JPH09227970A - Production of high tensile conductive copper alloy and conductor for electric wire - Google Patents

Production of high tensile conductive copper alloy and conductor for electric wire

Info

Publication number
JPH09227970A
JPH09227970A JP3365696A JP3365696A JPH09227970A JP H09227970 A JPH09227970 A JP H09227970A JP 3365696 A JP3365696 A JP 3365696A JP 3365696 A JP3365696 A JP 3365696A JP H09227970 A JPH09227970 A JP H09227970A
Authority
JP
Japan
Prior art keywords
weight
conductor
copper alloy
electric wire
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3365696A
Other languages
Japanese (ja)
Other versions
JP3381817B2 (en
Inventor
Yasuhito Taki
康仁 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP03365696A priority Critical patent/JP3381817B2/en
Publication of JPH09227970A publication Critical patent/JPH09227970A/en
Application granted granted Critical
Publication of JP3381817B2 publication Critical patent/JP3381817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a high tensile conductive copper alloy capable of obtaining a conductor for an electric wire having high strength and high elongation and excellent in bending resistance while expensive nickel and complicated solution treatment are eliminated. SOLUTION: This copper alloy has a compsn. contg., by weight, 0.05 to 0.25% magnesium, 0.1 to 0.6% tin, 0.02 to 0.08% phosphorus, 0.02 to 0.2% indium, 0.05 to 0.1% tellurium, and the balance copper, and in which the ratio of the tin content to the total content of magnesium and tellurium is regulated to >=1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、引張強さ、伸び及
び耐屈曲性に優れた電線用導体の製造方法、及び、導電
用高力銅合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a conductor for an electric wire which is excellent in tensile strength, elongation and bending resistance, and a high-strength copper alloy for conduction.

【0002】[0002]

【従来の技術】自動車や航空機等の分野では、用いられ
る電線にも軽量性が求められる。特に自動車では最近車
載装置の電子化が著しく進み、それに伴い車内配線回路
数が増加し、これら電線の占有空間及び重量の増加を招
き問題となっている。自動車用電線の中でも微小電流回
路に用いられる電線は、機械的強度を確保するため、電
気的に要求される直径よりも太い導体(軟銅線)が用い
られている。ここで、電線の軽量化のために導体径を小
さくしても機械的強度を確保できるものとして硬銅線に
ついて検討がなされた。しかし、この硬銅線は伸びが著
しく小さいために端子圧着箇所で断線が生じやすく、信
頼性に劣ると云う欠点があった。
2. Description of the Related Art In the fields of automobiles and airplanes, the electric wires used are also required to be lightweight. In particular, in automobiles, the on-board devices have been remarkably computerized recently, and the number of wiring circuits inside the vehicle has increased accordingly, which causes a problem that the occupied space and weight of these electric wires increase. Among electric wires for automobiles, an electric wire used for a minute current circuit uses a conductor (soft copper wire) thicker than an electrically required diameter in order to secure mechanical strength. Here, a hard copper wire has been studied as one that can secure mechanical strength even if the conductor diameter is reduced in order to reduce the weight of the electric wire. However, this hard copper wire has a drawback that it is inferior in reliability because breakage is apt to occur at the terminal crimping portion because the elongation is extremely small.

【0003】これに対して、本発明者等はニッケル−ケ
イ素−インジウム−スズ−銅合金(以下「Ni−Si−
In−Sn銅合金」)を提案した(特開平3−6873
4号公報)。このものは銅母相中に固溶しているニッケ
ル、ケイ素が時効処理により微細に析出されており、そ
の結果、引張強度、伸度及び導電率に優れているもので
ある。しかし、高価なニッケルを2〜4重量%も使用す
るため、実際に電線の導体として用いるには材料コスト
が高いものとなっていた。また、時効効果型合金である
ため、通常の電線製造設備とは別に溶体化処理のための
設備が必要である。さらに熱処理温度に敏感で特性がば
らつきやすく、これを防ぐためには高度かつ高価な温度
制御管理設備が必要であると云った欠点があった。
On the other hand, the present inventors have found that a nickel-silicon-indium-tin-copper alloy (hereinafter referred to as "Ni-Si-
In-Sn copper alloy ") (Japanese Patent Laid-Open No. 3-6873).
No. 4). In this product, nickel and silicon which are solid-dissolved in the copper matrix are finely precipitated by the aging treatment, and as a result, the tensile strength, the elongation and the electrical conductivity are excellent. However, since expensive nickel is used in an amount of 2 to 4% by weight, the material cost is high to actually use it as a conductor of an electric wire. Further, since it is an aging effect type alloy, equipment for solution treatment is required in addition to ordinary electric wire production equipment. Further, it has a drawback that it is sensitive to the heat treatment temperature and its characteristics are likely to vary, and in order to prevent this, sophisticated and expensive temperature control management equipment is required.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点、すなわち、高価なニッケルや煩雑な溶体処
理を不要としながら、高強度で高伸度、かつ、耐屈曲性
に優れた電線用導体を得ることができる導電用高力銅合
金を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has the above-mentioned problems of the prior art, that is, high strength, high elongation, and excellent bending resistance without requiring expensive nickel and complicated solution treatment. An object of the present invention is to provide a high-strength copper alloy for electric conduction, which can obtain a conductor for electric wires.

