JPH09227235A - Silicon nitride sintered compact and its production - Google Patents

Silicon nitride sintered compact and its production

Info

Publication number
JPH09227235A
JPH09227235A JP8041828A JP4182896A JPH09227235A JP H09227235 A JPH09227235 A JP H09227235A JP 8041828 A JP8041828 A JP 8041828A JP 4182896 A JP4182896 A JP 4182896A JP H09227235 A JPH09227235 A JP H09227235A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintering
sintering aid
powder
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8041828A
Other languages
Japanese (ja)
Inventor
Masanori Okabe
昌規 岡部
Kagehisa Hamazaki
景久 濱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP8041828A priority Critical patent/JPH09227235A/en
Priority to DE69708353T priority patent/DE69708353T2/en
Priority to EP97301335A priority patent/EP0792854B1/en
Priority to US08/807,539 priority patent/US6187706B1/en
Publication of JPH09227235A publication Critical patent/JPH09227235A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an Si3 N4 sintered compact usable at a high temp. of >=1,250 deg.C and having high high-temp. strength. SOLUTION: When a powdery mixture of Si3 N4 powder as a principal component with a 1st and a 2nd sintering aids is compacted and sintered to obtain an Si3 N4 sintered compact, the average particle diameter of the Si3 N4 powder is regulated to 0.1-1.0μm, powder of oxide of one or more kinds of the group IIIa elements is used as the 1st sintering aid and powder of oxide of one or more kinds of elements selected from among Zr, Hf, Nb, Ta and W is used as the 2nd sintering aid. The average particle diameter of the 1st sintering aid is regulated to 0.1-10 times that of the Si3 N4 powder. In the 2nd sintering aid, the total number of particles whose average particle diameter is 10-100 times that of the Si3 N4 powder is allowed to account for 5-50% and the 2nd sintering aid is added by <=10wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高温の環境で使用す
る耐熱性に優れた窒化珪素焼結体及びその製造方法に関
する。詳しくは、窒化珪素粉末(主成分)と、第1の焼
結助剤である3a族元素の酸化物と、第2の焼結助剤で
あるZr、Hf、Nb、Ta、Wの中から選ばれた元素の
酸化物からなる窒化珪素焼結体であって、これらの粒径
と添加量とを最適な範囲に設定する事により、従来以上
の高温強度を達成することが出来る窒化珪素焼結体及び
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body which is used in a high temperature environment and has excellent heat resistance, and a method for producing the same. Specifically, from among the silicon nitride powder (main component), the oxide of the Group 3a element that is the first sintering aid, and the second sintering aids Zr, Hf, Nb, Ta, and W A silicon nitride sintered body made of an oxide of a selected element, which is capable of achieving a higher temperature strength than ever before by setting the particle size and the addition amount of these elements in the optimum range. The present invention relates to a bound body and a manufacturing method thereof.

【0002】[0002]

【従来の技術】窒化珪素焼結体は高温強度、靱性に優れ
ている。そのため、ガスタービンのタービンローター、
ノズル、ダクト、燃焼室等のように高温、高圧に曝され
る環境で使用される構造部材に応用する研究が数多く行
なわれて来た。例えば、ガスタービンの燃焼効率は、タ
ービンの入り口温度の上昇と共に向上するので、従来用
いられてきたインコネル等の耐熱合金よりも、高い高温
強度を有し、セラミックス材料の中では高い靱性を示す
窒化珪素焼結体について、高温強度の向上を狙った研究
が盛んである。
2. Description of the Related Art Sintered silicon nitride is excellent in high temperature strength and toughness. Therefore, turbine rotor of gas turbine,
There have been many studies applied to structural members used in environments exposed to high temperatures and high pressures, such as nozzles, ducts, combustion chambers, and the like. For example, since the combustion efficiency of a gas turbine increases with an increase in the inlet temperature of the turbine, it has a higher high-temperature strength than a conventionally used heat-resistant alloy such as Inconel and has a high toughness among ceramic materials. Research on silicon sintered bodies aimed at improving the high-temperature strength has been actively conducted.

【0003】窒化珪素は共有結合性の高い物質であり、
単体では焼結性が良くないので、焼結性を向上させる為
に、酸化アルミニウム、酸化イットリウム、酸化マグネ
シウム、酸化セリウム等の焼結助剤を混ぜて焼結するこ
とが一般に行われている。単純な形状であれば、少量の
焼結助剤を添加しホットプレスを用いた方法により焼結
を促進させることも可能であるが、焼結助剤は窒化珪素
焼結体の粒界に、非晶質状態で存在し、高温強度を低下
させる原因になる。そこで、この非晶質状態で存在する
焼結助剤を結晶化したり、あるいは出来るだけ少量の焼
結助剤で焼結を行い高温強度を高める試みが従来からな
されて来た。
[0003] Silicon nitride is a substance having a high covalent bond,
Since the sinterability is not good as a simple substance, in order to improve the sinterability, it is generally performed by mixing a sintering aid such as aluminum oxide, yttrium oxide, magnesium oxide or cerium oxide. With a simple shape, it is possible to add a small amount of a sintering aid and accelerate the sintering by a method using hot pressing, but the sintering aid is at the grain boundaries of the silicon nitride sintered body, It exists in an amorphous state, which causes reduction in high temperature strength. Therefore, it has been attempted to crystallize the sintering aid existing in the amorphous state or to sinter with a small amount of the sintering aid to increase the high temperature strength.

【0004】一方、高温強度に優れた焼結助剤を用いる
ことにより窒化珪素焼結体の高温強度を高める研究も行
われている。例えば特開昭61−201666号公報に
は、酸化ハフニウム、酸化ジルコニウムを特定の割合で
窒化珪素のマトリックス中に分散させ高温強度、靱性を
向上をさせる技術が開示されている。また特開昭62―
153169号公報には、特定量の希土類元素の酸化物
と、Hf、TaまたはNbの酸化物、炭化物またはケイ化
物の群から選ばれた少なくとも一種を特定の割合で混ぜ
ることにより、高温強度を向上させる技術が開示されて
いる。
On the other hand, studies have also been conducted to increase the high temperature strength of a silicon nitride sintered body by using a sintering aid having excellent high temperature strength. For example, Japanese Patent Application Laid-Open No. 61-201666 discloses a technique for improving high-temperature strength and toughness by dispersing hafnium oxide and zirconium oxide in a specific ratio in a silicon nitride matrix. In addition, JP-A-62-
Japanese Patent No. 153169 discloses improving the high temperature strength by mixing a specific amount of an oxide of a rare earth element and at least one selected from the group of Hf, Ta or Nb oxides, carbides or silicides in a specific ratio. Techniques for doing so are disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかしこれらの高温強
度が高い焼結助剤を用いるだけでは、必ずしも十分な高
温強度は得られていない。そこで、特公平5−1566
7号公報には、窒化珪素粉末と焼結助剤の平均粒径と最
大粒径を特定な範囲に設定することにより、従来の窒化
珪素焼結体に対して20kg/mm2以上、強度を向上さ
せる技術が開示されている。しかしここで開示されてい
る技術は主に室温強度の向上を狙ったものであり、高温
強度については十分とは言えない。
However, sufficient sintering aids having high high-temperature strength are not always sufficient to obtain sufficient high-temperature strength. Therefore, Japanese Patent Publication No.
No. 7 discloses that by setting the average particle diameter and the maximum particle diameter of the silicon nitride powder and the sintering aid in a specific range, the strength of the conventional silicon nitride sintered body is 20 kg / mm 2 or more, Techniques for improving are disclosed. However, the technique disclosed here is mainly aimed at improving room temperature strength, and is not sufficient for high temperature strength.

