JPH0922897A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device

Info

Publication number
JPH0922897A
JPH0922897A JP17261395A JP17261395A JPH0922897A JP H0922897 A JPH0922897 A JP H0922897A JP 17261395 A JP17261395 A JP 17261395A JP 17261395 A JP17261395 A JP 17261395A JP H0922897 A JPH0922897 A JP H0922897A
Authority
JP
Japan
Prior art keywords
forming
metal wiring
insulating film
semiconductor device
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17261395A
Other languages
Japanese (ja)
Inventor
Yukio Morozumi
幸男 両角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP17261395A priority Critical patent/JPH0922897A/en
Publication of JPH0922897A publication Critical patent/JPH0922897A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable the supply of a high quality fine semiconductor device at lower cost and stably by improving the easiness of the coating of metal wiring, the contact characteristic of through holes and the adhesion of an interlayer film and a protecting film. SOLUTION: After opening a contact hole 20 in an interlayer insulating film 17, the interlayer insulating film 17 is plasma etched at the pressure in the neighborhood of the atmosphere and treated by smoothing, the upper edge of the hole 20 is tapered and after plasma oxidizing the surface of the substrate 11 of the hole 20 at the pressure in the neighborhood of the atmosphere, metal wiring 18 is applied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特に微細化された層間配線の接続技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a technique for connecting miniaturized interlayer wiring.

【0002】[0002]

【従来の技術】従来、多層配線構造を含む半導体装置の
製造方法は、例えば、P型,N型ウェル等が形成された
シリコン基板に、選択酸化法等でフィールド絶縁膜を形
成してから、そのアクティブ領域にゲート酸化膜,ゲー
ト電極,シリコン酸化膜でなる側壁スペーサーやソー
ス,ドレイン等の不純物層を形成し、更に第1の層間絶
縁膜として気相反応させたシリコン酸化膜やこれにBP
SG(ボロン、リンガラス)膜を約4000〜1000
0Å程度積層させ900℃前後でアニールし平坦化処理
する。次にゲート電極や不純物層からの電極引出しの
為、約0.5〜0.8μmのコンタクトホールとなる接
続孔を、フッ酸を含む水溶液による等方エッチングと反
応性イオンエッチャー(RIE)による異方性ドライエ
ッチングを組み合わせて形成後、AlにSiやCu等を
添加した合金をスパッタ後、選択エッチングし第1の金
属配線を施す。更に多層構造配線構造とする為、第2の
層間絶縁膜として、例えば特公昭51−21753,特
開昭63−208243やS.Wolf,SILICON PROSESSING
FOR THE VLSI ERA,RATTICE PRESS,section4.4.9,に示さ
れるようにSiH4 あるいはTEOS[Si(OC
254]とO2 ,O3やN2 Oの様な酸化性ガスをプラ
ズマや熱反応させた第1のシリコン酸化膜を5000〜
7000Å程度気相成長させ、更に微細化構造に於ける
平坦化の必要性から有機溶剤にシロキサンポリマー等を
溶かした塗布ガラスをスピンコートし、第1の金属配線
に支障ない温度でアニ−ルする。次に該塗布ガラスとシ
リコン酸化膜の所望量をドライエッチングし、第2のシ
リコン酸化膜を1000〜5000Å成長させ層間絶縁
膜総厚みとして5000〜8000Åとし、次にスルー
ホールを開孔した後6000〜10000Å程度のAl
合金をスパッタし、選択エッチングで第2の金属配線を
施し、最終保護絶縁膜を形成後ボンディングパッド部を
開孔している。
2. Description of the Related Art Conventionally, a method of manufacturing a semiconductor device including a multi-layer wiring structure is, for example, after forming a field insulating film by a selective oxidation method or the like on a silicon substrate on which P-type and N-type wells are formed. A gate oxide film, a gate electrode, a sidewall spacer made of a silicon oxide film, an impurity layer such as a source and a drain are formed in the active region, and a vapor-phase reacted silicon oxide film is formed as a first interlayer insulating film, or BP on the silicon oxide film.
SG (boron, phosphorus glass) film about 4000-1000
Laminate about 0Å and anneal at around 900 ° C to flatten. Next, in order to extract the electrode from the gate electrode and the impurity layer, the contact hole of about 0.5 to 0.8 μm, which is a contact hole, is changed by isotropic etching with an aqueous solution containing hydrofluoric acid and reactive ion etcher (RIE). After forming by combining isotropic dry etching, an alloy in which Si, Cu or the like is added to Al is sputtered and then selectively etched to form a first metal wiring. Further, in order to have a multilayer structure wiring structure, as the second interlayer insulating film, for example, Japanese Patent Publication No. 51-21753, Japanese Unexamined Patent Publication No. 63-208243, S. Wolf, SILICON PROSESSING
FOR THE VLSI ERA, RATTICE PRESS, section 4.4.9, as shown in SiH4 or TEOS [Si (OC
2 H 5 ) 4 ] and the first silicon oxide film formed by thermally reacting an oxidizing gas such as O 2 , O 3 or N 2 O with plasma or 5000
Vapor growth of about 7,000Å and spin coating of coated glass with siloxane polymer dissolved in an organic solvent due to the need for flattening in the miniaturized structure, and annealing at a temperature that does not interfere with the first metal wiring. . Then, a desired amount of the coated glass and the silicon oxide film is dry-etched to grow a second silicon oxide film by 1000 to 5000Å to a total interlayer insulating film thickness of 5000 to 8000Å, and then a through hole is opened and then 6000. Al of about 10000Å
The alloy is sputtered, the second metal wiring is formed by selective etching, the bonding pad portion is opened after forming the final protective insulating film.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記従来
の半導体装置の製造方法に於ては、次のような問題点が
ある。
However, the above-mentioned conventional method of manufacturing a semiconductor device has the following problems.

