JPH09228033A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPH09228033A
JPH09228033A JP3849396A JP3849396A JPH09228033A JP H09228033 A JPH09228033 A JP H09228033A JP 3849396 A JP3849396 A JP 3849396A JP 3849396 A JP3849396 A JP 3849396A JP H09228033 A JPH09228033 A JP H09228033A
Authority
JP
Japan
Prior art keywords
thin film
crucible
impurities
vapor deposition
energy beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3849396A
Other languages
Japanese (ja)
Other versions
JP3458585B2 (en
Inventor
Eiji Kagawa
英司 香川
Nobuyuki Miyagawa
展幸 宮川
Hiroshi Fukushima
博司 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP03849396A priority Critical patent/JP3458585B2/en
Publication of JPH09228033A publication Critical patent/JPH09228033A/en
Application granted granted Critical
Publication of JP3458585B2 publication Critical patent/JP3458585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of reducing an energy source, capable of the continuous repetition of impurity removing treatment and film forming treatment and enabling efficient floating impurity removing treatment in an energy beam heating type vacuum vapor deposition method. SOLUTION: In a method in which a vacuum depositing material in a crucible is irradiated with an energy beam in a vacuum, by which the vacuum depositing material is heated, is melted to evaporate and is vacuum-deposited on a base material to form a thin film on the base material, in the suitable process from the start of the melting to the film formation, in the case there occurs the need of removing impurities floating on the soln. surface of a melting soln. in the crucible, the energy beam emitted from a single energy beam source is regulated to an energy level higher than the energy level at the time of the film formation and is applied to the impurities to remove the foating impurities.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、エネルギービーム
加熱式真空蒸着法に関するものであり、より詳しくは、
真空下で電子ビーム等のエネルギービームを蒸着すべき
材料(以下、蒸着材料という。)に照射して加熱するこ
とにより基材に膜を蒸着させるにあたり、坩堝中の溶融
した蒸着材料の液面に浮遊する不純物を除去しつつ成膜
する方法に関する。
TECHNICAL FIELD The present invention relates to an energy beam heating type vacuum deposition method, and more specifically,
When depositing a film on a substrate by irradiating an energy beam such as an electron beam onto a material to be deposited (hereinafter referred to as vapor deposition material) under vacuum and heating the material, the liquid level of the molten vapor deposition material in the crucible is The present invention relates to a method for forming a film while removing floating impurities.

【0002】[0002]

【従来の技術】真空蒸着法は、高真空中において蒸着材
料を加熱溶融蒸発させて板状等の被蒸着基材の表面に薄
膜として凝着(蒸着)させる方法である。一般に、真空
蒸着法においては、蒸着材料の表面に付着していた金属
酸化物等の不純物は、蒸着材料を溶融させて得られる溶
融材料(溶融液)の液面に浮遊して、成膜時には不純物
成分の蒸発粒子となって薄膜に混入するため、薄膜に欠
陥を生じさせ易い。また、上記不純物はエネルギービー
ムの照射により非常な高温となるため、この高温となっ
た不純物が溶融液に接触すると、溶融液が突沸を起こし
液滴となって基材に付着する。そのため、一様な薄膜形
成が行えないと言う問題点もあった。
2. Description of the Related Art The vacuum vapor deposition method is a method in which a vapor deposition material is heated, melted and vaporized in a high vacuum to be deposited (vapor deposited) as a thin film on the surface of a substrate to be vapor-deposited such as a plate. Generally, in the vacuum vapor deposition method, impurities such as metal oxides attached to the surface of the vapor deposition material float on the liquid surface of the molten material (melt liquid) obtained by melting the vapor deposition material, and during film formation. Evaporated particles of the impurity component are mixed in the thin film, so that defects are likely to occur in the thin film. Further, the above-mentioned impurities become extremely high in temperature due to the irradiation of the energy beam. Therefore, when the high-temperature impurities come into contact with the molten liquid, the molten liquid causes bumping and adheres to the substrate as droplets. Therefore, there is a problem that a uniform thin film cannot be formed.

【0003】そこで、上記の問題点を解決するため、蒸
着材料の加熱前に還元性ガスプラズマでイオンボンバー
ドすることにより、蒸着材料表面の不純物である酸素ガ
スや酸化膜を除去する方法(特開平3−236465号
公報参照)、抵抗加熱で溶融させた蒸着材料が入ってい
る坩堝を励振器で振動させることにより、溶融液内の不
純物である酸化物や気泡を浮上させ、この浮上した不純
物にレーザービームを照射することにより蒸発させる方
法(特開平4−247866号公報参照)等が提案され
ている。
Therefore, in order to solve the above problems, a method of removing oxygen gas and oxide film which are impurities on the surface of the vapor deposition material by ion bombarding with a reducing gas plasma before heating the vapor deposition material (Japanese Patent Application Laid-Open No. Hei 10-1999) No. 3-236465), a crucible containing a vapor deposition material melted by resistance heating is vibrated by an exciter to float oxides and bubbles as impurities in the melt, and A method of evaporating by irradiating a laser beam (see Japanese Patent Laid-Open No. 4-247866) has been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記還
元性ガスプラズマによる方法では、不純物の還元処理に
5分以上もの時間が必要であるため短時間では不純物除
去処理ができない、蒸着材料の加熱前にしか不純物除去
処理が出来ないため蒸着材料の溶融後に不純物が生じて
も除去処理ができず不便である、不純物除去から成膜ま
での1回の処理が終了するごとの材料加熱前に新たに還
元性ガスを導入してプラズマを発生させなければならず
時間がかかるため効率が悪い等という問題点がある。
However, in the above method using reducing gas plasma, it is impossible to remove impurities in a short time because the reduction treatment of impurities requires more than 5 minutes. However, it is inconvenient because the removal process cannot be performed even if impurities are generated after melting the vapor deposition material because the impurity removal process cannot be performed. A new reduction is performed before heating the material each time one process from impurity removal to film formation is completed. Since it takes time to introduce a reactive gas to generate plasma, there is a problem that efficiency is low.

【0005】また、上記励振器で振動させる方法では、
不純物の浮遊物が溶融液の液面に散乱するため不純物除
去効率が悪い、薄膜形成用のエネルギー源と不純物除去
用のレーザー発振源の少なくとも2つ以上のエネルギー
源が必要になるため設備費用がかさむ、不純物除去処理
と成膜処理を連続して繰り返すことができないためそれ
らの処理の効率が悪い等という問題点がある。
Further, in the method of vibrating with the above exciter,
Impurity removal efficiency is poor because the suspended solids of impurities are scattered on the liquid surface of the melt. At least two energy sources for thin film formation and laser oscillation sources for impurity removal are required, resulting in equipment cost. There is a problem in that the process is bulky, and the impurity removal process and the film formation process cannot be repeated continuously, so that the efficiency of these processes is poor.

