refrigerant flow divider, the indoor heat exchanger, and the compressor are sequentially connected in an annular manner by a refrigerant pipe to circulate the refrigerant, the expansion valve and the refrigerant flow are divided. An indoor inlet pipe temperature sensor installed in a refrigerant pipe between the heat exchanger, an indoor outlet pipe temperature sensor installed in an outlet collective pipe of the indoor heat exchanger, the indoor inlet pipe temperature sensor, and the indoor outlet pipe temperature sensor A pipe temperature detecting means for converting an output from the compressor into a temperature signal, an operating mode detecting means for detecting an operating mode of the cooling cycle, and a time detecting means for outputting a signal when a predetermined time has elapsed from the start of operation of the compressor. Compressor control means for operating / stopping the compressor, expansion valve control means for controlling the degree of opening of the expansion valve, pipe temperature detection means, operation mode detection means, and time detection And a first control means for controlling the compressor control means and the expansion valve control means based on a signal from the first stage. The first control means detects a cooling mode by the operation mode detection means. At the time, the expansion valve is fully opened by the expansion valve control means, the compressor control means starts the operation of the compressor, and then the time detection means determines that a predetermined time has elapsed from the start of operation of the compressor. An inlet / outlet temperature difference between the indoor outlet pipe temperature and the indoor inlet pipe temperature detected by the pipe temperature detecting means at the time of detection is defined as a first reference temperature difference, and the pipe temperature detecting means during the subsequent continuation of operation of the compressor The result obtained by subtracting the first reference temperature difference from the inlet / outlet temperature difference between the indoor outlet pipe temperature and the indoor inlet pipe temperature detected by the above is regarded as a detected superheat degree, and the detected superheat degree is a first predetermined superheat. Degree, the opening degree of the expansion valve is reduced by the expansion valve control means, and the opening degree of the expansion valve at the time when the detected degree of superheat becomes equal to or more than the first predetermined degree of superheating is set to a first degree. An opening degree larger by a predetermined opening degree is obtained, and the expansion valve control means is controlled so that the obtained opening degree becomes a subsequent opening degree of the expansion valve.

【0028】上記構成により、圧縮機起動後の所定時間
内にて冷媒分流器入口と室内熱交換器出口との間の管内
圧力損失に相当する冷媒の飽和温度差を第1基準温度差
として検出し、所定時間経過後における室内出口配管温
度と室内入口配管温度との出入口温度差から第1基準温
度差を減算することによって、冷媒分流器入口と室内熱
交換器出口との間の管内圧力損失の影響を差し引いた室
内熱交換器出口の正味の過熱度を検知できる。
According to the above configuration, the saturated temperature difference of the refrigerant corresponding to the pressure loss in the pipe between the inlet of the refrigerant distributor and the outlet of the indoor heat exchanger is detected as the first reference temperature difference within a predetermined time after the start of the compressor. By subtracting the first reference temperature difference from the inlet / outlet temperature difference between the indoor outlet pipe temperature and the indoor inlet pipe temperature after a lapse of a predetermined time, the pressure loss in the pipe between the inlet of the refrigerant distributor and the outlet of the indoor heat exchanger is reduced. The net degree of superheat at the outlet of the indoor heat exchanger from which the influence of the above has been subtracted can be detected.

【0029】更に、蒸発器として機能する室内熱交換器
出口の冷媒過熱度が大きく確保されることがなく、飽和
蒸気状態、即ち、ほぼ過熱度=0の状態に近づけること
が可能となるため、熱交換器の保有している性能は最大
限に発揮され得るという、理想状態に近い制御を実現可
能となる。
Further, since the superheat degree of the refrigerant at the outlet of the indoor heat exchanger functioning as an evaporator is not sufficiently secured, it is possible to approach a saturated vapor state, that is, a state of superheat degree = 0. It is possible to realize a control close to an ideal state in which the performance of the heat exchanger can be maximized.

【0030】また、請求項2に記載の発明は、圧縮機と
室外熱交換器と室外送風機と膨張弁とからなる室外ユニ
ットと、冷媒分流器と室内熱交換器と室内送風機とから
なる室内ユニットとから構成され、かつ前記圧縮機,前
記室外熱交換器,前記膨張弁,前記冷媒分流器,前記室
内熱交換器,前記圧縮機を順次冷媒配管にて環状に接続
して冷媒を循環させる冷房サイクルにおいて、前記膨張
弁と前記冷媒分流器との間の冷媒配管に設置した室内入
口配管温センサと、前記室内熱交換器の出口集合配管に
設置した室内出口配管温センサと、前記室内入口配管温
センサ、及び前記室内出口配管温センサからの出力を温
度信号に変換する配管温検出手段と、前記冷房サイクル
の運転モードを検出する運転モード検出手段と、前記圧
縮機の運転開始から所定時間経過した時に信号を出力す
る時間検出手段と、前記圧縮機の運転/停止を行う圧縮
機制御手段と、前記膨張弁の開度制御を行う膨張弁制御
手段と、前記配管温検出手段と前記運転モード検出手段
と前記時間検出手段とからの信号をもとに前記圧縮機制
御手段と前記膨張弁制御手段とを制御する第2制御手段
とを備え、前記第2制御手段は、前記運転モード検出手
段により冷房モードを検出した時に、前記膨張弁制御手
段により前記膨張弁を全開にさせて前記圧縮機制御手段
により前記圧縮機の運転を開始させ、その後前記時間検
出手段により前記圧縮機の運転開始から所定時間経過し
たことを検知した時点での前記配管温検出手段により検
出した室内出口配管温度と室内入口配管温度との出入口
温度差に対して所定温度差を加算した結果を第2基準温
度差とし、その後の前記圧縮機の運転継続中における前
記配管温検出手段により検出した室内出口配管温度と室
内入口配管温度との出入口温度差から前記第2基準温度
差を減算した結果を検知過熱度として、前記検知過熱度
が第1所定過熱度以上になるまで前記膨張弁制御手段に
より前記膨張弁の開度を小さくしていき、前記検知過熱
度が前記第1所定過熱度以上になった時点での前記膨張
弁の開度より第1所定開度だけ大きい開度を求め、その
求められた開度をその後の前記膨張弁の開度にするよう
前記膨張弁制御手段を制御するものである。
[0030] The invention according to claim 2 provides an outdoor unit comprising a compressor, an outdoor heat exchanger, an outdoor blower and an expansion valve, and an indoor unit comprising a refrigerant diverter, an indoor heat exchanger and an indoor blower. And the compressor, the outdoor heat exchanger, the expansion valve, the refrigerant flow divider, the indoor heat exchanger, and the compressor are sequentially connected in a loop with a refrigerant pipe to circulate a refrigerant. In the cycle, an indoor inlet pipe temperature sensor installed on a refrigerant pipe between the expansion valve and the refrigerant flow divider, an indoor outlet pipe temperature sensor installed on an outlet collective pipe of the indoor heat exchanger, and the indoor inlet pipe A temperature sensor, a pipe temperature detecting means for converting an output from the indoor outlet pipe temperature sensor into a temperature signal, an operation mode detecting means for detecting an operation mode of the cooling cycle, and an operation start of the compressor. A time detecting means for outputting a signal when a predetermined time has elapsed, a compressor controlling means for operating / stopping the compressor, an expansion valve controlling means for controlling an opening degree of the expansion valve, and the pipe temperature detecting means. A second control unit that controls the compressor control unit and the expansion valve control unit based on signals from the operation mode detection unit and the time detection unit, wherein the second control unit When the cooling mode is detected by the mode detection means, the expansion valve is fully opened by the expansion valve control means, the operation of the compressor is started by the compressor control means, and then the operation of the compressor is started by the time detection means. A predetermined temperature difference is added to an entrance / exit temperature difference between the indoor outlet pipe temperature and the indoor inlet pipe temperature detected by the pipe temperature detecting means at the time when it is detected that a predetermined time has elapsed from the start of operation. The result is defined as a second reference temperature difference, and the second reference temperature difference is subtracted from an inlet / outlet temperature difference between the indoor outlet pipe temperature and the indoor inlet pipe temperature detected by the pipe temperature detecting means during the subsequent operation of the compressor. The obtained result is regarded as a detected degree of superheat, and the expansion valve control means decreases the degree of opening of the expansion valve until the detected degree of superheat becomes greater than or equal to a first predetermined degree of superheat. The expansion valve control means obtains an opening that is larger than the opening of the expansion valve by a first predetermined opening at the time when the expansion valve reaches a predetermined opening, and sets the obtained opening to a subsequent opening of the expansion valve. Is controlled.

【0031】上記構成により、冷媒分流器入口と室内熱
交換器出口との間の管内圧力損失に相当する冷媒の飽和
温度差に生じる差異を補正することが可能になる。即
ち、圧縮機起動所定時間経過後の飽和温度差と、その所
定時間経過以降に膨張弁開度を小さくした時点での飽和
温度差との間に生じる差異を、前記第2基準温度差に加
算することにより、室内熱交換器出口の検知過熱度を精
度良く検出することが可能となる。
According to the above configuration, it is possible to correct a difference in a saturation temperature difference of the refrigerant corresponding to a pipe pressure loss between the inlet of the refrigerant distributor and the outlet of the indoor heat exchanger. That is, the difference between the saturation temperature difference after the elapse of a predetermined time from the start of the compressor and the saturation temperature difference when the opening degree of the expansion valve is reduced after the elapse of the predetermined time is added to the second reference temperature difference. This makes it possible to accurately detect the degree of superheat detected at the outlet of the indoor heat exchanger.

【0032】また、請求項3に記載の発明は、圧縮機と
室外熱交換器と室外送風機と膨張弁とからなる室外ユニ
ットと、冷媒分流器と室内熱交換器と室内送風機とから
なる室内ユニットとから構成され、かつ前記圧縮機,前
記室外熱交換器,前記膨張弁,前記冷媒分流器,前記室
内熱交換器,前記圧縮機を順次冷媒配管にて環状に接続
して冷媒を循環させる冷房サイクルにおいて、前記膨張
弁と前記冷媒分流器との間の冷媒配管に設置した室内入
口配管温センサと、前記室内熱交換器の出口集合配管に
設置した室内出口配管温センサと、前記室内入口配管温
センサ、及び前記室内出口配管温センサからの出力を温
度信号に変換する配管温検出手段と、前記冷房サイクル
の運転モードを検出する運転モード検出手段と、前記圧
縮機の運転開始から所定時間経過した時に信号を出力す
る時間検出手段と、前記圧縮機の運転/停止を行う圧縮
機制御手段と、前記膨張弁の開度制御を行う膨張弁制御
手段と、前記配管温検出手段と前記運転モード検出手段
と前記時間検出手段とからの信号をもとに前記圧縮機制
御手段と前記膨張弁制御手段とを制御する第3制御手段
とを備え、前記第3制御手段は、前記運転モード検出手
段により冷房モードを検出した時に、前記膨張弁制御手
段により前記膨張弁を全開にさせて前記圧縮機制御手段
により前記圧縮機の運転を開始させ、その後前記時間検
出手段により前記圧縮機の運転開始から所定時間経過し
たことを検知した時点での前記配管温検出手段により検
出した室内出口配管温度と室内入口配管温度との出入口
温度差に対して所定温度差を加算した結果を第2基準温
度差とし、その後の前記圧縮機の運転継続中における前
記配管温検出手段により検出した室内出口配管温度と室
内入口配管温度との出入口温度差から前記第2基準温度
差を減算した結果を検知過熱度として、前記検知過熱度
が第1所定過熱度以上になるまで前記膨張弁制御手段に
より前記膨張弁の開度を小さくしていき、前記検知過熱
度が前記第1所定過熱度以上になった時点での前記膨張
弁の開度より第1所定開度だけ大きい開度を求め、その
求められた開度をその後の前記膨張弁の開度にするよう
前記膨張弁制御手段を制御し、その後、前記検知過熱度
が前記第1所定過熱度より小なる第2所定過熱度以上で
ある場合は前記膨張弁の開度を第2所定開度だけ大きく
設定するよう前記膨張弁制御手段を制御し、前記検知過
熱度が0より小さい場合は前記膨張弁の開度を前記第2
所定開度だけ小さく設定するよう前記膨張弁制御手段を
制御し、前記検知過熱度が0以上かつ前記第2所定過熱
度未満の場合は前記膨張弁の開度を維持するように前記
膨張弁制御手段を制御するものである。
The invention according to claim 3 provides an outdoor unit including a compressor, an outdoor heat exchanger, an outdoor blower, and an expansion valve, and an indoor unit including a refrigerant diverter, an indoor heat exchanger, and an indoor blower. And the compressor, the outdoor heat exchanger, the expansion valve, the refrigerant flow divider, the indoor heat exchanger, and the compressor are sequentially connected in a loop with a refrigerant pipe to circulate a refrigerant. In the cycle, an indoor inlet pipe temperature sensor installed on a refrigerant pipe between the expansion valve and the refrigerant flow divider, an indoor outlet pipe temperature sensor installed on an outlet collective pipe of the indoor heat exchanger, and the indoor inlet pipe A temperature sensor, a pipe temperature detecting means for converting an output from the indoor outlet pipe temperature sensor into a temperature signal, an operation mode detecting means for detecting an operation mode of the cooling cycle, and an operation start of the compressor. A time detecting means for outputting a signal when a predetermined time has elapsed, a compressor controlling means for operating / stopping the compressor, an expansion valve controlling means for controlling an opening degree of the expansion valve, and the pipe temperature detecting means. A third control unit for controlling the compressor control unit and the expansion valve control unit based on signals from the operation mode detection unit and the time detection unit, wherein the third control unit When the cooling mode is detected by the mode detection means, the expansion valve is fully opened by the expansion valve control means, the operation of the compressor is started by the compressor control means, and then the operation of the compressor is started by the time detection means. A predetermined temperature difference is added to an entrance / exit temperature difference between the indoor outlet pipe temperature and the indoor inlet pipe temperature detected by the pipe temperature detecting means at the time when it is detected that a predetermined time has elapsed from the start of operation. The result is defined as a second reference temperature difference, and the second reference temperature difference is subtracted from an inlet / outlet temperature difference between the indoor outlet pipe temperature and the indoor inlet pipe temperature detected by the pipe temperature detecting means during the subsequent operation of the compressor. The obtained result is regarded as a detected degree of superheat, and the expansion valve control means decreases the degree of opening of the expansion valve until the detected degree of superheat becomes greater than or equal to a first predetermined degree of superheat. The expansion valve control means obtains an opening that is larger than the opening of the expansion valve by a first predetermined opening at the time when the expansion valve reaches a predetermined opening, and sets the obtained opening to a subsequent opening of the expansion valve. And if the detected degree of superheat is greater than or equal to a second predetermined degree of superheat, which is smaller than the first degree of superheat, the expansion valve is set so as to increase the degree of opening of the expansion valve by a second predetermined degree of opening. Controlling the control means, and When the degree of heat is smaller than 0, the degree of opening of the expansion valve is set to the second degree.
The expansion valve control means is controlled to set the opening degree to be smaller by a predetermined opening degree, and the expansion valve control means is configured to maintain the opening degree of the expansion valve when the detected superheat degree is 0 or more and less than the second predetermined superheating degree. It controls the means.

【0033】上記構成により、室内の冷房負荷に応じて
変化する室内熱交換器出口の冷媒過熱度をほぼ0付近に
収めるように膨張弁の開度を制御できるために、冷房負
荷が変動した場合でも、熱交換器の保有している性能は
最大限に発揮され得るという、理想状態に近い制御を実
現可能となる。
With the above configuration, the opening degree of the expansion valve can be controlled so that the degree of superheat of the refrigerant at the outlet of the indoor heat exchanger, which varies according to the cooling load in the room, is kept close to zero. However, it is possible to realize a control close to an ideal state in which the performance possessed by the heat exchanger can be maximized.