【0004】まず、微細化によってコンタクトホールや
スルーホール等の接続孔のアスペクト比が大きくなり金
属配線の付き回りが厳しくなってきた。従って接続孔の
開孔時の等方性エッチ量を多くし、テーパーを緩やかに
しようとする試みもあるが、BPSGのフッ酸に対する
エッチ速度が大きく、しみ込み等が発生し隣ホールやゲ
ート電極にまで開孔が及んでしまうことがあり、接続孔
の安定形成が困難なことからフッ酸によるテーパーエッ
チは不可となってきた。又RIE等だけでは異方性が強
くテーパー開孔が難しく、微細化により配線、マイグレ
ーション等の信頼性確保が困難となってきた。
First, due to the miniaturization, the aspect ratio of contact holes such as contact holes and through holes has become large, and the distribution of metal wiring has become difficult. Therefore, there is an attempt to increase the amount of isotropic etching at the time of opening the contact hole and to make the taper gentle, but the etching rate of BPSG with respect to hydrofluoric acid is large, so that the penetration occurs and the adjacent hole or gate electrode is formed. Since there are cases where holes are formed even up to the point where it is difficult to stably form connection holes, taper etching with hydrofluoric acid has become impossible. Also, RIE alone has a strong anisotropy, making it difficult to form a tapered hole, and it has become difficult to secure reliability such as wiring and migration due to miniaturization.

【0005】又、金属配線材料にはAlが用いられる
が、不純物層のSiとの合金化によるPN接合の突き抜
けを防ぐ為に、予めAlにSiを0.2〜2.0%程度
含有させた膜をスパッタ形成させるが、逆にスパッタ時
や後工程の熱でコンタクトホール内部の基板表面に金属
配線中のSiが低温固相成長し、コンタクト内が高抵抗
のSiノジュールで埋められることになり、接続抵抗の
増大やばらつきが問題となっていた。更に、第1と第2
金属配線の層間絶縁膜は、平坦化の為に有機塗布ガラス
を用いているが、その表面は疎水性の為、積層させる第
2のシリコン酸化膜との密着性が悪く、後工程でのスト
レスにより、層間膜や保護膜に剥離や膨れが発生し、品
質信頼性上の問題となっていた。
Although Al is used as the metal wiring material, in order to prevent the penetration of the PN junction due to the alloying of the impurity layer with Si, Al is made to contain Si in an amount of 0.2 to 2.0% in advance. However, the Si in the metal wiring grows on the substrate surface inside the contact hole at low temperature by solid phase growth at the substrate surface inside the contact hole due to the heat during sputtering or the subsequent process, and the inside of the contact is filled with high resistance Si nodules. Therefore, an increase or variation in connection resistance has been a problem. Furthermore, the first and second
The interlayer insulating film of the metal wiring is made of organically coated glass for flattening, but its surface is hydrophobic, so its adhesion to the second silicon oxide film to be laminated is poor, and stress in the subsequent process is increased. As a result, peeling or swelling occurs in the interlayer film or the protective film, which has been a problem in quality reliability.

【0006】しかる本発明はかかる問題点を解決するも
ので、大気圧近傍の圧力下で層間膜や接続孔をプラスマ
酸化またはプラズマエッチすることで、層間絶縁膜を含
めた金属配線回りの品質に係わる特性と歩留り向上を図
り、且つ容易な工程による微細,多機能半導体装置の低
コスト安定供給を目的としたものである。
The present invention, however, solves such a problem. By performing plasma oxidation or plasma etching of an interlayer film or a contact hole under a pressure near the atmospheric pressure, the quality around metal wiring including the interlayer insulating film is improved. It is intended to improve the characteristics and yields involved and to stably supply a fine and multifunctional semiconductor device at low cost by an easy process.

【0007】[0007]

【課題を解決するための手段】[Means for Solving the Problems]

(手段1)上記課題を解決するために本発明の半導体装
置の製造方法は、所望表面に半導体素子等が形成された
基板上に、少なくとも、絶縁膜を形成する工程、該絶縁
膜に下層半導体素子から電気的接続を取る為の接続孔を
形成する工程、所定の気体による大気圧近傍の圧力下で
発生させたプラズマにより該絶縁膜の所望量をエッチン
グした後、金属配線を形成する工程を具備したことを特
徴とする。
(Means 1) In order to solve the above problems, a semiconductor device manufacturing method according to the present invention includes a step of forming at least an insulating film on a substrate having a semiconductor element or the like formed on a desired surface, and a lower layer semiconductor on the insulating film. A step of forming a connection hole for electrical connection from the element, a step of forming a metal wiring after etching a desired amount of the insulating film with plasma generated under a pressure near atmospheric pressure by a predetermined gas. It is characterized by having.

【0008】(手段2)更に、本発明の半導体装置の製
造方法は、所望表面に半導体素子等が形成された基板上
に、少なくとも、絶縁膜を形成する工程、該絶縁膜に下
層半導体素子から電気的接続を取る為の接続孔を形成す
る工程、大気圧近傍の圧力下で酸化性ガスを励起させた
プラズマ処理を施した後、金属配線を形成する工程を具
備したことを特徴とする。
(Means 2) Furthermore, in the method of manufacturing a semiconductor device of the present invention, at least a step of forming an insulating film on a substrate having a semiconductor element or the like formed on a desired surface, the insulating film being formed from a lower semiconductor element The method is characterized by including a step of forming a connection hole for electrical connection and a step of forming a metal wiring after performing a plasma treatment in which an oxidizing gas is excited under a pressure near atmospheric pressure.

