JPH0922782A - Organic electroluminescent element and its manufacture - Google Patents

Organic electroluminescent element and its manufacture

Info

Publication number
JPH0922782A
JPH0922782A JP7173088A JP17308895A JPH0922782A JP H0922782 A JPH0922782 A JP H0922782A JP 7173088 A JP7173088 A JP 7173088A JP 17308895 A JP17308895 A JP 17308895A JP H0922782 A JPH0922782 A JP H0922782A
Authority
JP
Japan
Prior art keywords
layer
organic
vapor deposition
negative electrode
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7173088A
Other languages
Japanese (ja)
Inventor
Hitoshi Ikeda
等 池田
Hiroo Miyamoto
裕生 宮本
Katsuaki Umibe
勝晶 海部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP7173088A priority Critical patent/JPH0922782A/en
Publication of JPH0922782A publication Critical patent/JPH0922782A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic electroluminescent element which has a cathode layer composed solely of a single metal of a low work function and which degrades little in emission characteristic. SOLUTION: This organic electroluminescent element has at least an anode layer 13, a single or a plurality of organic-film layers 15, and a cathode layer 17 in that order. The cathode layer 17 comprises a first layer 17a composed of Mg to function mainly as an attached layer to the organic film layers 15 and a second layer 17b composed of Mg, provided over the first layer 17a, functioning as a cathode, and being more solid than the first layer 17a. The evaporation speed of an Mg film during formation of the first layer 17a is 1nm/sec at a minimum, while the evaporation speed during formation of the second layer 17b is 0.5nm/sec at a maximum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はエレクトロルミネッセ
ンス(EL)現象を利用した有機EL素子と、その製造
方法特に陰電極層の形成法に特徴を有した製造方法とに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic EL element utilizing the electroluminescence (EL) phenomenon and a method of manufacturing the same, particularly a method of forming a negative electrode layer.

【0002】[0002]

【従来の技術】少なくとも陽電極層、単数あるいは複数
の有機膜層、陰電極層をこの順に具える有機EL素子で
は、発光層として機能する単数または複数の有機膜層に
効率良く電子を注入する観点から、陰電極層を、仕事関
数が低い(おおむね4.0eV以下)例えばMgなどの
金属で構成するのが好ましい。しかしMgのような単体
金属は、蒸着時に有機膜層上に付着し難く、また、成膜
後、大気中にさらすと、腐蝕されやすく不安定であるた
め、実際には陰電極層として用いることが難しい。そこ
で、陰電極層を低仕事関数の金属と少量の第2金属とか
らなる化合物で構成することにより、陰電極層の有機膜
への付着性を高めかつそれを安定化させる試みがなされ
ている。その典型的な例として、例えば特開平2−15
595号公報の特に実施例1に開示の様に、陰電極層を
Mg/Ag合金(原子比10:1、仕事関数約3.8e
V)で構成した例がある。この例の場合は、低仕事関数
のMg(仕事関数約3.6eV)の有機膜への付着性や
陰電極自体の安定性を、Ag(仕事関数約4.6ev)
を添加することにより改善している。
2. Description of the Related Art In an organic EL device having at least a positive electrode layer, one or more organic film layers, and a negative electrode layer in this order, electrons are efficiently injected into the one or more organic film layers functioning as a light emitting layer. From the viewpoint, the negative electrode layer is preferably made of a metal having a low work function (approximately 4.0 eV or less) such as Mg. However, since a simple metal such as Mg is unlikely to adhere to the organic film layer during vapor deposition, and is exposed to the atmosphere after film formation, it is easily corroded and unstable, so that it is actually used as a negative electrode layer. Is difficult. Therefore, it has been attempted to increase the adhesion of the negative electrode layer to the organic film and stabilize it by forming the negative electrode layer with a compound consisting of a low work function metal and a small amount of a second metal. . As a typical example, for example, Japanese Patent Laid-Open No. 2-15
As disclosed in Japanese Unexamined Patent Publication No. 595, in particular, in Example 1, the negative electrode layer is formed of a Mg / Ag alloy (atomic ratio 10: 1, work function about 3.8e).
V). In the case of this example, the adhesiveness of low work function Mg (work function of about 3.6 eV) to the organic film and the stability of the negative electrode itself are determined by Ag (work function of about 4.6 ev).
Is improved by adding.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
Mg/Ag合金のような、低仕事関数の金属と少量の第
2金属とを含む陰電極層は、同時二元蒸着により形成さ
れるので、:形成方法が煩雑である、:組成などの
制御が困難である等の問題がある。:またこのように
組成制御が困難であるので形成される陰電極層は組成が
不均一なものと成り易く、従って、有機EL素子に発光
ムラ、ピンホール、ダークスポットを生じさせ易いとい
う問題もある。:また、陰極層に含まれる少量の第2
金属は偏析することが多く、このように偏析した部分を
有する陰電極層が大気と触れるとこの偏析した部分を通
して酸化が生じ易くなるので、陰電極層内部まで腐食が
進行し易いという問題もある。
However, since a negative electrode layer containing a low work function metal and a small amount of a second metal, such as the above-mentioned Mg / Ag alloy, is formed by simultaneous binary vapor deposition, : There is a problem that the forming method is complicated ,: It is difficult to control the composition and the like. In addition, since it is difficult to control the composition as described above, the composition of the negative electrode layer formed is likely to be non-uniform, and therefore, it is easy to cause uneven light emission, pinholes, and dark spots in the organic EL element. is there. : Also, a small amount of the second layer contained in the cathode layer
Metals often segregate, and when the negative electrode layer having such a segregated portion comes into contact with the atmosphere, oxidation easily occurs through this segregated portion, so that there is also a problem that corrosion easily proceeds inside the negative electrode layer. .

【0004】また、低仕事関数の金属に加えて第2金属
をも含む陰電極層となるため、低仕事関数の金属のみを
用いていた場合に比べて陰電極層の仕事関数を高めてし
まうから、その分、発光層(有機層)への電子注入効率
が低下してしまうという問題がある。
Further, since the negative electrode layer includes the second metal in addition to the low work function metal, the work function of the negative electrode layer is increased as compared with the case where only the low work function metal is used. Therefore, there is a problem that the efficiency of electron injection into the light emitting layer (organic layer) is reduced accordingly.

【0005】低仕事関数の単体金属のみで構成された陰
電極層を有し発光特性の良い有機EL素子を得る技術が
望まれる。
There is a demand for a technique for obtaining an organic EL element having a negative electrode layer composed of only a single metal having a low work function and having excellent light emitting characteristics.