【0005】[0005]

【課題を解決するための手段】本発明の導電用高力銅合
金は、上記課題を解決するため、請求項1に記載の通
り、マグネシウムを0.05重量%以上0.25重量%
以下、スズを0.1重量%以上0.6重量%以下、燐を
0.02重量%以上0.08重量%以下、インジウムを
0.02重量%以上0.2重量%以下、テルルを0.0
5重量%以上0.1重量%以下含有し、残部が銅よりな
り、マグネシウムの含有量とテルルの含有量との和に対
するスズの含有量の比が1以上である構成を有する。上
記本発明の導電用高力銅合金の上記構成は、 ・マグネシウムを最適な添加量で銅母相中に固溶させる
ことにより、添加による鋳造性の悪化を最小に留めなが
ら引張強さを向上させ、 ・スズを添加することで耐屈曲性を大幅に向上させ、一
層の引張強さ及び焼鈍後の伸びの向上を図ると共に、マ
グネシウムの添加による鋳造性の悪化を改善し、 ・燐の添加により、耐熱性を向上させ、かつ、さらなる
鋳造性の向上を図り、 ・インジウムを添加することにより引張強さを一層向上
させ、 ・テルルを添加することにより、伸び及び耐屈曲性のさ
らなる向上を図って、それぞれの添加量を最適化して得
られたものである。
In order to solve the above-mentioned problems, the high-strength copper alloy for electroconductivity according to the present invention comprises, as set forth in claim 1, 0.05% by weight or more and 0.25% by weight of magnesium.
Below, 0.1% by weight or more and 0.6% by weight or less of tin, 0.02% by weight or more and 0.08% by weight or less of phosphorus, 0.02% by weight or more and 0.2% by weight or less of indium, and 0 of tellurium. .0
The content is 5 wt% or more and 0.1 wt% or less, the balance is copper, and the ratio of the tin content to the sum of the magnesium content and the tellurium content is 1 or more. The above-mentioned configuration of the high-strength copper alloy for electroconductivity of the present invention is as follows.・ By adding tin, the flex resistance is greatly improved, the tensile strength and the elongation after annealing are improved, and the deterioration of the castability due to the addition of magnesium is improved. To improve heat resistance and castability, and to further improve tensile strength by adding indium, and further improve elongation and flex resistance by adding tellurium. This is obtained by optimizing the respective addition amounts.

【0006】すなわち、本発明の導電性高力銅合金にお
いて、マグネシウムは0.05重量%以上0.25重量
%以下であることが必要である。マグネシウムは引張強
さを著しく向上させるが、含有量が0.05重量%未満
であると充分な効果が得られない。一方、含有量が0.
25重量%超では引張強さの向上効果は飽和してしま
い、また導電性の低下が大きくなり、かつ、鋳造性が悪
化して鋳巣等欠陥の発生が増加する。このような0.2
5重量%超の領域では特に連続鋳造時には鋳造割れが発
生しやすくなり、また、伸線時の断線が多発する。な
お、このとき表皮を面削してから伸線を行うことによっ
てある程度は防ぐことは可能ではあるが、それでも生産
性の低下は著しい。
That is, in the conductive high-strength copper alloy of the present invention, it is necessary that the magnesium content is 0.05% by weight or more and 0.25% by weight or less. Magnesium significantly improves the tensile strength, but if the content is less than 0.05% by weight, a sufficient effect cannot be obtained. On the other hand, the content is 0.
If it exceeds 25% by weight, the effect of improving the tensile strength will be saturated, the conductivity will be significantly lowered, and the castability will be deteriorated to increase the occurrence of defects such as cavities. 0.2 like this
In the range of more than 5% by weight, casting cracks are likely to occur especially during continuous casting, and wire breakage frequently occurs during wire drawing. At this time, although it is possible to prevent it to some extent by cutting the surface of the skin and then performing wire drawing, the productivity is still significantly reduced.