【0009】(手段3)更に、本発明の半導体装置の製
造方法は、所望表面に半導体素子等が形成された基板上
に、少なくとも、絶縁膜を形成する工程、該絶縁膜に下
層半導体素子から電気的接続を取る為の接続孔を形成す
る工程、スパッタにより導電性のバリア層を成膜する工
程、大気圧近傍の圧力下で酸化性ガスを励起させたプラ
ズマ処理を施した後、金属配線を形成する工程を具備し
たことを特徴とする。
(Means 3) Further, in the method of manufacturing a semiconductor device of the present invention, at least a step of forming an insulating film on a substrate having a semiconductor element or the like formed on a desired surface thereof, from the lower semiconductor element to the insulating film. Metal wiring after the process of forming a connection hole for electrical connection, the process of forming a conductive barrier layer by sputtering, and the plasma treatment in which an oxidizing gas is excited under a pressure near atmospheric pressure. Is provided.

【0010】(手段4)更に、本発明の半導体装置の製
造方法は、多層配線構造を有する半導体装置に於いて、
少なくとも、所望表面に素子領域が形成された半導体基
板上に、第1の金属配線を形成する工程、第1のシリコ
ン酸化膜を積層させる工程、所定の気体による大気圧近
傍の圧力下で発生させたプラズマにより該絶縁膜の所望
量をエッチングする工程、塗布ガラスを積層する工程、
第2のシリコン酸化膜を積層させる工程、第1の金属配
線に電気的接続を取る為の接続孔を形成した後、第2の
金属配線を形成する工程を具備したことを特徴とする。
(Means 4) Further, in the method for manufacturing a semiconductor device of the present invention, in the semiconductor device having a multilayer wiring structure,
At least, a step of forming a first metal wiring, a step of laminating a first silicon oxide film on a semiconductor substrate having a device surface formed on a desired surface, a step of laminating a first silicon oxide film, A step of etching a desired amount of the insulating film with plasma, a step of laminating coated glass,
The method is characterized by including a step of laminating a second silicon oxide film and a step of forming a second metal wiring after forming a connection hole for making an electrical connection to the first metal wiring.

【0011】(手段5)又、本発明の半導体装置の製造
方法は、多層配線構造を有する半導体装置に於いて、少
なくとも、所望表面に素子領域が形成された半導体基板
上に第1の金属配線を形成する工程、第1のシリコン酸
化膜を積層させる工程、塗布ガラスを積層する工程、大
気圧近傍の圧力下で酸化性ガスを励起させたプラズマ処
理を行う工程、第2のシリコン酸化膜を積層させる工
程、第1の金属配線に電気的接続を取る為の接続孔を形
成した後、第2の金属配線を形成する工程を具備したこ
とを特徴とする。
(Means 5) Further, in the semiconductor device manufacturing method of the present invention, in a semiconductor device having a multilayer wiring structure, at least a first metal wiring is formed on a semiconductor substrate having an element region formed on a desired surface. Forming a first silicon oxide film, laminating a first silicon oxide film, laminating a coated glass, performing a plasma treatment in which an oxidizing gas is excited under a pressure near atmospheric pressure, and forming a second silicon oxide film. The method is characterized by including a step of laminating and a step of forming a second metal wiring after forming a connection hole for making an electrical connection in the first metal wiring.

【0012】[0012]

【作用】手段1によれば、微細接続孔上端にテーパー形
状を容易に形成することが可能となり、金属配線の付き
回りが改善され、品質の向上が図れる。
According to the means 1, it is possible to easily form a taper shape at the upper end of the fine connection hole, improve the distribution of the metal wiring, and improve the quality.

【0013】手段2によれば、シリコン基板表面の接続
孔内に配線金属からのSiが固相成長することを防止
し、接続抵抗の増加を抑え半導体装置の特性向上が図れ
る。
According to the means 2, the solid phase growth of Si from the wiring metal in the connection hole on the surface of the silicon substrate can be prevented, the increase in the connection resistance can be suppressed, and the characteristics of the semiconductor device can be improved.

【0014】手段3によれば、接続孔に於ける金属配線
へのバリア特性を増加させ長期信頼性の向上が図れる。
According to the means 3, the barrier property to the metal wiring in the connection hole can be increased and the long-term reliability can be improved.

【0015】手段4によれば、塗布ガラスをコートする
前に層間絶縁膜が容易にスムージングされ、更なる層間
膜の平坦化が図れる。
According to the means 4, the interlayer insulating film is easily smoothed before coating the coated glass, and the interlayer film can be further flattened.

【0016】手段5によれば、有機塗布ガラスの表面を
容易に親水性に変化させ、層間膜や保護膜の剥離や膨れ
を防止し、信頼性の向上が図れる。
According to the means 5, the surface of the organic coated glass can be easily made hydrophilic, and peeling or swelling of the interlayer film or the protective film can be prevented, and the reliability can be improved.