【0006】[0006]

【課題を解決するための手段】本発明者らは、高温強度
に優れた焼結助剤を添加した従来の窒化珪素焼結体の高
温強度を更に向上させるために、高温強度に優れた焼結
助剤成分を添加するのみではなく、窒化珪素粉末と混合
する焼結助剤の種類とその平均結晶粒径に着目し、研究
を進めた結果本発明を完成するに至った。
In order to further improve the high-temperature strength of a conventional silicon nitride sintered body to which a sintering aid excellent in high-temperature strength is added, the inventors of the present invention have performed a sintering process excellent in high-temperature strength. The present invention has been completed as a result of further research, focusing not only on the addition of a binder component but also on the type of sintering aid mixed with silicon nitride powder and its average crystal grain size.

【0007】即ち本発明に係る窒化珪素焼結体は、主成
分としての窒化珪素粉末に対し第1の焼結助剤と第2の
焼結助剤を添加した混合粉末を成形した後に焼結して得
るもので、前記主成分としての窒化珪素粉末の平均粒径
を0.1〜1.0μmとし、前記第1の焼結助剤として
は少なくとも1種類以上の3a族元素の酸化物粉末と
し、第2の焼結助剤としてはZr(ジルコニウム)、Hf
(ハフニウム)、Nb(ニオブ)、Ta(タンタル)及び
W(タングステン)の中から選ばれた少なくとも1種以
上の元素の酸化物粉末とし、この第1の焼結助剤の平均
粒径を前記窒化珪素粉末の平均粒径の0.1乃至10倍
とし、更に前記第2の焼結助剤にあっては、粒径が前記
窒化珪素粉末の平均粒径に対して10倍乃至100倍で
ある粒子の総数を5乃至50%とするとともにその添加
割合を0〜10重量%(但し0重量%は含まない)とし
た。
That is, the silicon nitride sintered body according to the present invention is sintered after forming a mixed powder in which a first sintering aid and a second sintering aid are added to silicon nitride powder as a main component. The average particle size of the silicon nitride powder as the main component is 0.1 to 1.0 μm, and the first sintering aid is at least one oxide powder of a 3a group element. The second sintering aid is Zr (zirconium), Hf
(Hafnium), Nb (niobium), Ta (tantalum), and W (tungsten) as an oxide powder of at least one element, and the average particle size of the first sintering aid is The average particle size of the silicon nitride powder is 0.1 to 10 times, and the second sintering aid has a particle size of 10 to 100 times the average particle size of the silicon nitride powder. The total number of certain particles was set to 5 to 50%, and the addition ratio was set to 0 to 10% by weight (excluding 0% by weight).

【0008】本発明で用いる窒化珪素粉末としては、イ
ミド法あるいは直接窒化法により製造されたものどちら
でも使用出来るが、高い高温強度を得る為にはイミド法
により製造されたものがより好ましい。また、窒化珪素
粉末の平均粒径は0.1〜1.0μmとする。平均粒径
が0.1μm以下であると焼結体が高温で荷重を受けた
際に粒界滑りが起きやすく、高温強度が低下し、平均粒
径が1.0μm以上であると焼結中に粒成長が起こり高
温強度が低下するからである。窒化珪素粉末の形状とし
ては略球状であるものが好ましい。
As the silicon nitride powder used in the present invention, either one manufactured by the imide method or direct nitriding method can be used, but one manufactured by the imide method is more preferable in order to obtain high strength at high temperature. The average particle size of the silicon nitride powder is 0.1 to 1.0 μm. When the average particle size is 0.1 μm or less, grain boundary sliding easily occurs when the sintered body receives a load at a high temperature, the high-temperature strength decreases, and when the average particle size is 1.0 μm or more, sintering occurs. This is because grain growth occurs and the high-temperature strength decreases. The shape of the silicon nitride powder is preferably substantially spherical.

【0009】ここで、本発明で規定する平均粒径とは、
横軸に粒子径を縦軸に累積粒子数をとった粒子径累積分
布曲線において累積度数が50%(以降D50と記す)
となる粒子の径である。
Here, the average particle size specified in the present invention means
The cumulative frequency is 50% in the particle size cumulative distribution curve in which the horizontal axis is the particle diameter and the vertical axis is the cumulative particle number (hereinafter referred to as D50).
Is the diameter of the particle.

【0010】また、焼結体の強度を高めるには使用する
窒化珪素粉末の平均粒径に応じて、焼結助剤の平均粒径
を最適に調整する必要がある。即ち、第1の焼結助剤と
しての3a族元素の酸化物粉末の平均粒径は、窒化珪素
粉末の平均粒径に対して、0.1倍乃至10倍とする。
0.1以下又は10倍以上であると、窒化珪素粉末と均
一に混ざりにくく焼結性が悪化するからである。したが
って、好ましくは0.5倍乃至5倍以下とし、より好ま
しくは窒化珪素粉末の平均粒径と略同径の平均粒径を有
するものとする。
To increase the strength of the sintered body, it is necessary to optimally adjust the average particle size of the sintering aid according to the average particle size of the silicon nitride powder used. That is, the average particle size of the oxide powder of the Group 3a element as the first sintering aid is 0.1 to 10 times the average particle size of the silicon nitride powder.
This is because if it is 0.1 or less or 10 times or more, it is difficult to uniformly mix with the silicon nitride powder and the sinterability deteriorates. Therefore, it is preferably 0.5 to 5 times or less, and more preferably has an average particle diameter approximately the same as the average particle diameter of the silicon nitride powder.