【0006】そこで、本発明は、エネルギービーム加熱
式真空蒸着法において、薄膜への不純物混入や基材への
溶融液液滴の付着を無くするとともに、エネルギー源の
個数削減を可能にし、不純物除去処理と成膜処理の連続
繰り返しを可能にし、不純物除去処理を効率化できる方
法を提供することを課題とする。
In view of the above, the present invention eliminates the inclusion of impurities in a thin film and the adhesion of molten liquid droplets to a substrate in the energy beam heating type vacuum deposition method, and enables the number of energy sources to be reduced, thereby removing impurities. It is an object of the present invention to provide a method that enables continuous repetition of treatment and film formation treatment and makes the impurity removal treatment efficient.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明にかかる、エネルギービーム加熱式真空蒸着
による薄膜形成方法は、真空下、坩堝中の蒸着材料にエ
ネルギービームを照射することにより前記蒸着材料を加
熱して溶融蒸発させ基材に蒸着させて前記基材の表面に
薄膜を形成する方法において、前記蒸着材料の溶かし込
みから成膜に到る適宜の過程で、坩堝中の溶融液の液面
に浮遊する不純物を除去する必要が生じたときに、単一
のエネルギービーム源より発する前記エネルギービーム
を成膜時のエネルギーレベルよりも高いエネルギーレベ
ルにして前記不純物に照射することにより前記不純物を
除去するようにすることを特徴とする。
In order to solve the above problems, a thin film forming method by energy beam heating type vacuum vapor deposition according to the present invention comprises irradiating a vapor deposition material in a crucible under a vacuum with an energy beam. In the method of forming a thin film on the surface of the substrate by heating the vapor deposition material to melt and evaporate it to form a thin film on the surface of the substrate, melting in the crucible is performed in an appropriate process from melting of the vapor deposition material to film formation. When it becomes necessary to remove impurities floating on the liquid surface of the liquid, by irradiating the impurities with the energy beam emitted from a single energy beam source at an energy level higher than the energy level during film formation. It is characterized in that the impurities are removed.

【0008】この場合において、高エネルギーレベルの
不純物除去処理と低エネルギーレベルの成膜処理を交互
に繰り返すことにより連続蒸着を行うことも可能であ
る。不純物が溶融液の液面をあちらこちらと自由に浮遊
することはなるべく避けた方が良いので、このようなこ
とを可能にするため、本発明の方法では、第1に、溶融
液の液面に浮遊する不純物をその液面上の特定の箇所に
集めて除去処理するようにする。第2に、坩堝を、蒸着
材料の供給側と蒸発側とが分離された構造にすることに
よって蒸着材料の供給時に生じる不純物が蒸発側に流出
するのを防止し、単一のエネルギービーム源より発する
前記エネルギービームを、そのエネルギーレベルを高低
変化させながら、前記供給側と蒸発側に照射するように
するのである。
In this case, continuous vapor deposition can be performed by alternately repeating the high energy level impurity removing process and the low energy level film forming process. It is better to avoid impurities floating freely around the surface of the melt as much as possible. Therefore, in order to enable such a thing, in the method of the present invention, first, the surface of the melt is Impurities floating on the surface of the liquid are collected and removed at a specific place on the surface of the liquid. Secondly, by making the crucible a structure in which the vapor deposition material supply side and the vaporization side are separated, it is possible to prevent impurities generated during the vapor deposition material supply from flowing out to the vaporization side, and The emitted energy beam is irradiated to the supply side and the evaporation side while changing the energy level of the energy beam.

【0009】上記第1の方法では坩堝を水平面内で回転
させたり坩堝に振動を与えたりして不純物を特定の箇所
に集めるようにする。このとき、回転中心は坩堝内の中
心位置であっても偏心位置であってもよく、坩堝外の位
置であっても良い。特に限定する訳ではないが、偏心位
置が好ましい。また、振動の付与には坩堝の一方側や対
向する2方側から付与する等の方法がある。特に限定す
る訳ではないが、一方側に振動子を設けるのが良い。な
お、一方側に振動子を設けるとしても、振動子を複数個
用いるようにし、それぞれの間隔を少し離して各振動子
の振動付与方向を坩堝反対側の1点に収束するようにす
るのがより好ましい。第1の方法では、不純物が液面に
浮上しやすくするために坩堝の底などに羽根を設ける等
の攪拌手段を坩堝に持たせるのが良い。
In the first method, the crucible is rotated in a horizontal plane or the crucible is vibrated to collect impurities at a specific place. At this time, the center of rotation may be a center position inside the crucible, an eccentric position, or a position outside the crucible. Although not particularly limited, an eccentric position is preferable. There is a method of applying vibration from one side of the crucible or from two opposite sides. Although not particularly limited, it is preferable to provide a vibrator on one side. Even if the vibrator is provided on one side, it is preferable to use a plurality of vibrators and to slightly separate the intervals so that the vibration applying direction of each vibrator converges to one point on the opposite side of the crucible. More preferable. In the first method, it is preferable to provide the crucible with a stirring means such as a blade provided at the bottom of the crucible or the like so that the impurities can easily float on the liquid surface.

【0010】第2の方法では単一槽構造の坩堝内を仕切
りで蒸着材料の供給側と蒸発側に分割したり供給側と蒸
発側の二つの槽を管で連結したりする。後者の場合、エ
ネルギービームの照射されていない側で温度低下により
溶融液が凝固するのを防止するために、坩堝に、それ自
体を加熱可能な構造を持たせるようにするのが良い。本
発明では、特に限定する訳ではないが、不純物除去処理
時のエネルギーレベルを成膜処理時のエネルギーレベル
の2倍から1000倍にすること、不純物除去処理時に
照射するエネルギービームをパルス状にすること、不純
物除去処理前に一旦エネルギービームの照射を停止して
溶融液を凝固しない程度まで冷やした後、前記成膜処理
時のエネルギーレベルよりも高いエネルギーレベルのエ
ネルギービームを不純物に照射するようにすることが好
ましい。
In the second method, the inside of the crucible having a single-chamber structure is divided into a supply side and an evaporation side of the vapor deposition material by a partition, or two supply side and evaporation side tanks are connected by a pipe. In the latter case, it is preferable that the crucible has a structure capable of heating itself in order to prevent the melt from solidifying due to the temperature decrease on the side not irradiated with the energy beam. In the present invention, although not particularly limited, the energy level during the impurity removing process is set to be 2 to 1000 times the energy level during the film forming process, and the energy beam irradiated during the impurity removing process is pulsed. That is, before the impurity removal process, the irradiation of the energy beam is once stopped and the molten liquid is cooled to such an extent that it does not solidify, and then the energy beam having an energy level higher than the energy level during the film formation process is irradiated to the impurities. Preferably.

【0011】[0011]

【実施の形態】本発明に使用する蒸着材料としては、エ
ネルギービームの照射で溶融蒸発可能な物であれば何で
もよく、例えば、Ag、Al、Cu、Au、Pt、P
d、Pb、Ni、Ti、In等のような金属を使用する
ことが可能である。蒸着材料の溶融、溶融液からの不純
物除去、蒸着材料の蒸発に使用するエネルギービーム源
としては、電子ビーム発生源の他、エキシマレーザー、
YAGレーザー、CO2 レーザーのような高出力レーザ
ー等を使用することが可能である。蒸着材料溶融時、不
純物除去時、蒸着材料蒸発時に照射するエネルギービー
ムの出力は、蒸着材料や坩堝の材質が相違すれば異なる
が、それらの相違により出力が異なっても本発明の実施
は可能である。
BEST MODE FOR CARRYING OUT THE INVENTION The vapor deposition material used in the present invention may be any material as long as it can be melted and vaporized by irradiation with an energy beam, for example, Ag, Al, Cu, Au, Pt, P.
It is possible to use metals such as d, Pb, Ni, Ti, In and the like. As the energy beam source used for melting the vapor deposition material, removing impurities from the melt, and vaporizing the vapor deposition material, in addition to the electron beam generation source, an excimer laser,
It is possible to use a high power laser such as a YAG laser or a CO 2 laser. The output of the energy beam irradiated when the vapor deposition material is melted, when impurities are removed, and when the vapor deposition material is vaporized is different if the vapor deposition material and the material of the crucible are different, but it is possible to implement the present invention even if the output is different due to these differences. is there.