【0017】[0017]

【実施例】 本発明の一実施例として、サブミクロンル
ールのシリコンゲートCMOS集積回路を製造したが、
その工程に基づき図1(a)〜図1(c)で説明する。
比抵抗10Ωcmのシリコン基板11にP型,N型ウェ
ルをつくり、選択酸化によりフィールド絶縁膜12を形
成しそのアクティブ領域にゲート酸化膜13,Poly
Siと高融点シリサイドを積層したポリサイド構造でシ
リコン酸化膜の即壁スペーサー15をもつゲート電極1
4を形成し、NchにはPやAs、PchにはBやBF
2をイオン注入したLDD(Lightly Dope
d Drain)構造の不純物層16を形成した。次に
SiH4 とN2O を減圧熱反応させた約1500Åのシ
リコン酸化膜と常圧で熱反応させたBPSG膜を気相成
長で積層させ、900℃の窒素雰囲気中でフローさせ平
坦化した層間絶縁膜17を形成した。次にフォトレジス
トをマスクに、CHF3 とCF4にArやHe等の不活
性ガスをキャリアガスとしたRIEで異方性エッチング
し0.5〜0.8μmのコンタクトホール20を開孔
後、フォトレジストを剥離した。
EXAMPLE As an example of the present invention, a submicron rule silicon gate CMOS integrated circuit was manufactured.
It demonstrates based on the process in FIG.1 (a) -FIG.1 (c).
P-type and N-type wells are formed in a silicon substrate 11 having a specific resistance of 10 Ωcm, a field insulating film 12 is formed by selective oxidation, and a gate oxide film 13 and Poly are formed in the active region.
Gate electrode 1 having a polycide structure in which Si and high melting point silicide are laminated and having an immediate wall spacer 15 of a silicon oxide film
4 is formed, P and As for Nch, B and BF for Pch
LDD (Lightly Dope) in which 2 is ion-implanted
An impurity layer 16 having a d Drain) structure was formed. Next, a silicon oxide film of about 1500 Å, which was obtained by heat-reacting SiH 4 and N 2 O under reduced pressure, and a BPSG film, which was heat-reacted at atmospheric pressure, were laminated by vapor phase growth, and flowed in a nitrogen atmosphere at 900 ° C. to be flattened. The interlayer insulating film 17 was formed. Next, using a photoresist as a mask, CHF 3 and CF 4 are anisotropically etched by RIE using an inert gas such as Ar or He as a carrier gas to open a contact hole 20 of 0.5 to 0.8 μm. The photoresist was stripped.

【0018】続けて、図3に模式図を示すエッチング装
置を用い大気圧下でCF4,CHF3と窒素ガスを導入
し、13.56MHz,80wで約60秒間層間絶縁膜
17をエッチングすることで、コンタクトホール20の
上端はテーパー化が進むと共に全体がスムージングされ
た。図3では、Alでなる下部電極33の表面は100
〜150μmの厚みでアルマイト32化されておりシリ
コン基板31の保持をも兼ねている。対抗する上部電極
34はステンレスの多孔質材で、更に表面を多孔質セラ
ミックでなる誘電体35で覆い、13.56MHz、1
50Wの高周波電源36に接続され、上部ガス導入孔3
7から所定ガスを導入し、大気近傍圧力下の電極間(間
隔3〜10mm)でプラズマを励起し、エッチングや酸
化処理をさせる様にしたものである。又、シリコン基板
31が自動搬送出来るような移載機を設け、全体を石英
もしくはステンレスのチャンバー形式とし、エキゾスタ
ー排気ラインも設けてある。大気搬送処理が可能で処理
能力が高く、大気圧近傍の圧力下でプラズマを発生させ
られる為、反応管内と大気を分離が不要であり、コス
ト、作業性にとって有利で、真空引きやパージ工程の繰
り返しが無い為パーティクルの発生が少ない。この大気
圧プラズマエッチは、異方性が弱く、深くて狭いコンタ
クトの底領域のSiはエッチングされにくく都合がよ
い。ここでは実施例としてコンタクトホールの形成時に
大気圧近傍でのプラズマ処理によるホール上端のテーパ
ー化について説明したが、Al配線間を接続するスルー
ホールにも応用出来るものである。続けて、同じ装置で
大気近傍圧力下で20SLMのHe中に600SCCM
の酸素を混合したガスを導入,励起させたプラズマ中に
15〜60秒放置した直後に、1.0%のSiを含むA
l−Cu合金をスパッタした後、選択エッチし金属配線
18とし、プラズマシリコン窒化を保護膜とし、ボンデ
ィングパッドを開孔した。
Subsequently, CF 4 and CHF 3 and nitrogen gas are introduced under atmospheric pressure by using an etching apparatus shown in FIG. 3 to etch the interlayer insulating film 17 at 13.56 MHz and 80 w for about 60 seconds. Then, the upper end of the contact hole 20 was gradually tapered and smoothed as a whole. In FIG. 3, the surface of the lower electrode 33 made of Al is 100
It is formed into alumite 32 with a thickness of up to 150 μm and also serves to hold the silicon substrate 31. The opposing upper electrode 34 is made of a stainless porous material, and the surface is covered with a dielectric material 35 made of a porous ceramic.
It is connected to a high-frequency power source 36 of 50 W, and the upper gas inlet 3
A predetermined gas is introduced from No. 7 and plasma is excited between the electrodes (interval 3 to 10 mm) under a pressure near the atmosphere to perform etching or oxidation treatment. Further, a transfer machine capable of automatically carrying the silicon substrate 31 is provided, the whole is made of a quartz or stainless chamber type, and an exhaust line for an exostar is also provided. Since it can be transported to the atmosphere and has a high processing capacity, and plasma can be generated under a pressure near atmospheric pressure, there is no need to separate the atmosphere inside the reaction tube from the atmosphere, which is advantageous in terms of cost and workability, and can be used for vacuuming and purging processes. Since there are no repetitions, few particles are generated. This atmospheric pressure plasma etching is convenient because the anisotropy is weak and Si in the bottom region of the deep and narrow contact is hardly etched. Although the taper of the upper end of the hole by the plasma treatment in the vicinity of the atmospheric pressure at the time of forming the contact hole has been described as an example, the present invention can be applied to a through hole connecting Al wirings. Continuously, 600SCCM in He of 20SLM under the pressure of the atmosphere in the same device.
A gas containing 1.0% Si immediately after being left for 15 to 60 seconds in plasma excited by introducing and exciting a gas containing oxygen.
After the l-Cu alloy was sputtered, it was selectively etched to form a metal wiring 18, plasma silicon nitride was used as a protective film, and a bonding pad was opened.