【0007】スズ含有量は0.1重量%以上0.6重量
%以下であることが必要である。すなわち、スズを添加
することにより、上記マグネシウムの添加の結果生じた
鋳造性の低下を低減させることができ、また焼鈍後の伸
びを大幅に向上させる効果も得られる。しかし、0.1
重量%未満の添加では充分な効果が得られず、一方0.
6重量%を越えて添加しても引張強さ及び鋳造性の向上
効果は飽和し、逆に焼鈍後の伸び及び耐屈曲性が悪化
し、導電率の低下が大きくなり実用的ではなくなる。
The tin content must be 0.1% by weight or more and 0.6% by weight or less. That is, by adding tin, it is possible to reduce the decrease in castability that has occurred as a result of the addition of magnesium, and also to obtain the effect of significantly improving the elongation after annealing. However, 0.1
Addition of less than wt% does not give a sufficient effect, on the other hand, 0.
Even if added in excess of 6% by weight, the effect of improving the tensile strength and castability is saturated, conversely the elongation and flex resistance after annealing are deteriorated, and the decrease in conductivity becomes large, making it impractical.

【0008】また、燐添加量は0.02重量%以上0.
08重量%以下であることが必要である。燐添加量が
0.02重量%以上であると、スズとの相乗効果によっ
て鋳造性が著しく向上し、マグネシウム添加の結果生じ
た鋳造性の低下をほぼ解消することができ、また、同時
に合金の耐熱性が大きく向上する。しかし、燐の添加量
が0.08重量%を超えると導電率の低下が大きくな
り、実用的な導電性材料として用いることができなくな
る。
Further, the amount of phosphorus added is 0.02% by weight or more and 0.1.
It is necessary to be 08% by weight or less. When the amount of phosphorus added is 0.02% by weight or more, the castability is remarkably improved due to the synergistic effect with tin, and the decrease in castability resulting from the addition of magnesium can be almost eliminated. The heat resistance is greatly improved. However, when the addition amount of phosphorus exceeds 0.08% by weight, the conductivity is greatly reduced, and it cannot be used as a practical conductive material.

【0009】インジウムの含有量は0.02重量%以上
0.2重量%以下であることが必要である。インジウム
の含有量が0.02重量%以上では引張強さが大幅に向
上するが、0.02重量%未満では充分な効果が得られ
ない。一方、0.2重量%を越えて添加しても引張強さ
は飽和してそれ以上の向上効果が得られず、かつ、導電
率の低下が著しい。なお、高価なインジウムを多量に添
加することは、コストアップを招き、実用的な導電性材
料として適さないものとなる。
The indium content must be 0.02% by weight or more and 0.2% by weight or less. When the content of indium is 0.02% by weight or more, the tensile strength is significantly improved, but when it is less than 0.02% by weight, a sufficient effect cannot be obtained. On the other hand, even if it is added in an amount of more than 0.2% by weight, the tensile strength is saturated and no further improvement effect can be obtained, and the conductivity is remarkably lowered. It should be noted that adding a large amount of expensive indium causes an increase in cost and makes it unsuitable as a practical conductive material.

【0010】また、テルルの含有量は0.05重量%以
上0.1重量%以下であることが必要である。テルルは
スズとの相乗効果により伸び及び耐屈曲性を向上させる
が、添加量が0.05重量%未満であると充分な効果が
得られず、また0.1重量%以上であると鋳造性を著し
く悪化させる。
The content of tellurium must be 0.05% by weight or more and 0.1% by weight or less. Tellurium improves elongation and flex resistance by a synergistic effect with tin, but if the addition amount is less than 0.05% by weight, sufficient effect cannot be obtained, and if 0.1% by weight or more, castability is obtained. Significantly worsens.

【0011】なお、マグネシウム、テルル、スズの添加
量は鋳造性に大きく影響する。マグネシウムもテルルも
添加量が多くなると鋳造性が著しく悪化する。一方、ス
ズは鋳造性を改善させる効果を有している。良好な鋳造
性を確保するためにはマグネシウムの含有量とテルルの
含有量との和に対するスズの含有量の比が1以上である
ことが必要である。
The amount of magnesium, tellurium and tin added has a great effect on the castability. If the addition amount of both magnesium and tellurium increases, the castability deteriorates significantly. On the other hand, tin has the effect of improving castability. In order to ensure good castability, it is necessary that the ratio of the tin content to the sum of the magnesium content and the tellurium content is 1 or more.