【0012】以下、本発明の、不純物を除去しつつ薄膜
形成する方法のうち、基本的な連続蒸着法の実施例につ
いて、図を参照して説明するが、本発明は下記の実施例
に限定されない。蒸着材料は、すべての実施例で純度9
9.99%のAgを使用した。エネルギービームは、す
べての実施例で電子ビームを使用した。
Among the methods of forming a thin film while removing impurities of the present invention, a basic continuous vapor deposition method will be described below with reference to the drawings, but the present invention is limited to the following examples. Not done. The vapor deposition material had a purity of 9 in all the examples.
9.99% Ag was used. The energy beam used was an electron beam in all the examples.

【0013】−実施例1− 図1は電子ビームの出力値とシャッター開閉のタイミン
グを時系列で、図2は蒸着材料供給と不純物除去処理工
程を、図3は薄膜形成処理工程を、それぞれ示す。この
実施例では、薄膜形成処理を連続して可能とするため、
図2、図3に示すように、真空チャンバー1内に、被蒸
着基材たるフープ基材5の供給側リール3と巻取側リー
ル4と蒸着材料(Ag線材)7の供給リール6を設けて
いる。
Embodiment 1 FIG. 1 shows an electron beam output value and a shutter opening / closing timing in time series, FIG. 2 shows a vapor deposition material supply and impurity removing treatment step, and FIG. 3 shows a thin film forming treatment step. . In this embodiment, since the thin film forming process can be continuously performed,
As shown in FIGS. 2 and 3, a supply side reel 3 of a hoop base material 5 as a base material to be vapor-deposited, a take-up side reel 4 and a supply reel 6 of a vapor deposition material (Ag wire) 7 are provided in a vacuum chamber 1. ing.

【0014】〔蒸着材料の供給・溶融、不純物除去処
理〕蒸着材料の供給・溶融時と不純物除去処理時におい
ては、シャッター16を閉じ、フープ基材5の送り込み
を停止している。図2に示すように、真空チャンバー1
内において供給リール6から蒸着材料7を坩堝8aへ送
り込んだ。電子銃9から発する加速電圧10kV、エミ
ッション電流60mAの直流電子ビーム10をビーム方
向変更マグネット12によって曲げ、坩堝8a内に送り
込まれた蒸着材料7を照射することによって、蒸着材料
7を溶融させて、溶融液13を得た。図にみるように、
坩堝8aはホルダー11aに支持されており、前記マグ
ネット12はこのホルダー11aに内蔵されている。な
お、蒸着材料溶融時の電子ビーム10の出力値は、図1
に示すようにAg膜を基材5へ形成する時(成膜時)の
出力値と同じの低出力値にした。
[Supply / Melting of Vapor Deposition Material and Impurity Removal Processing] During supply / melting of the vapor deposition material and impurity removal processing, the shutter 16 is closed and feeding of the hoop base material 5 is stopped. As shown in FIG. 2, the vacuum chamber 1
The vapor deposition material 7 was sent from the supply reel 6 into the crucible 8a. A direct current electron beam 10 having an acceleration voltage of 10 kV and an emission current of 60 mA emitted from an electron gun 9 is bent by a beam direction changing magnet 12 and irradiated with the vapor deposition material 7 sent into the crucible 8a to melt the vapor deposition material 7, A melt 13 was obtained. As you can see in the figure,
The crucible 8a is supported by a holder 11a, and the magnet 12 is built in the holder 11a. The output value of the electron beam 10 when the vapor deposition material is melted is shown in FIG.
As shown in (4), the output value was the same as the output value when the Ag film was formed on the substrate 5 (during film formation).

【0015】蒸着材料7を溶融液13にした時に、この
蒸着材料7に含まれている不純物が浮遊不純物14aと
して溶融液13の液面上に浮かび上がる。上記の浮遊不
純物14aに対して、図1に示すように、蒸着材料溶融
時の出力の10倍もの高出力たる、加速電圧10kV、
エミッション電流600mAの直流電子ビーム10を照
射した。そうすると、浮遊不純物14aが蒸発飛散し
て、溶融液13の液面から除去された。このとき、蒸発
した不純物14bの大部分は予め閉じておいたシャッタ
ー16の方へ向けて飛散した。
When the vapor deposition material 7 is made into the molten liquid 13, the impurities contained in the vapor deposition material 7 float on the liquid surface of the molten liquid 13 as the floating impurities 14a. As shown in FIG. 1, with respect to the above floating impurities 14a, an acceleration voltage of 10 kV, which is as high as 10 times the output when the vapor deposition material is melted,
The direct current electron beam 10 having an emission current of 600 mA was irradiated. Then, the floating impurities 14 a were evaporated and scattered and removed from the liquid surface of the melt 13. At this time, most of the evaporated impurities 14b were scattered toward the shutter 16 which was closed in advance.

【0016】〔成膜処理〕上記の不純物除去処理後、図
3に示すように坩堝8aへの蒸着材料7の供給を停止
し、シャッター16を開け、フープ基材5を送りなが
ら、坩堝8a内の溶融液13の、浮遊不純物14aの存
在しない清浄な液面に、図1に示すように不純物除去時
の出力の10分の1に下げた低出力たる、加速電圧10
kV、エミッション電流60mAの直流電子ビーム10
を照射することによって溶融液13を蒸発させると、蒸
着材料の蒸発粒子15が基材5の表面(下面)に蒸着
し、基材5の表面に薄膜を形成した。
[Film Forming Treatment] After the above-mentioned impurity removing treatment, as shown in FIG. 3, the supply of the vapor deposition material 7 to the crucible 8a is stopped, the shutter 16 is opened, and the hoop base material 5 is fed, while the crucible 8a is being fed. As shown in FIG. 1, on the clean liquid surface of the molten liquid 13 in which the floating impurities 14a do not exist, the acceleration voltage 10 which is a low output reduced to 1/10 of the output at the time of impurity removal.
DC electron beam 10 with kV and emission current 60mA
When the molten liquid 13 was evaporated by irradiating with, the evaporation particles 15 of the vapor deposition material were vapor-deposited on the surface (lower surface) of the base material 5, and a thin film was formed on the surface of the base material 5.

【0017】〔一連の処理を連続して繰り返す〕上記の
薄膜形成によって坩堝8a中の溶融液13が少なくなっ
てきたとき、再び、フープ基材5の送りを止め、シャタ
ー16を閉め、上記した蒸着材料7の供給・溶融と不純
物除去処理を行い、その後、再び、上記の薄膜形成処理
を行った。このように、蒸着材料の供給・溶融から不純
物除去処理を経て薄膜形成処理に至るまでを、図1にも
示すように、連続して繰り返し行った。
[Continuously repeating a series of treatments] When the amount of the melt 13 in the crucible 8a becomes small due to the above thin film formation, the feeding of the hoop base material 5 is stopped again, the shutter 16 is closed, and the above-mentioned process is performed. The vapor deposition material 7 was supplied / melted and impurities were removed, and then the thin film forming process was performed again. In this way, from the supply and melting of the vapor deposition material to the thin film formation processing through the impurity removal processing, as shown in FIG.

【0018】〔結果〕以上のように実施した結果、溶融
液の液面に浮遊する不純物が原因となって生ずる基材へ
の不純物混入や溶融液液滴の付着等が起きず、膜の欠陥
を大幅に削減することが出来た。連続蒸着を実現するこ
とも出来た。しかも、これらのことが、単一のエネルギ
ービーム源によって行うことができた。
[Results] As a result of carrying out as described above, film defects are not caused due to the inclusion of impurities in the base material caused by the impurities floating on the liquid surface of the melt and the adhesion of melt droplets. Was able to be significantly reduced. It was also possible to realize continuous vapor deposition. Moreover, these could be done with a single energy beam source.