【0019】この様な工程を経て製造された半導体装置
は従来に比べ、フッ酸エッチングのような制御性が悪く
危険な工程を必要とせず、コンタクトホール寸法、形状
の再現性がよく、これに合わせたスッパタ条件も一定に
出来きることから、付き回りのよい金属配線を施すこと
ができ信頼性も安定した。更にスッパタ前に大気近傍圧
力のプラズマに曝したものについては従来のように、ホ
ール内に固相成長するSiノジュールの発生はほとんど
無くなり、接続抵抗の低減と安定化に寄与することがで
きた。但し、酸化時間が長いと、温度上昇と共に酸化膜
が厚くなり逆に接続抵抗が極端に高くなってしまう場合
があるので180秒位が限度であり、又酸素の混合比は
1.0〜20%位までが適当である。
The semiconductor device manufactured through such steps does not require a dangerous process such as hydrofluoric acid etching which is poor in controllability, and has good reproducibility of contact hole size and shape. Since the combined spatter condition can be made constant, metal wiring with good coverage can be provided and reliability is stable. Further, in the case of the plasma exposed to the plasma near the atmospheric pressure before the sputtering, the generation of solid-phase-grown Si nodules almost disappeared as in the conventional case, and it was possible to contribute to the reduction and stabilization of the connection resistance. However, if the oxidation time is long, the oxide film may become thicker as the temperature rises, and conversely the connection resistance may become extremely high. Therefore, the limit is about 180 seconds, and the mixing ratio of oxygen is 1.0 to 20. Up to% is appropriate.

【0020】この他の実施例として、コンタクトのバリ
ア性を更に向上する目的で、コンタクトホールを開孔し
た後に、バリア層としてTiを約200Å,TiN約1
000Åをスパッタさせ、更に大気近傍圧力下で、窒素
中に75〜100%の酸素を混合したガスを励起させた
プラズマ中に約80wで30〜60秒放置した後に、S
iを含まないAl−Cu合金を8000Åスパッタし選
択エッチによって金属配線とした半導体装置を製造した
が、大気圧近傍のプラズマ酸化処理を施さないもので
は、450℃を越すシンタリングで接合の突き抜けが始
まるのに対し、550℃でシンタリングしても接合抵抗
が増加せず、突き抜けリークの発生しない半導体装置を
供給することが出来た。
As another embodiment, in order to further improve the barrier property of the contact, after forming a contact hole, Ti is about 200Å and TiN is about 1 as a barrier layer.
After sputtering 000Å and then leaving it in a plasma excited by a gas in which nitrogen is mixed with 75 to 100% of oxygen under a pressure of about 80 to 30 seconds for about 60 to 60 seconds, S
A semiconductor device was manufactured by using 8000Å sputter of Al-Cu alloy containing no i and selective etching to form metal wiring. However, in the case where plasma oxidation treatment in the vicinity of atmospheric pressure was not performed, the penetration of the junction was exceeded by sintering over 450 ° C. Although it started, the junction resistance did not increase even if sintering was performed at 550 ° C., and it was possible to supply a semiconductor device in which punch-through leakage did not occur.