【0012】[0012]

【発明の実施の形態】本発明に係る導電用高力銅合金を
用いて、下記のようにして、高強度で高伸度、かつ、耐
屈曲性に優れた電線用導体を得ることができる。すなわ
ち、本発明に係る導電用高力銅合金からなる鋳造物を冷
間圧延後伸線し(以下「第1伸線工程」と云う)、次い
で500℃以上600℃以下で焼鈍し、(以下「第1焼
鈍工程」と云う)し、その後に85%以上95%以下の
加工率で伸線し(以下「第2伸線工程」と云う)、35
0℃以上450℃以下で焼鈍する(以下「第2焼鈍工
程」と云う)。
BEST MODE FOR CARRYING OUT THE INVENTION By using the high-strength copper alloy for electric conduction according to the present invention, a conductor for electric wire having high strength, high elongation and excellent bending resistance can be obtained as follows. . That is, a cast product made of a high-strength copper alloy for electroconductivity according to the present invention is drawn after cold rolling (hereinafter referred to as “first wire drawing step”), and then annealed at 500 ° C. or higher and 600 ° C. or lower, "First annealing step"), and then wire drawing at a working rate of 85% or more and 95% or less (hereinafter referred to as "second wire drawing step"), 35
Annealing is performed at 0 ° C. or higher and 450 ° C. or lower (hereinafter referred to as “second annealing step”).

【0013】上記第1焼鈍工程は、第1伸線工程の冷間
圧延及び伸線処理での加工組織を回復させ、かつ、第2
焼鈍工程の引張強さの低下を予防し、かつ、伸び及び耐
屈曲性を向上させるためである。この工程は水蒸気など
の非酸化性雰囲気で行うが、焼鈍温度(以下「第1焼鈍
温度」と云う)が500℃未満では充分な回復が行われ
ないために第2焼鈍工程で伸びが向上せず、一方600
℃超では、大気から非酸化性雰囲気中に混入する微量の
酸素によって酸化されるため変色が生じて外観評価が下
がり、また、同時に最適張力域の範囲が狭くなるため線
材の巻き取り張力の調整が困難になる。
The first annealing step restores the worked structure in the cold rolling and wire drawing treatment of the first wire drawing step, and
This is to prevent a decrease in tensile strength in the annealing process and to improve elongation and flex resistance. This step is performed in a non-oxidizing atmosphere such as water vapor, but if the annealing temperature (hereinafter referred to as “first annealing temperature”) is less than 500 ° C., sufficient recovery cannot be performed, so that elongation is improved in the second annealing step. No, meanwhile 600
If the temperature exceeds ℃, it will be oxidized by a small amount of oxygen mixed into the non-oxidizing atmosphere from the atmosphere, causing discoloration and lowering the appearance evaluation. At the same time, the range of the optimum tension range will be narrowed and the winding tension of the wire will be adjusted. Becomes difficult.

【0014】一方、第2伸線工程における加工率(断面
減少率)は85%以上95%以下であることが必要であ
る。この第2伸線工程は、第2焼鈍工程の引張強さの低
下を予防し、かつ伸び及び耐屈曲性を向上させるために
行うものであるが、加工率が85%未満では第2焼鈍工
程での引張強さの低下が大きくなり、また、加工率が9
5%超では第2焼鈍工程で伸び及び耐屈曲性を充分に向
上させることができない。また、第2焼鈍工程の温度
(以下「第2焼鈍温度」と云う)は350℃以上450
℃以下で行うことが必要である。なお、この工程も水蒸
気などの非酸化性雰囲気で行う。この工程は上述のよう
に、伸び及び耐屈曲性を向上させるために行うものであ
るが、処理温度が350℃未満ではこれら性能の充分な
向上効果が得られず、一方450℃超であると引張強さ
の低下が著しい。
On the other hand, the working rate (reduction rate of cross section) in the second wire drawing step must be 85% or more and 95% or less. This second wire drawing step is carried out to prevent a decrease in tensile strength in the second annealing step and to improve elongation and flex resistance, but when the working ratio is less than 85%, the second annealing step is performed. The decrease in tensile strength was large, and the processing rate was 9
If it exceeds 5%, the elongation and bending resistance cannot be sufficiently improved in the second annealing step. The temperature of the second annealing step (hereinafter referred to as "second annealing temperature") is 350 ° C or higher and 450 or higher.
It is necessary to carry out at a temperature of ℃ or below. Note that this step is also performed in a non-oxidizing atmosphere such as steam. As described above, this step is performed to improve the elongation and the flex resistance, but if the treatment temperature is lower than 350 ° C., the effect of sufficiently improving these performances cannot be obtained, while if it is higher than 450 ° C. The tensile strength is significantly reduced.