【0019】−実施例2− この実施例では、溶融材料の液面に浮かぶ不純物を一か
所に集めて効率良く除去できるようにした。図4にみる
ように、坩堝8aの底部に羽根81を設けるとともに、
底面に垂直の支持軸17を備えたホルダー11bに坩堝
8aを設置し、モータ18で前記支持軸17を回転させ
るようにした。この場合に、坩堝8aを前記ホルダー1
1bに対し偏心させて設置した。このため、坩堝8aは
その内部の偏心位置を回転中心として水平回転する。
Example 2 In this example, impurities floating on the liquid surface of the molten material were collected in one place so that the impurities could be efficiently removed. As shown in FIG. 4, while the blade 81 is provided on the bottom of the crucible 8a,
The crucible 8a was installed in a holder 11b having a vertical support shaft 17 on its bottom surface, and the motor 18 was used to rotate the support shaft 17. In this case, attach the crucible 8a to the holder 1
It was installed eccentric to 1b. Therefore, the crucible 8a rotates horizontally with the eccentric position inside the crucible 8a as the center of rotation.

【0020】図中、実施例1に使用した番号と同じ番号
の部分は同じ構成要素を示す。その他の構成は図1、3
と同様なので記載を省略した。坩堝8aを回転させる
と、羽根81が坩堝8a内の溶融液13を攪拌するた
め、溶融液13中の不純物は溶融液13の液面上に容易
かつ迅速に浮上した。液面に浮上・浮遊した不純物14
aは坩堝8aの偏心回転によりその回転中心付近に集ま
るので、この集中した浮遊不純物14aに高出力の電子
ビームを集中的に照射することによって浮遊不純物14
aを効果的に除去した。
In the figure, the parts having the same numbers as those used in the first embodiment indicate the same components. Other configurations are shown in FIGS.
Since it is the same as, the description is omitted. When the crucible 8a was rotated, the blade 81 stirred the melt 13 in the crucible 8a, so that the impurities in the melt 13 floated on the liquid surface of the melt 13 easily and quickly. Impurities 14 floating / floating on the liquid surface
Since a is gathered in the vicinity of the center of rotation by the eccentric rotation of the crucible 8a, the concentrated floating impurities 14a are intensively irradiated with a high-power electron beam, so
a was effectively removed.

【0021】蒸着材料の供給・溶融と薄膜形成処理は実
施例1と同様に行い、蒸着材料の供給から薄膜形成処理
までを連続して繰り返して実施した点も実施例1と同様
に行った。この実施例では、不純物が溶融材料の液面の
一か所に容易かつ迅速に集中したので、実施例1に比較
して、不純物除去処理時間を短縮できた。
The supply / melting of the vapor deposition material and the thin film forming treatment were performed in the same manner as in Example 1, and the point similar to that of Example 1 was that the supply of the vapor deposition material to the thin film forming treatment were continuously repeated. In this example, the impurities were easily and quickly concentrated at one location on the liquid surface of the molten material, so that the impurity removal treatment time could be shortened as compared with Example 1.

【0022】−実施例3− この実施例でも、実施例2と同様、溶融材料の液面に浮
かぶ不純物を一か所に集めて効率良く除去できるように
した。図5にみるように、坩堝8aを支持するホルダー
11aの対向する2方向側面に振動子19、19を設置
した。この振動子19の励起で、溶融液13中の不純物
を浮遊不純物14aとして溶融液13の液面の一か所に
集め、この集中した浮遊不純物14aに高出力の電子ビ
ーム10を照射することによってこの浮遊不純物14a
を除去した。
-Embodiment 3 In this embodiment, as in the case of Embodiment 2, impurities floating on the liquid surface of the molten material are collected in one place so that the impurities can be efficiently removed. As shown in FIG. 5, the vibrators 19 and 19 were installed on the two opposite side surfaces of the holder 11a supporting the crucible 8a. By the excitation of the oscillator 19, the impurities in the melt 13 are collected as floating impurities 14a in one place on the liquid surface of the melt 13, and the concentrated floating impurities 14a are irradiated with a high-power electron beam 10. This floating impurity 14a
Was removed.

【0023】この実施例では、上記振動の付与によって
溶融液13が波面を作り、その波に乗って浮遊不純物1
4aが坩堝8aの中央付近に集中する。蒸着材料の供給
・溶融と薄膜形成処理は実施例1と同様に行い、蒸着材
料の供給から薄膜形成処理までを連続して繰り返して実
施した点も実施例1と同様に行った。
In this embodiment, the molten liquid 13 forms a wave front by applying the above-mentioned vibration, and the floating impurities 1 ride on the wave.
4a is concentrated near the center of the crucible 8a. The supply / melting of the vapor deposition material and the thin film forming treatment were performed in the same manner as in Example 1, and the point that the supply of the vapor deposition material and the thin film forming treatment were continuously repeated was also performed in the same manner as in Example 1.

【0024】以上のように実施した結果、実施例1に比
較して不純物除去処理時間を短縮できた。また、実施例
2に比較して、振動子で振動を与えるという単純な機構
によって不純物を液面の一か所に集中させることができ
た。 −実施例4− この実施例では、坩堝が蒸着材料の供給側と蒸発側を有
する。
As a result of carrying out as described above, the impurity removing treatment time can be shortened as compared with the first embodiment. Further, as compared with Example 2, the impurities could be concentrated on one place of the liquid surface by a simple mechanism of vibrating by the vibrator. -Example 4- In this example, the crucible has a vapor deposition material supply side and an evaporation side.

【0025】図6にみるように、単一槽構造の坩堝8a
の中央にその坩堝の高さと同程度の高さの仕切板82a
をその頭を少し液面上に出すようにして設けることによ
って槽内を蒸着材料の供給側83aと蒸着材料の蒸発側
83bとに分割した。仕切板82aの下方には坩堝8a
の底部との間に隙間82bがあり、蒸着材料の供給側8
3aで得られた溶融液13はこの隙間82bを通って蒸
着材料の蒸発側83bに移ることが出来る。
As shown in FIG. 6, the crucible 8a having a single tank structure.
A partition plate 82a having the same height as the height of the crucible in the center of the
The inside of the tank was divided into a vapor deposition material supply side 83a and a vapor deposition material vaporization side 83b by providing the head so as to be slightly above the liquid surface. Below the partition plate 82a is the crucible 8a.
There is a gap 82b with the bottom of the
The melt 13 obtained in 3a can be transferred to the evaporation side 83b of the vapor deposition material through this gap 82b.

【0026】エネルギービーム(図示省略)の照射は蒸
着材料の供給側83aと蒸発側83bとに交互に行っ
た。なお、エネルギービームが当たらない側の溶融液の
温度が下がるのを防止するために、坩堝ホルダー11a
に、坩堝8bを囲う形でヒーター20を設けて溶融液1
3を保温するようにした。
Irradiation with an energy beam (not shown) was alternately applied to the vapor deposition material supply side 83a and vaporization side 83b. In order to prevent the temperature of the melt on the side not hit by the energy beam from decreasing, the crucible holder 11a
The heater 20 is provided on the inside of the crucible 8b so as to surround the melt 1.
3 was kept warm.