【0021】更に、この他の実施例として、例えば、A
l合金を用いた2層配線構造のハーフミクロンのCMO
S−LSIに適用した場合に於いて、MOSトランジス
タや抵抗等の半導体素子が形成されたシリコン基板21
上の選択熱酸化や気相成長によるシリコン酸化膜を積層
したフィールド絶縁膜22等にコンタクトホールを形成
し、SiやCuを含むAl合金を5000Åスッパタし
てから、Cl2とBCl3ガスを用いたドライエッチャー
で該スパッタ膜を選択エッチングし第1の金属配線23
とした。次に層間絶縁膜として、まずTEOSとO2
約380℃,約5〜10torrでプラズマ気相反応さ
せた第1のシリコン酸化膜24を約5000Å気相成長
させた。続いて有機溶剤にメチルシロキサンポリマーを
溶解させスピンコートした後、100〜250℃で溶剤
を気化さしてから約425℃のN2 分囲気で20〜60
分のアニールを行うと、第1の金属配線23領域上の平
坦部には約700〜1000Å、段差部や溝部にはその
段差量に応じて塗布ガラス25が溜まる(図2
(a))。次に、C26とHeの混合ガスにより0.2
〜0.5torr,300〜800wのRIEでエッチ
バックを行い、少なくとも第1の金属配線23領域上の
塗布ガラス25と第1のシリコン酸化膜24の約150
0Åを除去する。このエッチバックでは、塗布ガラス2
5とシリコン酸化膜24の選択比は、平坦性確保の点か
ら低いエッチング条件が好しい。続いて、図3に示す同
じ装置で大気近傍圧力下で窒素中に75〜100%の酸
素を混合したガスを励起させた90wの酸素プラズマ3
0中に30〜60秒放置すると塗布ガラス25の表面2
6は親水性となる。続いて約3000Åの厚みで第2の
シリコン酸化膜27を、第1のシリコン酸化膜24と同
条件で気相成長させた後、HF(約49%水溶液):N
4F(約40%水溶液)=1:20(20〜40℃)
を用いて、第2のシリコン酸化膜27を約3000Åウ
ェットエッチングし、次にCHF3 ,CF4 とHeガス
を用いRFパワー300〜800w,100〜300m
torrの圧力で異方的に選択ドライエッチングしスル
ーホールを開孔し、続けてAl合金を8500Åの厚み
でスパッタ成長させ、該積層膜を選択エッチングし第2
の金属配線28とした(図2(b))。次に保護膜とし
て、SiH4とNH3をプラズマ反応させたシリコン窒化
膜を積層し、外部への電極取り出しの為にボンディング
パッド部を開孔した。
Further, as another embodiment, for example, A
Half-micron CMO with two-layer wiring structure using l alloy
When applied to an S-LSI, a silicon substrate 21 on which semiconductor elements such as MOS transistors and resistors are formed
A contact hole is formed in the field insulating film 22 or the like in which a silicon oxide film is laminated by selective thermal oxidation or vapor phase growth, and an Al alloy containing Si or Cu is sputtered for 5000 Å, and then Cl 2 and BCl 3 gas is used. The sputtered film is selectively etched by the dry etcher used to remove the first metal wiring 23.
And Next, as an interlayer insulating film, first, a first silicon oxide film 24, which was obtained by subjecting TEOS and O 2 to plasma vapor phase reaction at approximately 380 ° C. and approximately 5 to 10 torr, was approximately 5000 Å vapor phase grown. Subsequently, the methyl siloxane polymer was dissolved in an organic solvent and spin-coated, then the solvent was vaporized at 100 to 250 ° C., and then 20 to 60 at about 425 ° C. in N 2 atmosphere.
When the annealing is performed for about 10 minutes, about 700 to 1000 Å is formed on the flat portion on the first metal wiring 23 area, and the coating glass 25 is accumulated on the step portion and the groove portion according to the step amount (FIG. 2).
(A)). Next, the mixed gas of C 2 F 6 and He is added to 0.2
˜0.5 torr, 300-800 w of RIE are used to etch back, and at least about 150 of the coating glass 25 and the first silicon oxide film 24 on the first metal wiring 23 region are etched.
Remove 0Å. In this etch back, coated glass 2
As for the selection ratio of 5 and the silicon oxide film 24, a low etching condition is preferable from the viewpoint of ensuring flatness. Subsequently, 90 w of oxygen plasma 3 excited by a gas obtained by mixing 75 to 100% oxygen in nitrogen under a pressure near the atmosphere in the same apparatus shown in FIG.
Surface 2 of coated glass 25 when left in 0 for 30 to 60 seconds
6 becomes hydrophilic. Subsequently, a second silicon oxide film 27 having a thickness of about 3000 Å is vapor-deposited under the same conditions as the first silicon oxide film 24, and then HF (about 49% aqueous solution): N
H 4 F (about 40% aqueous solution) = 1: 20 (20-40 ° C.)
The second silicon oxide film 27 is wet-etched by about 3000 Å using, and then RF power is 300-800 w, 100-300 m using CHF 3 , CF 4 and He gas.
Anisotropic selective dry etching is performed at a pressure of torr to open a through hole, and then an Al alloy is sputter grown to a thickness of 8500Å, and the laminated film is selectively etched to form a second layer.
Of the metal wiring 28 (FIG. 2B). Next, a silicon nitride film obtained by plasma-reacting SiH 4 and NH 3 was laminated as a protective film, and a bonding pad portion was opened to take out an electrode to the outside.

【0022】この様にして製造された半導体装置は塗布
ガラス25の表面26が親水性となる為、第2のシリコ
ン酸化膜27との密着性が向上し、サイドエッチによる
ボイドや後工程での膨れ,剥がれも皆無となり、パーテ
ィクル低減,歩留りや耐湿性の向上が図れ、量産性や信
頼性改善に寄与できた。
In the semiconductor device manufactured in this manner, the surface 26 of the coated glass 25 becomes hydrophilic, so that the adhesion with the second silicon oxide film 27 is improved, and voids due to side etching and post-processes occur. There was no swelling or peeling, and it was possible to reduce particles, improve yield and moisture resistance, and contribute to mass productivity and reliability improvement.

【0023】更にこの実施例の中で、塗布ガラス25を
スピンコートする前に図3に示す大気圧近傍のプラズマ
装置で、CF4,CHF3,HeとN2 ガスを導入し、1
3.56MHz,90wで約90秒間第1のシリコン酸
化膜24をエッチングし、表面がスムージングさせた
が、従来では特に第1の金属配線23のスペースが狭い
ところでは塗布ガラスが入りにくくボイド等が形成され
ていたものが皆無となった。
Further, in this embodiment, before spin coating the coated glass 25, CF 4 , CHF 3 , He and N 2 gas were introduced by a plasma device at atmospheric pressure shown in FIG.
The surface of the first silicon oxide film 24 was smoothed by etching the first silicon oxide film 24 at 3.56 MHz, 90 w for about 90 seconds. However, in the conventional case, the coating glass is difficult to enter particularly in a place where the space of the first metal wiring 23 is narrow, and voids are generated. There was nothing that had been formed.

【0024】尚、プラズマ処理に用いたエッチングガス
は、実施例に示した他にC26等のフレオン系やS
6,NF3やHBr,塩素等のハロゲン系に不活性や酸
化性ガスを混合したもの、又酸化処理でのガスにはO2
の他にN2O,COやO3等や不活性ガスを混入させたも
のが応用可能である。
The etching gas used for the plasma treatment is, in addition to those shown in the examples, a Freon system such as C 2 F 6 or S.
F 6, NF 3 and HBr, a mixture of inert and oxidizing gas to the halogen-based such as chlorine, and the gas in the oxidation process O 2
In addition to the above, those mixed with N 2 O, CO, O 3, etc. or an inert gas can be applied.

【0025】[0025]

【発明の効果】以上の様に本発明によれば、特に多層配
線構造の集積回路製造等に於いて、真空装置を用いるこ
となく大気近傍の圧力下でプラズマエッチングや酸化処
理する工程を施すことにより、金属配線の被覆性,スル
ーホールの接触特性,層間膜や保護膜の密着性を容易に
改善し、電気特性,歩留りや信頼性の向上がなされ、高
品質な微細半導体装置の低コスト安定供給を可能にする
ものである。
As described above, according to the present invention, particularly in the production of integrated circuits having a multi-layered wiring structure, plasma etching or oxidation treatment is performed under a pressure near the atmosphere without using a vacuum device. This makes it possible to easily improve the coverage of metal wiring, the contact characteristics of through holes, the adhesion of interlayer films and protective films, and improve the electrical characteristics, yield and reliability, and stabilize the cost of high-quality fine semiconductor devices at low cost. It enables supply.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係わる半導体装置の製造工程
を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing a manufacturing process of a semiconductor device according to an embodiment of the invention.

【図2】本発明の実施例に係わる半導体装置の製造工程
を示す概略断面図である。
FIG. 2 is a schematic cross-sectional view showing the manufacturing process of the semiconductor device according to the example of the invention.

【図3】本発明の実施例に係わるプラズマ装置を示す模
式図である。
FIG. 3 is a schematic diagram showing a plasma device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11,21,31・・・シリコン基板 12,22・・・フィールド絶縁膜 13・・・ゲート絶縁膜 14・・・ゲート電極 15・・・側壁 16・・・不純物層 17・・・層間絶縁膜 18・・・金属配線 19・・・プラズマ 20・・・コンタクトホール 23・・・第1の金属配線 24・・・第1のシリコン酸化膜 25・・・塗布ガラス 26・・・塗布ガラス表面 27・・・第2のシリコン酸化膜 28・・・第2の金属配線 32・・・アルマイト 33・・・下電極 34・・・上電極 35・・・誘電体 36・・・高周波電源 37・・・ガス導入孔 11, 21, 31 ... Silicon substrate 12, 22 ... Field insulating film 13 ... Gate insulating film 14 ... Gate electrode 15 ... Side wall 16 ... Impurity layer 17 ... Interlayer insulating film 18 ... Metal wiring 19 ... Plasma 20 ... Contact hole 23 ... First metal wiring 24 ... First silicon oxide film 25 ... Coating glass 26 ... Coating glass surface 27・ ・ ・ Second silicon oxide film 28 ・ ・ ・ Second metal wiring 32 ・ ・ ・ Alumite 33 ・ ・ ・ Lower electrode 34 ・ ・ ・ Upper electrode 35 ・ ・ ・ Dielectric 36 ・ ・ ・ High frequency power supply 37 ・ ・・ Gas inlet

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】所望表面に半導体素子等が形成された基板
上に、少なくとも、絶縁膜を形成する工程、該絶縁膜に
下層半導体素子から電気的接続を取る為の接続孔を形成
する工程、所定の気体による大気圧近傍の圧力下で発生
させたプラズマにより該絶縁膜の所望量をエッチングし
た後、金属配線を形成する工程を具備したことを特徴と
する半導体装置の製造方法。
1. A step of forming at least an insulating film on a substrate having a semiconductor element or the like formed on a desired surface, and a step of forming a connection hole in the insulating film for electrically connecting from a lower layer semiconductor element, A method of manufacturing a semiconductor device, comprising the step of forming a metal wiring after etching a desired amount of the insulating film with plasma generated under a pressure near atmospheric pressure by a predetermined gas.
【請求項2】所望表面に半導体素子等が形成された基板
上に、少なくとも、絶縁膜を形成する工程、該絶縁膜に
下層半導体素子から電気的接続を取る為の接続孔を形成
する工程、大気圧近傍の圧力下で酸化性ガスを励起させ
たプラズマ処理を施した後、金属配線を形成する工程を
具備したことを特徴とする半導体装置の製造方法。
2. A step of forming at least an insulating film on a substrate having a semiconductor element or the like formed on a desired surface thereof, and a step of forming a connection hole in the insulating film for electrically connecting the lower layer semiconductor element, A method for manufacturing a semiconductor device, comprising a step of forming a metal wiring after performing a plasma treatment in which an oxidizing gas is excited under a pressure near atmospheric pressure.
【請求項3】所望表面に半導体素子等が形成された基板
上に、少なくとも、絶縁膜を形成する工程、該絶縁膜に
下層半導体素子から電気的接続を取る為の接続孔を形成
する工程、スパッタにより導電性のバリア層を成膜する
工程、大気圧近傍の圧力下で酸化性ガスを励起させたプ
ラズマ処理を施した後、金属配線を形成する工程を具備
したことを特徴とする半導体装置の製造方法。
3. A step of forming at least an insulating film on a substrate having a semiconductor element or the like formed on a desired surface, and a step of forming a connection hole in the insulating film for making an electrical connection from a lower layer semiconductor element, A semiconductor device comprising: a step of forming a conductive barrier layer by sputtering; and a step of forming a metal wiring after performing a plasma treatment in which an oxidizing gas is excited under a pressure near atmospheric pressure. Manufacturing method.
【請求項4】所望表面に素子領域が形成された半導体基
板上に、第1の金属配線を形成する工程、第1のシリコ
ン酸化膜を積層させる工程、所定の気体による大気圧近
傍の圧力下で発生させたプラズマにより該絶縁膜の所望
量をエッチングする工程、塗布ガラスを積層する工程、
第2のシリコン酸化膜を積層させる工程、第1の金属配
線に電気的接続を取る為の接続孔を形成した後、第2の
金属配線を形成する工程を具備したことを特徴とする半
導体装置の製造方法。
4. A step of forming a first metal wiring, a step of laminating a first silicon oxide film on a semiconductor substrate having an element region formed on a desired surface, and a step of applying a predetermined gas under a pressure near atmospheric pressure. A step of etching a desired amount of the insulating film by the plasma generated in step 2, a step of laminating coated glass,
A semiconductor device comprising: a step of stacking a second silicon oxide film; and a step of forming a second metal wiring after forming a connection hole for electrically connecting to the first metal wiring. Manufacturing method.
【請求項5】所望表面に素子領域が形成された半導体基
板上に第1の金属配線を形成する工程、第1のシリコン
酸化膜を積層させる工程、塗布ガラスを積層する工程、
大気圧近傍の圧力下で酸化性ガスを励起させたプラズマ
処理を行う工程、第2のシリコン酸化膜を積層させる工
程、第1の金属配線に電気的接続を取る為の接続孔を形
成した後、第2の金属配線を形成する工程を具備したこ
とを特徴とする半導体装置の製造方法。
5. A step of forming a first metal wiring on a semiconductor substrate having an element region formed on a desired surface, a step of laminating a first silicon oxide film, a step of laminating coated glass,
After performing a plasma treatment in which an oxidizing gas is excited under a pressure near atmospheric pressure, a step of laminating a second silicon oxide film, and after forming a connection hole for electrically connecting to the first metal wiring. A method of manufacturing a semiconductor device, comprising: forming a second metal wiring.
JP17261395A 1995-07-07 1995-07-07 Method of manufacturing semiconductor device Pending JPH0922897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17261395A JPH0922897A (en) 1995-07-07 1995-07-07 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17261395A JPH0922897A (en) 1995-07-07 1995-07-07 Method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JPH0922897A true JPH0922897A (en) 1997-01-21

Family

ID=15945129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17261395A Pending JPH0922897A (en) 1995-07-07 1995-07-07 Method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0922897A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7514712B2 (en) 2005-06-24 2009-04-07 Mitsubishi Denki Kabushiki Kaisha Electro-optic display and connection between drain electrode and pixel electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7514712B2 (en) 2005-06-24 2009-04-07 Mitsubishi Denki Kabushiki Kaisha Electro-optic display and connection between drain electrode and pixel electrode

Similar Documents

Publication Publication Date Title
US5970376A (en) Post via etch plasma treatment method for forming with attenuated lateral etching a residue free via through a silsesquioxane spin-on-glass (SOG) dielectric layer
US6022802A (en) Low dielectric constant intermetal dielectric (IMD) by formation of air gap between metal lines
JP2978748B2 (en) Method for manufacturing semiconductor device
JP3128811B2 (en) Method for manufacturing semiconductor device
US6143666A (en) Plasma surface treatment method for forming patterned TEOS based silicon oxide layer with reliable via and interconnection formed therethrough
US7480990B2 (en) Method of making conductor contacts having enhanced reliability
JP3093429B2 (en) Method for manufacturing semiconductor device
US5948701A (en) Self-aligned contact (SAC) etching using polymer-building chemistry
US6530380B1 (en) Method for selective oxide etching in pre-metal deposition
US6468904B1 (en) RPO process for selective CoSix formation
JP3350246B2 (en) Method for manufacturing semiconductor device
JP2937140B2 (en) Method for manufacturing semiconductor device
US6143673A (en) Method for forming gap filling silicon oxide intermetal dielectric (IMD) layer formed employing ozone-tEOS
JPH08255791A (en) Formation of interlayer insulating film of semiconductor device
US6559043B1 (en) Method for electrical interconnection employing salicide bridge
JP3123449B2 (en) Multilayer wiring formation method
US6277729B1 (en) Method of manufacturing transistor barrier layer
JP3466174B2 (en) Semiconductor device and manufacturing method thereof
JPH08340109A (en) Manufacture of semiconductor device
JP2674585B2 (en) Method for manufacturing semiconductor device
US6847085B2 (en) High aspect ratio contact surfaces having reduced contaminants
US20040038516A1 (en) Method of manufacturing a semiconductor device
JPH0922897A (en) Method of manufacturing semiconductor device
JP2002217414A (en) Semiconductor device and its manufacturing method
US6335282B1 (en) Method of forming a titanium comprising layer and method of forming a conductive silicide contact