【0015】[0015]

【実施例】不活性ガス雰囲気下でグラファイト製坩堝を
用い、かつ、黒鉛粒による被覆を行いながら電気銅地金
を溶融後、表1中実施例1〜11として示した組成にな
るよう、それぞれマグネシウム(Mg)、スズ(Sn)
及びインジウム(In)については純金属の形態で添加
し、また、燐(P)及びテルル(Te)については母合
金の形態で添加して均一な溶湯を得て、これらを連続鋳
造してそれぞれ直径20mmの鋳造棒を得た(なお、表
1及び表2中、組成の銅(Cu)の欄に「残」で示した
のは、これら添加物(及び不可避的不純物)以外はすべ
て銅からなることを示す)。これら鋳造棒それぞれを冷
間圧延後、直径が3.2mmになるよう伸線し、次いで
550℃(第1焼鈍温度)で連続焼鈍した。更に直径が
1mmになるよう伸線し(加工率:90%)、その後3
90℃(第2焼鈍温度)で連続焼鈍し、実施例1〜11
に係る電線用導体を得た。なお、本発明における焼鈍温
度とは、熱効率を90%として仮定し、焼鈍電圧、焼鈍
速度、各銅合金線の導体抵抗から算出した値である。
EXAMPLE A graphite crucible was used in an inert gas atmosphere, and electrolytic copper ingots were melted while coating with graphite particles to obtain the compositions shown in Examples 1 to 11 in Table 1, respectively. Magnesium (Mg), tin (Sn)
And indium (In) are added in the form of pure metals, and phosphorus (P) and tellurium (Te) are added in the form of a master alloy to obtain a uniform molten metal, and these are continuously cast, respectively. A cast rod having a diameter of 20 mm was obtained (in Table 1 and Table 2, the composition of copper (Cu) is indicated by "remainder") except for these additives (and inevitable impurities). Will be). Each of these cast rods was cold-rolled, drawn to have a diameter of 3.2 mm, and then continuously annealed at 550 ° C. (first annealing temperature). Furthermore, wire drawing is performed so that the diameter becomes 1 mm (working rate: 90%), and then 3
Continuous annealing at 90 ° C. (second annealing temperature), Examples 1 to 11
A conductor for electric wire according to The annealing temperature in the present invention is a value calculated from the annealing voltage, the annealing speed, and the conductor resistance of each copper alloy wire, assuming that the thermal efficiency is 90%.

【0016】従来技術に係る比較例として、次のように
して得たNi−Si−In−Sn銅合金からなる電線用
導体について検討を行った。すなわち、不活性ガス雰囲
気下でグラファイト製坩堝を用い、かつ、黒鉛粒による
被覆を行いながら電気銅地金を溶融後、インジウム、ニ
ッケル(Ni)及びスズを純金属の形態で、また、シリ
コン(Si)を母合金の形態で、それぞれ0.16重量
%、2.6重量%、0.23重量%及び0.55重量%
となるよう添加して均一な溶湯とし、これらを連続鋳造
して直径20mmの鋳造棒とした。これを冷間延伸及び
伸線により直径3.2mmとした後、不活性ガス雰囲気
中900℃で1時間加熱保持後、水冷して溶体化処理を
施した。その後、直径が1mmになるよう伸線し、さら
に不活性ガス雰囲気中470℃で6時間の時効処理を行
った(比較例1)。
As a comparative example of the prior art, a conductor for electric wire made of a Ni--Si--In--Sn copper alloy obtained as described below was examined. That is, using a graphite crucible under an inert gas atmosphere, and after melting the electrolytic copper ingot while covering with graphite particles, indium, nickel (Ni) and tin in the form of pure metal, and silicon ( Si) in the form of a master alloy, 0.16% by weight, 2.6% by weight, 0.23% by weight and 0.55% by weight, respectively.
To obtain a uniform molten metal, which was continuously cast into a casting rod having a diameter of 20 mm. After this was cold drawn and drawn to have a diameter of 3.2 mm, it was heated and held at 900 ° C. for 1 hour in an inert gas atmosphere, and then cooled with water to undergo solution treatment. After that, wire drawing was performed so that the diameter was 1 mm, and further aging treatment was performed at 470 ° C. for 6 hours in an inert gas atmosphere (Comparative Example 1).