【0034】また、請求項4に記載の発明は、圧縮機と
室外熱交換器と室外送風機と膨張弁とからなる室外ユニ
ットと、冷媒分流器と室内熱交換器と室内送風機とから
なる室内ユニットとから構成され、かつ前記圧縮機,前
記室外熱交換器,前記膨張弁,前記冷媒分流器,前記室
内熱交換器,前記圧縮機を順次冷媒配管にて環状に接続
して冷媒を循環させる冷房サイクルにおいて、前記膨張
弁と前記冷媒分流器との間の冷媒配管に設置した室内入
口配管温センサと、前記室内熱交換器の出口集合配管に
設置した室内出口配管温センサと、前記室内入口配管温
センサ、及び前記室内出口配管温センサからの出力を温
度信号に変換する配管温検出手段と、前記冷房サイクル
の運転モードを検出する運転モード検出手段と、前記圧
縮機の運転開始から所定時間経過した時に信号を出力す
る時間検出手段と、前記圧縮機の運転/停止を行う圧縮
機制御手段と、前記膨張弁の開度制御を行う膨張弁制御
手段と、前記配管温検出手段と前記運転モード検出手段
と前記時間検出手段とからの信号をもとに前記圧縮機制
御手段と前記膨張弁制御手段とを制御する第4制御手段
とを備え、前記第4制御手段は、前記運転モード検出手
段により冷房モードを検出した時に、前記膨張弁制御手
段により前記膨張弁を全開にさせて前記圧縮機制御手段
により前記圧縮機の運転を開始させ、その後前記時間検
出手段により前記圧縮機の運転開始から所定時間経過し
たことを検知した時点での前記配管温検出手段により検
出した室内出口配管温度と室内入口配管温度との出入口
温度差を第1基準温度差とし、その後の前記圧縮機の運
転継続中における前記配管温検出手段により検出した室
内出口配管温度と室内入口配管温度との出入口温度差か
ら前記第1基準温度差を減算した結果を検知過熱度とし
て、前記検知過熱度が第1所定過熱度以上になるまで前
記膨張弁制御手段により前記膨張弁の開度を小さくして
いき、前記検知過熱度が前記第1所定過熱度以上になっ
た時点での前記膨張弁の開度より第1所定開度だけ大き
い開度を求め、その求められた開度をその後の前記膨張
弁の開度にするよう前記膨張弁制御手段を制御し、その
後、前記運転モード検出手段にて冷房サイクルを検出中
であり、かつ前記圧縮機が運転状態から停止状態になっ
た後に再度、前記圧縮機の運転を開始する場合、前記膨
張弁の開度を前記圧縮機が停止状態になる直前における
前記膨張弁の開度に対して第3所定開度だけ大きく設定
するように前記膨張弁制御手段を制御させて前記圧縮機
の運転を再起動し、前記時間検出手段により前記圧縮機
の運転開始から所定時間経過したことを検知した時点で
の前記配管温検出手段により検出した室内入口配管温度
と室内出口配管温度との出入口温度差を第3基準温度差
とし、その後の前記圧縮機の運転継続中における前記配
管温検出手段により検出した室内出口配管温度と室内入
口配管温度との出入口温度差から前記第3基準温度差を
減算した結果を新たな検知過熱度とするものである。
[0034] The invention according to claim 4 provides an outdoor unit comprising a compressor, an outdoor heat exchanger, an outdoor blower and an expansion valve, and an indoor unit comprising a refrigerant diverter, an indoor heat exchanger and an indoor blower. And the compressor, the outdoor heat exchanger, the expansion valve, the refrigerant flow divider, the indoor heat exchanger, and the compressor are sequentially connected in a loop with a refrigerant pipe to circulate a refrigerant. In the cycle, an indoor inlet pipe temperature sensor installed on a refrigerant pipe between the expansion valve and the refrigerant flow divider, an indoor outlet pipe temperature sensor installed on an outlet collective pipe of the indoor heat exchanger, and the indoor inlet pipe A temperature sensor, a pipe temperature detecting means for converting an output from the indoor outlet pipe temperature sensor into a temperature signal, an operation mode detecting means for detecting an operation mode of the cooling cycle, and an operation start of the compressor. A time detecting means for outputting a signal when a predetermined time has elapsed, a compressor controlling means for operating / stopping the compressor, an expansion valve controlling means for controlling an opening degree of the expansion valve, and the pipe temperature detecting means. A fourth control unit for controlling the compressor control unit and the expansion valve control unit based on signals from the operation mode detection unit and the time detection unit, wherein the fourth control unit When the cooling mode is detected by the mode detection means, the expansion valve is fully opened by the expansion valve control means, the operation of the compressor is started by the compressor control means, and then the operation of the compressor is started by the time detection means. An inlet / outlet temperature difference between the indoor outlet pipe temperature and the indoor inlet pipe temperature detected by the pipe temperature detecting means at the time when it is detected that a predetermined time has elapsed from the start of operation is defined as a first reference temperature difference. The result obtained by subtracting the first reference temperature difference from the inlet / outlet temperature difference between the indoor outlet pipe temperature and the indoor inlet pipe temperature detected by the pipe temperature detecting means during the operation of the compressor is regarded as the detection superheat degree, The degree of opening of the expansion valve is reduced by the expansion valve control means until the degree of superheat is equal to or greater than a first predetermined degree of superheat, and the expansion at the time when the detected degree of superheat is equal to or greater than the first predetermined degree of superheat. An opening degree larger than the opening degree of the valve by a first predetermined opening degree is obtained, and the expansion valve control means is controlled so that the obtained opening degree becomes a subsequent opening degree of the expansion valve. When the compressor is started again after the cooling cycle is detected by the means and the compressor is changed from the operating state to the stopped state, the opening degree of the expansion valve is set to the stopped state. Just before The operation of the compressor is restarted by controlling the expansion valve control means so as to increase the opening degree of the expansion valve by a third predetermined opening degree, and the operation of the compressor is started by the time detection means. And a third reference temperature difference between the indoor inlet pipe temperature and the indoor outlet pipe temperature detected by the pipe temperature detecting means at the point in time when it is detected that a predetermined time has elapsed since the start of the operation of the compressor. The result obtained by subtracting the third reference temperature difference from the inlet / outlet temperature difference between the indoor outlet pipe temperature and the indoor inlet pipe temperature detected by the pipe temperature detecting means inside is a new detected superheat degree.

【0035】上記構成により、室内の冷房負荷が変化す
ることにより、冷房サイクル内を循環する冷媒の循環量
が変動することによる前記第3基準温度差の変化に対応
することが可能となる。
According to the above configuration, it is possible to cope with a change in the third reference temperature difference due to a change in the amount of refrigerant circulating in the cooling cycle due to a change in the indoor cooling load.

【0036】即ち、圧縮機が運転状態から停止状態にな
った後、再度、圧縮機の運転を開始する場合には、圧縮
機が停止する直前の膨張弁の開度に対して第3所定開度
だけ大きく設定して、圧縮機を再起動し、配管温検出手
段により検出した室内入口配管温度と室内出口配管温度
との出入口温度差である第3基準温度差を更新すること
により、室内の冷房負荷変動に対応した運転制御が可能
になる。
That is, when the compressor is restarted after the compressor has been changed from the operating state to the stopped state, the third predetermined opening is required for the opening degree of the expansion valve immediately before the compressor is stopped. Degree, the compressor is restarted, and the third reference temperature difference, which is the difference between the inlet / outlet temperature of the indoor inlet pipe temperature and the indoor outlet pipe temperature detected by the pipe temperature detecting means, is updated. The operation control corresponding to the cooling load fluctuation becomes possible.

【0037】[0037]

【実施例】以下、本発明によるヒートポンプ式空気調和
機の実施例について図面を参照しながら説明する。尚、
従来と同一構成については同一符号を付し、その詳細な
説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a heat pump type air conditioner according to the present invention will be described below with reference to the drawings. still,
The same components as those in the related art are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0038】(実施例1)図1は、本発明の実施例1に
よるヒートポンプ式空気調和機の冷房運転時の冷凍サイ
クル図及びブロック図を示している。図1中、黒抜き矢
印は通常の冷房運転時の冷媒の流動方向を示す。
(Embodiment 1) FIG. 1 shows a refrigeration cycle diagram and a block diagram during a cooling operation of a heat pump type air conditioner according to Embodiment 1 of the present invention. In FIG. 1, a black arrow indicates the flow direction of the refrigerant during a normal cooling operation.

【0039】本実施例のヒートポンプ式空気調和機は、
室外ユニットAと、室内ユニットBとから構成されてい
る。
The heat pump type air conditioner of the present embodiment
It comprises an outdoor unit A and an indoor unit B.

【0040】室外ユニットAは、圧縮機1、室外送風機
4を備えた室外熱交換器3、パルス式電動膨張弁EVと
からなり、室内ユニットBは、冷媒分流器5と、室内熱
交換器7と、室内送風機8とから構成されており、圧縮
機1,室外熱交換器3,パルス式電動膨張弁EV,冷媒
分流器5,室内熱交換器7,圧縮機1を順次冷媒配管に
て環状に接続して冷媒を循環させる冷房サイクルを形成
している。
The outdoor unit A comprises an outdoor heat exchanger 3 equipped with a compressor 1, an outdoor blower 4, and a pulse-type electric expansion valve EV. The indoor unit B has a refrigerant flow divider 5 and an indoor heat exchanger 7 And an indoor blower 8. The compressor 1, the outdoor heat exchanger 3, the pulse-type electric expansion valve EV, the refrigerant diverter 5, the indoor heat exchanger 7, and the compressor 1 are sequentially annularly connected by refrigerant piping. To form a cooling cycle for circulating the refrigerant.

【0041】そして、パルス式電動膨張弁EVと冷媒分
流器5との間の冷媒配管に室内入口配管温センサTh1
と、室内熱交換器7の出口集合配管に室内出口配管温セ
ンサTh2を配置し、室内入口配管温センサTh1、及
び室内出口配管温センサTh2からの出力を配管温検出
手段Tsensにより温度信号に変換することができ
る。
A refrigerant pipe between the pulse-type electric expansion valve EV and the refrigerant flow divider 5 is provided with an indoor inlet pipe temperature sensor Th1.
And an indoor outlet pipe temperature sensor Th2 disposed in the outlet collecting pipe of the indoor heat exchanger 7, and outputs from the indoor inlet pipe temperature sensor Th1 and the indoor outlet pipe temperature sensor Th2 are converted into temperature signals by the pipe temperature detecting means Tsens. can do.

【0042】また、所定経過時間に達した時に信号を出
力する時間検出手段TMと、圧縮機1の運転/停止を行
う圧縮機制御手段CMcntと、パルス式電動膨張弁E
Vの開度制御を行う膨張弁制御手段EVcntと、冷房
サイクルの運転モードを検出する運転モード手段Mod
eとを備えている。
Further, a time detecting means TM for outputting a signal when a predetermined elapsed time has been reached, a compressor control means CMcnt for operating / stopping the compressor 1, and a pulse type electric expansion valve E
Expansion valve control means EVcnt for controlling the opening degree of V, and operation mode means Mod for detecting the operation mode of the cooling cycle
e.

【0043】そして、第1制御手段Cnt1は運転モー
ド手段Modeより冷房モードを検出し、パルス式電動
膨張弁EVを全開pls0相当の100%に設定する膨
張弁全開開度比設定手段51と、時間検出手段TMより
経過時間τが所定時間Δτに達した時の出力信号を検出
した場合に第1基準温度差Δto1を算出する基準温度
差Δto1算出手段52と、基準温度差Δto1算出手
段52、及び配管温検出手段Tsensより検知過熱度
SHを算出する検知過熱度SH算出手段53と、第1所
定過熱度SH1を記憶する所定過熱度SH1記憶手段5
4と、検知過熱度SHと第1所定過熱度SH1との大小
関係を比較する過熱度比較手段55と、膨張弁下限開度
pls1相当の開度比設定を行う膨張弁下限開度比設定
手段56と、最適な膨張弁開度比を設定する膨張弁開度
比設定手段57からなり、圧縮機1の運転中にパルス式
電動膨張弁EVの開度を最適に制御するべく、圧縮機制
御手段CMcnt、及び膨張弁制御手段EVcntを動
作させるものである。
Then, the first control means Cnt1 detects the cooling mode from the operation mode means Mode, and sets the expansion valve full opening degree ratio setting means 51 for setting the pulse type electric expansion valve EV to 100% corresponding to the full opening pls0; A reference temperature difference Δto1 calculation means 52 for calculating a first reference temperature difference Δto1 when an output signal when the elapsed time τ reaches a predetermined time Δτ is detected by the detection means TM; a reference temperature difference Δto1 calculation means 52; Detected superheat degree SH calculating means 53 for calculating detected superheat degree SH from pipe temperature detecting means Tsens, and predetermined superheat degree SH1 storage means 5 for storing first predetermined superheat degree SH1
4, a superheat degree comparing means 55 for comparing the magnitude relation between the detected superheat degree SH and the first predetermined superheat degree SH1, and an expansion valve lower limit opening ratio setting means for setting an opening degree equivalent to the expansion valve lower limit opening pls1. 56 and expansion valve opening ratio setting means 57 for setting an optimum expansion valve opening ratio. The compressor control is performed to optimally control the opening of the pulse type electric expansion valve EV during operation of the compressor 1. It operates the means CMcnt and the expansion valve control means EVcnt.

【0044】以上のように構成されたヒートポンプ式空
気調和機について、以下その動作を図2、及び図3を用
いて説明する。まず、図2にて一般的な蒸気圧縮式ヒー
トポンプの冷凍サイクルの特性について説明する。図2
はある一般的なヒートポンプ式空気調和機を用いて筆者
らが行った実験結果のうち、冷房運転時の室内出口配管
温度t2と室内入口配管温度t1との出入口温度差Δ
t、室内熱交換器出口過熱度(=出口冷媒温度−出口冷
媒圧力の飽和温度)、及び冷房能力比のパルス式電動膨
張弁EVの開度比に対する特性を示すグラフである。
The operation of the heat pump type air conditioner configured as described above will be described below with reference to FIGS. 2 and 3. First, the characteristics of a refrigeration cycle of a general vapor compression heat pump will be described with reference to FIG. FIG.
Among the results of experiments performed by the present inventors using a general heat pump type air conditioner, the difference between the inlet / outlet temperature t2 between the indoor outlet pipe temperature t2 and the indoor inlet pipe temperature t1 during the cooling operation Δ
It is a graph which shows the characteristic with respect to the opening degree ratio of the pulse-type electric expansion valve EV of t, the indoor heat exchanger outlet superheat degree (= outlet refrigerant temperature-outlet refrigerant pressure saturation temperature), and the cooling capacity ratio.

【0045】一般的な冷凍サイクルの設計では、運転範
囲拡大のためパルス式電動膨張弁EVは最適な冷媒循環
量が得られる開度に対して、裕度を考慮して最適循環量
に対して大きい冷媒循環量が得られる開度まで設定可能
である。
In the design of a general refrigeration cycle, in order to expand the operation range, the pulse-type electric expansion valve EV is controlled to the opening amount at which the optimum refrigerant circulation amount is obtained, and to the optimum circulation amount considering the allowance. The opening can be set up to a large refrigerant circulation amount.

【0046】従って、パルス式電動膨張弁EVが全開、
或いは比較的大きな開度の条件では、冷凍サイクル内の
冷媒循環量としてはほぼ最大で運転されるため、凝縮器
として機能する室外熱交換器出口での冷媒過冷却度や蒸
発器として機能する室内熱交換器出口での過熱度を確保
できず、冷媒分流器5入口と室内熱交換器7出口は共に
二相冷媒状態となる。
Therefore, the pulse type electric expansion valve EV is fully opened,
Alternatively, under the condition of a relatively large opening, the refrigerant circulating amount in the refrigeration cycle is operated at almost the maximum, so the degree of subcooling of the refrigerant at the outlet of the outdoor heat exchanger functioning as a condenser or the indoor functioning as an evaporator The degree of superheat at the outlet of the heat exchanger cannot be secured, and both the inlet of the refrigerant distributor 5 and the outlet of the indoor heat exchanger 7 are in a two-phase refrigerant state.

【0047】即ち、冷媒分流器5入口配管温度t1、及
び室内熱交換器7出口配管温度t2は各々の冷媒圧力に
対する冷媒飽和温度を示すことになる。
That is, the inlet pipe temperature t1 of the refrigerant distributor 5 and the outlet pipe temperature t2 of the indoor heat exchanger 7 indicate the refrigerant saturation temperature for each refrigerant pressure.

【0048】この時、パルス式電動膨張弁EVは全開で
運転されるので、冷凍サイクル内の冷媒循環量としては
ほぼ最大で、しかも冷媒分流器5入口と室内熱交換器7
出口は共に二相冷媒状態であるため、冷媒分流器5入口
配管温度t1、及び室内熱交換器7出口配管温度t2は
各々の冷媒圧力に対する冷媒飽和温度を示す。従って、
この時の冷媒分流器5入口と室内熱交換器7出口との間
の冷媒飽和温度差(t1−t2=−Δt)は管内圧力損
失に相当することになる。
At this time, since the pulse type electric expansion valve EV is operated in the fully opened state, the amount of circulating refrigerant in the refrigeration cycle is almost maximum, and the inlet of the refrigerant distributor 5 and the indoor heat exchanger 7
Since both outlets are in a two-phase refrigerant state, the inlet pipe temperature t1 of the refrigerant distributor 5 and the outlet pipe temperature t2 of the indoor heat exchanger 7 indicate the refrigerant saturation temperature for each refrigerant pressure. Therefore,
At this time, the refrigerant saturation temperature difference (t1−t2 = −Δt) between the inlet of the refrigerant distributor 5 and the outlet of the indoor heat exchanger 7 corresponds to the pressure loss in the pipe.

【0049】そして、この状態は冷凍サイクルを構成す
る圧縮機の循環量に対して凝縮器である室外熱交換器の
能力、及び蒸発器である室内熱交換器の能力が、適正に
バランスするまでほぼ維持される。
This state is maintained until the capacity of the outdoor heat exchanger as the condenser and the capacity of the indoor heat exchanger as the evaporator are properly balanced with respect to the circulation amount of the compressor constituting the refrigeration cycle. Almost maintained.

【0050】従って、図2に示すように、配管温検出手
段Tsensにより検出した室内出口配管温度t2と室
内入口配管温度t1との出入口温度差Δtは、パルス式
電動膨張弁EVの開度比が全開相当から小さくなるに従
って、殆ど変化のない一定状態から次第に上昇していく
傾向になり、ある開度比より小さくしていくと、急激に
上昇する特性を示す。
Therefore, as shown in FIG. 2, the temperature difference Δt between the indoor outlet pipe temperature t2 and the indoor inlet pipe temperature t1 detected by the pipe temperature detecting means Tsens depends on the opening ratio of the pulse type electric expansion valve EV. As it becomes smaller from the fully opened state, it tends to gradually increase from a constant state where there is almost no change, and shows a characteristic of rapidly increasing as the opening degree ratio becomes smaller.

【0051】一方、室内熱交換器出口過熱度SHは、図
2に示すように、パルス式電動膨張弁EVの開度比が大
きい場合においては殆ど変化することなく、ほぼ一定
(SH=0)で推移し、ある開度比より小さくしていく
と、急激に上昇する特性を示す。
On the other hand, as shown in FIG. 2, the degree of superheat SH at the outlet of the indoor heat exchanger hardly changes when the opening ratio of the pulse type electric expansion valve EV is large, and is almost constant (SH = 0). , And shows a characteristic that when the opening ratio is made smaller than a certain opening ratio, it sharply rises.

【0052】同時に、冷房能力Qについては、図2に示
すように、室内熱交換器出口過熱度SHが確保されて急
激に上昇するパルス式電動膨張弁EVの開度比よりやや
大きめの開度比において、蒸発器である室内熱交換器7
の出口において冷媒はほぼ飽和蒸気状態(SH=0)と
なって蒸発性能(冷房能力比)が最大となり、即ち冷媒
循環量と室内熱交換器の性能がほぼ最適なバランスする
状態になり、最大値となる特性を示す。
At the same time, as for the cooling capacity Q, as shown in FIG. 2, the opening degree slightly larger than the opening degree ratio of the pulse-type electric expansion valve EV which ensures the superheat degree SH at the outlet of the indoor heat exchanger and rises sharply. In the ratio, the indoor heat exchanger 7 which is an evaporator
At the outlet of the refrigerant, the refrigerant becomes almost saturated vapor state (SH = 0), and the evaporation performance (cooling capacity ratio) becomes the maximum, that is, the refrigerant circulation amount and the performance of the indoor heat exchanger are almost in an optimally balanced state. This shows the characteristic that is a value.

【0053】次に、上記特性を鑑みた本実施例の冷房運
転時の制御内容について図3のフローチャートに示す。
Next, the flowchart of FIG. 3 shows the contents of the control during the cooling operation of the present embodiment in consideration of the above characteristics.

【0054】まず、step1にて運転モード検出手段
Modeにより冷房運転モードが設定されたことを検出
され、step2にて運転モード検出手段Modeから
膨張弁全開開度比設定手段51へ圧縮機起動信号が出力
され、パルス式電動膨張弁EVの開度比を全開pls0
相当の100%に設定され、step3にて圧縮機制御
手段CMcntへ圧縮機起動信号が出力され、圧縮機1
を起動する。
First, in step 1, the operation mode detecting means Mode detects that the cooling operation mode has been set, and in step 2, a compressor start signal is sent from the operation mode detecting means Mode to the expansion valve full opening ratio setting means 51. Output, the opening ratio of the pulse type electric expansion valve EV is fully opened pls0.
In step 3, a compressor start signal is output to the compressor control means CMcnt, and the
Start

【0055】その後、step4にて圧縮機1起動後の
経過時間τを時間検出手段TMにより検出し、step
5にて圧縮機1起動後の経過時間τが所定時間Δτに達
しているかを時間検出手段TMにより比較し、経過時間
τ<所定時間Δτである場合はstep4へ戻るルーチ
ンを繰り返し、経過時間τ≧所定時間Δτである場合は
step6へ進む。
Thereafter, the elapsed time τ after the start of the compressor 1 is detected by the time detecting means TM in step 4, and
At 5, the time detecting means TM compares whether the elapsed time τ after the start of the compressor 1 has reached the predetermined time Δτ, and if the elapsed time τ <the predetermined time Δτ, repeats the routine returning to step 4. If ≧ predetermined time Δτ, the process proceeds to step 6.

【0056】step6では、配管温検出手段Tsen
sから配管温検出手段Tsensから基準温度差Δto
1検出手段52へ室内入口配管温度t1、及び室内出口
配管温度t2の信号が出力され、基準温度差Δto1検
出手段52にて温度信号に変換され、この時点での出入
口温度差Δt(=t2−t1)を第1基準温度差Δto
1として算出する。
In step 6, the pipe temperature detecting means Tsen
s to pipe temperature detection means Tsens to reference temperature difference Δto
The signals of the indoor inlet pipe temperature t1 and the indoor outlet pipe temperature t2 are output to the first detecting means 52, converted into temperature signals by the reference temperature difference Δto1 detecting means 52, and the inlet / outlet temperature difference Δt (= t2- t1) is the first reference temperature difference Δto
Calculated as 1.

【0057】次に、step7にて検知過熱度SH算出
手段53により、配管温検出手段Tsensにより検出
した室内出口配管温度t1と室内入口配管温度t2との
出入口温度差Δt(=t2−t1)に、冷媒分流器5入
口と室内熱交換器7出口との間の管内圧力損失の負数に
相当する第1基準温度差Δto1を考慮する、即ち、第
1基準温度差Δto1を減算(Δt−Δto1)して、
冷媒分流器5入口と室内熱交換器7出口との間の管内圧
力損失の影響を差し引いた検知過熱度SHを算出する。
Next, in step 7, the detected superheat degree SH calculating means 53 calculates the difference Δt (= t2−t1) between the inlet and outlet pipe temperature t1 and the indoor inlet pipe temperature t2 detected by the pipe temperature detecting means Tsens. Considering the first reference temperature difference Δto1 corresponding to the negative number of the pressure loss in the pipe between the inlet of the refrigerant flow divider 5 and the outlet of the indoor heat exchanger 7, that is, subtracting the first reference temperature difference Δto1 (Δt−Δto1) do it,
The detected superheat degree SH is calculated by subtracting the influence of the pressure loss in the pipe between the inlet of the refrigerant distributor 5 and the outlet of the indoor heat exchanger 7.

【0058】前記検知過熱度SHのパルス式電動膨張弁
EVの開度比に対する特性は図4のグラフに示すよう
に、室内熱交換器出口の冷媒過熱度の特性と同傾向を示
す。
The characteristics of the detected superheat SH with respect to the opening ratio of the pulse type electric expansion valve EV show the same tendency as the characteristics of the refrigerant superheat at the outlet of the indoor heat exchanger as shown in the graph of FIG.

【0059】従って、step8にて過熱度比較手段5
5により、検知過熱度SHと、所定過熱度SH1記憶手
段54に記憶されている第1所定過熱度SH1との大小
関係を比較し、検知過熱度SHが第1所定過熱度SH1
より小さい(SH<SH1)場合は、step9にてパ
ルス式電動膨張弁EVの開度比を、更に所定開度相当だ
け小さくした後、step7へ戻り、再度検知過熱度S
Hを算出する。
Therefore, in step 8, the superheat degree comparing means 5
5, the magnitude of the detected superheat SH is compared with the first predetermined superheat SH1 stored in the predetermined superheat SH1 storage means 54, and the detected superheat SH is determined to be the first predetermined superheat SH1.
If it is smaller (SH <SH1), the opening degree ratio of the pulse-type electric expansion valve EV is further reduced by a predetermined opening degree in step 9, and then the process returns to step 7, and the detected superheat degree S again.
Calculate H.

【0060】step8で、検知過熱度SHが第1所定
過熱度SH1以上に大きい(SH≧SH1)状態になっ
た場合はstep10へ進む。
In step 8, when the detected superheat degree SH is larger than the first predetermined superheat degree SH1 (SH ≧ SH1), the process proceeds to step 10.

【0061】更に、step10にて膨張弁下限開度比
設定手段56により、検知過熱度SHが第1所定過熱度
SH1以上になった時点でのパルス式電動膨張弁EVの
開度比を下限開度pls1相当とし、更に、step1
1にて膨張弁開度比設定手段57により、パルス式電動
膨張弁EVの設定開度比を下限開度pls1相当に対し
て第1所定開度Δpls1相当だけ逆に加算(pls1
+Δpls1)した開度pls2相当の開度比に設定
し、圧縮機1の運転を継続していく。
Further, in step 10, the expansion valve lower limit opening ratio setting means 56 lowers the opening ratio of the pulse type electric expansion valve EV when the detected superheat SH becomes equal to or higher than the first predetermined superheat SH1. Degree pls1 and step1
In step 1, the expansion valve opening ratio setting means 57 adds the set opening ratio of the pulse-type electric expansion valve EV inversely to the lower opening pls1 by the first predetermined opening Δpls1 (pls1).
+ Δpls1) The opening degree is set to an opening degree equivalent to the opening degree pls2, and the operation of the compressor 1 is continued.

【0062】従って、その後に室内の冷房負荷が大きく
変動しない限り、室内熱交換器7出口の冷媒過熱度が過
大に確保されることがなく、飽和蒸気状態、即ち、ほぼ
過熱度=0の状態で運転が継続されることになる。
Therefore, as long as the indoor cooling load does not fluctuate significantly thereafter, the refrigerant superheat degree at the outlet of the indoor heat exchanger 7 is not excessively secured, and the refrigerant is in a saturated steam state, that is, a state where the superheat degree is almost zero. The operation will be continued.

【0063】以上のように本実施例のヒートポンプ式空
気調和機は、運転モード手段Modeにより冷房モード
を検出し、時間検出手段TMからの時間信号、及び配管
温検出手段Tsensにより検出した室内入口配管温度
t1と室内出口配管温度t2との温度信号を取り込み、
圧縮機1の運転中にパルス式電動膨張弁EVの開度比を
最適に制御するべく、圧縮機制御手段CMcnt、及び
膨張弁制御手段EVcntを制御させる第1制御手段C
nt1を備えているため、以下の効果が発揮される。
As described above, in the heat pump type air conditioner of the present embodiment, the cooling mode is detected by the operation mode means Mode, the time signal from the time detecting means TM, and the indoor inlet pipe detected by the pipe temperature detecting means Tsens. The temperature signals of the temperature t1 and the indoor outlet pipe temperature t2 are taken in,
First control means C for controlling the compressor control means CMcnt and the expansion valve control means EVcnt so as to optimally control the opening ratio of the pulse type electric expansion valve EV during the operation of the compressor 1.
Because of the provision of nt1, the following effects are exhibited.

【0064】まず、圧縮機1起動後の所定時間Δτ内で
は、パルス式電動膨張弁EVが全開で運転されるので、
冷凍サイクル内の冷媒循環量としてはほぼ最大で、しか
も冷媒分流器5入口と室内熱交換器7出口は共に二相冷
媒状態であるため、冷媒分流器5入口配管温度、及び室
内熱交換器7出口配管温度は各々の冷媒能力に対する冷
媒飽和温度を示す。
First, within a predetermined time Δτ after the start of the compressor 1, the pulse-type electric expansion valve EV is operated with the valve fully opened.
Since the refrigerant circulation amount in the refrigeration cycle is almost maximum, and the inlet of the refrigerant distributor 5 and the outlet of the indoor heat exchanger 7 are both in a two-phase refrigerant state, the pipe temperature of the inlet of the refrigerant distributor 5 and the indoor heat exchanger 7 The outlet pipe temperature indicates the refrigerant saturation temperature for each refrigerant capacity.

【0065】従って、冷媒分流器5入口と室内熱交換器
7出口との間の冷媒飽和温度差は管内圧力損失に相当
し、その負数を第1基準温度差Δto1として検出し、
所定時間Δτ経過後における室内出口配管温度t2と室
内入口配管温度t1との出入口温度差Δtから第1基準
温度差Δto1を減算することによって、冷媒分流器5
入口と室内熱交換器7出口との間の管内圧力損失の影響
を差し引いた室内熱交換器7出口の正味の過熱度SHを
温度差のみから検知できる。
Accordingly, the refrigerant saturation temperature difference between the inlet of the refrigerant flow divider 5 and the outlet of the indoor heat exchanger 7 corresponds to the pressure loss in the pipe, and its negative number is detected as the first reference temperature difference Δto1,
By subtracting the first reference temperature difference Δto1 from the inlet / outlet temperature difference Δt between the indoor outlet pipe temperature t2 and the indoor inlet pipe temperature t1 after the lapse of the predetermined time Δτ, the refrigerant flow divider 5
The net superheat degree SH at the outlet of the indoor heat exchanger 7 excluding the influence of the pressure loss in the pipe between the inlet and the outlet of the indoor heat exchanger 7 can be detected only from the temperature difference.

【0066】更に、この検知過熱度SHの特性を用いる
ことにより、蒸発器として機能する室内熱交換器7出口
の冷媒過熱度が過大に確保されることがなく、飽和蒸気
状態、即ち、ほぼ過熱度=0の状態に近づけることが可
能となるため、熱交換器の保有している性能はほぼ最大
限に発揮され得るという、理想状態に近い制御を実現可
能となる。
Further, by using the characteristics of the detected superheat degree SH, the refrigerant superheat degree at the outlet of the indoor heat exchanger 7 functioning as an evaporator is not excessively secured, and the saturated steam state, that is, almost Since it is possible to approach the state of degree = 0, it is possible to realize control close to an ideal state, in which the performance possessed by the heat exchanger can be exhibited almost to the maximum.

【0067】(実施例2)次に、本発明の実施例2につ
いて図面を参照しながら説明するが、実施例1と同一構
成部分については同一符号を付して詳細な説明を省略す
る。
(Embodiment 2) Next, Embodiment 2 of the present invention will be described with reference to the drawings. The same components as in Embodiment 1 will be assigned the same reference numerals and detailed description thereof will be omitted.

【0068】図5は、本発明の実施例2によるヒートポ
ンプ式空気調和機の冷房運転時の冷凍サイクル図及びブ
ロック図を示している。図5中、黒抜き矢印は通常の冷
房運転時の冷媒の流動方向を示す。本実施例のヒートポ
ンプ式空気調和機は、実施例1と同様に室外ユニットA
と、室内ユニットBとから構成されている。但し、本実
施例では実施例1の第1制御手段Cnt1に替わって、
第2制御手段Cnt2を備えている。
FIG. 5 shows a refrigeration cycle diagram and a block diagram during the cooling operation of the heat pump type air conditioner according to the second embodiment of the present invention. In FIG. 5, black arrows indicate the flow direction of the refrigerant during normal cooling operation. The heat pump air conditioner of the present embodiment has an outdoor unit A similar to the first embodiment.
And an indoor unit B. However, in the present embodiment, instead of the first control means Cnt1 of the first embodiment,
A second control unit Cnt2 is provided.

【0069】第2制御手段Cnt2は運転モード手段M
odeより冷房モードを検出し、パルス式電動膨張弁E
Vを全開pls0相当の100%に設定する膨張弁全開
開度比設定手段51と、時間検出手段TMより経過時間
τが所定時間Δτに達した時の出力信号を検出した場合
に第2基準温度差Δto2を算出する基準温度差Δto
2算出手段62と、基準温度差Δto2算出手段62、
及び配管温検出手段Tsensより検知過熱度SHを算
出する検知過熱度SH算出手段53と、第1所定過熱度
SH1を記憶する所定過熱度SH1記憶手段54と、検
知過熱度SHと第1所定過熱度SH1との大小関係を比
較する過熱度比較手段55と、膨張弁下限開度pls1
相当の開度比設定を行う膨張弁下限開度比設定手段56
と、最適な膨張弁開度比を設定する膨張弁開度比設定手
段57からなる。
The second control means Cnt2 is the operation mode means M
mode, the cooling mode is detected, and the pulse type electric expansion valve E is detected.
The second reference temperature is set when an output signal when the elapsed time τ reaches the predetermined time Δτ is detected from the expansion valve full opening degree ratio setting means 51 for setting V to 100% corresponding to the full opening pls0 and the time detecting means TM. Reference temperature difference Δto for calculating difference Δto2
2 calculating means 62 and reference temperature difference Δto2 calculating means 62,
And a detected superheat degree SH calculating means 53 for calculating the detected superheat degree SH from the pipe temperature detecting means Tsens, a predetermined superheat degree SH1 storage means 54 for storing the first predetermined superheat degree SH1, a detected superheat degree SH and a first predetermined superheat. A superheat degree comparing means 55 for comparing a magnitude relationship with the degree SH1, and an expansion valve lower limit opening degree pls1.
Expansion valve lower limit opening ratio setting means 56 for setting a considerable opening ratio
And an expansion valve opening ratio setting means 57 for setting an optimum expansion valve opening ratio.

【0070】そして第2制御手段Cnt2は、運転モー
ド手段Modeにより冷房モードを検出し、パルス式電
動膨張弁EVを全開として圧縮機1を運転開始し、時間
検出手段TMにより経過時間τが所定時間Δτに達した
ことを検知した時に、配管温検出手段Tsensにより
検出した室内入口配管温度t1と室内出口配管温度t2
との出入口温度差Δtに対して所定温度差θを加算した
結果を第2基準温度差Δto2として、その後の圧縮機
1の運転継続中における配管温検出手段Tsensによ
り検出した室内出口配管温度t1と室内入口配管温度t
2との出入口温度差Δt(=t2−t1)から第2基準
温度差Δto2を減算した結果を検知過熱度SHとし、
検知過熱度SHが第1所定過熱度SH1以上になるまで
パルス式電動膨張弁EVの開度比を小さくしていき、検
知過熱度SHが第1所定過熱度SH1以上になった時点
でのパルス式電動膨張弁EVの開度比に対して第1所定
開度Δpls1相当だけ逆に大きく設定するものであ
る。
The second control means Cnt2 detects the cooling mode by the operation mode means Mode, starts the compressor 1 by fully opening the pulse type electric expansion valve EV, and sets the elapsed time τ to the predetermined time by the time detection means TM. When it is detected that Δτ has been reached, the indoor inlet pipe temperature t1 and the indoor outlet pipe temperature t2 detected by the pipe temperature detecting means Tsens.
The result obtained by adding the predetermined temperature difference θ to the inlet / outlet temperature difference Δt as the second reference temperature difference Δto2, and the indoor / outlet pipe temperature t1 detected by the pipe temperature detecting means Tsens during the subsequent continuation of the operation of the compressor 1. Indoor inlet pipe temperature t
The result obtained by subtracting the second reference temperature difference Δto2 from the entrance / exit temperature difference Δt (= t2−t1) from the second reference temperature is defined as a detected superheat degree SH,
The opening ratio of the pulse-type electric expansion valve EV is reduced until the detected superheat SH becomes equal to or more than the first predetermined superheat SH1, and the pulse when the detected superheat SH becomes equal to or more than the first predetermined superheat SH1. In contrast, the opening ratio is set to be larger than the opening ratio of the electric expansion valve EV by the amount corresponding to the first predetermined opening Δpls1.

【0071】以上のように構成されたヒートポンプ式空
気調和機について、以下その動作を図6、及び図7を用
いて説明する。まず、図6にて一般的な蒸気圧縮式ヒー
トポンプの冷凍サイクルの特性について説明する。図6
は冷房運転時の室内出口配管温度t2と室内入口配管温
度t1との出入口温度差Δt、室内熱交換器出口過熱度
SH、及び冷房能力比のパルス式電動膨張弁EVの開度
比に対する特性を示すグラフである。
The operation of the heat pump type air conditioner configured as described above will be described below with reference to FIGS. 6 and 7. First, the characteristics of the refrigeration cycle of a general vapor compression heat pump will be described with reference to FIG. FIG.
The characteristics of the inlet-outlet temperature difference Δt between the indoor outlet pipe temperature t2 and the indoor inlet pipe temperature t1 during the cooling operation, the indoor heat exchanger outlet superheat degree SH, and the cooling capacity ratio with respect to the opening degree ratio of the pulsed electric expansion valve EV are shown. It is a graph shown.

【0072】一般的な冷凍サイクルの設計では、運転範
囲拡大のためパルス式電動膨張弁EVは最適な冷媒循環
量が得られる開度に対して、裕度を考慮して最適循環量
に対して大きい冷媒循環量が得られる開度まで設定可能
である。
In the design of a general refrigeration cycle, in order to expand the operating range, the pulse-type motor-operated expansion valve EV needs to have an optimal refrigerant circulation amount with respect to the opening degree at which the optimal refrigerant circulation amount can be obtained. The opening can be set up to a large refrigerant circulation amount.

【0073】従って、パルス式電動膨張弁EVが全開、
或いは比較的大きな開度の条件では、冷凍サイクル内の
冷媒循環量としてはほぼ最大で運転されるため、凝縮器
として機能する室外熱交換器出口での冷媒過冷却度や蒸
発器として機能する室内熱交換器出口での過熱度を確保
できず、冷媒分流器5入口と室内熱交換器7出口は共に
二相冷媒状態となる。
Therefore, the pulse type electric expansion valve EV is fully opened,
Alternatively, under the condition of a relatively large opening, the refrigerant circulating amount in the refrigeration cycle is operated at almost the maximum, so the degree of subcooling of the refrigerant at the outlet of the outdoor heat exchanger functioning as a condenser or the indoor functioning as an evaporator The degree of superheat at the outlet of the heat exchanger cannot be secured, and both the inlet of the refrigerant distributor 5 and the outlet of the indoor heat exchanger 7 are in a two-phase refrigerant state.

【0074】即ち、冷媒分流器5入口配管温度t1、及
び室内熱交換器7出口配管温度t2は各々の冷媒圧力に
対する冷媒飽和温度を示すことになる。
That is, the inlet pipe temperature t1 of the refrigerant distributor 5 and the outlet pipe temperature t2 of the indoor heat exchanger 7 indicate the refrigerant saturation temperature for each refrigerant pressure.

【0075】この時、パルス式電動膨張弁EVは全開で
運転されるので、冷凍サイクル内の冷媒循環量としては
ほぼ最大で、しかも冷媒分流器5入口と室内熱交換器7
出口は共に二相冷媒状態であるため、冷媒分流器5入口
配管温度t1、及び室内熱交換器7出口配管温度t2は
各々の冷媒圧力に対する冷媒飽和温度を示す。従って、
この時の冷媒分流器5入口と室内熱交換器7出口との間
の冷媒飽和温度差(t1−t2=−Δt)は管内圧力損
失に相当することになる。
At this time, since the pulse-type electric expansion valve EV is operated in the fully opened state, the amount of circulating refrigerant in the refrigeration cycle is almost maximum, and the inlet of the refrigerant distributor 5 and the indoor heat exchanger 7
Since both outlets are in a two-phase refrigerant state, the inlet pipe temperature t1 of the refrigerant distributor 5 and the outlet pipe temperature t2 of the indoor heat exchanger 7 indicate the refrigerant saturation temperature for each refrigerant pressure. Therefore,
At this time, the refrigerant saturation temperature difference (t1−t2 = −Δt) between the inlet of the refrigerant distributor 5 and the outlet of the indoor heat exchanger 7 corresponds to the pressure loss in the pipe.

【0076】そして、この状態は冷凍サイクルを構成す
る圧縮機の循環量に対して凝縮器である室外熱交換器の
能力、及び蒸発器である室内熱交換器の能力が、適正に
バランスするまでほぼ維持される。
This state is maintained until the capacity of the outdoor heat exchanger as the condenser and the capacity of the indoor heat exchanger as the evaporator are properly balanced with respect to the circulation amount of the compressor constituting the refrigeration cycle. Almost maintained.

【0077】従って、図6に示すように、配管温検出手
段Tsensにより検出した室内出口配管温度t2と室
内入口配管温度t1との出入口温度差Δtは、パルス式
電動膨張弁EVの開度比が全開相当から小さくなるに従
って、殆ど変化のない一定状態から次第に上昇していく
傾向になり、ある開度比より小さくしていくと、急激に
上昇する特性を示す。
Therefore, as shown in FIG. 6, the temperature difference Δt between the indoor outlet pipe temperature t2 and the indoor inlet pipe temperature t1 detected by the pipe temperature detecting means Tsens is determined by the ratio of the opening degree of the pulse type electric expansion valve EV. As it becomes smaller from the fully opened state, it tends to gradually increase from a constant state where there is almost no change, and shows a characteristic of rapidly increasing as the opening degree ratio becomes smaller.

【0078】この時、出入口温度差Δtが急激に上昇す
る直前の出入口温度差Δtは、パルス式電動膨張弁EV
が全開時に対して、温度差θだけ上昇する。
At this time, the inlet / outlet temperature difference Δt immediately before the inlet / outlet temperature difference Δt sharply rises is determined by the pulse type electric expansion valve EV.
Rises by the temperature difference θ with respect to the fully opened state.

【0079】これはパルス式電動膨張弁EVの開度比を
小さくしていくに従って、冷凍サイクル内の冷媒循環量
が徐々に低下していくことにより、冷媒分流器5入口と
室内熱交換器7出口との間の管内圧力損失に相当する冷
媒飽和温度差(t1−t2=−Δt)も僅かながら、次
第に低下していくためである。
This is because the refrigerant circulation amount in the refrigeration cycle gradually decreases as the opening ratio of the pulse type electric expansion valve EV decreases, so that the inlet of the refrigerant distributor 5 and the indoor heat exchanger 7 This is because the refrigerant saturation temperature difference (t1−t2 = −Δt) corresponding to the pressure loss in the pipe between the outlet and the outlet gradually decreases, though slightly.

【0080】一方、室内熱交換器出口過熱度SHは、図
6に示すように、パルス式電動膨張弁EVの開度比が大
きい場合においては殆ど変化することなく、ほぼ一定
(SH=0)で推移し、ある開度比より小さくしていく
と、急激に上昇する特性を示す。
On the other hand, as shown in FIG. 6, the degree of superheat SH at the outlet of the indoor heat exchanger hardly changes when the opening ratio of the pulse type electric expansion valve EV is large, and is almost constant (SH = 0). , And shows a characteristic that when the opening ratio is made smaller than a certain opening ratio, it sharply rises.

【0081】同時に、冷房能力Qについては、図6に示
すように、室内熱交換器出口過熱度SHが確保されて急
激に上昇するパルス式電動膨張弁EVの開度比よりやや
大きめの開度比において、蒸発器である室内熱交換器7
の出口において冷媒はほぼ飽和蒸気状態(SH=0)と
なって蒸発性能(冷房能力比)が最大となり、即ち冷媒
循環量と室内熱交換器の性能がほぼ最適なバランスする
状態になり、最大値となる特性を示す。
At the same time, as for the cooling capacity Q, as shown in FIG. 6, the opening degree slightly larger than the opening ratio of the pulse-type electric expansion valve EV, which has the degree of superheat SH at the outlet of the indoor heat exchanger and increases rapidly, is secured. In the ratio, the indoor heat exchanger 7 which is an evaporator
At the outlet of the refrigerant, the refrigerant becomes almost saturated vapor state (SH = 0), and the evaporation performance (cooling capacity ratio) becomes the maximum, that is, the refrigerant circulation amount and the performance of the indoor heat exchanger are almost in an optimally balanced state. This shows the characteristic that is a value.

【0082】次に、上記特性を鑑みた本実施例の冷房運
転時の制御内容について図7のフローチャートに示す。
Next, FIG. 7 is a flowchart showing the contents of control during the cooling operation of the present embodiment in consideration of the above characteristics.

【0083】まず、step1にて運転モード検出手段
Modeにより冷房運転モードが設定されたことを検出
され、step2にて運転モード検出手段Modeから
膨張弁全開開度比設定手段51へ圧縮機起動信号が出力
され、パルス式電動膨張弁EVの開度比を全開pls0
相当の開度比100%に設定され、step3にて圧縮
機制御手段CMcntへ圧縮機起動信号が出力され、圧
縮機1を起動させる。
First, in step 1, the operation mode detecting means Mode detects that the cooling operation mode has been set, and in step 2, a compressor start signal is sent from the operation mode detecting means Mode to the expansion valve full opening ratio setting means 51. Output, the opening ratio of the pulse type electric expansion valve EV is fully opened pls0.
The opening ratio is set to 100%, and a compressor start signal is output to the compressor control means CMcnt in step 3 to start the compressor 1.

【0084】その後、step4にて圧縮機1起動信号
を時間検出手段TMが検出して、step5にて圧縮機
1起動後の経過時間τが所定時間Δτに達しているかを
時間検出手段TMにより比較し、経過時間τ<所定時間
Δτである場合はstep4へ戻るルーチンを繰り返
し、経過時間τ≧所定時間Δτである場合はstep6
へ進む。
Thereafter, the time detecting means TM detects the compressor 1 start signal in step 4 and compares in step 5 whether the elapsed time τ after starting the compressor 1 has reached the predetermined time Δτ by the time detecting means TM. If the elapsed time τ <the predetermined time Δτ, the routine of returning to step 4 is repeated, and if the elapsed time τ ≧ the predetermined time Δτ, step 6
Proceed to.

【0085】step6では、配管温検出手段Tsen
sから基準温度差Δto2検出手段へ室内入口配管温度
t1、及び室内出口配管温度t2の信号が出力され、基
準温度差Δto2検出手段62にて温度信号に変換さ
れ、この時点での出入口温度差Δt(=t2−t1)に
対して所定温度差θを加算した結果を第2基準温度差Δ
to2として算出する。
In step 6, the pipe temperature detecting means Tsen
The signal of the indoor inlet pipe temperature t1 and the indoor outlet pipe temperature t2 is output from the s to the reference temperature difference Δto2 detecting means, converted into a temperature signal by the reference temperature difference Δto2 detecting means 62, and the inlet / outlet temperature difference Δt at this time is output. (= T2-t1) and the result of adding the predetermined temperature difference θ to the second reference temperature difference Δ
It is calculated as to2.

【0086】次に、step7にて検知過熱度SH算出
手段53により、経過時間τが所定時間Δτ経過以降に
おける配管温検出手段Tsensにより検出した室内出
口配管温度t2と室内入口配管温度t1との出入口温度
差Δt(=t2−t1)に、冷媒分流器5入口と室内熱
交換器7出口との間の管内圧力損失に相当する第2基準
温度差Δto2を考慮する、即ち、第2基準温度差Δt
o2を減算(Δt−Δto2)して、冷媒分流器5入口
と室内熱交換器7出口との間の管内圧力損失の影響を差
し引いた検知過熱度SHを算出する。
Next, at step 7, the detected superheat degree SH calculating means 53 calculates the entrance / exit of the indoor outlet pipe temperature t2 and the indoor inlet pipe temperature t1 detected by the pipe temperature detecting means Tsens after the lapse of the predetermined time Δτ. Considering the temperature difference Δt (= t2−t1), a second reference temperature difference Δto2 corresponding to the pressure loss in the pipe between the inlet of the refrigerant flow divider 5 and the outlet of the indoor heat exchanger 7, that is, the second reference temperature difference Δt
o2 is subtracted ([Delta] t- [Delta] to2), and the detected superheat degree SH is calculated by subtracting the influence of the pressure loss in the pipe between the inlet of the refrigerant distributor 5 and the outlet of the indoor heat exchanger 7.

【0087】そして、step8にて過熱度比較手段5
5により、検知過熱度SHと第1所定過熱度SH1との
大小関係を比較し、検知過熱度SHが第1所定過熱度S
H1より小さい(SH<SH1)場合はstep9にて
パルス式電動膨張弁EVの開度比を、更に所定開度相当
だけ小さくした後、step7へ戻り、再度検知過熱度
SHを算出する。
Then, at step 8, the superheat degree comparing means 5
5, the magnitude relationship between the detected superheat degree SH and the first predetermined superheat degree SH1 is compared, and the detected superheat degree SH is set to the first predetermined superheat degree S1.
If it is smaller than H1 (SH <SH1), the opening degree ratio of the pulse-type electric expansion valve EV is further reduced by a predetermined opening degree in step 9, and the process returns to step 7 to calculate the detected superheat degree SH again.

【0088】step8で、検知過熱度SHが第1所定
過熱度SH1以上に大きい(SH≧SH1)状態になっ
た場合はstep10へ進む。
In step 8, when the detected superheat degree SH is larger than the first predetermined superheat degree SH1 (SH ≧ SH1), the process proceeds to step 10.

【0089】更に、step10にて膨張弁下限開度比
設定手段56により、検知過熱度SHが第1所定過熱度
SH1以上になった時点でのパルス式電動膨張弁EVの
開度比を下限開度pls1相当とし、更に、step1
1にて膨張弁開度比設定手段57により、パルス式電動
膨張弁EVの設定開度比を下限開度pls1相当対して
第1所定開度Δpls1相当だけ逆に加算(pls1+
Δpls1)したpls2相当の開度比に設定し、圧縮
機1の運転を継続していく。
Further, at step 10, the expansion valve lower limit opening ratio setting means 56 lowers the opening ratio of the pulse type electric expansion valve EV when the detected superheat SH becomes equal to or higher than the first predetermined superheat SH1. Degree pls1 and step1
At 1, the expansion valve opening ratio setting means 57 reversely adds the set opening ratio of the pulse type electric expansion valve EV by the first predetermined opening Δpls1 corresponding to the lower limit opening pls1 (pls1 +
An opening ratio corresponding to pls2 obtained by Δpls1) is set, and the operation of the compressor 1 is continued.

【0090】従って、その後に室内の冷房負荷が大きく
変動しない限り、室内熱交換器7出口の冷媒過熱度が過
大に確保されることがなく、飽和蒸気状態、即ち、ほぼ
過熱度=0の状態で運転が継続されることになる。
Therefore, unless the indoor cooling load fluctuates thereafter, the refrigerant superheat degree at the outlet of the indoor heat exchanger 7 is not excessively secured, and the refrigerant is in a saturated steam state, that is, a state in which the superheat degree is almost zero. The operation will be continued.

【0091】以上のように本実施例のヒートポンプ式空
気調和機は、運転モード手段Modeにより冷房モード
を検出し、時間検出手段TMからの時間信号、及び配管
温検出手段Tsensにより検出した室内入口配管温度
t1と室内出口配管温度t2との温度信号を取り込み、
圧縮機1の運転中にパルス式電動膨張弁EVの開度比を
最適に制御するべく、圧縮機制御手段CMcnt、及び
膨張弁制御手段EVcntを制御させる第2制御手段C
nt2を備えているため、以下の効果が発揮される。
As described above, in the heat pump type air conditioner of the present embodiment, the cooling mode is detected by the operation mode means Mode, the time signal from the time detection means TM, and the indoor inlet pipe detected by the pipe temperature detection means Tsens. The temperature signals of the temperature t1 and the indoor outlet pipe temperature t2 are taken in,
Second control means C for controlling the compressor control means CMcnt and the expansion valve control means EVcnt so as to optimally control the opening ratio of the pulse type electric expansion valve EV during operation of the compressor 1.
Because of the provision of nt2, the following effects are exhibited.

【0092】即ち、冷媒分流器5入口と室内熱交換器7
出口との間の管内圧力損失に相当する冷媒の飽和温度差
に生じる差異を補正することが可能になる。つまり、圧
縮機1起動所定時間Δτ経過後の飽和温度差と、その所
定時間Δτ経過以降にパルス式電動膨張弁EVの開度比
を小さくした時点での飽和温度差との間に生じる差異、
即ち所定温度差θを、第2基準温度差Δto2に考慮す
ることにより、室内熱交換器7出口の検知過熱度SHを
精度良く検出することが可能となる。
That is, the inlet of the refrigerant distributor 5 and the indoor heat exchanger 7
It is possible to correct the difference that occurs in the saturation temperature difference of the refrigerant corresponding to the pipe pressure loss between the outlet and the outlet. That is, the difference between the saturation temperature difference after the elapse of the predetermined time Δτ of the start of the compressor 1 and the saturation temperature difference at the time when the opening ratio of the pulsed electric expansion valve EV is reduced after the elapse of the predetermined time Δτ,
That is, by considering the predetermined temperature difference θ in the second reference temperature difference Δto2, it is possible to accurately detect the detected superheat degree SH at the outlet of the indoor heat exchanger 7.

【0093】更に、この検知過熱度SHの特性を用いる
ことにより、蒸発器として機能する室内熱交換器7出口
の冷媒過熱度が過大に確保されることがなく、飽和蒸気
状態、即ち、ほぼ過熱度=0の状態に近づけることが可
能となるため、熱交換器の保有している性能は最大限に
発揮され得るという、理想状態に近い制御を実現可能と
なる。
Further, by using the characteristic of the detected superheat degree SH, the refrigerant superheat degree at the outlet of the indoor heat exchanger 7 functioning as an evaporator is not excessively secured, and the saturated steam state, that is, almost Since it is possible to approach the state of degree = 0, it is possible to realize control close to an ideal state, in which the performance possessed by the heat exchanger can be maximized.

【0094】(実施例3)次に、本発明の実施例3につ
いて図面を参照しながら説明するが、実施例2と同一構
成部分については同一符号を付して詳細な説明を省略す
る。
(Embodiment 3) Next, Embodiment 3 of the present invention will be described with reference to the drawings. The same components as in Embodiment 2 will be assigned the same reference numerals and detailed description thereof will be omitted.

【0095】図8は、本発明の実施例3によるヒートポ
ンプ式空気調和機の冷房運転時の冷凍サイクル図及びブ
ロック図を示している。本実施例のヒートポンプ式空気
調和機は、実施例2と同様に室外ユニットAと、室内ユ
ニットBとから構成されている。但し、本実施例では実
施例2の第2制御手段Cnt2に替わって、第3制御手
段Cnt3を備えている。
FIG. 8 shows a refrigeration cycle diagram and a block diagram during a cooling operation of the heat pump type air conditioner according to Embodiment 3 of the present invention. The heat pump type air conditioner of this embodiment includes an outdoor unit A and an indoor unit B as in the second embodiment. However, in the present embodiment, a third control means Cnt3 is provided instead of the second control means Cnt2 of the second embodiment.

【0096】第3制御手段Cnt3は第2制御手段Cn
t2に加えて、検知過熱度SH算出手段53より得られ
た検知過熱度SHと、所定過熱度SH2記憶手段64に
記憶されている第2所定過熱度SH2との大小関係を比
較する過熱度第2比較手段66と、検知過熱度SHと0
との大小関係を比較する過熱度第3比較手段76と、過
熱度第2比較手段66、及び過熱度第3比較手段76の
比較結果によって、pls2+Δpls2相当、pls
2−Δpls2相当、及び現状開度相当の各開度比設定
を行う膨張弁開度比設定手段58,59,60とを備え
ている。
The third control means Cnt3 is connected to the second control means Cn.
In addition to t2, the degree of superheat comparing the detected superheat degree SH obtained by the detected superheat degree SH calculating means 53 with the second predetermined superheat degree SH2 stored in the predetermined superheat degree SH2 storage means 64 is compared. 2 comparing means 66, the detected superheat SH and 0
The third superheat degree comparison means 76, the second superheat degree comparison means 66, and the third superheat degree comparison means 76, which compare the magnitude relation with pls2 + Δpls2, pls
Expansion valve opening ratio setting means 58, 59, and 60 for setting each opening ratio corresponding to 2-Δpls2 and the current opening.

【0097】そして、第3制御手段Cnt3は第2制御
手段Cnt2の動作に加えて、検知過熱度SHが第1所
定過熱度SH1以上になった時点でのパルス式電動膨張
弁EVの開度比をpls1相当に対して第1所定開度Δ
plsだけ逆に大きくした開度pls2(=pls1+
Δpls1)相当に設定された後に、検知過熱度SHが
第1所定過熱度SH1より小なる第2所定過熱度SH2
より大きい場合はパルス式電動膨張弁EVの開度比を第
2所定開度Δpls2相当だけ大きく設定し、検知過熱
度SHが0より小さい場合はパルス式電動膨張弁EVの
開度比を第2所定開度Δpls2相当だけ小さく設定
し、検知過熱度SHが0以上、かつ第2所定過熱度SH
2以下の場合はパルス式電動膨張弁EVの開度比を維持
するように膨張弁制御手段EVを動作させるものであ
る。
Then, in addition to the operation of the second control means Cnt2, the third control means Cnt3 adds the opening ratio of the pulse-type electric expansion valve EV when the detected superheat SH becomes equal to or higher than the first predetermined superheat SH1. Is the first predetermined opening degree Δ with respect to pls1.
The opening pls2 (= pls1 +
Δpls1), the second predetermined superheat SH2 in which the detected superheat SH is smaller than the first predetermined superheat SH1.
If the detected superheat SH is smaller than 0, the opening ratio of the pulse-type electric expansion valve EV is set to the second predetermined opening Δpls2. The opening degree is set to be smaller by the predetermined opening degree Δpls2, the detected superheating degree SH is 0 or more, and the second predetermined superheating degree SH
In the case of 2 or less, the expansion valve control means EV is operated so as to maintain the opening ratio of the pulse type electric expansion valve EV.

【0098】以上のように構成されたヒートポンプ式空
気調和機について、以下その動作を図9を用いて説明す
る。図9は本実施例の冷房運転時の制御内容のフローチ
ャートである。尚、step1からstep11につい
ては、実施例2と同一であるため詳細な説明を省略す
る。
The operation of the heat pump type air conditioner configured as described above will be described below with reference to FIG. FIG. 9 is a flowchart of the control contents during the cooling operation of the present embodiment. Step 1 to step 11 are the same as those in the second embodiment, and thus detailed description is omitted.

【0099】但し、実施例1のstep10とstep
11については実施例3いおいても関連があるため、再
度説明を加える。
However, step 10 and step 10 in the first embodiment are performed.
11 is related in the third embodiment, and will be described again.

【0100】まず、step10にて膨張弁下限開度比
設定手段56により、検知過熱度SHが第1所定過熱度
SH1以上になった時点でのパルス式電動膨張弁EVの
開度比を下限開度pls1相当とし、更に、step1
1にて膨張弁開度比設定手段57により、パルス式電動
膨張弁EVの設定開度比を下限開度pls1相当に対し
て第1所定開度Δpls1だけ逆に加算(pls1+Δ
pls1)した開度pls2相当の開度比に設定し、圧
縮機1の運転を継続していく。
First, at step 10, the expansion valve lower limit opening ratio setting means 56 lowers the opening ratio of the pulse type electric expansion valve EV when the detected superheat SH becomes equal to or higher than the first predetermined superheat SH1. Degree pls1 and step1
In step 1, the expansion valve opening ratio setting means 57 reversely adds the set opening ratio of the pulse type electric expansion valve EV by a first predetermined opening Δpls1 to the equivalent of the lower limit opening pls1 (pls1 + Δ
(pls1) The opening ratio corresponding to the opening pls2 is set, and the operation of the compressor 1 is continued.

【0101】次に、step12にて過熱度第2比較手
段66により、検知過熱度SHと、所定過熱度SH2記
憶手段64に記憶されている第1所定過熱度SH2との
大小関係の比較し、制御の分岐を行う。即ち、検知過熱
度SHが第1所定過熱度SH1(例えば、4K)より小
なる第2所定過熱度SH2(例えば、1K)以上に大き
い場合はstep14へ分岐し、step13にて検知
過熱度SHと0との大小関係の比較し、検知過熱度SH
が0より小さい場合はstep15へ分岐し、検知過熱
度SHが0以上、かつ第2所定過熱度SH2未満の場合
はstep16へ分岐する。
Next, at step 12, the superheat degree second comparing means 66 compares the magnitude relation between the detected superheat degree SH and the first predetermined superheat degree SH2 stored in the predetermined superheat degree SH2 storage means 64, Performs control branch. That is, when the detected superheat degree SH is larger than a second predetermined superheat degree SH2 (for example, 1K) smaller than the first predetermined superheat degree SH1 (for example, 4K), the process branches to step 14, and the detected superheat degree SH is set at step 13. Compare the magnitude relationship with 0 and detect the degree of superheat SH
Is smaller than 0, the flow branches to step 15, and if the detected superheat degree SH is 0 or more and smaller than the second predetermined superheat degree SH2, the flow branches to step 16.

【0102】即ち、step14にて膨張弁開度比設定
手段58により、検知過熱度SHが第2所定過熱度SH
2より以上の場合(SH≧1K)はパルス式電動膨張弁
EVの開度比を第2所定開度Δpls2相当だけ大きく
設定し、step15にて膨張弁開度比設定手段59に
より、検知過熱度SHが0より小さい場合(SH<0
K)はパルス式電動膨張弁EVの開度比を第2所定開度
Δpls2相当だけ小さく設定し、更にstep16に
て膨張弁開度比設定手段60により、検知過熱度SHが
0以上、かつ第2所定過熱度SH2未満の場合(0≦S
H<1)はパルス式電動膨張弁EVの開度比を維持する
ように膨張弁制御手段EVを動作させる。
That is, in step 14, the detected superheat SH is changed to the second predetermined superheat SH by the expansion valve opening ratio setting means 58.
In the case of more than 2 (SH ≧ 1K), the opening ratio of the pulse-type electric expansion valve EV is set to be larger by the second predetermined opening Δpls2, and in step 15, the detected superheat degree is detected by the expansion valve opening ratio setting means 59. When SH is smaller than 0 (SH <0
K) sets the opening ratio of the pulse-type electric expansion valve EV to be smaller by the second predetermined opening Δpls2, and further detects the superheat degree SH of 0 or more by the expansion valve opening ratio setting means 60 in step 16; 2 When the superheat degree is less than the predetermined superheat degree SH2 (0 ≦ S
H <1) operates the expansion valve control means EV so as to maintain the opening ratio of the pulse type electric expansion valve EV.

【0103】ここで、検知過熱度SHには所定温度差θ
が加算されているため、検知過熱度SHの下限値は−θ
まで存在することになる。
Here, the detected superheat degree SH has a predetermined temperature difference θ.
Is added, the lower limit of the detected superheat degree SH is −θ.
To exist.

【0104】これにより、室内の冷房負荷に応じて変化
する室内熱交換器7出口の検知過熱度SHが0から第2
所定過熱度SH2の間に収まるようにパルス式電動膨張
弁EVの開度比を制御できるために、冷房負荷が変動し
た場合でも、室内熱交換器7の保有している性能は最大
限に発揮され得るという、理想状態に近い制御を実現可
能となる。
As a result, the detected superheat degree SH at the outlet of the indoor heat exchanger 7 that changes according to the indoor cooling load is changed from 0 to the second degree.
Since the opening ratio of the pulse type electric expansion valve EV can be controlled so as to fall within the predetermined superheat degree SH2, the performance possessed by the indoor heat exchanger 7 is maximized even when the cooling load fluctuates. Control that is close to the ideal state can be realized.

【0105】以上のように本実施例のヒートポンプ式空
気調和機は、実施例2の第2制御手段Cnt2に替わっ
て、第3制御手段Cnt3を設置した構成であるため
に、即ち、第2制御手段Cnt2の動作に加えて、検知
過熱度SHが第1所定過熱度SH1以上になった時点で
のパルス式電動膨張弁EVの開度比をpls1相当に対
して第1所定開度Δpls相当だけ逆に大きくした開度
pls2(=pls1+Δpls1)相当に設定された
後に、検知過熱度SHが第1所定過熱度SH1より小な
る第2所定過熱度SH2以上の場合はパルス式電動膨張
弁EVの開度比を第2所定開度Δpls2相当だけ大き
く設定し、検知過熱度SHが0より小さい場合はパルス
式電動膨張弁EVの開度比を第2所定開度Δpls2相
当だけ小さく設定し、検知過熱度SHが0以上、かつ第
2所定過熱度SH2未満の場合はパルス式電動膨張弁E
Vの開度比を維持するように膨張弁制御手段EVを動作
させるため、以下の効果が発揮される。
As described above, the heat pump type air conditioner of the present embodiment has a configuration in which the third control means Cnt3 is provided instead of the second control means Cnt2 of the second embodiment, that is, the second control means. In addition to the operation of the means Cnt2, the opening ratio of the pulse-type electric expansion valve EV at the time when the detected superheat SH becomes equal to or more than the first predetermined superheat SH1 is equivalent to pls1 equivalent to the first predetermined opening Δpls. Conversely, if the detected degree of superheat SH is equal to or greater than the second predetermined superheat SH2, which is smaller than the first predetermined superheat SH1, after the degree of opening pls2 (= pls1 + Δpls1) is set to be larger, the pulse-type electric expansion valve EV is opened. The degree ratio is set to be larger by the second predetermined opening degree Δpls2, and when the detected superheat degree SH is smaller than 0, the opening degree ratio of the pulse type electric expansion valve EV is set to be smaller by the second predetermined opening degree Δpls2, Knowledge superheat degree SH is 0 or more and in the case of the second lower than the predetermined superheat degree SH2 pulsed electric expansion valve E
Since the expansion valve control means EV is operated so as to maintain the opening degree ratio of V, the following effects are exhibited.

【0106】つまり、実施例2の効果に加えて、室内の
冷媒負荷に応じて変化する室内熱交換器7出口の検知過
熱度SHが0から第2所定過熱度SH2の間に収まるよ
うにパルス式電動膨張弁EVの開度比を制御できるため
に、冷房負荷が変動した場合でも、室内熱交換器7の保
有している性能は最大限に発揮され得るという、理想状
態に近い制御を実現可能となる。
That is, in addition to the effect of the second embodiment, the pulse is set so that the detected superheat degree SH at the outlet of the indoor heat exchanger 7 that changes according to the indoor refrigerant load falls between 0 and the second predetermined superheat degree SH2. Since the opening ratio of the electric motor-operated expansion valve EV can be controlled, even if the cooling load fluctuates, the performance possessed by the indoor heat exchanger 7 can be maximized, and control close to an ideal state is realized. It becomes possible.

【0107】(実施例4)次に、本発明の実施例4につ
いて図面を参照しながら説明するが、実施例1と同一構
成部分については同一符号を付して詳細な説明を省略す
る。
(Embodiment 4) Next, Embodiment 4 of the present invention will be described with reference to the drawings. The same components as those in Embodiment 1 will be assigned the same reference numerals and detailed description thereof will be omitted.

【0108】図10は、本発明の実施例4によるヒート
ポンプ式空気調和機の冷房運転時の冷凍サイクル図及び
ブロック図を示している。本実施例のヒートポンプ式空
気調和機は、実施例1と同様に室外ユニットAと、室内
ユニットBとから構成されている。但し、本実施例では
実施例1の第1制御手段Cnt1に替わって、第4制御
手段Cnt4を備えている。
FIG. 10 shows a refrigeration cycle diagram and a block diagram of a heat pump type air conditioner according to Embodiment 4 of the present invention during a cooling operation. The heat pump type air conditioner of this embodiment includes an outdoor unit A and an indoor unit B as in the first embodiment. However, in the present embodiment, a fourth control unit Cnt4 is provided instead of the first control unit Cnt1 of the first embodiment.

【0109】第4制御手段Cnt4には第1制御手段C
nt1に加えて、パルス式電動膨張弁EVの開度比を記
憶する開度比記憶手段71、及び運転モード検出手段M
odeからの圧縮機1の再起動信号を検出して圧縮機1
起動時のパルス式電動膨張弁EVの開度比設定を行う膨
張弁開度比設定手段61が備えられている。
The fourth control means Cnt4 includes the first control means C
opening ratio storage means 71 for storing the opening ratio of the pulse type electric expansion valve EV in addition to nt1, and an operation mode detecting means M
The restart signal from the compressor 1 is detected from the compressor 1 and the compressor 1
An expansion valve opening ratio setting means 61 for setting an opening ratio of the pulse type electric expansion valve EV at the time of startup is provided.

【0110】そして、第4制御手段Cnt4では、第1
制御手段Cnt1の動作に加えて、運転モード手段Mo
deにて冷房サイクルを検出中であり、かつ圧縮機1が
運転状態から停止状態になった後、再度、圧縮機1の運
転を開始する場合、パルス式電動膨張弁EVの開度を圧
縮機1が停止状態になる直前におけるパルス式電動膨張
弁EVの開度に対して第3所定開度Δpls3だけ大き
く設定するように膨張弁制御手段EVcntを動作させ
て圧縮機1の運転を再起動し、時間検出手段TMにより
経過時間τが所定時間Δτに達したことを検知した時
に、配管温検出手段Tsensにより検出した室内入口
配管温度t1と室内出口配管温度t2との出入口温度差
Δt(=t2−t1)を第3基準温度差Δto3とし
て、第1基準温度差Δto1を更新する制御動作を行
う。
Then, in the fourth control means Cnt4, the first
In addition to the operation of the control means Cnt1, the operation mode means Mo
de when the cooling cycle is being detected, and after the compressor 1 is changed from the operating state to the stopped state, and the compressor 1 is started again, the opening degree of the pulse type electric expansion valve EV is set to The operation of the compressor 1 is restarted by operating the expansion valve control means EVcnt so that the opening degree of the pulse-type electric expansion valve EV is set to be larger than the opening degree of the pulse type electric expansion valve EV immediately before the stop state of the compressor 1 by the third predetermined opening Δpls3. When the time detecting means TM detects that the elapsed time τ has reached the predetermined time Δτ, an inlet / outlet temperature difference Δt (= t2) between the indoor inlet pipe temperature t1 and the indoor outlet pipe temperature t2 detected by the pipe temperature detecting means Tsens. −t1) is set as the third reference temperature difference Δto3, and a control operation for updating the first reference temperature difference Δto1 is performed.

【0111】以上のように構成されたヒートポンプ式空
気調和機について、以下その動作を図11を用いて説明
する。図11は本実施例の冷房運転時の制御内容のフロ
ーチャートである。尚、step1からstep11に
ついては、実施例1と同一であるため詳細な説明を省略
する。
The operation of the heat pump type air conditioner configured as described above will be described below with reference to FIG. FIG. 11 is a flowchart of control contents during the cooling operation according to the present embodiment. Step 1 to step 11 are the same as those in the first embodiment, and a detailed description thereof will be omitted.

【0112】但し、実施例1のstep9とstep1
1については実施例4においても関連があるため、再度
説明を加える。
However, step 9 and step 1 in the first embodiment are performed.
1 is also relevant in the fourth embodiment, and will be described again.

【0113】まず、step10にて膨張弁下限開度比
設定手段56により、検知過熱度SHが第1所定過熱度
SH1以上になった時点でのパルス式電動膨張弁EVの
開度比を下限開度pls1相当とし、更に、step1
1にてパルス式電動膨張弁EVの開度比を下限開度pl
s1相当に対して第1所定開度Δpls1相当だけ逆に
加算(pls1+Δpls1)したpls2相当の開度
比に設定し、圧縮機1の運転を継続していく。
First, at step 10, the expansion valve lower limit opening ratio setting means 56 lowers the opening ratio of the pulse type electric expansion valve EV when the detected superheat SH exceeds the first predetermined superheat SH1. Degree pls1 and step1
At 1, the opening ratio of the pulse type electric expansion valve EV is set to the lower limit opening pl.
An opening ratio corresponding to pls2 obtained by adding (pls1 + Δpls1) in reverse to the first predetermined opening Δpls1 with respect to s1 is set, and the operation of the compressor 1 is continued.

【0114】その後、step17にて、室内温度が設
定温度に達した場合や、冷凍サイクルが異常運転状態に
なって冷凍サイクルに保護制御が動作する等の場合、圧
縮機1が運転状態から停止状態になる。その場合、圧縮
機1が停止状態になる直前におけるパルス式電動膨張弁
EVの開度pls2が、膨張弁開度比設定手段57が備
える開度比記憶手段71に記憶される。
Thereafter, in step 17, when the indoor temperature reaches the set temperature, or when the refrigeration cycle is in an abnormal operation state and the protection control is operated in the refrigeration cycle, the compressor 1 is stopped from the operation state. become. In this case, the opening pls2 of the pulse-type electric expansion valve EV immediately before the compressor 1 is stopped is stored in the opening ratio storage means 71 provided in the expansion valve opening ratio setting means 57.

【0115】次に、step18にて、圧縮機1が再起
動運転されるか監視する。即ち、step18にて圧縮
機1が再起動される場合はstep19へ移行し、そう
でない場合はstep17にて圧縮機1の再起動の待機
状態にある。
Next, at step 18, it is monitored whether the compressor 1 is restarted. That is, if the compressor 1 is restarted in step 18, the process proceeds to step 19; otherwise, the process is in a standby state of restarting the compressor 1 in step 17.

【0116】また、step19では、運転モード設定
手段Modeから膨張弁開度比設定手段61へ圧縮機再
起動信号が出力され、膨張弁開度比設定手段61にてパ
ルス式電動膨張弁EVの開度を圧縮機1が停止状態にな
る直前におけるパルス式電動膨張弁EVの開度比をpl
s2相当に対して第3所定開度Δpls3相当だけ大き
く設定し、その後、膨張弁制御手段EVcntへ(pl
s2+Δpls3)相当の開度比を出力して動作させ
る。
In step 19, a compressor restart signal is output from the operation mode setting means Mode to the expansion valve opening ratio setting means 61, and the expansion valve opening ratio setting means 61 opens the pulse type electric expansion valve EV. The degree of opening of the pulse-type electric expansion valve EV immediately before the compressor 1 is stopped is pl.
s2 is set to be larger by the third predetermined opening degree Δpls3, and then the expansion valve control means EVcnt is set to (pl
s2 + Δpls3) is output and operated.

【0117】そして、step20にて、運転モード設
定手段Modeから圧縮機制御手段CMcntへ圧縮機
1の再起動信号が出力され、step21にて圧縮機制
御手段CMcntから圧縮機起動信号を受けて、圧縮機
1起動後の経過時間τを時間検出手段TMがカウントを
開始し、step22にて経過時間τが所定時間Δτに
達しているかを時間検出手段TMにより比較し、経過時
間τ<所定時間Δτである場合はstep21へ戻るル
ーチンを繰り返し、経過時間τ≧所定時間Δτである場
合はstep23へ進む。
Then, at step 20, a restart signal of the compressor 1 is output from the operation mode setting means Mode to the compressor control means CMcnt, and at step 21, the compressor start signal is received from the compressor control means CMcnt, The time detecting means TM starts counting the elapsed time τ after the machine 1 is started, and in step 22, the time detecting means TM compares whether the elapsed time τ has reached the predetermined time Δτ. In some cases, the routine of returning to step 21 is repeated, and if the elapsed time τ ≧ the predetermined time Δτ, the flow proceeds to step 23.

【0118】step23では、配管温検出手段Tse
nsから基準温度差算出手段52へ室内入口配管温度t
1、及び室内出口配管温度t2の信号が出力され、基準
温度差算出手段52にて温度信号へ変換され、この時点
での出入口温度差Δt(=t2−t1)を第3基準温度
差Δto3として算出し、第1基準温度差Δto1から
値を更新する。
In step 23, the pipe temperature detecting means Tse
ns to the reference temperature difference calculation means 52
1, and a signal of the indoor outlet pipe temperature t2 is output and converted into a temperature signal by the reference temperature difference calculating means 52, and the inlet / outlet temperature difference Δt (= t2−t1) at this time is set as a third reference temperature difference Δto3. It calculates and updates the value from the first reference temperature difference Δto1.

【0119】この時、パルス式電動膨張弁EVは全開で
はないが、冷凍サイクル内の冷媒循環量としては比較的
大きく、しかも冷媒分流器5入口と室内熱交換器7出口
は共に二相冷媒状態であるため、実施例1の場合と同様
に、冷媒分流器5入口配管温度t1、及び室内熱交換器
7出口配管温度t2は各々の冷媒圧力に対する冷媒飽和
状態を示す。従って、冷媒分流器5入口と室内熱交換器
7出口との間の冷媒飽和温度差(t1−t2=−Δt
o)は管内圧力損失に相当することになる。
At this time, although the pulse type electric expansion valve EV is not fully opened, the amount of circulating refrigerant in the refrigeration cycle is relatively large, and both the inlet of the refrigerant distributor 5 and the outlet of the indoor heat exchanger 7 are in a two-phase refrigerant state. Therefore, similarly to the case of the first embodiment, the inlet pipe temperature t1 of the refrigerant distributor 5 and the outlet pipe temperature t2 of the indoor heat exchanger 7 indicate the refrigerant saturation state for each refrigerant pressure. Therefore, the refrigerant saturation temperature difference between the inlet of the refrigerant flow divider 5 and the outlet of the indoor heat exchanger 7 (t1−t2 = −Δt)
o) corresponds to the pressure loss in the pipe.

【0120】従って、step24にて検知過熱度SH
算出手段53により、経過時間τが所定時間Δτ経過以
降における配管温検出手段Tsensにより検出した室
内出口配管温度t2と室内入口配管温度t1との出入口
温度差Δt(=t2−t1)に、パルス式電動膨張弁E
V出口と室内熱交換器7出口との間の管内圧力損失に相
当する第3基準温度差Δto3を考慮する、即ち、第3
基準温度差Δto3を減算(Δt−Δto3)して、冷
媒分流器5入口と室内熱交換器7出口との間の管内圧力
損失の影響を差し引いた検知過熱度SHを算出すること
ができる。
Therefore, the degree of superheat SH detected in step 24 is
The calculating means 53 calculates the difference between the entrance / exit temperature difference Δt (= t2−t1) between the indoor outlet pipe temperature t2 and the indoor inlet pipe temperature t1 detected by the pipe temperature detecting means Tsens after the lapse of the predetermined time Δτ by the pulse method. Electric expansion valve E
The third reference temperature difference Δto3 corresponding to the pressure loss in the pipe between the V outlet and the outlet of the indoor heat exchanger 7 is taken into account, that is, the third reference temperature difference Δto3 is considered.
By subtracting the reference temperature difference Δto3 (Δt−Δto3), it is possible to calculate the detected superheat degree SH in which the influence of the pressure loss in the pipe between the inlet of the refrigerant flow divider 5 and the outlet of the indoor heat exchanger 7 is subtracted.

【0121】そして、この後は実施例1のstep8へ
戻るルーチンとして繰り返し制御を継続していく。ただ
し、実施例1のstep8へ戻ったとき、実施例1のs
tep7に進んだときは、step7をstep24に
置換える。
Thereafter, the control is repeated as a routine for returning to step 8 of the first embodiment. However, when returning to step 8 of the first embodiment, when
When the process proceeds to step 7, step 7 is replaced with step 24.

【0122】以上のように本実施例のヒートポンプ式空
気調和機は、実施例1の第1制御手段Cnt1に替わっ
て、第4制御手段Cnt4を設置した構成であるため
に、即ち、運転モード手段Modeにて冷房サイクルを
検出中であり、かつ圧縮機1が運転状態から停止状態に
なった後、再度、圧縮機1の運転を開始する場合、パル
ス式電動膨張弁EVの開度を圧縮機1が停止状態になる
直前におけるパルス式電動膨張弁EVの開度に対して第
3所定開度Δpls3だけ大きく設定するように膨張弁
制御手段EVcntを動作させて圧縮機1の運転を再起
動し、時間検出手段TMにより経過時間τが所定時間Δ
τに達した時に配管温検出手段Tsensにより検出し
た室内入口配管温度t1と室内出口配管温度t2との出
入口温度差Δt(=t2−t1)を第3基準温度差Δt
o3として、第1基準温度差Δto1を更新する制御を
備えているために、以下の効果が発揮される。
As described above, the heat pump type air conditioner of this embodiment has a configuration in which the fourth control means Cnt4 is provided instead of the first control means Cnt1 of the first embodiment, that is, the operation mode means When the compressor 1 is restarted after the cooling cycle is detected in the mode and the compressor 1 is changed from the operating state to the stopped state, the opening degree of the pulse-type electric expansion valve EV is set to the compressor. The operation of the compressor 1 is restarted by operating the expansion valve control means EVcnt so that the opening degree of the pulse-type electric expansion valve EV is set to be larger than the opening degree of the pulse type electric expansion valve EV immediately before the stop state of the compressor 1 by the third predetermined opening Δpls3. The elapsed time τ is determined by the time detecting means TM to be a predetermined time Δ
The temperature difference Δt (= t2−t1) between the indoor inlet pipe temperature t1 and the indoor outlet pipe temperature t2 detected by the pipe temperature detecting means Tsens when τ is reached is calculated as a third reference temperature difference Δt.
Since the control for updating the first reference temperature difference Δto1 is provided as o3, the following effects are exhibited.

【0123】つまり、実施例1の効果に加えて、室内冷
房負荷の変化に伴う、冷房サイクル内の冷媒循環量の変
動を、前記基準温度差の変化を把握することにより対応
可能となる。
That is, in addition to the effects of the first embodiment, it is possible to cope with a change in the refrigerant circulation amount in the cooling cycle due to a change in the indoor cooling load by grasping the change in the reference temperature difference.

【0124】即ち、圧縮機が運転状態から停止状態にな
った後、再度、圧縮機の運転を開始する場合でも、圧縮
機が停止する直前の膨張弁の開度に対して第3所定開度
Δpls3だけ大きく設定して圧縮機1を再起動し、配
管温検出手段Tsensにより検出した室内入口配管温
度t1と室内出口配管温度t2との出入口温度差Δtで
ある基準温度差を第1基準温度差Δto1から第3基準
温度差Δto3へ更新することにより、室内の冷房負荷
変動に対応した運転制御が可能になる。
That is, even when the compressor is restarted after the compressor is changed from the operating state to the stopped state, the third predetermined opening degree relative to the opening degree of the expansion valve immediately before the compressor stops. The compressor 1 is restarted by setting it larger by Δpls3, and a reference temperature difference Δt between the indoor inlet pipe temperature t1 and the indoor outlet pipe temperature t2 detected by the pipe temperature detecting means Tsens is defined as a first reference temperature difference. By updating from Δto1 to the third reference temperature difference Δto3, it becomes possible to perform operation control corresponding to a change in indoor cooling load.

【0125】尚、前記実施例1から実施例4において
は、パルス式電動膨張弁EVを室内ユニットBの冷媒分
流器5の上流側に設置した構成であるが、室外ユニット
A内の室外熱交換器3の下流側に設置した構成の場合で
も、室内熱交換器7の性能を最大限に引き出すことにつ
いては同等の効果がある。
In the first to fourth embodiments, the pulse-type electric expansion valve EV is installed upstream of the refrigerant flow divider 5 of the indoor unit B, but the outdoor heat exchange in the outdoor unit A is performed. Even in the case of the configuration installed on the downstream side of the heat exchanger 3, the same effect can be obtained in maximizing the performance of the indoor heat exchanger 7.

【0126】[0126]

【発明の効果】以上説明したように請求項1記載の発明
は、圧縮機と室外熱交換器と室外送風機と膨張弁とから
なる室外ユニットと、冷媒分流器と室内熱交換器と室内
送風機とからなる室内ユニットとから構成され、かつ前
記圧縮機,前記室外熱交換器,前記膨張弁,前記冷媒分
流器,前記室内熱交換器,前記圧縮機を順次冷媒配管に
て環状に接続して冷媒を循環させる冷房サイクルにおい
て、冷房モードでの圧縮機の運転開始時は、前記膨張弁
を全開にさせ、その後前記圧縮機の運転開始から所定時
間経過した時点での室内出口配管温度と室内入口配管温
度との出入口温度差を第1基準温度差とし、その後の前
記圧縮機の運転継続中における室内出口配管温度と室内
入口配管温度との出入口温度差から前記第1基準温度差
を減算した結果を検知過熱度として、前記検知過熱度が
第1所定過熱度以上になるまで前記膨張弁の開度を小さ
くしていき、前記検知過熱度が前記第1所定過熱度以上
になった時点での前記膨張弁の開度より第1所定開度だ
け大きい開度を求め、その求められた開度をその後の前
記膨張弁の開度にするよう構成したのである。
As described above, the first aspect of the present invention provides an outdoor unit including a compressor, an outdoor heat exchanger, an outdoor blower, and an expansion valve, a refrigerant distributor, an indoor heat exchanger, and an indoor blower. And the compressor, the outdoor heat exchanger, the expansion valve, the refrigerant flow divider, the indoor heat exchanger, and the compressor are sequentially connected in a ring through a refrigerant pipe to form a refrigerant. In the cooling cycle that circulates, at the start of the operation of the compressor in the cooling mode, the expansion valve is fully opened, and then the indoor outlet pipe temperature and the indoor inlet pipe at the time when a predetermined time has elapsed since the start of the compressor operation. The difference between the inlet / outlet temperature and the temperature is defined as a first reference temperature difference, and the result obtained by subtracting the first reference temperature difference from the inlet / outlet temperature difference between the indoor outlet pipe temperature and the indoor inlet pipe temperature during the continuation of the operation of the compressor thereafter. As the perceived degree of superheat, the degree of opening of the expansion valve is reduced until the detected degree of superheat becomes equal to or greater than a first predetermined degree of superheat, and the detected degree of superheat becomes equal to or greater than the first degree of superheat. An opening larger than the opening of the expansion valve by a first predetermined opening is obtained, and the obtained opening is used as the opening of the expansion valve thereafter.

【0127】これにより、冷媒分流器入口と室内熱交換
器出口との間の管内圧力損失の影響を差し引いた室内熱
交換器出口の正味の過熱度を検知できる。また、蒸発器
として機能する室内熱交換器出口の冷媒過熱度が大きく
確保されることがなく、飽和蒸気状態、即ち、ほぼ過熱
度=0の状態に近づけることが可能となるため、熱交換
器の保有している性能は最大限に発揮され得るという、
理想状態に近い制御を実現可能となる。
Thus, it is possible to detect the net degree of superheat at the outlet of the indoor heat exchanger by subtracting the influence of the pressure loss in the pipe between the inlet of the refrigerant distributor and the outlet of the indoor heat exchanger. In addition, the refrigerant superheat degree at the outlet of the indoor heat exchanger functioning as an evaporator is not largely secured, and it is possible to approach a saturated vapor state, that is, a state where the superheat degree is almost zero. That the performance possessed can be maximized,
Control close to the ideal state can be realized.

【0128】また、請求項2記載の発明は、請求項1記
載の発明で、圧縮機の運転開始から所定時間経過した時
点での室内出口配管温度と室内入口配管温度との出入口
温度差を基準温度差としていた部分を、室内出口配管温
度と室内入口配管温度との出入口温度差に対して所定温
度差を加算したものを基準温度差とするものに置換えた
ものである。
Further, the invention according to claim 2 is the invention according to claim 1, wherein the difference between the inlet / outlet temperature of the indoor outlet pipe and the temperature of the inlet / outlet pipe at the time when a predetermined time has elapsed since the start of the operation of the compressor. The temperature difference is replaced by a reference temperature difference obtained by adding a predetermined temperature difference to an entrance / exit temperature difference between an indoor outlet pipe temperature and an indoor inlet pipe temperature.

【0129】これにより、冷媒分流器入口と室内熱交換
器出口との間の管内圧力損失に相当する冷媒の飽和温度
差に生じる差異を補正することが可能になる。
This makes it possible to correct the difference in the saturation temperature difference of the refrigerant corresponding to the pipe pressure loss between the inlet of the refrigerant distributor and the outlet of the indoor heat exchanger.

【0130】即ち、圧縮機起動所定時間経過後の飽和温
度差と、その所定時間経過以降に膨張弁開度を小さくし
た時点での飽和温度差との間に生じる差異を、前記第2
基準温度差に加算することにより、室内熱交換器出口の
検知過熱度を精度良く検出することが可能となる。
That is, the difference between the saturation temperature difference after the elapse of the predetermined time of starting the compressor and the saturation temperature difference at the time when the opening degree of the expansion valve is reduced after the elapse of the predetermined time is determined by the second temperature.
By adding to the reference temperature difference, the degree of superheat detected at the outlet of the indoor heat exchanger can be accurately detected.

【0131】また、請求項3記載の発明は、請求項2記
載の発明に加えて、膨張弁の開度設定後、検知過熱度が
第1所定過熱度より小なる第2所定過熱度以上である場
合は前記膨張弁の開度を第2所定開度だけ大きく設定す
るようにし、検知過熱度が0より小さい場合は前記膨張
弁の開度を前記第2所定開度だけ小さく設定するように
したものである。
Further, according to the invention of claim 3, in addition to the invention of claim 2, after the opening degree of the expansion valve is set, the detected superheat degree is equal to or higher than a second predetermined superheat degree which is smaller than the first predetermined superheat degree. In some cases, the opening of the expansion valve is set to be larger by a second predetermined opening, and when the detected superheat is smaller than 0, the opening of the expansion valve is set to be smaller by the second predetermined opening. It was done.

【0132】これにより、室内の冷房負荷に応じて変化
する室内熱交換器出口の冷媒過熱度をほぼ0付近に収め
るように膨張弁の開度を制御できるために、冷房負荷が
変動した場合でも、熱交換器の保有している性能は最大
限に発揮され得るという、理想状態に近い制御を実現可
能となる。
Thus, the opening degree of the expansion valve can be controlled so that the degree of superheat of the refrigerant at the outlet of the indoor heat exchanger, which varies according to the cooling load in the room, is kept close to zero, so that even if the cooling load fluctuates. In addition, it is possible to realize a control close to an ideal state, in which the performance possessed by the heat exchanger can be maximized.

【0133】また、請求項4記載の発明は、請求項1記
載の発明に加えて、膨張弁の開度設定後、冷房サイクル
のままで圧縮機が一旦停止し再起動する場合、膨張弁の
開度を、前記圧縮機が停止状態になる直前における前記
膨張弁の開度に対して第3所定開度だけ大きく設定して
前記圧縮機の運転を再起動し、前記圧縮機の運転開始か
ら所定時間経過した時点での室内入口配管温度と室内出
口配管温度との出入口温度差を第3基準温度差とし、そ
の後の前記圧縮機の運転継続中における室内出口配管温
度と室内入口配管温度との出入口温度差から前記第3基
準温度差を減算した結果を新たな検知過熱度とするもの
である。
[0133] In addition to the first aspect of the present invention, when the compressor is temporarily stopped and restarted in the cooling cycle after the opening degree of the expansion valve is set, the expansion valve may be used. The opening is set to be larger by a third predetermined opening than the opening of the expansion valve immediately before the compressor is stopped, and the operation of the compressor is restarted. The inlet / outlet temperature difference between the indoor inlet pipe temperature and the indoor outlet pipe temperature at the point in time when the predetermined time has elapsed is defined as a third reference temperature difference. The result obtained by subtracting the third reference temperature difference from the entrance / exit temperature difference is used as a new detected superheat degree.

【0134】これにより、室内の冷房負荷が変化するこ
とにより、冷房サイクル内を循環する冷媒の循環量が変
動することによる前記第3基準温度差の変化に対応する
ことが可能となる。
Thus, it is possible to cope with a change in the third reference temperature difference caused by a change in the indoor cooling load and a change in the amount of refrigerant circulating in the cooling cycle.

【0135】即ち、室内温度が設定温度に達した場合
や、冷凍サイクルが異常運転状態になって冷凍サイクル
に保護制御が動作する場合等によって、圧縮機が運転状
態から停止状態になった後、再度、圧縮機の運転を開始
する場合には、圧縮機が停止する直前の膨張弁の開度に
対して第3所定開度だけ大きく設定して、圧縮機を再起
動し、配管温検出手段により検出した室内入口配管温度
と室内出口配管温度との出入口温度差である第3基準温
度差を更新することにより、室内の冷房負荷変動に対応
した運転制御が可能になる。
That is, after the compressor has been stopped from the operating state due to, for example, the case where the indoor temperature has reached the set temperature or the case where the refrigeration cycle is in an abnormal operation state and the protection control is operated in the refrigeration cycle. When the operation of the compressor is started again, the opening degree of the expansion valve immediately before the stop of the compressor is set to be larger by a third predetermined opening degree, the compressor is restarted, and the pipe temperature detecting means By updating the third reference temperature difference, which is the difference between the inlet / outlet pipe temperature and the indoor / outlet pipe temperature detected by the above, the operation control corresponding to the change in the indoor cooling load becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるヒートポンプ式空気調和機の実施
例1の構成図
FIG. 1 is a configuration diagram of a first embodiment of a heat pump type air conditioner according to the present invention.

【図2】一般的な蒸気圧縮式ヒートポンプの冷凍サイク
ルの冷房能力比,室内出口過熱度,出入口温度差の膨張
弁開度比を示す特性図
FIG. 2 is a characteristic diagram showing a cooling capacity ratio of a refrigeration cycle of a general vapor compression heat pump, a superheat degree of an indoor outlet, and an expansion valve opening ratio of an inlet / outlet temperature difference.

【図3】実施例1のヒートポンプ式空気調和機の冷房運
転時の動作を示すフローチャート
FIG. 3 is a flowchart showing an operation of the heat pump type air conditioner of Embodiment 1 during a cooling operation.

【図4】一般的な蒸気圧縮式ヒートポンプの冷凍サイク
ルの検知過熱度SHの膨張弁開度比を示す特性図
FIG. 4 is a characteristic diagram showing an expansion valve opening ratio of a detected superheat degree SH of a refrigeration cycle of a general vapor compression heat pump.

【図5】本発明によるヒートポンプ式空気調和機の実施
例2の構成図
FIG. 5 is a configuration diagram of a heat pump type air conditioner according to a second embodiment of the present invention.

【図6】一般的な蒸気圧縮式ヒートポンプの冷凍サイク
ルの冷房能力比,室内出口過熱度,出入口温度差の膨張
弁開度比を示す特性図
FIG. 6 is a characteristic diagram showing a cooling capacity ratio of a refrigeration cycle of a general vapor compression heat pump, a superheat degree of an indoor outlet, and an expansion valve opening ratio of an inlet / outlet temperature difference.

【図7】実施例2のヒートポンプ式空気調和機の冷房運
転時の動作を示すフローチャート
FIG. 7 is a flowchart showing the operation of the heat pump type air conditioner of Embodiment 2 during the cooling operation.

【図8】本発明によるヒートポンプ式空気調和機の実施
例3の構成図
FIG. 8 is a configuration diagram of Embodiment 3 of the heat pump type air conditioner according to the present invention.

【図9】実施例3のヒートポンプ式空気調和機の冷房運
転時の動作を示すフローチャート
FIG. 9 is a flowchart showing the operation of the heat pump type air conditioner of Embodiment 3 during the cooling operation.

【図10】本発明によるヒートポンプ式空気調和機の実
施例4の構成図
FIG. 10 is a configuration diagram of a heat pump air conditioner according to a fourth embodiment of the present invention.

【図11】実施例4のヒートポンプ式空気調和機の冷房
運転時の動作を示すフローチャート
FIG. 11 is a flowchart showing the operation of the heat pump type air conditioner of Embodiment 4 during the cooling operation.