【0027】さらに、供給側83aにおける溶融液13
の液面の浮遊不純物14aを一か所に集めるため、坩堝
ホルダー11aの1側面に振動子19を設けた。図中、
実施例1と同じ番号を付した部分は同じ構成部分を表
す。その他の構成は図1、3と同様なので記載を省略し
た。この実施例では、蒸着材料供給側83aの液面に浮
遊する不純物14aが蒸着材料蒸発側83bに流れ込む
ことを仕切板82aで阻止出来た。しかも、蒸着材料供
給側83aの底部付近の溶融液13が隙間82bを通っ
て蒸着材料蒸発側83bに移るが、底部付近の溶融液は
液面付近の溶融液に比べて不純物が極めて少ない。その
ため、蒸着材料蒸発側83bには実施例1〜3よりも一
層、不純物の少ない溶融液13を供給できた。
Further, the melt 13 on the supply side 83a
In order to collect the floating impurities 14a on the liquid surface in one place, a vibrator 19 is provided on one side surface of the crucible holder 11a. In the figure,
Portions with the same numbers as in Example 1 represent the same components. The other structure is similar to that of FIGS. In this embodiment, the partition plate 82a could prevent the impurities 14a floating on the liquid surface of the vapor deposition material supply side 83a from flowing into the vapor deposition material vaporization side 83b. Further, the melt 13 near the bottom of the vapor deposition material supply side 83a moves to the vapor deposition material evaporation side 83b through the gap 82b, but the melt near the bottom has extremely less impurities than the melt near the liquid surface. Therefore, it was possible to supply the melt 13 containing less impurities to the vapor deposition material evaporation side 83b than in the first to third embodiments.

【0028】蒸着材料の供給・溶融から薄膜形成処理ま
でを連続して繰り返し実施した点は、実施例1と同様で
ある。蒸着材料7の溶融中は絶えず不純物が発生する
が、蒸着材料供給側83aの液面に存在する浮遊不純物
14aは蒸着材料蒸発側83bに移ることを仕切板82
aで阻止できるため、相当長い間、蒸着材料蒸発側83
bで蒸発を続けることが出来た。したがって、1回の成
膜処理時間が長く取れた。
Similar to the first embodiment, the process from the supply / melting of the vapor deposition material to the thin film forming process is continuously repeated. Impurities are constantly generated during melting of the vapor deposition material 7, but the floating impurities 14a existing on the liquid surface of the vapor deposition material supply side 83a are transferred to the vapor deposition material evaporation side 83b.
Since it can be blocked by a, the evaporation material evaporation side 83
It was possible to continue evaporation at b. Therefore, one film forming treatment time was long.

【0029】以上のように実施した結果、実施例1〜3
に比較して、不純物除去処理回数を削減でき、薄膜形成
処理を長時間行うことができ、しかも、より清浄な薄膜
を形成できた。 −実施例5− この実施例でも、坩堝が蒸着材料の供給側と蒸発側を有
する。
As a result of carrying out as described above, Examples 1 to 3
Compared with the above, the number of impurity removal treatments could be reduced, the thin film formation treatment could be performed for a long time, and a cleaner thin film could be formed. Example 5 In this example as well, the crucible has a vapor deposition material supply side and an evaporation side.

【0030】この実施例では、二つの槽を持つ坩堝を使
用し、一つの槽を蒸着材料の供給側、他の槽を蒸着材料
の蒸発側とした。図7にみるように、坩堝8bは、蒸着
材料供給側83aの槽と蒸着材料蒸発側83bの槽の二
つを持ち、それぞれの底部を管83cで連結し、その管
83cの中央に溶融材料13の供給量を調節できるよう
にするためのバルブ21を設けた。
In this embodiment, a crucible having two tanks was used, one tank serving as the vapor deposition material supply side and the other tank serving as the vapor deposition material evaporation side. As shown in FIG. 7, the crucible 8b has two tanks, that is, a vapor deposition material supply side 83a and a vapor deposition material evaporation side 83b. The bottoms of the crucible 8b are connected by a pipe 83c, and the molten material is provided at the center of the pipe 83c. A valve 21 was provided to allow the supply amount of 13 to be adjusted.

【0031】図中、実施例1と同じ番号を付した部分は
同じ構成部分を表す。その他の構成は図1、3と同様な
ので記載を省略した。なお、特に限定する訳ではない
が、上記バルブ21を開ける際には、蒸着材料溶融側8
3aへ蒸着材料7を供給することを一時停止することが
好ましい。蒸着材料の供給・溶融から薄膜形成処理まで
を連続して繰り返し実施した点は、実施例1と同様であ
る。
In the figure, the parts with the same numbers as in the first embodiment represent the same components. The other structure is similar to that of FIGS. Although not particularly limited, when the valve 21 is opened, the vapor deposition material melting side 8 is opened.
It is preferable to temporarily stop the supply of the vapor deposition material 7 to 3a. Similar to the first embodiment, the process from the supply / melting of the vapor deposition material to the thin film forming process is continuously repeated.

【0032】この実施例が実施例1〜4と異なる点は、
蒸着材料供給側83aの溶融液13に含まれる、浮遊し
きっていなかった不純物を液面に浮遊させることを完了
した後、その液面に浮遊する不純物14aを電子ビーム
10を照射して除去するまでバルブ21を閉めておき、
浮遊不純物14aを除去した後にバルブ21を開けて蒸
着材料供給側83aから蒸着材料蒸発側83bへ溶融液
13を供給できる点である。
The difference between this embodiment and Embodiments 1 to 4 is that
Until the impurities contained in the melt 13 on the vapor deposition material supply side 83a that have not been floated are completely floated on the liquid surface, and then the impurities 14a floating on the liquid surface are irradiated with the electron beam 10 to be removed. Keep valve 21 closed,
The point is that the melt 21 can be supplied from the vapor deposition material supply side 83a to the vapor deposition material vaporization side 83b by opening the valve 21 after removing the floating impurities 14a.

【0033】蒸着材料供給側83aで不純物の浮遊を十
分に完了させた後の溶融液を蒸着材料蒸発側83bへ供
給したので、実施例4よりも清浄な薄膜を形成できた。 −実施例6− この実施例では、不純物除去処理時の高出力電子ビーム
照射により浮遊不純物と同時に溶融液も蒸発するので、
溶融液の蒸発を抑制できるように、不純物除去処理方法
を改良した。
Since the molten liquid after the floating of the impurities was sufficiently completed on the vapor deposition material supply side 83a was supplied to the vapor deposition material evaporation side 83b, a cleaner thin film than in Example 4 could be formed. -Example 6- In this example, since the floating impurities and the molten liquid are evaporated at the same time by the high-power electron beam irradiation during the impurity removal processing,
The method for removing impurities was improved so that evaporation of the melt could be suppressed.

【0034】図8はこの実施例における、電子ビームの
出力値とシャッター開閉のタイミングを時系列で示して
いる。この実施例でも、不純物除去処理時においては、
実施例1などと同様、シャッターを閉じフープ基材の送
りを停止しておいて蒸着材料を溶融するとともに溶融液
の液面から不純物を除去し、シャッターを開けフープ基
材を送りながら溶融液から蒸着材料を蒸発させて成膜を
行うが、実施例1などと異なり、図にみるように、蒸着
材料の溶融後、不純物の除去処理前に、一旦電子ビーム
の照射を停止して(エネルギーレベルは零)、溶融液を
凝固しない程度まで冷やした後、その溶融液の液面に浮
遊している不純物に高出力(加速電圧100kV、エミ
ッション電流1A)のパルス状電子ビーム(パルス幅5
ns、繰り返し周波数1kHz)を照射して浮遊不純物
を除去するようにした。
FIG. 8 shows the output value of the electron beam and the shutter opening / closing timing in time series in this embodiment. Also in this embodiment, during the impurity removal process,
Similar to Example 1 and the like, the shutter is closed and the feeding of the hoop base material is stopped to melt the vapor deposition material and impurities are removed from the liquid surface of the melt, and the shutter is opened to feed the hoop base material from the melt. Although the vapor deposition material is evaporated to form a film, unlike Example 1 or the like, as shown in the figure, after the vapor deposition material is melted and before the impurity removal processing, the electron beam irradiation is temporarily stopped (energy level Is zero), and after cooling the melt to such an extent that it does not solidify, a high-power (acceleration voltage 100 kV, emission current 1 A) pulsed electron beam (pulse width 5) is applied to the impurities floating on the surface of the melt.
ns, a repetition frequency of 1 kHz) was applied to remove floating impurities.