【0017】また、同じく従来技術に係る比較例として
通常の無酸素銅である硬銅からなる直径1mmの電線用
導体(比較例2)を準備した。さらに、比較例3とし
て、無酸素銅に不活性ガス雰囲気中300℃・2時間の
焼鈍処理を行って得た直径1mmの電線用導体を準備し
た。
Similarly, as a comparative example related to the prior art, a conductor for electric wire having a diameter of 1 mm (comparative example 2) made of hard copper which is an ordinary oxygen-free copper was prepared. Further, as Comparative Example 3, a conductor for electric wire having a diameter of 1 mm obtained by annealing oxygen-free copper in an inert gas atmosphere at 300 ° C. for 2 hours was prepared.

【0018】また、本発明に係る導電用高力銅合金の組
成が最適化されたものであることを示すため、実施例1
〜11と同様に、ただし、それぞれ表2に示す組成にな
るようにして、比較例4〜13の電線用導体を作製し
た。さらに、比較例14〜18として、実施例11で用
いたのと同様の組成の鋳造棒を用い、ただし、第1焼鈍
温度、加工率、或いは第2焼鈍温度を変えてそれぞれ表
2に示すような条件で直径1mmの電線用導体を作製し
た。
Further, in order to show that the composition of the high-strength copper alloy for electric conduction according to the present invention is optimized, Example 1 is shown.
No. 11 to No. 11, except that the compositions shown in Table 2 were used to prepare conductors for electric wires of Comparative Examples 4 to 13. Furthermore, as Comparative Examples 14 to 18, casting rods having the same composition as that used in Example 11 were used, except that the first annealing temperature, the working rate, or the second annealing temperature was changed as shown in Table 2. A conductor for electric wire having a diameter of 1 mm was produced under various conditions.

【0019】これら実施例1〜11及び比較例1〜18
の電線用導体について、引張強さ、伸び、導電率、耐屈
曲性及び伸縮加工性について評価を行った。結果を表1
及び表2に示した。なお、表1及び表2において「Sn
/(Mg+Te)」として示したのは、マグネシウムの
含有量とテルルとの含有量との和に対するスズの含有量
の比である
Examples 1 to 11 and Comparative Examples 1 to 18
The electric conductor for electric wire was evaluated for tensile strength, elongation, conductivity, bending resistance and stretchability. Table 1 shows the results
And shown in Table 2. In Tables 1 and 2, “Sn
Shown as "/ (Mg + Te)" is the ratio of the tin content to the sum of the magnesium content and the tellurium content.

【0020】なお、引張強さ及び伸びはJIS・C30
02に準拠し、引張速度50mm/minで測定した。
また、導電率も同様にJIS・C3002に準拠して測
定した値である。また、耐屈曲性については次のように
して評価した。図1に示すような治具1にサンプル2
(電線用導体)の一端を挟持させ、他端に2kgfの引
張荷重Wを与えながら、(a)→(b)→(c)→
(d)に示すように左右90°曲げを行い、これの一連
の動作を1回として、これを破断するまで繰り返してそ
の回数を耐屈曲度とした。また、伸縮加工性はバリの有
無によって判断した。すなわち、伸縮加工性に劣る試料
では、鋳造時に生じた欠陥部が圧延時に解消することな
く残留し、その結果、伸線後のサンプルの表面に微小な
ひび(バリ)が生じる。このバリを目視及び指先で触覚
して検出した。
The tensile strength and elongation are JIS C30.
In accordance with No. 02, the tensile speed was measured at 50 mm / min.
Similarly, the conductivity is a value measured according to JIS C3002. The flex resistance was evaluated as follows. Sample 2 on jig 1 as shown in FIG.
(A) → (b) → (c) → while holding one end of (electric wire conductor) and applying a tensile load W of 2 kgf to the other end.
As shown in (d), bending was performed 90 ° to the left and right, and a series of operations was performed once, and this operation was repeated until breaking, and the number of times was taken as the flex resistance. The stretchability was judged by the presence or absence of burrs. That is, in a sample having poor stretchability, the defective portion generated during casting remains without being eliminated during rolling, and as a result, minute cracks (burrs) occur on the surface of the sample after wire drawing. This burr was detected visually and by touching with a fingertip.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】表1より明らかなように、本発明に係る導
電用高力銅合金による電線用導体(実施例1〜11)
は、従来技術に係るNi−Si−In−Sn銅合金(比
較例1)と比較すると、導電率、伸び及び耐屈曲性にお
いて非常に優れている。なお、このものの引張強さはN
i−Si−In−Sn銅合金(比較例1)より若干低い
ものの、硬銅線並のレベルにあり充分な値である。ここ
で特筆すべきは耐屈曲性が非常に高いことであり、軟銅
よりも良い値が得られている。なお、表2の比較例4〜
18により、本発明の構成要件(組成及び処理条件)が
1つでも満たされない場合、本発明の効果が得られない
ことが判る。
As is apparent from Table 1, electric wire conductors made of the high-strength copper alloy for electric conduction according to the present invention (Examples 1 to 11)
Is extremely superior in conductivity, elongation and flex resistance as compared with the Ni-Si-In-Sn copper alloy according to the prior art (Comparative Example 1). The tensile strength of this product is N
Although it is slightly lower than the i-Si-In-Sn copper alloy (Comparative Example 1), it is at a level comparable to that of hard copper wire, which is a sufficient value. It should be noted here that the bending resistance is very high, which is a value better than that of annealed copper. In addition, Comparative Example 4 to Table 2
It can be seen from 18 that the effect of the present invention cannot be obtained if any one of the constitutional requirements (composition and processing conditions) of the present invention is not satisfied.

【0025】[0025]

【発明の効果】本発明の導電用高力銅合金からなる電線
用導体は、硬銅と同レベルの引張強度を有しながら導電
率、伸び及び耐屈曲性に優れ、従ってこのような導体を
有する電線はその占積空間及び重量を共に少ないものと
することができる。またこの電線用導体は原料コストが
低い上、さらに、第1焼鈍工程及び第2焼鈍工程共に比
較的温度が低いため温度管理が容易であり、また、高価
な炉を必要とせず通常の電線製造工程で用いられている
連続焼鈍機で実施することができるので、低コストで生
産することが可能である。本発明の導電用高力銅合金か
らなる電線用導体は、上記のような利点を有するので、
この導体を用いた電線を用いることによって、自動車・
航空機等の特に軽量性を求められる分野は勿論、一般の
電子機器等に応用した場合にも優れた軽量化効果が得ら
れ、また可動部に用いた場合その耐屈曲性によって高い
信頼性が得られるものである。
The conductor for electric wire made of the high-strength copper alloy for electroconductivity of the present invention has the same level of tensile strength as hard copper and is excellent in electrical conductivity, elongation and bending resistance. The electric wire can have a small space and weight. Further, this conductor for electric wire has a low raw material cost, and furthermore, the temperature is easy to control because the temperature is relatively low in both the first annealing step and the second annealing step. Moreover, an expensive furnace is not required, and ordinary electric wire production is not required. Since it can be carried out by the continuous annealing machine used in the process, it can be produced at low cost. The electric wire conductor made of the conductive high-strength copper alloy of the present invention has the advantages as described above,
By using an electric wire that uses this conductor,
Not only in the field where lightness is especially required for aircraft, but also when applied to general electronic equipment, excellent weight reduction effect is obtained, and when used for moving parts, high reliability is obtained due to its bending resistance. It is what is done.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の耐屈曲性試験の様子を示す図である。FIG. 1 is a diagram showing a state of a bending resistance test of the present invention.

【符号の説明】[Explanation of symbols]

1 治具 2 サンプル 1 jig 2 sample

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 マグネシウムを0.05重量%以上0.
25重量%以下、スズを0.1重量%以上0.6重量%
以下、燐を0.02重量%以上0.08重量%以下、イ
ンジウムを0.02重量%以上0.2重量%以下、テル
ルを0.05重量%以上0.1重量%以下含有し、残部
が銅よりなり、かつ、マグネシウムの含有量とテルルと
の含有量の和に対するスズの含有量の比が1以上である
ことを特徴とする導電用高力銅合金。
1. Magnesium in an amount of 0.05 wt.
25% by weight or less, 0.1% by weight or more of tin and 0.6% by weight
Below, 0.02 wt% to 0.08 wt% phosphorus, 0.02 wt% to 0.2 wt% indium, 0.05 wt% to 0.1 wt% tellurium, the balance Is a copper, and the ratio of the content of tin to the sum of the content of magnesium and the content of tellurium is 1 or more.
【請求項2】 マグネシウムを0.05重量%以上0.
25重量%以下、スズを0.1重量%以上0.6重量%
以下、燐を0.02重量%以上0.08重量%以下、イ
ンジウムを0.02重量%以上0.2重量%以下、テル
ルを0.05重量%以上0.1重量%以下含有し、残部
が銅よりなり、かつ、マグネシウムの含有量とテルルの
含有量との和に対するスズの含有量の比が1以上である
鋳造物を冷間圧延後伸線し、次いで500℃以上600
℃以下で焼鈍し、その後に85%以上95%以下の加工
率で伸線したのち、350℃以上450℃以下で焼鈍す
ることを特徴とする導電用高力銅合金からなる電線用導
体の製造方法。
2. Magnesium in an amount of 0.05% by weight or more.
25% by weight or less, 0.1% by weight or more of tin and 0.6% by weight
Below, 0.02 wt% to 0.08 wt% phosphorus, 0.02 wt% to 0.2 wt% indium, 0.05 wt% to 0.1 wt% tellurium, the balance Is made of copper, and the ratio of the tin content to the sum of the magnesium content and the tellurium content is 1 or more.
Manufacture of a conductor for electric wire made of a high-strength copper alloy for electric conduction, characterized by annealing at ℃ or less, then drawing at a working rate of 85% or more and 95% or less, and then annealing at 350 ° C or more and 450 ° C or less. Method.
JP03365696A 1996-02-21 1996-02-21 High strength copper alloy for electric wire conductor and method for producing electric wire conductor Expired - Fee Related JP3381817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03365696A JP3381817B2 (en) 1996-02-21 1996-02-21 High strength copper alloy for electric wire conductor and method for producing electric wire conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03365696A JP3381817B2 (en) 1996-02-21 1996-02-21 High strength copper alloy for electric wire conductor and method for producing electric wire conductor

Publications (2)

Publication Number Publication Date
JPH09227970A true JPH09227970A (en) 1997-09-02
JP3381817B2 JP3381817B2 (en) 2003-03-04

Family

ID=12392500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03365696A Expired - Fee Related JP3381817B2 (en) 1996-02-21 1996-02-21 High strength copper alloy for electric wire conductor and method for producing electric wire conductor

Country Status (1)

Country Link
JP (1) JP3381817B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100445403C (en) * 2005-06-10 2008-12-24 日立电线株式会社 Soft copper alloy and soft copper alloy wire or board
WO2015093317A1 (en) * 2013-12-19 2015-06-25 住友電気工業株式会社 Copper alloy wire, twisted copper alloy wire, electric wire, electric wire having terminal attached thereto, and method for producing copper alloy wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100445403C (en) * 2005-06-10 2008-12-24 日立电线株式会社 Soft copper alloy and soft copper alloy wire or board
WO2015093317A1 (en) * 2013-12-19 2015-06-25 住友電気工業株式会社 Copper alloy wire, twisted copper alloy wire, electric wire, electric wire having terminal attached thereto, and method for producing copper alloy wire
JPWO2015093317A1 (en) * 2013-12-19 2017-03-16 住友電気工業株式会社 Copper alloy wire, copper alloy twisted wire, electric wire, electric wire with terminal, and method for producing copper alloy wire

Also Published As

Publication number Publication date
JP3381817B2 (en) 2003-03-04

Similar Documents

Publication Publication Date Title
JP4609866B2 (en) Aluminum alloy wire
JP4311277B2 (en) Manufacturing method of extra fine copper alloy wire
JP5802722B2 (en) Aluminum wire for automobile
JP5051647B2 (en) High-strength and high-conductivity Cu-Ag alloy wire and method for producing the same
CN110616353B (en) High-purity high-conductivity copper and preparation method thereof
JPS633936B2 (en)
CN111411256B (en) Copper-zirconium alloy for electronic components and preparation method thereof
CN111809079B (en) High-strength high-conductivity copper alloy wire material and preparation method thereof
JP5589754B2 (en) Dilute copper alloy material and method for producing diluted copper alloy material excellent in hydrogen embrittlement resistance
JPH0718354A (en) Copper alloy for electronic appliance and its production
JPS6216269B2 (en)
JP3381817B2 (en) High strength copper alloy for electric wire conductor and method for producing electric wire conductor
JPH0790430A (en) Copper wire for extra fine wire and its production
US3019102A (en) Copper-zirconium-hafnium alloys
JPH0987814A (en) Production of copper alloy for electronic equipment
JP2813652B2 (en) High strength copper alloy for conductive
JP3302840B2 (en) High-strength copper alloy for electric conduction excellent in elongation characteristics and bending characteristics, and method for producing the same
JP3333654B2 (en) High-strength copper alloy for electric conduction excellent in elongation characteristics and bending characteristics, and method for producing the same
JPS63262435A (en) High strength high electroconductive copper alloy
JPH0995747A (en) High tensile conductive copper alloy excellent in drawability and bendability and its production
JPH1053824A (en) Copper alloy for contact material, and its production
JPH01165733A (en) High strength and high electric conductive copper alloy
JP2804966B2 (en) High strength copper alloy for conductive
JP2991319B2 (en) High strength and high conductivity copper alloy and manufacturing method (2)
JPH07331362A (en) High strength conductive copper alloy excellent in bendability and wire drawability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021112

LAPS Cancellation because of no payment of annual fees