【0011】また、3a族元素の酸化物粉末の添加量は
0.1〜10重量%とする。0.1重量%以下であると
焼結性が悪化し実質焼結が困難になり、10重量%を越
えると高温での強度が低下要因となる。より好ましくは
1〜5重量%である。尚、3a元素酸化物を2種類以上
添加する場合は、平均粒径が必ずしも同じである必要は
なく、平均粒径がこの範囲に入っているものであれば異
なっていても良いし、また添加量の総量がこの範囲に入
っていれば良い。
The addition amount of the oxide powder of the 3a group element is 0.1 to 10% by weight. If it is less than 0.1% by weight, the sinterability will be deteriorated and it will be difficult to substantially sinter it. More preferably, it is 1 to 5% by weight. When two or more kinds of 3a elemental oxides are added, the average particle sizes do not necessarily have to be the same, and may be different as long as the average particle size is within this range. It suffices if the total amount falls within this range.

【0012】前記第1の焼結助剤を構成する3a族元素
としては、Y、ランタノイド系希土類元素、アクチノイ
ド系希土類元素が挙げられるが、好ましくはY、Yb、
Luの中から選ばれた元素である。もちろん2種類以上
を同時に添加してもよい。
Examples of the Group 3a element constituting the first sintering aid include Y, lanthanoid rare earth elements, and actinide rare earth elements, preferably Y, Yb,
Lu is an element selected from Lu. Of course, two or more kinds may be added simultaneously.

【0013】また第2の焼結助剤を構成するZr、Hf、
Nb、Ta、Wの酸化物は、窒化珪素焼結体の高温強度を
高める作用が知られている。そして、その粒径として
は、窒化珪素粉末の平均粒径に対して10倍乃至100
倍とするのが好ましい。ただしZr、Hf、Nb、Ta、W
の酸化物の粒子を全て上記の範囲にするのではなく、Z
r,Hf,Nb、Ta、Wの酸化物の総粒子数を100とし
た場合、5乃至50%含むようにする。
Zr, Hf, which constitutes the second sintering aid,
It is known that oxides of Nb, Ta and W enhance the high temperature strength of the silicon nitride sintered body. The particle size is 10 to 100 times the average particle size of the silicon nitride powder.
It is preferably doubled. However, Zr, Hf, Nb, Ta, W
Rather than keeping all the oxide particles of
When the total number of particles of oxides of r, Hf, Nb, Ta, and W is 100, the content is 5 to 50%.

【0014】その理由は、粒径が10倍以下であると高
温において、粒界すべりの抑止効果がなくなり、100
倍以上であると、窒化珪素粉末中の切り欠き欠陥となり
応力集中を起こし、破壊起点となる為である。したがっ
て、より好ましくは5倍から50倍の範囲である。また
総粒子数が全体の5%以下であると添加した酸化物のほ
とんどが焼結助剤として働き、高温強度を発現すること
ができず、50%以上となると結晶粒界に残存する酸化
物塊状相が多くなり、欠陥として働き、強度の低下を招
くことによる。
The reason for this is that if the grain size is 10 times or less, the effect of suppressing grain boundary slip is lost at high temperatures and 100
This is because if it is more than twice, it becomes a notch defect in the silicon nitride powder, stress concentration occurs, and it becomes a fracture starting point. Therefore, the range is more preferably 5 to 50 times. When the total number of particles is less than 5% of the total, most of the added oxides act as sintering aids and cannot exhibit high-temperature strength. This is because the bulk phase increases and acts as a defect, resulting in a decrease in strength.

【0015】これらの酸化物粉末を2種以上添加する場
合は、粒度分布が必ずしも同じである必要はなく、粒径
が10倍乃至100倍である総粒子数がこの範囲に入っ
ているものであればよい。焼結体の強度を高めるには使
用する窒化珪素粉末の粒径に応じて、これらの元素の酸
化物粉末の粒径を上記に示した範囲に適切に調整する必
要がある。
When two or more kinds of these oxide powders are added, the particle size distribution does not necessarily have to be the same, and the total number of particles having a particle size of 10 to 100 times is within this range. I wish I had it. In order to increase the strength of the sintered body, it is necessary to appropriately adjust the particle size of the oxide powder of these elements within the range shown above according to the particle size of the silicon nitride powder used.

【0016】また、Zr、Hf、Nb、Ta、Wの中から選
ばれた元素の酸化物の添加量としては、0〜10重量%
(但し0重量%は含まない)が適当である。これらの元
素はごく微量であっても効果はあるが、多量に添加する
と平均粒径が大きい為、焼結性が著しく悪化する。従っ
て添加量は10重量%以下にする必要がある。より好ま
しくは1から5重量%である。これらの酸化物粉末を2
種以上添加する場合は添加量の総量がこの範囲に入って
いればよい。
The amount of the oxide of the element selected from Zr, Hf, Nb, Ta and W is from 0 to 10% by weight.
(However, 0% by weight is not included) is suitable. These elements are effective even in very small amounts, but when added in large amounts, the average particle size is large, so that the sinterability deteriorates significantly. Therefore, the amount of addition must be 10% by weight or less. More preferably, it is 1 to 5% by weight. These oxide powders are
When adding more than one kind, it is sufficient that the total amount of addition is within this range.

【0017】一方、本発明の窒化珪素焼結体の製造方法
は、前記した主成分としての窒化珪素粉末と、第1の焼
結助剤と、第2の焼結助剤とからなる混合粉末を成形し
た後、1〜9kgf/cm2の窒素ガスを含む雰囲気中で、1
600〜1800℃で1次焼結した後、100〜200
0kgf/cm2の窒素ガスを含む雰囲気中で、1次焼結温度
と同じか、これよりも低い温度で2次焼結する。尚、窒
化珪素粉末、第1の焼結助剤及び第2の焼結助剤の平均
粒径、添加割合等は前記したものと同様である。
On the other hand, the method for producing a silicon nitride sintered body of the present invention is a mixed powder comprising the above-mentioned silicon nitride powder as the main component, the first sintering aid and the second sintering aid. After molding, in an atmosphere containing 1 to 9 kgf / cm2 of nitrogen gas, 1
100-200 after primary sintering at 600-1800 ° C
Secondary sintering is performed in an atmosphere containing 0 kgf / cm 2 of nitrogen gas at a temperature equal to or lower than the primary sintering temperature. The average particle diameters, addition ratios, etc. of the silicon nitride powder, the first sintering aid and the second sintering aid are the same as those described above.