【0035】蒸着材料の供給・溶融、薄膜形成処理は、
実施例1と同様に実施し、蒸着材料の供給から薄膜形成
処理までを連続的に繰り返して実施した点も実施例1と
同様である。以上のように実施した結果、実施例1と異
なり、不純物除去時に使用した電子ビームが直流連続の
ものでなくパルス状であったこと、および、不純物除去
処理前に溶融液を一旦冷やしたことによって、実施例1
よりも不純物除去処理時の溶融液の蒸発を抑制できた。
これによって、蒸着材料の浪費が削減できた。
Supplying and melting of vapor deposition materials and thin film formation processing are
It is also similar to Example 1 in that the same process as in Example 1 is performed, and the process from the supply of the vapor deposition material to the thin film forming process is continuously repeated. As a result of carrying out as described above, unlike Example 1, the electron beam used at the time of removing impurities was not a DC continuous wave but a pulse shape, and the molten liquid was once cooled before the impurity removing process. Example 1
It was possible to suppress the evaporation of the melt during the impurity removal process.
As a result, the waste of the evaporation material can be reduced.

【0036】[0036]

【発明の効果】本発明にかかる、エネルギービーム加熱
真空蒸着による薄膜形成方法は、前記のように構成され
ているので、以下に記載される効果を有する。請求項1
に記載の発明では、薄膜形成処理、不純物除去処理共に
単一のエネルギービーム源を使用し、単一エネルギービ
ーム源以外の不純物除去装置を必要としないので、従来
に比べ、設備費を削減できる。
The thin film forming method by energy beam heating vacuum evaporation according to the present invention has the following effects because it is configured as described above. Claim 1
In the invention described in (1), since a single energy beam source is used for both the thin film forming process and the impurity removing process, and an impurity removing device other than the single energy beam source is not required, the equipment cost can be reduced as compared with the conventional case.

【0037】請求項2に記載の発明では、上記請求項1
に記載の発明の効果に加えて、エネルギーパワーを調整
することによって1バッジ内で不純物除去処理、成膜処
理を連続して行うことができるので、従来よりも、簡
易、迅速、大量に成膜できる。請求項3に記載の発明で
は、上記請求項1又は2に記載の発明の効果に加えて、
不純物を溶融液の液面の特定箇所に集めることによって
効率良く除去できる。
In the invention described in claim 2, the above-mentioned claim 1
In addition to the effects of the invention described in 1), since the impurity removal process and the film formation process can be continuously performed within one badge by adjusting the energy power, the film formation is simpler, faster, and in a larger amount than before. it can. In the invention described in claim 3, in addition to the effect of the invention described in claim 1 or 2,
The impurities can be efficiently removed by collecting the impurities at a specific position on the surface of the melt.

【0038】請求項4に記載の発明では、上記請求項3
に記載の発明の効果に加えて、坩堝の回転によって不純
物を遠心力で溶融液の液面の中央あるいは縁部へ追いや
ることができ、そこに高エネルギービームを照射するこ
とによって不純物除去を効率良く行うことができる。請
求項5に記載の発明では、上記請求項4に記載の発明の
効果に加えて、坩堝を偏心回転させることによって坩堝
中の溶融液の攪拌が促され、溶融液中の不純物を容易に
液面へ浮遊させることができ、これに高エネルギービー
ムを照射することによって不純物除去を効率良く行うこ
とができる。
In the invention described in claim 4, the above-mentioned claim 3
In addition to the effects of the invention described in (1), by rotating the crucible, impurities can be driven to the center or edge of the liquid surface of the melt by centrifugal force, and the impurities can be removed efficiently by irradiating with a high energy beam there. It can be carried out. In the invention described in claim 5, in addition to the effect of the invention described in claim 4, by eccentrically rotating the crucible, stirring of the melt in the crucible is promoted, and impurities in the melt are easily dissolved. The impurities can be efficiently removed by irradiating the surface with a high energy beam.

【0039】請求項6に記載の発明では、上記請求項3
に記載の発明の効果に加えて、坩堝ホルダーの対抗する
2方向側面に超音波振動子を設置することで不純物を溶
融液の液面中央付近の一か所に集めることができるの
で、効率的に不純物の除去ができる。請求項7に記載の
発明では、上記請求項6に記載の発明の効果に加えて、
坩堝回転構造に比べて単純な構造で浮遊不純物を1箇所
に集めることができる。
In the invention according to claim 6, the above-mentioned claim 3
In addition to the effect of the invention described in (1), by installing ultrasonic transducers on two opposing side surfaces of the crucible holder, impurities can be collected in one place near the center of the liquid surface of the melt, which is efficient. Can remove impurities. According to the invention of claim 7, in addition to the effect of the invention of claim 6,
Compared to the crucible rotating structure, the floating impurities can be collected in one place with a simple structure.

【0040】請求項8に記載の発明では、上記請求項3
から7までのいずれかに記載の発明の効果に加えて、坩
堝が溶融液攪拌手段を有することによって一層攪拌効率
が向上するので、一層不純物除去処理効率が向上する。
請求項9に記載の発明では、上記請求項1又は2に記載
の発明の効果に加えて、坩堝が蒸着材料の供給側と蒸発
側とに分離されているため供給側で生じる不純物の浮遊
が蒸発側で生じにくいので、薄膜への不純物混入や基板
への溶融液の液滴の付着を大幅に削減でき、一層清浄な
薄膜を形成できる。
In the invention described in claim 8, the above-mentioned claim 3 is used.
In addition to the effect of the invention described in any one of 1 to 7, since the crucible has the melt stirring means, the stirring efficiency is further improved, and thus the impurity removal treatment efficiency is further improved.
In the invention described in claim 9, in addition to the effect of the invention described in claim 1 or 2, since the crucible is separated into a vapor deposition material supply side and an evaporation side, floating of impurities generated on the supply side is prevented. Since it is less likely to occur on the evaporation side, it is possible to significantly reduce the mixing of impurities into the thin film and the adhesion of droplets of the molten liquid to the substrate, and it is possible to form a cleaner thin film.

【0041】請求項10に記載の発明では、上記請求項
9に記載の発明の効果に加えて、坩堝がそれ自体を加熱
可能な構造を有するため、坩堝が冷却されて成膜中の溶
融液が凝固することを防止できる。請求項11に記載の
発明では、上記請求項9又は10に記載の発明の効果に
加えて、坩堝単一槽内が蒸着材料の供給側と蒸発側とに
分割されているため、単純な構造で上記請求項4に記載
の発明の効果が得られ得る。
According to the invention of claim 10, in addition to the effect of the invention of claim 9, since the crucible has a structure capable of heating itself, the crucible is cooled and the molten liquid during film formation is cooled. Can be prevented from solidifying. According to the invention described in claim 11, in addition to the effect of the invention described in claim 9 or 10, the inside of the single crucible tank is divided into a supply side and an evaporation side of the vapor deposition material, so that the structure is simple. Thus, the effect of the invention described in claim 4 can be obtained.