【0006】[0006]

【課題を解決するための手段】この目的の達成を図るた
め、この出願に係る発明者は鋭意研究を進めた。その結
果、電子輸送性発光層として知られる例えばアルミキノ
リノ−ル錯体(トリス(8−ヒドロキシキノリノール)
アルミニウム)有機膜上へ、単体金属であって陰電極層
の構成材料として本来は使用したい単体金属例えばMg
を蒸着して陰電極層を得る場合、Mgの蒸着速度を1.
0nm/s以上にしていくと、膜表面が荒く、大気に対
して不安定ではあるが、有機膜への付着性が増すことを
見いだすと同時に、Mgの蒸着速度を0.5nm/s以
下にすることにより、有機膜への付着性はなくなるが、
緻密でかつ表面が平坦で、大気に対しても比較的安定な
陰電極層を成膜できること、および、有機膜上に速い蒸
着速度でMg膜を形成することにより、陰電極層形成時
の有機膜へのダメージが軽減することを見出して、この
出願の各発明を完成するに至った。
[Means for Solving the Problems] In order to achieve this object, the inventor of the present application has made intensive studies. As a result, for example, an aluminum quinolinol complex (tris (8-hydroxyquinolinol)) known as an electron transporting light emitting layer is obtained.
(Aluminum) On the organic film, a single metal which is a single metal and which is originally desired to be used as a constituent material of the negative electrode layer, such as Mg.
When a negative electrode layer is obtained by vapor deposition of Mg, the deposition rate of Mg is 1.
It was found that when the film thickness is set to 0 nm / s or more, the film surface becomes rough and unstable to the atmosphere, but the adhesion to the organic film increases, and at the same time, the Mg deposition rate is set to 0.5 nm / s or less. By doing so, the adhesiveness to the organic film disappears,
By forming a negative electrode layer that is dense, has a flat surface, and is relatively stable to the atmosphere, and by forming a Mg film on the organic film at a high vapor deposition rate, it is possible to form an organic film when forming the negative electrode layer. The inventors have found that the damage to the film is reduced, and completed the inventions of this application.

【0007】したがって、この出願の第一発明によれ
ば、少なくとも陽電極層、単数あるいは複数の有機膜
層、陰電極層をこの順に具える有機EL素子において、
前記陰電極層を、単体の金属から成り前記有機膜層に対
する付着層として主に機能する第1の層と、該第1の層
上に設けられ前記金属から成り陰電極として機能し然も
前記第1の層より緻密な第2の層とで構成してあること
を特徴とする。
Therefore, according to the first invention of this application, in an organic EL device comprising at least a positive electrode layer, one or more organic film layers, and a negative electrode layer in this order,
The negative electrode layer is a first layer made of a single metal and mainly functions as an adhesion layer to the organic film layer, and the negative electrode layer is provided on the first layer and made of the metal and functions as a negative electrode. It is characterized in that it is composed of a second layer which is denser than the first layer.

【0008】また、この出願の第二発明によれば、少な
くとも陽電極層、単数あるいは複数の有機膜層、陰電極
層をこの順に具える有機EL素子を製造するに当たり、
陰電極層の形成は、単体の金属を蒸発源として用い蒸着
速度が前記単体の金属の前記有機膜への付着を確保でき
然も膜厚制御ができる範囲の第1の蒸着条件で第1の層
を形成し、次いで、蒸着速度を前記第1の蒸着条件より
遅くした第2の蒸着条件で第2の層を形成することによ
って行なうことを特徴とする。
According to the second invention of this application, in manufacturing an organic EL device comprising at least a positive electrode layer, a single or plural organic film layers, and a negative electrode layer in this order,
The negative electrode layer is formed by using a single metal as an evaporation source under the first vapor deposition condition under the first vapor deposition condition in which the vapor deposition rate is a range in which the adhesion of the single metal to the organic film can be secured and the film thickness can be controlled. It is characterized by forming a layer and then forming a second layer under a second vapor deposition condition in which the vapor deposition rate is slower than the first vapor deposition condition.

【0009】なお、第一発明においていう単体の金属と
は、陰電極層の構成材料として好適な物性を有した種々
のものをいう。また、第二発明においていう単体の金属
とは陰電極層の構成材料として好適な物性を有しかつ蒸
着が可能な種々のものをいう。仕事関数が有機EL素子
の陰電極層を構成するために好適な値を示す金属で蒸着
が可能な金属はこれら第一および第二発明でいう単体金
属の好適例として挙げられる。例えば、マグネシウム
(Mg)、インジウム(In),ガリウム(Ga)、カ
ドミウム(Cd)は仕事関数が4eV以下であるのでこ
こでいう単体の金属の好適例として挙げられる。また、
アルミニウムも上記列挙のものよりは仕事関数が大きい
が(4.2eV)、ここでいう単体の金属の好適例とし
て挙げられる。
The single metal in the first invention means various metals having suitable physical properties as a constituent material of the negative electrode layer. Further, the simple metal referred to in the second invention refers to various metals having suitable physical properties as a constituent material of the negative electrode layer and capable of vapor deposition. The metal that can be vapor-deposited with a work function having a suitable value for forming the negative electrode layer of the organic EL element is mentioned as a preferable example of the simple metal in the first and second inventions. For example, since magnesium (Mg), indium (In), gallium (Ga), and cadmium (Cd) have a work function of 4 eV or less, they can be cited as preferable examples of the single metal here. Also,
Although aluminum has a work function larger than those listed above (4.2 eV), it can be cited as a preferable example of the simple metal here.

【0010】また、第一および第二発明において、有機
膜層の層構成は特に限定されない。有機発光層のみ、ま
たは有機正孔輸送層と有機電子輸送性発光層との2層構
造(後述の実施例で説明している構造)、または有機正
孔輸送性発光層と有機電子輸送層との2層構造、または
有機正孔輸送層と有機発光層と有機電子輸送層とをこの
順に積層させた3層構造等、任意の層構成とできる。ま
た有機膜層の構成材料も特に限定されない。種々の好適
な有機化合物およびそれらの組み合わせが可能である。
例えば、文献I(「有機EL素子開発戦略」(サイエン
スフォーラム1992年出版))に開示されている化合
物や積層の組み合わせはこの発明の適用例の一例とでき
る。また、有機膜層の成膜方法は、実施例に示す真空蒸
着法以外に、ウエットな方法としては、ディップコ−ト
法、スピンコート法、ラングミュア・ブロジェット(L
B)法やミセル電解法などを、また、ドライな方法とし
ては、有機分子線蒸着(OMBD)法やプラズマ重合法
などを用いることも可能である。
In the first and second inventions, the layer structure of the organic film layer is not particularly limited. Only an organic light emitting layer, a two-layer structure of an organic hole transporting layer and an organic electron transporting light emitting layer (structure described in Examples below), or an organic hole transporting light emitting layer and an organic electron transporting layer. 2 layer structure, or a 3 layer structure in which an organic hole transport layer, an organic light emitting layer, and an organic electron transport layer are laminated in this order, or any other layer structure can be used. The constituent material of the organic film layer is not particularly limited. Various suitable organic compounds and combinations thereof are possible.
For example, the combination of compounds and stacks disclosed in Document I (“Organic EL device development strategy” (published in Science Forum 1992)) can be an example of application of the present invention. In addition to the vacuum vapor deposition method shown in the examples, the organic film layer is formed by a wet method such as a dip coating method, a spin coating method, and a Langmuir-Blodgett (L) method.
It is also possible to use the B) method or the micelle electrolysis method, and as a dry method, an organic molecular beam deposition (OMBD) method, a plasma polymerization method, or the like.

【0011】[0011]

【作用】この第一発明の構成によれば、機能分離された
2層から成る陰電極層であって然も単一金属で構成され
た陰電極層を有する有機EL素子が構成される。ここ
で、第1の層は有機膜層への陰電極層の密着性を確保す
る。第2のはが実質的に陰電極として機能し、かつ、緻
密であることから陰電極層表面からの酸化の進行防止に
寄与する。
According to the structure of the first invention, an organic EL element having a negative electrode layer composed of two functionally separated layers, which is formed of a single metal, is constructed. Here, the first layer ensures the adhesion of the negative electrode layer to the organic film layer. The second element substantially functions as a negative electrode and is dense, and thus contributes to the prevention of the progress of oxidation from the negative electrode layer surface.

【0012】また、第二発明の構成によれば、第一発明
でいう第1の層および第2の層それぞれを形成出来るの
で、第一発明の有機EL素子を容易に製造できる。
Further, according to the constitution of the second invention, each of the first layer and the second layer of the first invention can be formed, so that the organic EL device of the first invention can be easily manufactured.

【0013】[0013]

【実施例】以下、図面を参照してこの出願の各発明の実
施例および比較例について併せて説明する。ただし以下
の説明で用いる使用材料および蒸着温度、蒸着時の真空
度、蒸着速度、膜厚等の数値的条件はこの発明の範囲内
の一例にすぎない。また、以下の説明の中で用いる「電
子輸送層」とは、仕事関数が小さな電子注入電極を用い
た場合に、多量の電子が注入可能でしかも注入された電
子が膜中を移動できる一方、正孔は注入が困難である
か、注入は可能でも膜中を移動しにくいような性質を持
った薄膜層である。さらに、「正孔輸送層」とは、仕事
関数が大きな正孔注入電極を用いた場合に、多量の正孔
の注入が可能で、しかも注入された正孔が膜中を移動で
きる一方、電子の注入は困難であるか、注入可能でも膜
中を移動しにくいような性質を持った薄膜層である。
EXAMPLES Examples and comparative examples of each invention of this application will be described below with reference to the drawings. However, the materials used in the following description and the numerical conditions such as the vapor deposition temperature, the degree of vacuum during vapor deposition, the vapor deposition rate, and the film thickness are merely examples within the scope of the present invention. Further, the "electron transport layer" used in the following description means that when an electron injection electrode having a small work function is used, a large amount of electrons can be injected and the injected electrons can move in the film, Holes are a thin film layer that is difficult to inject, or that can inject but does not easily move in the film. Further, the “hole transport layer” means that when a hole injection electrode having a large work function is used, a large amount of holes can be injected, and the injected holes can move in the film, while Is a thin film layer having a property that it is difficult to implant, or even if it can be implanted, it does not easily move in the film.

【0014】1.実施例1 図1は、第一発明の実施例1の有機EL素子10の構成
を示した図である。この有機EL素子10は、基板とし
てのガラス基板(例えば石英ガラス基板)11上に、陽
電極層としてのITOなどの透明電極13と、有機膜層
15と、第1の層17aおよび第2の層17bで構成さ
れたこの発明に係る陰電極層17とを少なくともこの順
に具えたものとなっている。ここで、陰電極層17を構
成している第1の層17aは、単体の金属この例ではマ
グネシウムから成り有機膜層15に対する付着層として
主に機能する層である。一方、この第1の層17a上に
設けられた第2の層17bは、第1の層17aの構成金
属と同様の金属この例ではマグネシウムから成り陰電極
として機能し然も第1の層17aより緻密な層である。
また、この実施例1、以下の第2実施例さらに各比較例
では、有機層15を正孔輸送層15aおよび電子輸送性
発光層15bの2層構造としている。
1. Example 1 FIG. 1 is a diagram showing a configuration of an organic EL element 10 of Example 1 of the first invention. This organic EL element 10 includes a transparent electrode 13 such as ITO as a positive electrode layer, an organic film layer 15, a first layer 17a and a second layer 17a on a glass substrate (eg, quartz glass substrate) 11 as a substrate. The negative electrode layer 17 according to the present invention composed of the layer 17b is provided at least in this order. Here, the first layer 17a constituting the negative electrode layer 17 is a layer made of a single metal, magnesium in this example, and mainly functions as an adhesion layer to the organic film layer 15. On the other hand, the second layer 17b provided on the first layer 17a is made of the same metal as the constituent metal of the first layer 17a, magnesium in this example, and functions as a negative electrode, but still functions as a negative electrode. It is a more precise layer.
In addition, in Example 1, the second example below, and each comparative example, the organic layer 15 has a two-layer structure of the hole transport layer 15a and the electron transport light emitting layer 15b.

【0015】この第1の実施例の有機EL素子10は以
下に説明する様に製造したものである。
The organic EL device 10 of the first embodiment is manufactured as described below.

【0016】石英ガラス基板11を洗浄した後、この石
英ガラス基板11上にスパッタリング法によりITO膜
を形成した。このITO膜の膜厚はm、シート抵抗は1
0Ω/□以下であった。次に、このITO膜をフォトリ
ソグラフィ技術及びエッチング技術により加工し、2m
m幅の陽電極層13を形成した。
After cleaning the quartz glass substrate 11, an ITO film was formed on the quartz glass substrate 11 by the sputtering method. The thickness of this ITO film is m, and the sheet resistance is 1.
It was 0Ω / □ or less. Next, this ITO film is processed by photolithography technology and etching technology to
An m-width positive electrode layer 13 was formed.

【0017】次に、この基板をアセトン、2−プロパノ
ールを順次に用いてそれぞれ10分ずつ超音波洗浄した
後、乾燥し、次いで、有機膜形成用の真空蒸着装置内に
設置し以下のように有機膜層15を形成した。
Next, this substrate was ultrasonically cleaned by sequentially using acetone and 2-propanol for 10 minutes each and then dried, and then placed in a vacuum deposition apparatus for forming an organic film as follows. The organic film layer 15 was formed.

【0018】まず、正孔輸送層15aを形成するため
に、陽電極層13の形成が済んだ基板11上に、トリフ
ェニルアミン誘導体(N,N’−ジフェニル−N,N’
−ビス(3−メチルフェニル)−1,1’−ビフェニル
−4,4’−ジアミン:以下TPDと略す)を厚さ50
nm程度になるよう真空蒸着した。なお、TPDは、抵
抗過熱した石英製のるつぼから蒸発させる。このときの
真空度は3.2×10-4Pa、るつぼ温度は265℃、
蒸着速度は0.9nm/sであった。引き続き、電子輸
送性発光層15bを形成するために、同じ蒸着装置で、
この正孔輸送層15a上にアルミキノリノール錯体(ト
リス(8−ヒドロキシキノリノール)アルミニウム:以
下Alq3 と略す)を厚さ50nm程度になるように真
空蒸着した。なお、Alq3 は、抵抗過熱した石英製の
るつぼから昇華させた。このときの真空度は2.9×1
-6Pa、るつぼ温度は340℃、蒸着速度は1.0n
m/sであった。このようにして、有機膜層15を得
た。
First, in order to form the hole transport layer 15a, the triphenylamine derivative (N, N'-diphenyl-N, N ') is formed on the substrate 11 on which the positive electrode layer 13 has been formed.
-Bis (3-methylphenyl) -1,1'-biphenyl-4,4'-diamine: hereinafter abbreviated as TPD) with a thickness of 50
Vacuum deposition was performed so as to have a thickness of about nm. Note that TPD is evaporated from a quartz crucible that is resistively heated. At this time, the degree of vacuum is 3.2 × 10 −4 Pa, the crucible temperature is 265 ° C.,
The vapor deposition rate was 0.9 nm / s. Subsequently, in order to form the electron transporting light emitting layer 15b, the same vapor deposition apparatus is used.
An aluminum quinolinol complex (tris (8-hydroxyquinolinol) aluminum: hereinafter abbreviated as Alq 3 ) was vacuum-deposited on the hole transport layer 15a to a thickness of about 50 nm. Alq 3 was sublimated from a quartz crucible that was resistance-heated. The vacuum degree at this time is 2.9 × 1.
0 -6 Pa, crucible temperature 340 ° C, vapor deposition rate 1.0 n
m / s. In this way, the organic film layer 15 was obtained.

【0019】次いで、上記のように有機膜層15を形成
した基板を、別の真空蒸着装置(金属電極用として用意
した真空蒸着装置)に移し、この有機膜層15上に蒸着
源としてMg単体金属を用いて以下の様に陰電極層17
を形成した。用いたMg原料は、10φ×5mmtのタ
ブレットで、カーボン製のるつぼに入れ、フィラメント
により間接的に加熱、昇華させた。通常、真空蒸着法に
おけるMg原料は、タングステンやモリブデン、タンタ
ル製のボートなどから直接抵抗加熱により蒸発させてい
るが、蒸気圧の比較的高いMg原料で安定した低い蒸着
速度を実現するために、るつぼを介した間接抵抗加熱法
を用いた。さらにこの間接抵抗加熱法では、フィラメン
トを、るつぼ自身や碍子等で覆うことができるので、直
接加熱法における原料ボートからの輻射熱や熱電子、ま
た熱電子により励起されるエネルギーの高いMg蒸発粒
子イオンなどに起因して有機膜に与えられるダメージを
抑える効果もあると考えられる。また、るつぼには通
常、石英やアルミナ製のものが用いられるが、Mg原料
との反応性を考慮し、カーボン製のるつぼを採用した。
Then, the substrate on which the organic film layer 15 is formed as described above is transferred to another vacuum vapor deposition device (vacuum vapor deposition device prepared for a metal electrode), and Mg alone is used as a vapor deposition source on the organic film layer 15. The negative electrode layer 17 is made of a metal as follows.
Was formed. The Mg raw material used was a 10φ × 5 mmt tablet, which was placed in a carbon crucible and indirectly heated and sublimated by a filament. Usually, the Mg raw material in the vacuum vapor deposition method is vaporized by direct resistance heating from a boat made of tungsten, molybdenum, tantalum or the like, but in order to realize a stable low vapor deposition rate with a Mg raw material having a relatively high vapor pressure, An indirect resistance heating method through a crucible was used. Further, in this indirect resistance heating method, since the filament can be covered with the crucible itself, the insulator, etc., radiant heat and thermoelectrons from the raw material boat in the direct heating method, and Mg evaporated particle ions with high energy excited by thermoelectrons. It is also considered to have an effect of suppressing damage given to the organic film due to the above. Although a crucible made of quartz or alumina is usually used, a carbon crucible was adopted in consideration of the reactivity with the Mg raw material.

【0020】そしてまず、有機膜層15上にMgで構成
される陰電極層17のうちの第1の層17aを、原料部
温度630℃、蒸着速度1.4nm/sで30nm成膜
した。さらにこの陰電極層17の第1の層17a上に、
原料部温度440℃、蒸着速度0.2nm/sで170
nmのMgで構成される陰電極層17の第2の層17b
を形成した。
First, the first layer 17a of the negative electrode layer 17 made of Mg was formed on the organic film layer 15 to a thickness of 30 nm at a raw material part temperature of 630 ° C. and a vapor deposition rate of 1.4 nm / s. Further, on the first layer 17a of the negative electrode layer 17,
170 at a material temperature of 440 ° C. and a deposition rate of 0.2 nm / s
second layer 17b of the negative electrode layer 17 composed of Mg of 20 nm
Was formed.

【0021】ここで、Mgで構成される陰電極層17の
第1の層17aおよび第2の層17bの製造条件(蒸着
条件)について述べる。なお、蒸着速度および蒸着膜厚
は蒸着機内、基板近傍に設置した水晶振動子式膜厚計に
よりモニターした。説明中で用いる電極膜の蒸着速度
は、この膜厚計によるモニター値である。また、蒸着膜
の実際の膜厚に関しては、触針式の段差計により測定を
行った。
Here, the manufacturing conditions (vapor deposition conditions) of the first layer 17a and the second layer 17b of the negative electrode layer 17 made of Mg will be described. The vapor deposition rate and the vapor deposition film thickness were monitored by a crystal oscillator type film thickness meter installed in the vapor deposition machine near the substrate. The deposition rate of the electrode film used in the description is a monitor value by this film thickness meter. Further, the actual film thickness of the deposited film was measured by a stylus type step gauge.

【0022】Alq3 有機膜上へ陰電極層17のうちの
第1の層17aを成膜する際のMgの蒸着速度が1.0
nm/s以下のときに形成される膜の、段差計により測
定した膜厚は、水晶振動子式膜厚計の表示よりも薄く、
蒸着速度が遅くなればなるほどその差は大きくなる。こ
れは、蒸着速度が遅いと、有機膜上へのMg陰電極成膜
初期の段階で、陰電極成分が有機膜上になかなか付着せ
ず、成膜初期の未成膜分、実際の膜厚が薄くなったため
である。従って、Alq3 有機膜上へMgの付着性を確
保するためには、1.0nm/s以上の蒸着速度が要求
される。好ましくは1.0〜2.0nm/sの範囲が選
ばれる。これは、蒸着速度があまりに速すぎると、表面
の凹凸が激しい膜になってしまうからである。また、所
望の膜厚制御も難しくなるからである。また、Alq3
以外の有機膜上への蒸着の場合については、有機膜が異
なるとその有機膜上に陰電極層17が十分付着し始める
蒸着速度も異なるため、その有機膜に適した蒸着速度を
選択する必要がある。
When the first layer 17a of the negative electrode layer 17 is formed on the Alq 3 organic film, the deposition rate of Mg is 1.0.
The film thickness of the film formed at the time of nm / s or less measured by the step gauge is thinner than that displayed by the crystal oscillator type film thickness meter,
The difference increases as the deposition rate decreases. This is because when the deposition rate is slow, the negative electrode component does not easily adhere to the organic film at the early stage of film formation of the Mg negative electrode on the organic film, and the actual film thickness of the unformed film at the initial stage of film formation This is because it has become thinner. Therefore, in order to secure the adhesion of Mg on the Alq 3 organic film, a vapor deposition rate of 1.0 nm / s or more is required. The range of 1.0 to 2.0 nm / s is preferably selected. This is because if the vapor deposition rate is too fast, the film will have severe surface irregularities. Also, it is difficult to control a desired film thickness. Also, Alq 3
In the case of vapor deposition on an organic film other than the above, the vapor deposition rate at which the negative electrode layer 17 begins to sufficiently adhere on the organic film varies depending on the organic film, so it is necessary to select the vapor deposition rate suitable for the organic film. There is.

【0023】次に、Mg陰電極層の第2の層17bにつ
いての蒸着条件であるが、実際の素子製造に先立ち、蒸
着速度を変化させてMg膜を石英ガラス上へ蒸着して調
べた。その結果、蒸着速度を0.5nm/s以下として
形成したMg膜ではその表面は平坦であるが、蒸着速度
を0.5nm/s以上にしていくと、徐々に膜表面の凹
凸が増えていくことがわかった。その具体的な実験結果
として、図2に蒸着速度を0.2nm/sとして形成し
たMg膜についてその表面を原子間力顕微鏡(AFM)
で観察した結果を示す。また、図3に蒸着速度を1.4
nm/sとして形成したMg膜についてその表面を原子
間力顕微鏡(AFM)で観察した結果を示す。また、蒸
着速度が0.2nm/sと1.4nm/sとしてそれぞ
れ形成したMg膜についてX線回折測定を行ったとこ
ろ、Mgからの回折ピークの強度、半値幅は蒸着速度
0.2nm/sで形成したMg膜の方が約2倍優れてお
り、遅い蒸着速度で蒸着したMg膜の緻密性が良いこと
が示された。これらの結果に基づき、Mg陰電極層17
の第2の層17bの蒸着速度は、0.5nm/s以下が
好ましいと考えられる。しかし、蒸着速度があまりに遅
いと、真空蒸着機中に存在する酸素などの不純物の陰電
極膜内への混入が懸念されるので、Mg陰電極層17の
第2の層17bの蒸着速度範囲としては、0.1〜0.
5nm/sが好ましいと考えられる。
Next, regarding the vapor deposition conditions for the second layer 17b of the Mg negative electrode layer, prior to the actual device production, the vapor deposition rate was changed and the Mg film was vapor deposited on the quartz glass to investigate. As a result, the surface of the Mg film formed at a vapor deposition rate of 0.5 nm / s or less is flat, but as the vapor deposition rate is increased to 0.5 nm / s or more, irregularities on the film surface gradually increase. I understand. As a concrete experimental result, the surface of the Mg film formed at a deposition rate of 0.2 nm / s in FIG. 2 was observed by an atomic force microscope (AFM).
The results of observation are shown below. In addition, the deposition rate is 1.4 in FIG.
The results of observing the surface of the Mg film formed at nm / s with an atomic force microscope (AFM) are shown. Further, when the X-ray diffraction measurement was performed on the Mg films respectively formed with the vapor deposition rates of 0.2 nm / s and 1.4 nm / s, the intensity of the diffraction peak from Mg and the half-value width were the vapor deposition rates of 0.2 nm / s. The Mg film formed in 1) was about twice as excellent, indicating that the Mg film deposited at a slow deposition rate had good compactness. Based on these results, the Mg negative electrode layer 17
It is considered that the vapor deposition rate of the second layer 17b is preferably 0.5 nm / s or less. However, if the vapor deposition rate is too slow, it is feared that impurities such as oxygen present in the vacuum vapor deposition machine may be mixed into the negative electrode film. Is 0.1 to 0.
It is considered that 5 nm / s is preferable.

【0024】また層17a,17bそれぞれの膜厚に関
しては、Mg陰電極層17の第1の層17aの場合、5
〜40nmの範囲が適切である。膜厚がこれより厚くな
ると、素子が発光し始める電圧が高くなっていく傾向が
ある。従って第1の層17aは、膜の性質上なるべく薄
い方が好ましい。ただし、この膜厚範囲の下限を5nm
と述べたのは、蒸着速度が速くて図3のように凹凸が多
いMg膜となった場合であっても、少なくとも5nm程
度の膜厚があれば有機膜15をある程度覆うことができ
ると考えられるからである。一方、Mg陰電極層17の
第2の層17bの場合、表面凹凸がある第1の層17a
上に、平坦な表面を持った陰電極層17の第2の層17
bを成膜させるために、150nm以上の膜厚が必要で
ある。
Regarding the film thickness of each of the layers 17a and 17b, in the case of the first layer 17a of the Mg negative electrode layer 17, it is 5
A range of -40 nm is suitable. When the film thickness is larger than this, the voltage at which the device starts to emit light tends to increase. Therefore, it is preferable that the first layer 17a be as thin as possible due to the nature of the film. However, the lower limit of this film thickness range is 5 nm
That is, it is considered that the organic film 15 can be covered to some extent even if the Mg film having a high deposition rate and a large number of irregularities as shown in FIG. 3 has a film thickness of at least about 5 nm. Because it will be done. On the other hand, in the case of the second layer 17b of the Mg negative electrode layer 17, the first layer 17a having surface irregularities
On top, a second layer 17 of the negative electrode layer 17 having a flat surface
A film thickness of 150 nm or more is required to form b.

【0025】このようにして、製造した第1の実施例の
有機EL素子10は、3V以上の直流電圧印加により、
黄緑色に発光し、15V印加時には、13,620cd
/m2 の輝度を示した。このときの電流密度は375m
A/cm2 であった。これと同様の有機EL素子を、大
気中50mA/cm2 の定電流で駆動させたところ、初
期輝度の半減寿命は、55時間程度であった。また、こ
の有機EL素子の陰電極層17表面のAFM像は、図2
と同じような平坦な平面であった。
The organic EL element 10 of the first embodiment manufactured in this manner is applied with a DC voltage of 3 V or more,
It emits yellow-green light and has 13,620 cd when 15 V is applied.
The brightness was / m 2 . Current density at this time is 375m
It was A / cm 2 . When an organic EL device similar to this was driven at a constant current of 50 mA / cm 2 in the atmosphere, the half life of the initial luminance was about 55 hours. In addition, an AFM image of the surface of the negative electrode layer 17 of this organic EL element is shown in FIG.
It was a flat surface similar to.

【0026】2.実施例2 実施例1と同様に、石英ガラス基板11上に、陽電極層
13、および正孔輸送層15aと電子輸送性発光層15
bとからなる有機膜層15、第1の層17と第2の層1
7bとからなる陰電極層17を形成した後、大気中でさ
らに、紫外線硬化樹脂を用いた保護膜により素子全体を
封止した。すなわち、Mgで構成された陰電極層17は
本来はこれが成膜された真空蒸着装置から何らかの手段
で真空を破壊することなく保護膜形成手段に搬送して保
護膜で覆うことが陰電極層の酸化防止という点からみれ
ば好ましいのであるが、この第2の実施例では、あえ
て、大気に一度放置した後に陰電極層17を保護膜で覆
ってみた。このようにして作製した有機EL素子は、大
気中に約1ケ月放置後も、実施例1とほぼ同様の発光特
性を示した。これは、本発明により製造した陰電極層1
7が、多少の大気中への放置に対しても安定であること
を示している。
2. Example 2 Similar to Example 1, the positive electrode layer 13, the hole transport layer 15a and the electron transport light emitting layer 15 were formed on the quartz glass substrate 11.
b, an organic film layer 15, a first layer 17 and a second layer 1
After forming the negative electrode layer 17 composed of 7b and 7b, the whole element was further sealed in the air with a protective film using an ultraviolet curable resin. That is, the negative electrode layer 17 made of Mg should be transferred from the vacuum vapor deposition apparatus in which it is originally formed to the protective film forming means without breaking the vacuum by any means to cover it with the protective film. Although it is preferable from the viewpoint of preventing oxidation, in the second embodiment, the negative electrode layer 17 was intentionally covered with a protective film after being left in the atmosphere once. The organic EL device manufactured in this manner showed substantially the same light emission characteristics as in Example 1 even after being left in the atmosphere for about 1 month. This is the negative electrode layer 1 produced according to the present invention.
7 shows that it is stable even if it is left in the air to some extent.

【0027】3.比較例1 実施例1と同様に石英ガラス基板11上に、陽電極層1
3および有機膜層15を形成した上に、陰電極層として
Mg/Ag合金(原子比10:1)から成る層200n
mを形成した(図示せず)。Mgは実施例1でも述べた
カーボン製のるつぼから、Agはタングステン製のボー
トから、それぞれ1.0nm/s、0.1nm/sの蒸
着速度になるよう昇華、蒸発させた。
3. Comparative Example 1 Similarly to Example 1, the positive electrode layer 1 was formed on the quartz glass substrate 11.
3 and the organic film layer 15 are formed, and a layer 200n made of Mg / Ag alloy (atomic ratio 10: 1) is used as a negative electrode layer.
m was formed (not shown). Mg was sublimated and evaporated from the carbon crucible described in Example 1 and Ag from a tungsten boat so that the deposition rates were 1.0 nm / s and 0.1 nm / s, respectively.

【0028】このようにして作製した比較例1の有機E
L素子は、4V以上の直流電圧印加により、発光し、1
6V印加時(電流密度:336mA/cm2 )に、5,
450cd/m2 の輝度を示した。Mg/Ag合金から
成る陰電極層は、Mg単体の陰電極層に比べ仕事関数が
高いため、実施例1に比べ駆動電圧が若干高く、発光輝
度も低くなったものと考えられる。この比較例1と同様
の有機EL素子を、大気中50mA/cm2 の定電流で
駆動させたところ、初期輝度の半減寿命は、30時間程
度と実施例1の約半分であった。また、この有機EL素
子の陰電極表面のAFM像は、直径数百nmの島状の部
分が多く点在していた。この島状部分は、Agが核とな
り形成されたものと考えられる。
Organic E of Comparative Example 1 produced in this way
The L element emits light when a DC voltage of 4 V or more is applied,
When applying 6 V (current density: 336 mA / cm 2 ),
It showed a luminance of 450 cd / m 2 . Since the negative electrode layer made of the Mg / Ag alloy has a higher work function than the negative electrode layer of Mg alone, it is considered that the driving voltage was slightly higher and the emission brightness was lower than in Example 1. When the same organic EL device as in Comparative Example 1 was driven in the atmosphere at a constant current of 50 mA / cm 2 , the half life of initial luminance was about 30 hours, which was about half that of Example 1. Further, the AFM image on the surface of the negative electrode of this organic EL element was dotted with many island-shaped portions having a diameter of several hundred nm. It is considered that this island-shaped portion was formed with Ag as a nucleus.

【0029】4.比較例2 実施例1と同様に石英ガラス基板11上に、陽電極層1
3および有機膜層15を形成した後に、有機膜層15上
に、Mgの蒸着速度を1.5nm/sの条件として膜厚
が200nmのMg陰電極層を形成し、比較例2の有機
EL素子を得た(図示せず)。
4. Comparative Example 2 As in Example 1, the positive electrode layer 1 was formed on the quartz glass substrate 11.
3 and the organic film layer 15 are formed, a Mg negative electrode layer having a film thickness of 200 nm is formed on the organic film layer 15 under the condition of Mg deposition rate of 1.5 nm / s. A device was obtained (not shown).

【0030】このようにして作製した比較例2の有機E
L素子は、8V以上の直流電圧印加により、発光し、2
4V印加時には、9,490cd/m2 の輝度を示し
た。このときの電流密度は337mA/cm2 であっ
た。この比較例2のものと同様の有機EL素子を、大気
中100mA/cm2 の定電流で駆動させたところ、初
期輝度の半減寿命は、1時間程度であった。
Organic E of Comparative Example 2 produced in this way
The L element emits light when a DC voltage of 8 V or more is applied, and 2
When 4 V was applied, it showed a luminance of 9,490 cd / m 2 . The current density at this time was 337 mA / cm 2 . When an organic EL device similar to that of Comparative Example 2 was driven in the atmosphere at a constant current of 100 mA / cm 2 , the half life of the initial luminance was about 1 hour.

【0031】また、この比較例2の有機EL素子の陰電
極層表面のAFM像は、図3のものとほぼと同様の形状
であり、その表面は直径数百nm位の大きなグレインで
占められ、非常に荒れていた。
The AFM image of the surface of the negative electrode layer of the organic EL device of Comparative Example 2 has almost the same shape as that of FIG. 3, and the surface is occupied by large grains having a diameter of several hundred nm. It was very rough.

【0032】5.比較例3 実施例1と同様に石英ガラス基板11上に、陽電極層1
3および有機膜層15を形成した後に、有機膜層15上
に、Mgの蒸着速度を0.1nm/sの条件として膜厚
が200nmのMg陰電極層を形成し、比較例3の有機
EL素子を得た(図示せず)。なお、この時の蒸着は、
有機膜上への蒸着初期の未成膜分を考慮して行なってい
る。上記200nmは実際に得られた膜厚(触針式の段
差計により確認している膜厚)である。
5. Comparative Example 3 The positive electrode layer 1 was formed on the quartz glass substrate 11 in the same manner as in Example 1.
3 and the organic film layer 15 are formed, a Mg negative electrode layer having a film thickness of 200 nm is formed on the organic film layer 15 under the condition of Mg deposition rate of 0.1 nm / s. A device was obtained (not shown). The vapor deposition at this time is
It is performed in consideration of the undeposited film at the initial stage of vapor deposition on the organic film. The above 200 nm is the film thickness actually obtained (film thickness confirmed by a stylus type step meter).

【0033】このようにして作製した比較例3の有機E
L素子は、14V以上の直流電圧印加により発光はする
が、肉眼で見ても不均一な発光で、印加電圧を上げて
も、その輝度は1cd/m2 未満であった。これは、M
gの蒸着速度が遅いと、蒸着初期の段階で、Mgが有機
膜上へ付着しにくく、有機膜表面が、かなりの時間Mg
蒸発粒子にさらされ、ダメージを受けてしまったためと
思われる。
Organic E of Comparative Example 3 produced in this way
The L element emits light when a DC voltage of 14 V or more is applied, but the light emission is non-uniform even with the naked eye, and the brightness thereof is less than 1 cd / m 2 even when the applied voltage is increased. This is M
When the vapor deposition rate of g is slow, it is difficult for Mg to adhere to the organic film at the early stage of vapor deposition, and the surface of the organic film is not covered with Mg for a considerable time.
Probably because it was exposed to evaporated particles and damaged.

【0034】[0034]

【発明の効果】上述した説明から明らかなように、この
出願の第一発明によれば、少なくとも陽電極層、単数あ
るいは複数の有機膜層、陰電極層をこの順に具える有機
EL素子において、前記陰電極層を所定の第1の層およ
び第2の層で構成する。このため陰電極層の構成材料と
して好適かつ単体の金属例えばマグネシウムで陰電極層
が構成された有機EL素子が得られる。このため、従来
に比べ、駆動電圧が低く、長期の駆動においても初期駆
動電圧を維持し易く、発光の均一性を保ち易く、発光特
性の劣化が少ない、有機EL素子が得られる。
As is apparent from the above description, according to the first invention of this application, in an organic EL device having at least a positive electrode layer, a single or plural organic film layers, and a negative electrode layer in this order, The negative electrode layer is composed of a predetermined first layer and a predetermined second layer. Therefore, it is possible to obtain an organic EL element which is suitable as a constituent material of the negative electrode layer and whose negative electrode layer is composed of a single metal such as magnesium. For this reason, an organic EL element having a lower drive voltage than the conventional one, easy to maintain the initial drive voltage even during long-term drive, easy to maintain uniformity of light emission, and less deteriorated in light emission characteristics can be obtained.

【0035】また、第二発明の有機EL素子の製造方法
によれば、当該有機EL素子の陰電極層を形成する際
に、陰電極層の構成材料として好適かつ単体の金属を蒸
着源とし、かつ、蒸着速度を第1の条件および第2の条
件というように段階的に変更させて蒸着して陰電極層を
形成する。この結果、同原料ではあるが、有機膜への付
着性がある第1の層および緻密で比較的安定な第2の層
というように、性質の異なる層を積層させた陰電極層を
形成できる。このため、比較的安定で表面の平坦性があ
って、しかも発光層への電子注入効率の良い陰電極層が
得られるので、従来の有機EL素子よりも、低電圧駆
動、高輝度で、寿命特性の良い有機EL素子を得ること
ができる。なお、この陰電極製造方法は有機薄膜を用い
た、あらゆる有機EL素子の製造に使用できると考え
る。
Further, according to the method for manufacturing an organic EL element of the second invention, when forming the negative electrode layer of the organic EL element, a single metal suitable as a constituent material of the negative electrode layer is used as a vapor deposition source, In addition, the negative electrode layer is formed by changing the vapor deposition rate in stages such as the first condition and the second condition and performing vapor deposition. As a result, a negative electrode layer can be formed by laminating layers having different properties such as a first layer which is the same material but has adhesiveness to an organic film and a dense and relatively stable second layer. . As a result, a negative electrode layer that is relatively stable, has a flat surface, and has good electron injection efficiency into the light emitting layer is obtained. An organic EL element having good characteristics can be obtained. It is considered that this negative electrode manufacturing method can be used for manufacturing any organic EL element using an organic thin film.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の説明に供する図であり実施例1の有
機EL素子の断面図である。
FIG. 1 is a diagram for explaining the first embodiment and is a cross-sectional view of an organic EL device of the first embodiment.

【図2】実施例の説明図であり、蒸着速度0.2nm/
sで成膜したMg膜のAFM像を示した図である。
FIG. 2 is an explanatory diagram of an example, where a vapor deposition rate is 0.2 nm /
It is the figure which showed the AFM image of the Mg film formed by s.

【図3】実施例の説明図であり、蒸着速度1.4nm/
sで成膜したMg膜のAFM像を示した図である。
FIG. 3 is an explanatory diagram of an example, where a vapor deposition rate is 1.4 nm /
It is the figure which showed the AFM image of the Mg film formed by s.

【符号の説明】[Explanation of symbols]

10:実施例の有機EL素子 11:ガラス基板(石英ガラス基板) 13:陽電極層(例えばITO膜) 15:有機膜層 15a:正孔輸送層 15b:電子輸送性発光層 17:陰電極層 17a:第1の層 17b:第2の層 10: Organic EL Element of Examples 11: Glass Substrate (Quartz Glass Substrate) 13: Positive Electrode Layer (for example, ITO Film) 15: Organic Film Layer 15a: Hole Transport Layer 15b: Electron Transport Light Emitting Layer 17: Cathode Electrode Layer 17a: first layer 17b: second layer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも陽電極層、単数あるいは複数
の有機膜層、陰電極層をこの順に具える有機EL素子に
おいて、 前記陰電極層を、単体の金属から成り前記有機膜層に対
する付着層として主に機能する第1の層と、該第1の層
上に設けられ前記金属から成り陰電極として機能し然も
前記第1の層より緻密な第2の層とで構成してあること
を特徴とする有機EL素子。
1. An organic EL device comprising at least a positive electrode layer, one or more organic film layers, and a negative electrode layer in this order, wherein the negative electrode layer is made of a single metal as an adhesion layer to the organic film layer. A first layer which mainly functions and a second layer which is provided on the first layer and which is made of the metal and functions as a negative electrode and which is denser than the first layer. Characteristic organic EL device.
【請求項2】 請求項1に記載の有機EL素子におい
て、 前記第1の層および第2の層それぞれをマグネシウムの
層により構成してあることを特徴とする有機EL素子。
2. The organic EL element according to claim 1, wherein each of the first layer and the second layer is formed of a magnesium layer.
【請求項3】 少なくとも陽電極層、単数あるいは複数
の有機膜層、陰電極層をこの順に具える有機EL素子を
製造するに当たり、 陰電極層の形成は、 単体の金属を蒸発源として用い蒸着速度が前記単体の金
属の前記有機膜への付着を確保でき然も膜厚制御ができ
る範囲の第1の蒸着条件で第1の層を形成し、続いて、
蒸着速度を前記第1の蒸着条件より遅くした第2の蒸着
条件で第2の層を形成することによって行なうことを特
徴とする有機EL素子の製造方法。
3. When manufacturing an organic EL device comprising at least a positive electrode layer, one or more organic film layers and a negative electrode layer in this order, the negative electrode layer is formed by vapor deposition using a single metal as an evaporation source. The first layer is formed under the first vapor deposition condition in which the speed is such that the adhesion of the elemental metal to the organic film can be secured and the film thickness can be controlled, and then,
A method for manufacturing an organic EL element, which comprises performing the second layer under a second vapor deposition condition in which the vapor deposition rate is slower than the first vapor deposition condition.
【請求項4】 請求項3に記載の有機EL素子の製造方
法において、 前記第2の蒸着条件における蒸着速度を最大でも0.5
nm/秒とすることを特徴とする有機EL素子の製造方
法。
4. The method for manufacturing an organic EL device according to claim 3, wherein the vapor deposition rate under the second vapor deposition condition is 0.5 at a maximum.
nm / sec.
【請求項5】 請求項3に記載の有機EL素子の製造方
法において、 前記金属をマグネシウムとし、 前記第1の蒸着条件における蒸着速度を最少でも1nm
/秒とし、 前記第2の蒸着条件における蒸着速度を最大でも0.5
nm/秒とすることを特徴とする有機EL素子の製造方
法。
5. The method for manufacturing an organic EL device according to claim 3, wherein the metal is magnesium, and the vapor deposition rate under the first vapor deposition condition is at least 1 nm.
/ Sec, and the vapor deposition rate under the second vapor deposition condition is 0.5 at the maximum.
nm / sec.
【請求項6】 請求項3〜5のいずれか1項に記載の有
機EL素子の製造方法において、 前記蒸着はカーボン製るつぼを用いた間接抵抗加熱法に
より行なうことを特徴とする有機EL素子の製造方法。
6. The method of manufacturing an organic EL element according to claim 3, wherein the vapor deposition is performed by an indirect resistance heating method using a carbon crucible. Production method.
JP7173088A 1995-07-10 1995-07-10 Organic electroluminescent element and its manufacture Withdrawn JPH0922782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7173088A JPH0922782A (en) 1995-07-10 1995-07-10 Organic electroluminescent element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7173088A JPH0922782A (en) 1995-07-10 1995-07-10 Organic electroluminescent element and its manufacture

Publications (1)

Publication Number Publication Date
JPH0922782A true JPH0922782A (en) 1997-01-21

Family

ID=15953987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7173088A Withdrawn JPH0922782A (en) 1995-07-10 1995-07-10 Organic electroluminescent element and its manufacture

Country Status (1)

Country Link
JP (1) JPH0922782A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335060A (en) * 1997-06-03 1998-12-18 Sony Corp Organic electrroluminescent element
US5885498A (en) * 1996-12-11 1999-03-23 Matsushita Electric Industrial Co., Ltd. Organic light emitting device and method for producing the same
WO2007042956A1 (en) * 2005-10-07 2007-04-19 Philips Intellectual Property & Standards Gmbh Voltage-operated layer arrangement
US7388223B2 (en) 2003-05-28 2008-06-17 Samsung Sdi Co., Ltd. Flat panel display device and method of fabricating the same
US10420960B2 (en) 2013-03-08 2019-09-24 Ulthera, Inc. Devices and methods for multi-focus ultrasound therapy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5885498A (en) * 1996-12-11 1999-03-23 Matsushita Electric Industrial Co., Ltd. Organic light emitting device and method for producing the same
JPH10335060A (en) * 1997-06-03 1998-12-18 Sony Corp Organic electrroluminescent element
US7388223B2 (en) 2003-05-28 2008-06-17 Samsung Sdi Co., Ltd. Flat panel display device and method of fabricating the same
JP2008282818A (en) * 2003-05-28 2008-11-20 Samsung Sdi Co Ltd Flat display device
WO2007042956A1 (en) * 2005-10-07 2007-04-19 Philips Intellectual Property & Standards Gmbh Voltage-operated layer arrangement
US10420960B2 (en) 2013-03-08 2019-09-24 Ulthera, Inc. Devices and methods for multi-focus ultrasound therapy

Similar Documents

Publication Publication Date Title
JP3797317B2 (en) Target for transparent conductive thin film, transparent conductive thin film and manufacturing method thereof, electrode material for display, organic electroluminescence element
TWI453967B (en) Organic light-emitting device including transparent conducting oxide layer as cathode and method of manufacturing the same
JP2005285659A (en) Organic electroluminescence device and its manufacturing method
US7247074B2 (en) Organic electroluminescent element and process for its manufacture
JP3238787B2 (en) Organic electroluminescence device
CN1188015C (en) Method for depositing aluminium-lithium alloy cathode onto organic light emitting element
JP2001093671A (en) Organic electric field light-emitting element with double- insulating layer
JP3359073B2 (en) Organic thin film EL device
JPH0922782A (en) Organic electroluminescent element and its manufacture
JPH11126689A (en) Manufacture of organic electroluminescent element and organic el element
JP3865358B2 (en) Manufacturing method of organic EL device
JPH09298088A (en) Organic electroluminescent element and its manufacture
JPH1140352A (en) Organic el element and manufacture thereof
JPH11339969A (en) Organic el element
JPH11121172A (en) Organic el element
JP3868061B2 (en) Organic electroluminescence device
JPH0762526A (en) Production of organic electroluminescence element
JP3475957B2 (en) Organic EL device and method of manufacturing the same
JP2004164992A (en) Manufacture method of electron injection property electrode, and manufacturing method of organic electroluminescent element
JP3040597B2 (en) Manufacturing method of organic electroluminescent device
JP3684614B2 (en) Organic thin film light emitting device and method for manufacturing the same
JPH11260563A (en) Organic el element
JP2000243569A (en) Organic electroluminescence element and its manufacture
US20010051487A1 (en) Method for making organic luminescent device
KR100282024B1 (en) Method for manufacturing organic electroluminescent device by sputtering

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021001