【0018】窒化珪素粉末と焼結助剤である酸化物粉末
は、成形に先立ちまず均一に混合する必要がある。混合
に用いる装置としてはボールミル、攪拌ミル、などが挙
げられ、湿式粉砕、乾式粉砕のいずれでもよい。湿式粉
砕を行う際の溶媒としては、エチルアルコール、メチル
アルコールなどが挙げられる。
The silicon nitride powder and the oxide powder which is the sintering aid must be mixed uniformly before molding. Examples of the apparatus used for mixing include a ball mill and a stirring mill, and any of wet pulverization and dry pulverization may be used. Examples of the solvent for performing wet pulverization include ethyl alcohol and methyl alcohol.

【0019】そして、窒化珪素粉末と焼結助剤との混合
が済んだ後、乾燥、造粒、篩分けなどの工程を成形方法
に応じて行う。成形方法としては、プレス成形、スリッ
プキャスト成形、高圧射出成形(通常の射出成形)、低
圧射出成形、冷間静水圧成形(CIP)、ホットプレス
等が挙げられるが、本発明の製造方法はこれらの成形方
法に必ずしも限定されず、いずれの成形方法においても
有効である。尚、成形体の形状の自由度と生産効率を確
保し、密度の高い成形体を得るには、プレス成形後、C
IP又は低圧射出成形を行うことが好ましい。
After the mixing of the silicon nitride powder and the sintering aid, processes such as drying, granulation, and sieving are performed according to the molding method. Examples of the molding method include press molding, slip cast molding, high-pressure injection molding (normal injection molding), low-pressure injection molding, cold isostatic pressing (CIP), hot pressing, and the like. However, the present invention is not necessarily limited to this molding method, and any of the molding methods is effective. In addition, in order to secure the degree of freedom of the shape of the molded body and the production efficiency and obtain a molded body with high density, after press molding, C
It is preferable to perform IP or low pressure injection molding.

【0020】成形体は、窒素ガスを含む雰囲気中で16
00〜1800℃の温度領域で1次焼結を行う。焼結温
度1600℃以下であると、焼結反応が進行しにくく、
1800℃を越えると窒化珪素の結晶粒の粗大化が進み
強度が低下する。また、窒素ガスを含む雰囲気中で焼結
を行うのは、窒化珪素の分解を防止する為であり、圧力
としては、1〜9kgf/cm2とする。1kgf/cm2以下である
と、窒化珪素の分解が生じ、9kgf/cm2を越えるとポア
が焼結体内に封じ込められ、焼結体の緻密化が進行しに
くくなる。
The molded body was molded in an atmosphere containing nitrogen gas 16
Primary sintering is performed in the temperature range of 00 to 1800 ° C. When the sintering temperature is 1600 ° C or lower, the sintering reaction is difficult to proceed,
If the temperature exceeds 1800 ° C., the crystal grains of silicon nitride become coarser and the strength decreases. Further, the reason why sintering is performed in an atmosphere containing nitrogen gas is to prevent decomposition of silicon nitride, and the pressure is set to 1 to 9 kgf / cm 2 . If it is 1 kgf / cm 2 or less, the decomposition of silicon nitride occurs, and if it exceeds 9 kgf / cm 2 , the pores are confined in the sintered body and it becomes difficult to densify the sintered body.

【0021】一次焼結の過程において、焼結体が緻密化
し、続く2次焼結では加圧雰囲気により焼結体を表面か
ら均一に押圧するので、ポアがつぶれるため、焼結体の
密度が上がり、強度も向上する。
In the course of the primary sintering, the sintered body is densified, and in the subsequent secondary sintering, the sintered body is uniformly pressed from the surface by the pressurized atmosphere. And strength.

【0022】一次焼結は概ね相対密度が90%以上にな
るまで行う。一次焼結に要する時間は焼結体のサイズ、
肉厚により変化するが、約1〜24時間である。より好
ましくは、4〜12時間である。焼結時間が1時間より
短いと緻密化が十分に進行せず、2次焼結の効果が得ら
れない。24時間より長いと過度の結晶粒成長が起きや
すくなる。
The primary sintering is performed until the relative density becomes about 90% or more. The time required for primary sintering depends on the size of the sintered body,
It varies depending on the wall thickness, but is about 1 to 24 hours. More preferably, it is 4 to 12 hours. If the sintering time is shorter than 1 hour, densification does not sufficiently proceed, and the effect of secondary sintering cannot be obtained. If it is longer than 24 hours, excessive crystal grain growth tends to occur.

【0023】続く、2次焼結は窒素ガスを含む雰囲気中
で一次焼結と同じ、もしくはそれ以下の温度であって、
1600℃以上の温度領域で行う。1次焼結の温度を越
えると窒化珪素の結晶粒の粗大化が進み、その粗大粒が
強度低下を引き起こす。また1600℃以上でないと焼
結反応は進行しにくい。窒素ガスを含む雰囲気圧力は、
100〜2000kg/cm2が適当である。雰囲気圧力は1
00kg/cm2以下であると焼結反応が進みにくく十分に緻
密化しない。2000kg/cm2を越えると緻密化は飽和に
達する為、それ以上の緻密化反応は進行しない。逆に雰
囲気圧力をこれ以上高くすると、余分な粗大粒の成長を
招く傾向がある。
The subsequent secondary sintering is performed at a temperature equal to or lower than that of the primary sintering in an atmosphere containing nitrogen gas,
This is performed in a temperature range of 1600 ° C. or more. When the temperature exceeds the primary sintering temperature, the crystal grains of silicon nitride become coarser, and the coarse grains cause a decrease in strength. If the temperature is not higher than 1600 ° C., the sintering reaction hardly proceeds. The ambient pressure containing nitrogen gas is
100-2000 kg / cm 2 is suitable. Atmospheric pressure is 1
If it is less than 00 kg / cm 2 , the sintering reaction does not easily proceed, and it is not sufficiently densified. When it exceeds 2000 kg / cm 2 , the densification reaches saturation, and further densification reaction does not proceed. Conversely, if the atmospheric pressure is further increased, excessive coarse grains tend to grow.

【0024】[0024]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。尚、これらの実施例は本発明を限定するものでは
ない。 (実施例1)窒化珪素粉末(宇部興産製 A34×0
5)平均粒径0.5μm480gと、累積分布曲線上の
累積度数が50%に相当する粒子サイズが0.94μm
の酸化イッテルビウム(日本イットリウム製 YHC3
940620)12.5g(2.5重量%) と、酸化
ハフニウム(添川理化学 33238A)325mesh
(平均粒径5μ、最大粒径50μm、図1にレーザー回
折散乱式粒子分布測定装置による粒子径分布曲線を示
す。D50*10〜D50*100は48%である)
7.5g(1.5重量%)と、溶媒としてエタノール5
00gとを窒化珪素製のボールを入れたボールミル中で
60時間混合した。この混合粉末をロータリエバポレー
タを用いて乾燥させた後、325メッシュの篩を通し、
金型にて200kg/cm2の成形圧力でプレス成形後、40
00kg/cm2の圧力でCIP(冷間静水圧プレス)を行い
50(縦)×32(横)×8(厚さ)の試験片とした。
試験片を1800℃で4時間、9kgf/cm2の窒素ガスを
含む雰囲気中で1次焼結し相対密度92%の焼結体を
得、更に1800℃で2時間、窒素ガスを含む雰囲気中
で200kgf/cm2で焼結を行い相対密度95%以上の焼
結体を得た。この焼結体を1250℃と1450℃で、
JIS1601の3点曲げ強度試験を行った。試験結果
を表1に示す。
Embodiments of the present invention will be described below. It should be noted that these examples do not limit the present invention. (Example 1) Silicon nitride powder (A34 × 0 manufactured by Ube Industries)
5) The average particle size is 0.5 μm and 480 g, and the particle size corresponding to a cumulative frequency of 50% on the cumulative distribution curve is 0.94 μm.
Ytterbium oxide (YHC3 made by Japan Yttrium)
940620) 12.5 g (2.5% by weight) and hafnium oxide (Soegawa Rikagaku 33238A) 325mesh
(Average particle size 5 μm, maximum particle size 50 μm, FIG. 1 shows a particle size distribution curve measured by a laser diffraction / scattering particle size distribution analyzer. D50 * 10 to D50 * 100 is 48%.)
7.5 g (1.5% by weight) and ethanol 5 as a solvent
00 g was mixed for 60 hours in a ball mill containing balls made of silicon nitride. The mixed powder was dried using a rotary evaporator and then passed through a 325 mesh sieve,
After press molding with a molding pressure of 200 kg / cm 2 with a mold, 40
CIP (cold isostatic pressing) was performed at a pressure of 00 kg / cm 2 to obtain test pieces of 50 (length) × 32 (width) × 8 (thickness).
The test piece was first sintered at 1800 ° C. for 4 hours in an atmosphere containing 9 kgf / cm 2 of nitrogen gas to obtain a sintered body having a relative density of 92%, and further at 1800 ° C. for 2 hours in an atmosphere containing nitrogen gas. At 200 kgf / cm 2 to obtain a sintered body having a relative density of 95% or more. This sintered body at 1250 ° C and 1450 ° C,
A JIS 1601 three-point bending strength test was performed. Table 1 shows the test results.

【0025】(実施例2)窒化珪素粉末(宇部興産製
A34×05) 平均粒径0.5μm 960gと累積
分布曲線上の累積度数が50%に相当する粒子サイズが
0.94μmの酸化イッテルビウム(日本イットリウム
製 YHC3940620)25g(2.5重量%)
と、酸化ハフニウム(実施例1で用いたと同じ材料))
15g(1.5重量%)と、溶媒としてエタノール10
00gとを窒化珪素製のボールを入れたボールミル中で
60時間混合した。この混合粉末をロータリエバポレー
タを用いて乾燥させた後に866.88gを秤量し、パ
ラフィン153.05gとステアリン酸17.53gと
分散剤9.83gと添加しをニーダーにて90℃にて2
時間混練した。その後型温が41℃の金型に6kg/cm2
成形圧にて成形を行い50×31×10の成形体を得
た。この成形体を500℃で大気中で脱脂を行なった後
1800℃で8時間、9kgf/cm2の窒素ガスを含む雰囲
気中で1次焼結し相対密度92%の焼結体を得、更に1
800℃で2時間、窒素ガスを含む雰囲気中で200kg
f/cm2で焼結を行い相対密度95%以上の焼結体を得
た。この焼結体を1250℃と1450℃で、JIS1
601の3点曲げ強度試験を行った。試験結果を表1に
示す。
(Example 2) Silicon nitride powder (manufactured by Ube Industries)
A34 × 05) Ytterbium oxide (YHC3940620 manufactured by Japan Yttrium) 25 g (2.5% by weight) having an average particle size of 0.5 μm and 960 g and a particle size of 0.94 μm corresponding to a cumulative frequency of 50% on the cumulative distribution curve.
And hafnium oxide (the same material used in Example 1))
15 g (1.5% by weight) and ethanol 10 as a solvent
00 g was mixed for 60 hours in a ball mill containing balls made of silicon nitride. After drying this mixed powder using a rotary evaporator, 866.88 g was weighed and added with paraffin (153.05 g), stearic acid (17.53 g) and a dispersant (9.83 g) at 90 ° C. in a kneader.
Kneaded for hours. Then, molding was carried out in a mold having a mold temperature of 41 ° C. under a molding pressure of 6 kg / cm 2 to obtain a 50 × 31 × 10 compact. This molded body was degreased in air at 500 ° C., and then primary sintered at 1800 ° C. for 8 hours in an atmosphere containing 9 kgf / cm 2 of nitrogen gas to obtain a sintered body having a relative density of 92%. 1
200 kg in an atmosphere containing nitrogen gas at 800 ° C for 2 hours
Sintering was performed at f / cm 2 to obtain a sintered body having a relative density of 95% or more. This sintered body was measured at 1250 ° C and 1450 ° C according to JIS1.
A 601 three-point bending strength test was performed. Table 1 shows the test results.

【0026】(実施例3)酸化イッテルビウムの添加量
を1重量%とし酸化ハフニウムの添加量を1重量%とし
た以外は実施例1と全く同じ方法で試験片を作成し、同
じ方法で強度試験を行った結果を表1に示す。
(Example 3) A test piece was prepared by the same method as in Example 1 except that the amount of ytterbium oxide added was 1% by weight and the amount of hafnium oxide added was 1% by weight. The results obtained are shown in Table 1.

【0027】(実施例4)酸化イッテルビウムの添加量
を1.5重量%とし酸化ハフニウムの添加量を1.5重
量%とした以外は実施例1と全く同じ方法で試験片を作
成し、同じ方法で強度試験を行った結果を表1に示す。
(Example 4) A test piece was prepared in the same manner as in Example 1 except that the amount of ytterbium oxide added was 1.5% by weight and the amount of hafnium oxide added was 1.5% by weight. Table 1 shows the result of the strength test conducted by the method.

【0028】(実施例5)酸化イッテルビウムの添加量
を1.5重量%とし酸化ハフニウムの添加量を2.5重
量%とした以外は実施例1と全く同じ方法で試験片を作
成し、同じ方法で強度試験を行った結果を表1に示す。
Example 5 A test piece was prepared in the same manner as in Example 1 except that the amount of ytterbium oxide added was 1.5% by weight and the amount of hafnium oxide added was 2.5% by weight. Table 1 shows the result of the strength test conducted by the method.

【0029】(実施例6)酸化イッテルビウムの添加量
を2.5重量%とし酸化ハフニウムの添加量を2.5重
量%とした以外は実施例1と全く同じ方法で試験片を作
成し、同じ方法で強度試験を行った結果を表1に示す。
(Example 6) A test piece was prepared in the same manner as in Example 1 except that the amount of ytterbium oxide added was 2.5% by weight and the amount of hafnium oxide added was 2.5% by weight. Table 1 shows the result of the strength test conducted by the method.

【0030】(実施例7)酸化イッテルビウムの添加量
を3重量%とし酸化ハフニウムの添加量を5重量%とし
た以外は実施例1と全く同じ方法で試験片を作成し、同
じ方法で強度試験を行った結果を表1に示す。
(Example 7) A test piece was prepared in the same manner as in Example 1 except that the amount of ytterbium oxide added was 3% by weight and the amount of hafnium oxide added was 5% by weight. The results obtained are shown in Table 1.

【0031】(実施例8)酸化イッテルビウムの添加量
を5重量%とし酸化ハフニウムの添加量を3重量%とし
た以外は実施例1と全く同じ方法で試験片を作成し、同
じ方法で強度試験を行った結果を表1に示す。
(Example 8) A test piece was prepared by the same method as in Example 1 except that the amount of ytterbium oxide added was 5% by weight and the amount of hafnium oxide added was 3% by weight, and the strength test was conducted by the same method. The results obtained are shown in Table 1.

【0032】(実施例9)平均粒径0.95μmの酸化
イットリウム(日本イットリウム製)の添加量を1.5
重量%とし酸化ハフニウムの添加量を2.5重量%とし
た以外は実施例2と全く同じ方法で試験片を作成し、同
じ方法で強度試験を行った結果を表1に示す。
Example 9 Yttrium oxide (manufactured by Japan Yttrium) having an average particle size of 0.95 μm was added in an amount of 1.5.
A test piece was prepared in exactly the same manner as in Example 2 except that the amount of hafnium oxide was changed to 2.5% by weight, and the strength test was conducted in the same manner.

【0033】(実施例10)酸化イットリウムの添加量
を1重量%とし酸化ハフニウムの添加量を1重量%とし
た以外は実施例9と全く同じ方法で試験片を作成し、同
じ方法で強度試験を行った結果を表1に示す。
Example 10 A test piece was prepared in the same manner as in Example 9 except that the amount of yttrium oxide added was 1% by weight and the amount of hafnium oxide added was 1% by weight. The results obtained are shown in Table 1.

【0034】(実施例11)酸化イットリウムの添加量
を2.5重量%とし酸化ハフニウムの添加量を1.5重
量%とした以外は実施例9と全く同じ方法で試験片を作
成し、同じ方法で強度試験を行った結果を表1に示す。
Example 11 A test piece was prepared in the same manner as in Example 9 except that the amount of yttrium oxide added was 2.5% by weight and the amount of hafnium oxide added was 1.5% by weight. Table 1 shows the result of the strength test conducted by the method.

【0035】(実施例12)酸化イットリウムの添加量
を3重量%とし酸化ハフニウムの添加量を5重量%とし
た以外は実施例9と全く同じ方法で試験片を作成し、同
じ方法で強度試験を行った結果を表1に示す。
(Example 12) A test piece was prepared in the same manner as in Example 9 except that the amount of yttrium oxide added was 3% by weight and the amount of hafnium oxide added was 5% by weight. The results obtained are shown in Table 1.

【0036】(実施例13)平均粒径1.0μmの酸化
ルテチウム(日本イットリウム製)の添加量を2.5重
量%とし酸化ハフニウムの添加量を1.5重量%とした
以外は実施例1と全く同じ方法で試験片を作成し、同じ
方法で強度試験を行った結果を表1に示す。
(Example 13) Example 1 except that the amount of lutetium oxide (made by Japan Yttrium) having an average particle size of 1.0 µm was 2.5% by weight and the amount of hafnium oxide was 1.5% by weight. Table 1 shows the results of a test piece prepared by the same method as above and a strength test conducted by the same method.

【0037】(実施例14)平均粒径0.94μmの酸
化イッテルビウム(日本イットリウム製)の添加量を
2.5重量%とし、酸化ハフニウム(図2に粒子径累積
分布曲線を示す。D50*10〜D50*100が19
%)の添加量を1.5重量%とした以外は実施例1と全
く同じ方法で試験片を作成し、同じ方法で強度試験を行
った結果を表1に示す。
Example 14 Ytterbium oxide (manufactured by Japan Yttrium) having an average particle size of 0.94 μm was added in an amount of 2.5% by weight, and hafnium oxide (a cumulative particle size distribution curve is shown in FIG. 2). D50 * 10 ~ D50 * 100 is 19
%) Was added in the same manner as in Example 1 except that the amount added was 1.5% by weight, and a strength test was conducted by the same method.

【0038】(実施例15)酸化ハフニウムの添加量を
1.0重量%とした以外は実施例14と全く同じ方法で
試験片を作成し、同じ方法で強度試験を行った結果を表
1に示す。
Example 15 A test piece was prepared in the same manner as in Example 14 except that the amount of hafnium oxide added was changed to 1.0% by weight, and a strength test was conducted by the same method. Show.

【0039】(実施例16)酸化ハフニウムの添加量を
0.5重量%とした以外は実施例14と全く同じ方法で
試験片を作成し、同じ方法で強度試験を行った結果を表
1に示す。
Example 16 A test piece was prepared in the same manner as in Example 14 except that the amount of hafnium oxide added was changed to 0.5% by weight, and a strength test was conducted by the same method. Show.

【0040】(比較例1)平均粒径0.94μmの酸化
イッテリビウムの添加量を2.5重量%とし、酸化ハフ
ニウム(図3に粒子径累積分布曲線を示す。D50*1
0〜D50*100が4%)の添加量を1.5重量%と
した以外は実施例1と同じ方法で試験片を作成し、同じ
方法で強度試験を行った結果を表1に示す。表1から、
3点曲げ強度の低下が顕著である。実施例1と比較して
考えると、粒径の比較的大きい酸化ハフニウム等の高温
強度に優れた焼結助剤が高温強度の向上に寄与している
ものと考えられる。
Comparative Example 1 Ytterbium oxide having an average particle size of 0.94 μm was added in an amount of 2.5% by weight, and hafnium oxide (a cumulative particle size distribution curve is shown in FIG. 3 is shown. D50 * 1
Table 1 shows the results of a test piece prepared in the same manner as in Example 1 except that the added amount of 0 to D50 * 100 was 4%) was 1.5 wt%. From Table 1,
The decrease in the three-point bending strength is remarkable. Comparing with Example 1, it is considered that the sintering aid having excellent high temperature strength such as hafnium oxide having a relatively large particle size contributes to the improvement of high temperature strength.

【0041】(比較例2)酸化イッテリビウムの添加量
を4重量%とし、酸化ハフニウムを添加しないで、実施
例1と同じ方法で試験片を作成し、同じ方法で強度試験
を行った結果を表1に示す。表1から、特に3点曲げ試
験を行う温度を1250℃から1450℃に上げること
により、強度の低下が著しい。Zr、Hf、Nb、Ta、W
の中から選ばれた元素の酸化物粉末の添加により、高温
強度が高められている事がわかる。
Comparative Example 2 A test piece was prepared in the same manner as in Example 1 except that ytterbium oxide was added in an amount of 4% by weight and hafnium oxide was not added, and a strength test was conducted in the same manner. Shown in 1. From Table 1, in particular, when the temperature at which the three-point bending test is performed is increased from 1250 ° C to 1450 ° C, the decrease in strength is remarkable. Zr, Hf, Nb, Ta, W
It can be seen that the high-temperature strength was increased by the addition of the oxide powder of an element selected from among the above.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【発明の効果】本発明に係る窒化珪素焼結体は、第1の
焼結助剤である3a族元素の平均粒径が窒化珪素粉末の
粒径の0.1乃至10倍の範囲であるので、窒化珪素粉
末と均一に混ざり、焼結後窒化珪素粉末粒子の外周に存
在して一定厚の皮膜を作り、窒化珪素粉末同士を強固に
結合し、焼結体の強度が向上する。また、高温強度が高
い第2の焼結助剤として、Zr、Hf、Nb、Ta、Wの中
から選ばれた少なく1種以上の元素の酸化物粉末を添加
する事により、窒化珪素焼結体の高温強度が高まり、ま
た粒径が窒化珪素粉末の平均粒径の10倍乃至100倍
である比較的粒径の大きな粒子を5乃至50%含むので
窒化珪素焼結体の粒界に、窒化珪素結晶粒とほぼ同サイ
ズの高融点酸化物相が生成するため、焼結体中の粒子が
高温において粒界すべりを起こしにくく、更に高温強度
が向上する。
In the silicon nitride sintered body according to the present invention, the average particle size of the group 3a element, which is the first sintering aid, is 0.1 to 10 times the particle size of the silicon nitride powder. Therefore, the powder is uniformly mixed with the silicon nitride powder and, after sintering, exists on the outer periphery of the silicon nitride powder particles to form a film having a constant thickness, and the silicon nitride powders are firmly bonded to each other, and the strength of the sintered body is improved. Further, as a second sintering aid having high strength at high temperature, by adding oxide powder of at least one element selected from Zr, Hf, Nb, Ta and W, silicon nitride sintering can be performed. Since the high temperature strength of the body is increased and 5 to 50% of particles having a relatively large particle diameter, which is 10 to 100 times the average particle diameter of the silicon nitride powder, is contained, the grain boundary of the silicon nitride sintered body is Since a refractory oxide phase having substantially the same size as the silicon nitride crystal grains is generated, the grains in the sintered body are less likely to cause grain boundary slip at high temperatures, and the high temperature strength is further improved.

【0044】一方、本発明に係る窒化珪素焼結体の製造
方法は、1〜9kgf/cm2の窒素ガスを含む雰囲気中で、
1600〜1800℃の温度領域で1次焼結を行うこと
により緻密化し、続く2次焼結において、焼結体の密度
が更に向上する。特に、2次焼結を100〜2000kg
f/cm2の窒素ガスを含む雰囲気中で、1次焼結よりも低
い温度で行うことにより、結晶粒の粗大化を防止して、
焼結体の密度の向上し、強度が高くなる。尚、焼結工程
を、窒素ガスを含む雰囲気中で行う事により、窒化珪素
の分解を防ぎ焼結体を緻密化することが出来る。
On the other hand, the method for producing a silicon nitride sintered body according to the present invention is performed in an atmosphere containing 1 to 9 kgf / cm 2 of nitrogen gas.
Densification is achieved by performing primary sintering in a temperature range of 1600 to 1800 ° C., and in subsequent secondary sintering, the density of the sintered body is further improved. Especially 100 ~ 2000kg of secondary sintering
By carrying out at a temperature lower than the primary sintering in an atmosphere containing nitrogen gas of f / cm 2 , it is possible to prevent coarsening of crystal grains,
The density of the sintered body is improved and the strength is increased. By performing the sintering step in an atmosphere containing nitrogen gas, decomposition of silicon nitride can be prevented and the sintered body can be densified.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1から13で用いた焼結助剤の粒子径分
布曲線を示すグラフ
FIG. 1 is a graph showing a particle size distribution curve of the sintering aid used in Examples 1 to 13.

【図2】実施例14から16で用いた焼結助剤の粒子径
分布曲線を示すグラフ
FIG. 2 is a graph showing a particle size distribution curve of the sintering aid used in Examples 14 to 16.

【図3】比較例1で用いた焼結助剤の粒子径分布曲線を
示すグラフ
FIG. 3 is a graph showing a particle size distribution curve of the sintering aid used in Comparative Example 1.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 主成分としての窒化珪素粉末と、第1の
焼結助剤としての少なくとも1種類以上の3a族元素の
酸化物粉末と、第2の焼結助剤としてのZr(ジルコニ
ウム)、Hf(ハフニウム)、Nb(ニオブ)、Ta(タ
ンタル)及びW(タングステン)の中から選ばれた少な
くとも1種以上の元素の酸化物粉末とからなる混合粉末
を成形した後に焼結して得られる窒化珪素焼結体であっ
て、前記主成分としての窒化珪素粉末の平均粒径を0.
1〜1.0μmとし、前記第1の焼結助剤の平均粒径を
前記窒化珪素粉末の平均粒径の0.1乃至10倍とし、
更に前記第2の焼結助剤にあっては、粒径が前記窒化珪
素粉末の平均粒径に対して10倍乃至100倍である粒
子の総数を5乃至50%とするとともにその添加割合を
0〜10重量%(但し0重量%は含まない)としたこと
を特徴とする窒化珪素焼結体。
1. A silicon nitride powder as a main component, an oxide powder of at least one 3a group element as a first sintering aid, and Zr (zirconium) as a second sintering aid. Obtained by molding and then sintering a mixed powder of oxide powder of at least one element selected from among Hf (hafnium), Nb (niobium), Ta (tantalum) and W (tungsten). The silicon nitride sintered body according to claim 1, wherein the average particle diameter of the silicon nitride powder as the main component is 0.
1 to 1.0 μm, the average particle size of the first sintering aid is 0.1 to 10 times the average particle size of the silicon nitride powder,
Further, in the second sintering aid, the total number of particles having a particle size of 10 to 100 times the average particle size of the silicon nitride powder is set to 5 to 50%, and the addition ratio thereof is A silicon nitride sintered body characterized by being 0 to 10% by weight (however, 0% by weight is not included).
【請求項2】 請求項1に記載の窒化珪素焼結体におい
て、前記第1の焼結助剤としての3a族元素がY(イッ
トリウム)、Yb(イッテルビウム)、Lu(ルテチウ
ム)の中から選ばれたいずれかであることを特徴とする
窒化珪素焼結体。
2. The silicon nitride sintered body according to claim 1, wherein the group 3a element as the first sintering aid is selected from Y (yttrium), Yb (ytterbium) and Lu (lutetium). A silicon nitride sintered body characterized by being one of the following:
【請求項3】 請求項1に記載の主成分としての窒化珪
素粉末と、第1の焼結助剤と、第2の焼結助剤とからな
る混合粉末を成形した後、1〜9kgf/cm2の窒素ガスを
含む雰囲気中で、1600〜1800℃で1次焼結した
後、100〜2000kgf/cm2の窒素ガスを含む雰囲気
中で、1次焼結温度と同じか、これよりも低い温度で2
次焼結することを特徴とする窒化珪素焼結体の製造方
法。
3. 1 to 9 kgf / after molding a mixed powder consisting of the silicon nitride powder as the main component according to claim 1, a first sintering aid, and a second sintering aid. After primary sintering at 1600 to 1800 ° C. in an atmosphere containing nitrogen gas of cm 2 , in an atmosphere containing nitrogen gas of 100 to 2000 kgf / cm 2 , the primary sintering temperature is equal to or higher than the primary sintering temperature. 2 at low temperature
A method of manufacturing a silicon nitride sintered body, which comprises performing subsequent sintering.
【請求項4】 請求項3に記載の窒化珪素焼結体の製造
方法において、前記第1の焼結助剤としての3a族元素
がY(イットリウム)、Yb(イッテルビウム)、Lu
(ルテチウム)の中から選ばれたいずれかであることを
特徴とする窒化珪素焼結体の製造方法。
4. The method for manufacturing a silicon nitride sintered body according to claim 3, wherein the group 3a element as the first sintering aid is Y (yttrium), Yb (ytterbium) or Lu.
1. A method for manufacturing a silicon nitride sintered body, which is selected from (lutetium).
JP8041828A 1996-02-28 1996-02-28 Silicon nitride sintered compact and its production Pending JPH09227235A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8041828A JPH09227235A (en) 1996-02-28 1996-02-28 Silicon nitride sintered compact and its production
DE69708353T DE69708353T2 (en) 1996-02-28 1997-02-27 Sintered body made of silicon nitride
EP97301335A EP0792854B1 (en) 1996-02-28 1997-02-27 Silicon nitride sintered body
US08/807,539 US6187706B1 (en) 1996-02-28 1997-02-28 Silicon nitride sintered body and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8041828A JPH09227235A (en) 1996-02-28 1996-02-28 Silicon nitride sintered compact and its production

Publications (1)

Publication Number Publication Date
JPH09227235A true JPH09227235A (en) 1997-09-02

Family

ID=12619142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8041828A Pending JPH09227235A (en) 1996-02-28 1996-02-28 Silicon nitride sintered compact and its production

Country Status (1)

Country Link
JP (1) JPH09227235A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150831A1 (en) * 2009-06-24 2010-12-29 旭硝子株式会社 Hanger assembly and device for producing float plate glass
CN116217241A (en) * 2023-02-23 2023-06-06 潮州三环(集团)股份有限公司 Ceramic sintering method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150831A1 (en) * 2009-06-24 2010-12-29 旭硝子株式会社 Hanger assembly and device for producing float plate glass
CN102803166A (en) * 2009-06-24 2012-11-28 旭硝子株式会社 Hanger Assembly And Device For Producing Float Plate Glass
JP5510454B2 (en) * 2009-06-24 2014-06-04 旭硝子株式会社 Hanger assembly and float plate glass manufacturing equipment
CN116217241A (en) * 2023-02-23 2023-06-06 潮州三环(集团)股份有限公司 Ceramic sintering method and application thereof
CN116217241B (en) * 2023-02-23 2024-05-17 潮州三环(集团)股份有限公司 Ceramic sintering method and application thereof

Similar Documents

Publication Publication Date Title
JPH0222175A (en) Production and sintering of reaction bonded silicon nitride composite material containing silicon carbide whisker or silicon nitride powder
EP0792854B1 (en) Silicon nitride sintered body
JPH09227235A (en) Silicon nitride sintered compact and its production
JP2829724B2 (en) Silicon nitride composite ceramics and method for producing the same
JP3454994B2 (en) Silicon nitride sintered body and method for producing the same
JP2658944B2 (en) Silicon nitride-titanium nitride composite ceramics and method for producing the same
JPH1029867A (en) Silicon nitride sintered compact
JP3564165B2 (en) Method for producing silicon nitride reaction sintered body
JP2687632B2 (en) Method for producing silicon nitride sintered body
JP2534213B2 (en) Method for producing silicon nitride based sintered body
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP3241215B2 (en) Method for producing silicon nitride based sintered body
JP3570676B2 (en) Porous ceramic body and method for producing the same
JP2980342B2 (en) Ceramic sintered body
JP3498096B2 (en) Β-type silicon nitride sintered body for metal bonding and method for producing the same
JPH06116045A (en) Silicon nitride sintered compact and its production
JPH08319168A (en) Production of sialon ceramic
JPH0687664A (en) Production of silicon nitride sintered compact
JP2747635B2 (en) Method for producing silicon nitride sintered body
JP3981510B2 (en) Method for producing silicon nitride sintered body
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JP2947718B2 (en) Method for producing silicon nitride based sintered body
JPH0477363A (en) Manufacture of high strength silicon nitride sintered body in high temperature
JPH07267734A (en) Particle dispersed silicon nitride sintered compact and its production
JPH0834672A (en) Production of silicon nitride sintered compact