【0042】請求項12に記載の発明では、上記請求項
9又は10に記載の発明の効果に加えて、蒸着材料の供
給側の槽と蒸発側の槽が管で連結されているために上記
請求項11に記載の発明の場合よりも蒸発側の槽への不
純物の混入や液面浮遊が少なくなる。請求項13に記載
の発明では、上記請求項12に記載の発明の効果に加え
て、上記管が上記蒸発側への溶融液の供給量を調節する
手段を有するので、上記供給側の不純物を除去してから
上記蒸着側へ溶融液を供給できるので、一層純度の高い
材料で成膜できる。
According to the twelfth aspect of the invention, in addition to the effect of the ninth or tenth aspect of the invention, the vapor deposition material supply side tank and the evaporation side tank are connected by a pipe. As compared with the case of the invention described in claim 11, mixing of impurities into the tank on the evaporation side and floating of the liquid surface are reduced. In the invention described in claim 13, in addition to the effect of the invention described in claim 12, since the pipe has means for adjusting the supply amount of the molten liquid to the evaporation side, impurities on the supply side are removed. Since the molten liquid can be supplied to the vapor deposition side after the removal, a film having a higher purity can be formed.

【0043】請求項14に記載の発明では、上記請求項
1から13までのいずれかに記載の発明の効果に加え
て、成膜時のエネルギーレベルの所定幅の倍率の高エネ
ルギーレベルのエネルギービームの照射によって、溶融
液面浮遊不純物の除去効率が一層高まる。請求項15に
記載の発明では、請求項1から14までのいずれかに記
載の発明の効果に加えて、不純物除去処理時の照射エネ
ルギービームがパルス状であることによって、不純物除
去処理時の溶融液の蒸発を抑制でき、これによって蒸着
材料の浪費を削減できる。
According to a fourteenth aspect of the invention, in addition to the effect of the invention according to any one of the first to thirteenth aspects, an energy beam of a high energy level with a magnification of a predetermined width of the energy level at the time of film formation is obtained. By the irradiation of, the efficiency of removing the impurities floating on the melt surface is further enhanced. In the invention described in claim 15, in addition to the effect of the invention described in any one of claims 1 to 14, the irradiation energy beam during the impurity removal treatment is pulsed, so that the melting during the impurity removal treatment is performed. The evaporation of the liquid can be suppressed, and the waste of the evaporation material can be reduced.

【0044】請求項16に記載の発明では、請求項1か
ら15までのいずれかに記載の発明の効果に加えて、不
純物除去処理前に一旦エネルギービームの照射を停止し
て溶融液を凝固しない程度まで冷やすことによって、エ
ネルギービームをパルス状にする機構を設けなくても、
不純物除去処理時の溶融液の蒸発量を抑制できる。
According to the sixteenth aspect of the invention, in addition to the effect of the invention according to any of the first to fifteenth aspects, the irradiation of the energy beam is temporarily stopped before the impurity removal treatment so that the molten liquid is not solidified. By cooling to a certain degree, without providing a mechanism for pulsing the energy beam,
It is possible to suppress the evaporation amount of the molten liquid during the impurity removal processing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における電子ビームの出力値
とシャッター開閉のタイミングを時系列で示した説明
図。
FIG. 1 is an explanatory view showing an output value of an electron beam and a shutter opening / closing timing in time series in an embodiment of the present invention.

【図2】上記実施例における蒸着材料供給・溶融工程と
浮遊不純物除去処理工程を示す断面図。
FIG. 2 is a cross-sectional view showing a vapor deposition material supply / melting process and a floating impurity removal treatment process in the above embodiment.

【図3】上記実施例における蒸着材料蒸発工程を示す断
面図。
FIG. 3 is a cross-sectional view showing a vapor deposition material evaporation step in the above embodiment.

【図4】本発明の第2の実施例における浮遊不純物除去
処理工程を示す断面図。
FIG. 4 is a cross-sectional view showing a floating impurity removing process step according to the second embodiment of the present invention.

【図5】本発明の第3の実施例における浮遊不純物除去
処理工程を示す断面図。
FIG. 5 is a cross-sectional view showing a floating impurity removal processing step according to the third embodiment of the present invention.

【図6】本発明の第4の実施例における浮遊不純物除去
処理工程を示す断面図。
FIG. 6 is a sectional view showing a floating impurity removing process step in a fourth example of the present invention.

【図7】本発明の第5の実施例における浮遊不純物除去
処理工程を示す断面図。
FIG. 7 is a cross-sectional view showing a floating impurity removing process step in a fifth embodiment of the present invention.

【図8】本発明の第6の実施例における電子ビームの出
力値とシャッター開閉のタイミングを時系列で示した説
明図。
FIG. 8 is an explanatory diagram showing the output value of an electron beam and the shutter opening / closing timing in time series in the sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 真空チャンバー 5 フープ基材 7 蒸着材料 8a 槽が一つの坩堝 8b 槽が二つの坩堝 10 電子ビーム 11a 回転しない坩堝ホルダー 11b 回転する坩堝ホルダー 13 溶融液 14a 溶融液の液面上を浮遊する不純物 15 蒸着材料の蒸発粒子 19 振動子 20 ヒーター 21 バルブ 1 vacuum chamber 5 hoop base material 7 vapor deposition material 8a crucible with one tank 8b crucible with two tanks 10 electron beam 11a non-rotating crucible holder 11b rotating crucible holder 13 melt 14a impurities floating on the surface of the melt 15 Evaporated particles of vapor deposition material 19 Oscillator 20 Heater 21 Valve