【図12】従来例のヒートポンプ式空気調和機の冷凍シ
ステム図
FIG. 12 is a refrigeration system diagram of a conventional heat pump type air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 室外熱交換器 4 室外送風機 5 冷媒分流器 7 室内熱交換器 8 室内送風機 A,B 室内ユニット Cnt1 第1制御手段 Cnt2 第2制御手段 Cnt3 第3制御手段 Cnt4 第4制御手段 CMcnt 圧縮機運転制御手段 EV パルス式電動膨張弁 EVcnt 膨張弁制御手段 Mode 運転モード検出手段 Th1 室内入口配管温センサ Th2 室内出口配管温センサ TM 時間検出手段 Tsens 配管温検出手段 DESCRIPTION OF SYMBOLS 1 Compressor 3 Outdoor heat exchanger 4 Outdoor blower 5 Refrigerant splitter 7 Indoor heat exchanger 8 Indoor blower A, B Indoor unit Cnt1 1st control means Cnt2 2nd control means Cnt3 3rd control means Cnt4 4th control means CMcnt compression Machine operation control means EV Pulse type electric expansion valve EVcnt Expansion valve control means Mode Operation mode detection means Th1 Indoor inlet pipe temperature sensor Th2 Indoor outlet pipe temperature sensor TM Time detection means Tsens Pipe temperature detection means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と室外熱交換器と室外送風機と膨
張弁とからなる室外ユニットと、冷媒分流器と室内熱交
換器と室内送風機とからなる室内ユニットとから構成さ
れ、かつ前記圧縮機,前記室外熱交換器,前記膨張弁,
前記冷媒分流器,前記室内熱交換器,前記圧縮機を順次
冷媒配管にて環状に接続して冷媒を循環させる冷房サイ
クルにおいて、 前記膨張弁と前記冷媒分流器との間の冷媒配管に設置し
た室内入口配管温センサと、前記室内熱交換器の出口集
合配管に設置した室内出口配管温センサと、前記室内入
口配管温センサ、及び前記室内出口配管温センサからの
出力を温度信号に変換する配管温検出手段と、前記冷房
サイクルの運転モードを検出する運転モード検出手段
と、前記圧縮機の運転開始から所定時間経過した時に信
号を出力する時間検出手段と、前記圧縮機の運転/停止
を行う圧縮機制御手段と、前記膨張弁の開度制御を行う
膨張弁制御手段と、前記配管温検出手段と前記運転モー
ド検出手段と前記時間検出手段とからの信号をもとに前
記圧縮機制御手段と前記膨張弁制御手段とを制御する第
1制御手段とを備え、 前記第1制御手段は、前記運転モード検出手段により冷
房モードを検出した時に、前記膨張弁制御手段により前
記膨張弁を全開にさせて前記圧縮機制御手段により前記
圧縮機の運転を開始させ、その後前記時間検出手段によ
り前記圧縮機の運転開始から所定時間経過したことを検
知した時点での前記配管温検出手段により検出した室内
出口配管温度と室内入口配管温度との出入口温度差を第
1基準温度差とし、その後の前記圧縮機の運転継続中に
おける前記配管温検出手段により検出した室内出口配管
温度と室内入口配管温度との出入口温度差から前記第1
基準温度差を減算した結果を検知過熱度として、前記検
知過熱度が第1所定過熱度以上になるまで前記膨張弁制
御手段により前記膨張弁の開度を小さくしていき、前記
検知過熱度が前記第1所定過熱度以上になった時点での
前記膨張弁の開度より第1所定開度だけ大きい開度を求
め、その求められた開度をその後の前記膨張弁の開度に
するよう前記膨張弁制御手段を制御することを特徴とす
るヒートポンプ式空気調和機。
The compressor comprises: an outdoor unit including a compressor, an outdoor heat exchanger, an outdoor blower, and an expansion valve; and an indoor unit including a refrigerant distributor, an indoor heat exchanger, and an indoor blower. , The outdoor heat exchanger, the expansion valve,
In a cooling cycle in which the refrigerant flow divider, the indoor heat exchanger, and the compressor are sequentially connected in an annular manner by a refrigerant pipe to circulate the refrigerant, the refrigerant is installed in a refrigerant pipe between the expansion valve and the refrigerant flow divider. An indoor inlet pipe temperature sensor, an indoor outlet pipe temperature sensor installed at an outlet collecting pipe of the indoor heat exchanger, a pipe for converting an output from the indoor inlet pipe temperature sensor, and an output from the indoor outlet pipe temperature sensor into a temperature signal. Temperature detection means, operation mode detection means for detecting an operation mode of the cooling cycle, time detection means for outputting a signal when a predetermined time has elapsed from the start of operation of the compressor, and operation / stop of the compressor. Compressor control means, expansion valve control means for controlling the degree of opening of the expansion valve, and pressure control based on signals from the pipe temperature detection means, the operation mode detection means and the time detection means. First control means for controlling the compressor control means and the expansion valve control means, wherein the first control means detects the expansion mode by the expansion valve control means when the cooling mode is detected by the operation mode detection means. The valve is fully opened to start the operation of the compressor by the compressor control means, and thereafter, the pipe temperature detection means at the time when the time detection means detects that a predetermined time has elapsed from the start of operation of the compressor. And the inlet / outlet temperature difference between the indoor outlet pipe temperature and the indoor inlet pipe temperature detected as the first reference temperature difference, and thereafter, the indoor outlet pipe temperature and the indoor inlet detected by the pipe temperature detecting means during continuous operation of the compressor. From the difference between the inlet and outlet temperature with the pipe temperature,
The result obtained by subtracting the reference temperature difference is used as the detected superheat degree, and the expansion valve control means decreases the opening degree of the expansion valve until the detected superheat degree becomes equal to or higher than the first predetermined superheat degree. An opening that is larger by a first predetermined opening than the opening of the expansion valve when the degree of superheating is equal to or greater than the first predetermined superheating degree is obtained, and the obtained opening is used as a subsequent opening of the expansion valve. A heat pump type air conditioner characterized by controlling the expansion valve control means.
【請求項2】 圧縮機と室外熱交換器と室外送風機と膨
張弁とからなる室外ユニットと、冷媒分流器と室内熱交
換器と室内送風機とからなる室内ユニットとから構成さ
れ、かつ前記圧縮機,前記室外熱交換器,前記膨張弁,
前記冷媒分流器,前記室内熱交換器,前記圧縮機を順次
冷媒配管にて環状に接続して冷媒を循環させる冷房サイ
クルにおいて、 前記膨張弁と前記冷媒分流器との間の冷媒配管に設置し
た室内入口配管温センサと、前記室内熱交換器の出口集
合配管に設置した室内出口配管温センサと、前記室内入
口配管温センサ、及び前記室内出口配管温センサからの
出力を温度信号に変換する配管温検出手段と、前記冷房
サイクルの運転モードを検出する運転モード検出手段
と、前記圧縮機の運転開始から所定時間経過した時に信
号を出力する時間検出手段と、前記圧縮機の運転/停止
を行う圧縮機制御手段と、前記膨張弁の開度制御を行う
膨張弁制御手段と、前記配管温検出手段と前記運転モー
ド検出手段と前記時間検出手段とからの信号をもとに前
記圧縮機制御手段と前記膨張弁制御手段とを制御する第
2制御手段とを備え、 前記第2制御手段は、前記運転モード検出手段により冷
房モードを検出した時に、前記膨張弁制御手段により前
記膨張弁を全開にさせて前記圧縮機制御手段により前記
圧縮機の運転を開始させ、その後前記時間検出手段によ
り前記圧縮機の運転開始から所定時間経過したことを検
知した時点での前記配管温検出手段により検出した室内
出口配管温度と室内入口配管温度との出入口温度差に対
して所定温度差を加算した結果を第2基準温度差とし、
その後の前記圧縮機の運転継続中における前記配管温検
出手段により検出した室内出口配管温度と室内入口配管
温度との出入口温度差から前記第2基準温度差を減算し
た結果を検知過熱度として、前記検知過熱度が第1所定
過熱度以上になるまで前記膨張弁制御手段により前記膨
張弁の開度を小さくしていき、前記検知過熱度が前記第
1所定過熱度以上になった時点での前記膨張弁の開度よ
り第1所定開度だけ大きい開度を求め、その求められた
開度をその後の前記膨張弁の開度にするよう前記膨張弁
制御手段を制御することを特徴とするヒートポンプ式空
気調和機。
2. The compressor, comprising: an outdoor unit including a compressor, an outdoor heat exchanger, an outdoor blower, and an expansion valve; and an indoor unit including a refrigerant flow divider, an indoor heat exchanger, and an indoor blower. , The outdoor heat exchanger, the expansion valve,
In a cooling cycle in which the refrigerant flow divider, the indoor heat exchanger, and the compressor are sequentially connected in an annular manner by a refrigerant pipe to circulate the refrigerant, the refrigerant is installed in a refrigerant pipe between the expansion valve and the refrigerant flow divider. An indoor inlet pipe temperature sensor, an indoor outlet pipe temperature sensor installed at an outlet collecting pipe of the indoor heat exchanger, a pipe for converting an output from the indoor inlet pipe temperature sensor, and an output from the indoor outlet pipe temperature sensor into a temperature signal. Temperature detection means, operation mode detection means for detecting an operation mode of the cooling cycle, time detection means for outputting a signal when a predetermined time has elapsed from the start of operation of the compressor, and operation / stop of the compressor. Compressor control means, expansion valve control means for controlling the degree of opening of the expansion valve, and the pressure control based on signals from the pipe temperature detection means, the operation mode detection means and the time detection means. A second control means for controlling the compressor control means and the expansion valve control means, wherein the second control means controls the expansion by the expansion valve control means when the cooling mode is detected by the operation mode detection means. The valve is fully opened to start operation of the compressor by the compressor control means, and thereafter, the pipe temperature detection means at the time when it is detected by the time detection means that a predetermined time has elapsed from the start of operation of the compressor. The result obtained by adding a predetermined temperature difference to the entrance / exit temperature difference between the indoor exit pipe temperature and the indoor entrance pipe temperature detected as a second reference temperature difference,
The difference obtained by subtracting the second reference temperature difference from the inlet / outlet temperature difference between the indoor outlet pipe temperature and the indoor inlet pipe temperature detected by the pipe temperature detecting means during the subsequent operation of the compressor is defined as a detected superheat degree. The degree of opening of the expansion valve is reduced by the expansion valve control means until the detected degree of superheat is equal to or greater than a first predetermined degree of superheat. A heat pump, wherein an opening degree larger than the opening degree of the expansion valve by a first predetermined opening degree is obtained, and the expansion valve control means is controlled so that the obtained opening degree becomes a subsequent opening degree of the expansion valve. Type air conditioner.
【請求項3】 圧縮機と室外熱交換器と室外送風機と膨
張弁とからなる室外ユニットと、冷媒分流器と室内熱交
換器と室内送風機とからなる室内ユニットとから構成さ
れ、かつ前記圧縮機,前記室外熱交換器,前記膨張弁,
前記冷媒分流器,前記室内熱交換器,前記圧縮機を順次
冷媒配管にて環状に接続して冷媒を循環させる冷房サイ
クルにおいて、 前記膨張弁と前記冷媒分流器との間の冷媒配管に設置し
た室内入口配管温センサと、前記室内熱交換器の出口集
合配管に設置した室内出口配管温センサと、前記室内入
口配管温センサ、及び前記室内出口配管温センサからの
出力を温度信号に変換する配管温検出手段と、前記冷房
サイクルの運転モードを検出する運転モード検出手段
と、前記圧縮機の運転開始から所定時間経過した時に信
号を出力する時間検出手段と、前記圧縮機の運転/停止
を行う圧縮機制御手段と、前記膨張弁の開度制御を行う
膨張弁制御手段と、前記配管温検出手段と前記運転モー
ド検出手段と前記時間検出手段とからの信号をもとに前
記圧縮機制御手段と前記膨張弁制御手段とを制御する第
3制御手段とを備え、 前記第3制御手段は、前記運転モード検出手段により冷
房モードを検出した時に、前記膨張弁制御手段により前
記膨張弁を全開にさせて前記圧縮機制御手段により前記
圧縮機の運転を開始させ、その後前記時間検出手段によ
り前記圧縮機の運転開始から所定時間経過したことを検
知した時点での前記配管温検出手段により検出した室内
出口配管温度と室内入口配管温度との出入口温度差に対
して所定温度差を加算した結果を第2基準温度差とし、
その後の前記圧縮機の運転継続中における前記配管温検
出手段により検出した室内出口配管温度と室内入口配管
温度との出入口温度差から前記第2基準温度差を減算し
た結果を検知過熱度として、前記検知過熱度が第1所定
過熱度以上になるまで前記膨張弁制御手段により前記膨
張弁の開度を小さくしていき、前記検知過熱度が前記第
1所定過熱度以上になった時点での前記膨張弁の開度よ
り第1所定開度だけ大きい開度を求め、その求められた
開度をその後の前記膨張弁の開度にするよう前記膨張弁
制御手段を制御し、その後、前記検知過熱度が前記第1
所定過熱度より小なる第2所定過熱度以上である場合は
前記膨張弁の開度を第2所定開度だけ大きく設定するよ
う前記膨張弁制御手段を制御し、前記検知過熱度が0よ
り小さい場合は前記膨張弁の開度を前記第2所定開度だ
け小さく設定するよう前記膨張弁制御手段を制御し、前
記検知過熱度が0以上かつ前記第2所定過熱度未満の場
合は前記膨張弁の開度を維持するように前記膨張弁制御
手段を制御することを特徴とするヒートポンプ式空気調
和機。
3. The compressor, comprising: an outdoor unit including a compressor, an outdoor heat exchanger, an outdoor blower, and an expansion valve; and an indoor unit including a refrigerant flow divider, an indoor heat exchanger, and an indoor blower. , The outdoor heat exchanger, the expansion valve,
In a cooling cycle in which the refrigerant flow divider, the indoor heat exchanger, and the compressor are sequentially connected in an annular manner by a refrigerant pipe to circulate the refrigerant, the refrigerant is installed in a refrigerant pipe between the expansion valve and the refrigerant flow divider. An indoor inlet pipe temperature sensor, an indoor outlet pipe temperature sensor installed at an outlet collecting pipe of the indoor heat exchanger, a pipe for converting an output from the indoor inlet pipe temperature sensor, and an output from the indoor outlet pipe temperature sensor into a temperature signal. Temperature detection means, operation mode detection means for detecting an operation mode of the cooling cycle, time detection means for outputting a signal when a predetermined time has elapsed from the start of operation of the compressor, and operation / stop of the compressor. Compressor control means, expansion valve control means for controlling the degree of opening of the expansion valve, and pressure control based on signals from the pipe temperature detection means, the operation mode detection means and the time detection means. Third control means for controlling the compressor control means and the expansion valve control means, wherein the third control means controls the expansion by the expansion valve control means when the cooling mode is detected by the operation mode detection means. The valve is fully opened to start the operation of the compressor by the compressor control means, and thereafter, the pipe temperature detection means at the time when the time detection means detects that a predetermined time has elapsed from the start of operation of the compressor. A result obtained by adding a predetermined temperature difference to an entrance / exit temperature difference between the indoor exit pipe temperature and the indoor entrance pipe temperature detected by the second reference temperature difference,
The result obtained by subtracting the second reference temperature difference from the inlet / outlet temperature difference between the indoor outlet pipe temperature and the indoor inlet pipe temperature detected by the pipe temperature detecting means during the subsequent operation of the compressor as the detected superheat degree, The degree of opening of the expansion valve is reduced by the expansion valve control means until the detected degree of superheat becomes greater than or equal to a first predetermined degree of superheat. An opening degree larger than the opening degree of the expansion valve by a first predetermined opening degree is obtained, and the expansion valve control means is controlled so that the obtained opening degree becomes a subsequent opening degree of the expansion valve. The degree is the first
If the degree of superheat is equal to or greater than a second predetermined degree of superheat, which is smaller than the predetermined degree of superheat, the expansion valve control means is controlled to set the degree of opening of the expansion valve to be larger by the second degree of superposition, and the detected degree of superheat is smaller than zero. In this case, the expansion valve control means is controlled so that the opening degree of the expansion valve is set smaller by the second predetermined degree of opening. If the detected degree of superheat is not less than 0 and less than the second predetermined degree of superheating, the expansion valve is controlled. A heat pump type air conditioner characterized by controlling the expansion valve control means so as to maintain the opening degree of the heat pump.
【請求項4】 圧縮機と室外熱交換器と室外送風機と膨
張弁とからなる室外ユニットと、冷媒分流器と室内熱交
換器と室内送風機とからなる室内ユニットとから構成さ
れ、かつ前記圧縮機,前記室外熱交換器,前記膨張弁,
前記冷媒分流器,前記室内熱交換器,前記圧縮機を順次
冷媒配管にて環状に接続して冷媒を循環させる冷房サイ
クルにおいて、 前記膨張弁と前記冷媒分流器との間の冷媒配管に設置し
た室内入口配管温センサと、前記室内熱交換器の出口集
合配管に設置した室内出口配管温センサと、前記室内入
口配管温センサ、及び前記室内出口配管温センサからの
出力を温度信号に変換する配管温検出手段と、前記冷房
サイクルの運転モードを検出する運転モード検出手段
と、前記圧縮機の運転開始から所定時間経過した時に信
号を出力する時間検出手段と、前記圧縮機の運転/停止
を行う圧縮機制御手段と、前記膨張弁の開度制御を行う
膨張弁制御手段と、前記配管温検出手段と前記運転モー
ド検出手段と前記時間検出手段とからの信号をもとに前
記圧縮機制御手段と前記膨張弁制御手段とを制御する第
4制御手段とを備え、 前記第4制御手段は、前記運転モード検出手段により冷
房モードを検出した時に、前記膨張弁制御手段により前
記膨張弁を全開にさせて前記圧縮機制御手段により前記
圧縮機の運転を開始させ、その後前記時間検出手段によ
り前記圧縮機の運転開始から所定時間経過したことを検
知した時点での前記配管温検出手段により検出した室内
出口配管温度と室内入口配管温度との出入口温度差を第
1基準温度差とし、その後の前記圧縮機の運転継続中に
おける前記配管温検出手段により検出した室内出口配管
温度と室内入口配管温度との出入口温度差から前記第1
基準温度差を減算した結果を検知過熱度として、前記検
知過熱度が第1所定過熱度以上になるまで前記膨張弁制
御手段により前記膨張弁の開度を小さくしていき、前記
検知過熱度が前記第1所定過熱度以上になった時点での
前記膨張弁の開度より第1所定開度だけ大きい開度を求
め、その求められた開度をその後の前記膨張弁の開度に
するよう前記膨張弁制御手段を制御し、その後、前記運
転モード検出手段にて冷房サイクルを検出中であり、か
つ前記圧縮機が運転状態から停止状態になった後に再
度、前記圧縮機の運転を開始する場合、前記膨張弁の開
度を前記圧縮機が停止状態になる直前における前記膨張
弁の開度に対して第3所定開度だけ大きく設定するよう
に前記膨張弁制御手段を制御させて前記圧縮機の運転を
再起動し、前記時間検出手段により前記圧縮機の運転開
始から所定時間経過したことを検知した時点での前記配
管温検出手段により検出した室内入口配管温度と室内出
口配管温度との出入口温度差を第3基準温度差とし、そ
の後の前記圧縮機の運転継続中における前記配管温検出
手段により検出した室内出口配管温度と室内入口配管温
度との出入口温度差から前記第3基準温度差を減算した
結果を新たな検知過熱度とすることを特徴とするヒート
ポンプ式空気調和機。
4. The compressor, comprising: an outdoor unit including a compressor, an outdoor heat exchanger, an outdoor blower, and an expansion valve; and an indoor unit including a refrigerant distributor, an indoor heat exchanger, and an indoor blower. , The outdoor heat exchanger, the expansion valve,
In a cooling cycle in which the refrigerant flow divider, the indoor heat exchanger, and the compressor are sequentially connected in an annular manner by a refrigerant pipe to circulate the refrigerant, the refrigerant is installed in a refrigerant pipe between the expansion valve and the refrigerant flow divider. An indoor inlet pipe temperature sensor, an indoor outlet pipe temperature sensor installed at an outlet collecting pipe of the indoor heat exchanger, a pipe for converting an output from the indoor inlet pipe temperature sensor, and an output from the indoor outlet pipe temperature sensor into a temperature signal. Temperature detection means, operation mode detection means for detecting an operation mode of the cooling cycle, time detection means for outputting a signal when a predetermined time has elapsed from the start of operation of the compressor, and operation / stop of the compressor. Compressor control means, expansion valve control means for controlling the degree of opening of the expansion valve, and pressure control based on signals from the pipe temperature detection means, the operation mode detection means and the time detection means. A fourth control unit for controlling the compressor control unit and the expansion valve control unit, wherein the fourth control unit is configured to control the expansion by the expansion valve control unit when the cooling mode is detected by the operation mode detection unit. The valve is fully opened to start the operation of the compressor by the compressor control means, and thereafter, the pipe temperature detection means at the time when the time detection means detects that a predetermined time has elapsed from the start of operation of the compressor. And the inlet / outlet temperature difference between the indoor outlet pipe temperature and the indoor inlet pipe temperature detected as the first reference temperature difference, and thereafter, the indoor outlet pipe temperature and the indoor inlet detected by the pipe temperature detecting means during continuous operation of the compressor. From the difference between the inlet and outlet temperature with the pipe temperature,
The result obtained by subtracting the reference temperature difference is used as the detected superheat degree, and the expansion valve control means decreases the opening degree of the expansion valve until the detected superheat degree becomes equal to or higher than the first predetermined superheat degree. An opening that is larger by a first predetermined opening than the opening of the expansion valve when the degree of superheating is equal to or greater than the first predetermined superheating degree is obtained, and the obtained opening is used as a subsequent opening of the expansion valve. Controlling the expansion valve control means, and thereafter, after the cooling cycle is being detected by the operation mode detection means, and after the compressor is changed from the operation state to the stop state, the operation of the compressor is started again. In this case, the expansion valve control means is controlled so that the opening of the expansion valve is set to be larger by a third predetermined opening than the opening of the expansion valve immediately before the compressor is stopped, and the compression is performed. Restart the machine operation for the time An outlet / inlet temperature difference between the indoor inlet pipe temperature and the indoor outlet pipe temperature detected by the pipe temperature detecting means at the time when it is detected that a predetermined time has elapsed from the start of operation of the compressor by the outlet means is defined as a third reference temperature difference. The result of subtracting the third reference temperature difference from the inlet / outlet temperature difference between the indoor outlet pipe temperature and the indoor inlet pipe temperature detected by the pipe temperature detecting means during the subsequent operation of the compressor is a new detected superheat degree. A heat pump type air conditioner characterized by the following.
JP26116298A 1998-09-16 1998-09-16 Heat pump type air conditioner Pending JP2000088363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26116298A JP2000088363A (en) 1998-09-16 1998-09-16 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26116298A JP2000088363A (en) 1998-09-16 1998-09-16 Heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JP2000088363A true JP2000088363A (en) 2000-03-31

Family

ID=17357986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26116298A Pending JP2000088363A (en) 1998-09-16 1998-09-16 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JP2000088363A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304793C (en) * 2003-04-15 2007-03-14 株式会社山武 Speed control method and device of circulating pump
JP2008180458A (en) * 2007-01-25 2008-08-07 Fuji Electric Retail Systems Co Ltd Refrigerant flow controller
JP2013174396A (en) * 2012-02-27 2013-09-05 Fuji Electric Co Ltd Auger type ice maker and cooling device
US20230167993A1 (en) * 2021-12-01 2023-06-01 Haier Us Appliance Solutions, Inc. Method of operating an electronic expansion valve in an air conditioner unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304793C (en) * 2003-04-15 2007-03-14 株式会社山武 Speed control method and device of circulating pump
JP2008180458A (en) * 2007-01-25 2008-08-07 Fuji Electric Retail Systems Co Ltd Refrigerant flow controller
JP2013174396A (en) * 2012-02-27 2013-09-05 Fuji Electric Co Ltd Auger type ice maker and cooling device
US20230167993A1 (en) * 2021-12-01 2023-06-01 Haier Us Appliance Solutions, Inc. Method of operating an electronic expansion valve in an air conditioner unit
US11841151B2 (en) * 2021-12-01 2023-12-12 Haier Us Appliance Solutions, Inc. Method of operating an electronic expansion valve in an air conditioner unit

Similar Documents

Publication Publication Date Title
EP0586193B1 (en) Refrigeration cycle
JP3756800B2 (en) Air conditioning apparatus and air conditioning method
EP2693136A1 (en) Expansion valve control device, heat source machine, and expansion valve control method
KR101445992B1 (en) Device for estimating flowrate of heating medium, heat source device, and method for estimating flowrate of heating medium
GB2251959A (en) Multi-type air conditioner system with optimum control for gaseous flow adjustment valve and liquid expansion valve
CN109237671B (en) Air conditioner using steam injection cycle and control method thereof
JP2002081767A (en) Air conditioner
JP2000146322A (en) Refrigerating cycle
JP2006200890A (en) Air conditioner
JP5881339B2 (en) Air conditioner
KR101329752B1 (en) Air conditioning system
JP4997012B2 (en) Refrigeration equipment
JP3334222B2 (en) Air conditioner
JP2000088363A (en) Heat pump type air conditioner
JP2007101177A (en) Air conditioner or refrigerating cycle device
EP2084464A2 (en) Controlling method of air conditioner
JP2000304373A (en) Engine heat pump
JPH10185342A (en) Heat pump type air conditioner
JP2000088362A (en) Heat pump type air conditioner
JPH10238867A (en) Heat pump type air conditioner
JP6554903B2 (en) Air conditioner
JPS63290354A (en) Heat pump type air conditioner
JPH10288406A (en) Heat pump type air conditioner
JPH11201561A (en) Heat pump type air conditioner
JPH10141796A (en) Heat pump system