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】真空下、坩堝中の蒸着材料にエネルギービ
ームを照射することにより前記蒸着材料を加熱して溶融
蒸発させ基材に蒸着させて前記基材の表面に薄膜を形成
する方法において、前記蒸着材料の溶かし込みから成膜
に到る適宜の過程で、坩堝中の溶融液の液面に浮遊する
不純物を除去する必要が生じたときに、単一のエネルギ
ービーム源より発する前記エネルギービームを成膜時の
エネルギーレベルよりも高いエネルギーレベルにして前
記不純物に照射することにより前記不純物を除去するこ
とを特徴とする、エネルギービーム加熱式真空蒸着によ
る薄膜形成方法。
1. A method of forming a thin film on the surface of a substrate by heating the vapor-depositing material to melt and evaporate it by irradiating the vapor-depositing material in a crucible with an energy beam under vacuum, The energy beam emitted from a single energy beam source when it is necessary to remove impurities floating on the liquid surface of the melt in the crucible in an appropriate process from melting of the vapor deposition material to film formation. A method for forming a thin film by energy beam heating vacuum deposition, wherein the impurities are removed by irradiating the impurities with an energy level higher than that during film formation.
【請求項2】高エネルギーレベルの不純物除去処理と低
エネルギーレベルの成膜処理を交互に繰り返すことによ
り連続蒸着を行う、請求項1に記載の薄膜形成方法。
2. The thin film forming method according to claim 1, wherein continuous vapor deposition is performed by alternately repeating high energy level impurity removal processing and low energy level film formation processing.
【請求項3】前記溶融液の液面に浮遊する不純物をその
液面上の特定の箇所に集めて除去処理する、請求項1ま
たは2に記載の薄膜形成方法。
3. The method for forming a thin film according to claim 1, wherein impurities floating on the liquid surface of the melt are collected and removed at a specific location on the liquid surface.
【請求項4】前記坩堝は水平面内で回転する構造を有し
ている、請求項3に記載の薄膜形成方法。
4. The method of forming a thin film according to claim 3, wherein the crucible has a structure that rotates in a horizontal plane.
【請求項5】回転中心が前記坩堝内の偏心位置にある、
請求項4に記載の薄膜形成方法。
5. The center of rotation is at an eccentric position in the crucible,
The thin film forming method according to claim 4.
【請求項6】前記坩堝に振動を与えて不純物を前記特定
の箇所に集めるようにする、請求項3に記載の薄膜形成
方法。
6. The method of forming a thin film according to claim 3, wherein the crucible is vibrated so that impurities are collected at the specific place.
【請求項7】前記坩堝の一方側から振動を与えて不純物
をその反対側付近に集めるようにする、請求項6に記載
の薄膜形成方法。
7. The thin film forming method according to claim 6, wherein vibration is applied from one side of the crucible to collect impurities near the opposite side.
【請求項8】前記坩堝が溶融液を攪拌する手段を有す
る、請求項3から7までのいずれかに記載の薄膜形成方
法。
8. The method for forming a thin film according to claim 3, wherein the crucible has means for stirring the molten liquid.
【請求項9】前記坩堝は、蒸着材料の供給側と蒸発側と
が分離された構造となっていて、蒸着材料の溶融時に生
じる不純物が前記蒸発側に流出するのを防止するように
なっており、単一のエネルギービーム源より発する前記
エネルギービームを、そのエネルギーレベルを高低変化
させながら、前記供給側と蒸発側に照射する、請求項1
または2に記載の薄膜形成方法。
9. The crucible has a structure in which a vapor deposition material supply side and a vaporization side are separated from each other, and impurities generated during melting of the vapor deposition material are prevented from flowing out to the vaporization side. And irradiating the energy beam emitted from a single energy beam source to the supply side and the evaporation side while changing the energy level of the energy beam.
Alternatively, the thin film forming method described in 2.
【請求項10】前記坩堝はそれ自体を加熱可能な構造を
有している、請求項9に記載の薄膜形成方法。
10. The method for forming a thin film according to claim 9, wherein the crucible has a structure capable of heating itself.
【請求項11】前記坩堝は、単一槽構造を有し、槽内が
仕切りで前記供給側と蒸発側に分割されている、請求項
9または10に記載の薄膜形成方法。
11. The thin film forming method according to claim 9, wherein the crucible has a single tank structure, and the inside of the tank is divided by a partition into the supply side and the evaporation side.
【請求項12】前記坩堝は、前記供給側となる槽と前記
蒸発側となる槽を有し、これら二つの槽が、前記供給側
で蒸着材料を溶融させて得られる溶融液を前記蒸発側に
供給するために管で連結されている、請求項9または1
0に記載の薄膜形成方法。
12. The crucible has a tank serving as the supply side and a tank serving as the evaporation side, and these two tanks form a molten liquid obtained by melting a vapor deposition material on the supply side on the evaporation side. 9. Pipe connection for feeding to
0. The thin film forming method described in 0.
【請求項13】前記管が前記蒸発側への溶融液の供給量
を調節する手段を有する、請求項12に記載の薄膜形成
方法。
13. The method for forming a thin film according to claim 12, wherein the tube has a means for adjusting a supply amount of the molten liquid to the evaporation side.
【請求項14】前記不純物除去処理時のエネルギーレベ
ルが前記成膜処理時のエネルギーレベルの2倍から10
00倍である、請求項1から13までのいずれかに記載
の薄膜形成方法。
14. The energy level at the time of the impurity removal treatment is twice to 10 times the energy level at the time of the film formation treatment.
The thin film forming method according to any one of claims 1 to 13, wherein the film thickness is 00 times.
【請求項15】前記不純物除去処理時に照射するエネル
ギービームがパルス状である、請求項1から14までの
いずれかに記載の薄膜形成方法。
15. The method of forming a thin film according to claim 1, wherein the energy beam irradiated during the impurity removal process is pulsed.
【請求項16】前記不純物除去処理前に一旦エネルギー
ビームの照射を停止して溶融液を凝固しない程度まで冷
やした後、前記成膜処理時のエネルギーレベルよりも高
いエネルギーレベルのエネルギービームを不純物に照射
する、請求項1から15までのいずれかに記載の薄膜形
成方法。
16. Before the impurity removing process, once the irradiation of the energy beam is stopped and the melt is cooled to such an extent that it does not solidify, the energy beam having an energy level higher than the energy level during the film forming process is used as the impurity. The method for forming a thin film according to claim 1, wherein irradiation is performed.
JP03849396A 1996-02-26 1996-02-26 Thin film formation method Expired - Fee Related JP3458585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03849396A JP3458585B2 (en) 1996-02-26 1996-02-26 Thin film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03849396A JP3458585B2 (en) 1996-02-26 1996-02-26 Thin film formation method

Publications (2)

Publication Number Publication Date
JPH09228033A true JPH09228033A (en) 1997-09-02
JP3458585B2 JP3458585B2 (en) 2003-10-20

Family

ID=12526799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03849396A Expired - Fee Related JP3458585B2 (en) 1996-02-26 1996-02-26 Thin film formation method

Country Status (1)

Country Link
JP (1) JP3458585B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123389A (en) * 2017-02-02 2018-08-09 株式会社アルバック Gold material for vapor deposition, and production method of gold material for vapor deposition
CN115094389A (en) * 2022-07-11 2022-09-23 威科赛乐微电子股份有限公司 Method for electron beam evaporation plating of palladium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130129937A1 (en) * 2011-11-23 2013-05-23 United Technologies Corporation Vapor Deposition of Ceramic Coatings

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123389A (en) * 2017-02-02 2018-08-09 株式会社アルバック Gold material for vapor deposition, and production method of gold material for vapor deposition
CN115094389A (en) * 2022-07-11 2022-09-23 威科赛乐微电子股份有限公司 Method for electron beam evaporation plating of palladium
CN115094389B (en) * 2022-07-11 2023-12-29 威科赛乐微电子股份有限公司 Method for evaporating palladium by electron beam

Also Published As

Publication number Publication date
JP3458585B2 (en) 2003-10-20

Similar Documents

Publication Publication Date Title
US7449703B2 (en) Method and apparatus for EUV plasma source target delivery target material handling
US7405416B2 (en) Method and apparatus for EUV plasma source target delivery
JP4160027B2 (en) Turbine member repair method and material deposition apparatus
JP4373252B2 (en) Plasma generator
JPS61221310A (en) Method and apparatus for producing pulverous powder of metal or alloy or the like
JP3458585B2 (en) Thin film formation method
JPH0848510A (en) Automatic fullerene synthesizer by arc discharge
GB2164431A (en) Melting rod-shaped material with an induction coil
JPS62180068A (en) Device for heating and evaporating electron beam
JPH07150340A (en) Thin film forming device
JPS63210206A (en) Apparatus for producing metal powder
JP7256385B2 (en) Manufacturing method and manufacturing apparatus for titanium alloy ingot
Jackson et al. Design of an elegant and inexpensive multiple target holder and laser beam scanner for use in laser-ablation deposition of thin films
JP2003301254A (en) Evaporation source device and film forming device provided with the same
SU1715500A1 (en) Method and device for producing powders from melts
JPH059483B2 (en)
JP2006291328A (en) Electron beam auxiliary irradiation laser ablation film deposition apparatus
JPH0336204A (en) Method and apparatus for manufacturing metal fine powder
JPH0339464A (en) Method and device for vapor-depositing by laser
JPH08225927A (en) Crucible for evaporation
JPH0310005A (en) Method and apparatus for manufacturing metal fine powder
JPH09157837A (en) Arc type ion plating device
JPH01208407A (en) Method and apparatus for manufacturing metal powder
JPH09316635A (en) Sputtering system
JPH0835059A (en) Raw material vapor feeding device and thin film forming device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20070808

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090808

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090808

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100808

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110808

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120808

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees