JPH09224662A - 6-phosphogluconate dehydrogenase and dna capable of coding the same - Google Patents

6-phosphogluconate dehydrogenase and dna capable of coding the same

Info

Publication number
JPH09224662A
JPH09224662A JP8036346A JP3634696A JPH09224662A JP H09224662 A JPH09224662 A JP H09224662A JP 8036346 A JP8036346 A JP 8036346A JP 3634696 A JP3634696 A JP 3634696A JP H09224662 A JPH09224662 A JP H09224662A
Authority
JP
Japan
Prior art keywords
ala
dna
gly
ggc
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8036346A
Other languages
Japanese (ja)
Inventor
Kazuhisa Hatakeyama
和久 畠山
Kouichirou Kuwabara
孔一郎 桑原
Miki Kobayashi
幹 小林
Hideaki Yugawa
英明 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP8036346A priority Critical patent/JPH09224662A/en
Publication of JPH09224662A publication Critical patent/JPH09224662A/en
Pending legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To isolate the above enzyme, derived from a coryneform bacterium and capable of catalyzing a pentose phosphate cycle according to a gene recombination technique. SOLUTION: This phosphogluconate dehydrogenase has an amino acid sequence represented by the formula. The enzyme is obtained by expressing a DNA (hereinafter referred to as a gnd gene), isolated and determined from a chromosomal DNA of a Brevibacterium flavum ML-233 (FERM BP-1497) strain, etc., and capable of coding the 6-phosphogluconate dehydrogenase in a coryneform bacterium. When the eoryneform bacterium is transformed with the gnd gene, a bacterium capable of highly producing the glucose 6 phosphate dehydrogenase is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、6−ホスホグルコ
ン酸デヒドロゲナーゼおよびそれをコードするDNAに
関する。
TECHNICAL FIELD The present invention relates to 6-phosphogluconate dehydrogenase and DNA encoding the same.

【0002】[0002]

【従来の技術】6−ホスホグルコン酸デヒドロゲナーゼ
は、ペントースリン酸回路の酵素であり、6−ホスホグ
ルコン酸を酸化および脱炭酸してD−リブロース−5−
リン酸を生成する不可逆反応の触媒である。6−ホスホ
グルコン酸デヒドロゲナーゼをコードする遺伝子につい
ては、原核生物ではエシェリヒア・コリ(Escher
ichia coli)由来の遺伝子[Gene, V
ol.27, p.253(1984)]、バシルス・
サチルス(Bacillus subtilis)由来
の遺伝子[J. Biol.Chem., Vol.2
61, p.13744(1986) ]、シネココッ
カス(Synechococcus sp. Stra
in PCC7942)由来の遺伝子[J. Bact
eriol., Vol.172, p.4023(1
990)]等が、単離され、その塩基配列が決定されて
いる。
2. Description of the Related Art 6-Phosphogluconate dehydrogenase is an enzyme of the pentose phosphate cycle and oxidizes and decarboxylates 6-phosphogluconate to form D-ribulose-5-.
It is a catalyst for irreversible reactions that produce phosphoric acid. Regarding the gene encoding 6-phosphogluconate dehydrogenase, Escherichia coli (Escherichia coli) is known in prokaryotes.
ichia coli) -derived gene [Gene, V
ol. 27, p. 253 (1984)], Bacillus
A gene derived from Bacillus subtilis [J. Biol. Chem. , Vol. 2
61, p. 13744 (1986)], Synechococcus sp. Stra.
in PCC7942) -derived gene [J. Bact
eriol. , Vol. 172, p. 4023 (1
990)] and the like, and its base sequence has been determined.

【0003】しかしながら、アミノ酸合成等、産業上重
要なコリネ型細菌については、酵素タンパク及びその塩
基配列について報告されていない。
However, no enzyme protein and its nucleotide sequence have been reported for industrially important coryneform bacteria such as amino acid synthesis.

【0004】[0004]

【発明が解決しようとする課題】一般に由来が異なる
と、酵素遺伝子は宿主において発現しないまたは発現し
にくいことから、コリネ型細菌内で発現可能なコリネ型
細菌由来の6−ホスホグルコン酸デヒドロゲナーゼをコ
ードするDNA断片の単離が望まれていた。
Generally, if the origin is different, the enzyme gene is not or hardly expressed in the host. Therefore, it encodes 6-phosphogluconate dehydrogenase derived from coryneform bacterium which can be expressed in coryneform bacterium. It has been desired to isolate a DNA fragment that

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究を重ねた結果、遺伝子組み換えの
手法を駆使することにより、コリネ型細菌から6−ホス
ホグルコン酸デヒドロゲナーゼおよびそれをコードする
DNAが単離可能であることを見い出し、本発明を完成
するに至った。すなわち、本発明の要旨は、配列表の配
列番号1記載のアミノ酸配列で示される6−ホスホグル
コン酸デヒドロゲナーゼおよびそれをコードするDNA
に存する。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have made full use of gene recombination techniques to produce 6-phosphogluconate dehydrogenase and its derivative from coryneform bacteria. The inventors have found that the DNA encoding the protein can be isolated, and completed the present invention. That is, the gist of the present invention is 6-phosphogluconate dehydrogenase represented by the amino acid sequence of SEQ ID NO: 1 in the sequence listing, and DNA encoding the same.
Exists.

【0006】[0006]

【発明の実施の形態】本発明の6−ホスホグルコン酸デ
ヒドロゲナーゼおよびそれをコードするDNA(以下、
gnd遺伝子と略記する)は、コリネ型細菌の染色体D
NA、具体的には、ブレビバクテリウム・フラバム(B
revibacterium flavum)MJ−2
33(FERM BP−1497)株等の染色体DNA
から以下に述べる方法で単離、決定することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The 6-phosphogluconate dehydrogenase of the present invention and the DNA encoding the same (hereinafter, referred to as
abbreviated as gnd gene) is a chromosome D of a coryneform bacterium.
NA, specifically Brevibacterium flavum (B
revibacterium flavum) MJ-2
33 (FERM BP-1497) strain and other chromosomal DNA
Can be isolated and determined by the method described below.

【0007】まず、上記コリネ型細菌を常法[例えば、
特開昭51−130592号公報参照]に従い培養し、
培養物から菌体を集め、該菌体から染色体DNAを抽出
する。染色体DNAは、例えば、特開平5−15378
号公報の実施例1(A)に記載の方法等により菌体から
容易に抽出することができる。エシエリヒア・コリ等の
6−ホスホグルコン酸デヒドロゲナーゼの一次構造の相
同性の高い部分から逆翻訳したオリゴデオキシリボヌク
レオチドをプライマーとしてポリメラーゼ連鎖反応(P
CR)を行い、gnd遺伝子の部分断片を得ることがで
きる。
First, the coryneform bacterium is treated by a conventional method [eg,
See Japanese Patent Application Laid-Open No. 51-130592],
Cells are collected from the culture and chromosomal DNA is extracted from the cells. Chromosomal DNA can be obtained, for example, from JP-A-5-15378.
It can be easily extracted from the cells by the method described in Example 1 (A) of the publication. Oligodeoxyribonucleotides reverse-translated from a highly homologous portion of the primary structure of 6-phosphogluconate dehydrogenase such as Escherichia coli are used as a polymerase chain reaction (P
CR) can be performed to obtain a partial fragment of the gnd gene.

【0008】該断片を鋳型として、染色体DNA制限酵
素分解物に対してサザンハイブリダイゼーションを行
い、少なくともgnd断片の一部を含む、染色体DNA
制限酵素断片の大きさを決定する。PCRで得られたg
nd遺伝子の部分断片を鋳型として、遺伝子ライブラリ
ーλFIXIIからプラークハイブリダイゼーションで
該断片を含むλファージを単離し、これをクローニング
する。
A chromosomal DNA containing at least a part of the gnd fragment is obtained by subjecting the chromosomal DNA restriction enzyme degradation product to Southern hybridization using the fragment as a template.
Determine the size of the restriction enzyme fragment. G obtained by PCR
Using a partial fragment of the nd gene as a template, a λ phage containing the fragment is isolated from the gene library λFIXII by plaque hybridization and cloned.

【0009】この染色体DNA断片を適当な制限酵素を
用いて切り出し、得られたDNA断片を適当なクローニ
ングベクター、例えばpUC118(宝酒造製)へサブ
クローニングし、エシエリヒア・コリJM109株(宝
酒造製)を形質転換する。この形質転換株を適当な抗生
物質選択下で培養し、培養物から菌体を回収し、菌体か
ら常法、例えばアルカリ−SDS法によりプラスミドを
抽出する。このプラスミドに挿入されたDNAの塩基配
列を決定することにより、本発明のgnd遺伝子を含む
DNA断片を取得することができる。
This chromosomal DNA fragment is cut out using an appropriate restriction enzyme, the obtained DNA fragment is subcloned into an appropriate cloning vector, for example pUC118 (Takara Shuzo), and Escherichia coli JM109 strain (Takara Shuzo) is transformed. To do. This transformant is cultured under selection of an appropriate antibiotic, cells are recovered from the culture, and a plasmid is extracted from the cells by a conventional method, for example, the alkali-SDS method. By determining the base sequence of the DNA inserted into this plasmid, the DNA fragment containing the gnd gene of the present invention can be obtained.

【0010】このDNA断片の塩基配列は、ジデオキシ
ヌクレオチド酵素法[dideoxy chain t
ermination法;Sanger, F., e
tal., Proc. Nat. Acad. Sc
i. USA, Vol.74, p.5463,
(1977)]により決定することができる。このよう
にして決定した大きさ約2kbのDNA断片の塩基配列
を後記配列表の配列番号1に示す。
The nucleotide sequence of this DNA fragment was determined by the dideoxynucleotide enzymatic method [dideoxy chain t].
termination method; Sanger, F .; , E
tal. , Proc. Nat. Acad. Sc
i. USA, Vol. 74, p. 5463,
(1977)]. The nucleotide sequence of the DNA fragment having a size of about 2 kb determined in this manner is shown in SEQ ID NO: 1 in the sequence listing below.

【0011】この配列中に存在するオープンリーディン
グフレームから、本発明の6−ホスホグルコン酸デヒド
ロゲナーゼは配列番号1記載のアミノ酸配列からなり、
またそれをコードする遺伝子は、例えば、配列番号1記
載の塩基配列中の374番目から1849番目までの塩
基配列で示されるものである。本発明におけるgnd遺
伝子は、天然の細菌、例えばコリネ型細菌の染色体DN
Aから分離されたもののみならず、本明細書記載の塩基
配列を元に、通常用いられるDNA合成装置、例えばベ
ックマン社製システム−1プラス(System−1
Plus)を用いて合成されたものであってもよい。
From the open reading frame present in this sequence, the 6-phosphogluconate dehydrogenase of the present invention consists of the amino acid sequence of SEQ ID NO: 1.
The gene encoding it is, for example, the one represented by the nucleotide sequence from 374th to 1849th in the nucleotide sequence of SEQ ID NO: 1. The gnd gene in the present invention is a chromosomal DN of natural bacteria such as coryneform bacteria.
Not only that isolated from A, but also based on the nucleotide sequence described in the present specification, a commonly used DNA synthesizer, for example, System-1 Plus (System-1 manufactured by Beckman).
Plus) may be used.

【0012】また、前記の如くコリネ型細菌の染色体か
ら取得される本発明のDNA断片は、6−ホスホグルコ
ン酸デヒドロゲナーゼをコードする機能を実質的に損な
うことがない限り、塩基配列の一部の塩基が他の塩基と
置換されていても、削除されていてもよく、新たに塩基
が挿入されていてもよく、あるいは塩基配列の一部が転
位されているものであってもよく、さらにそれらの塩基
配列にハイブリダイズする塩基配列であってもよく、こ
れらの誘導体のいずれもが、本発明の6−ホスホグルコ
ン酸デヒドロゲナーゼをコードする遺伝子を含むDNA
断片に包含されるものである。
Further, as described above, the DNA fragment of the present invention obtained from the chromosome of coryneform bacterium has a part of the nucleotide sequence as long as it does not substantially impair the function of encoding 6-phosphogluconate dehydrogenase. The base may be replaced with another base, may be deleted, a new base may be inserted, or a part of the base sequence may be rearranged. DNA sequence containing a gene encoding the 6-phosphogluconate dehydrogenase of the present invention.
It is included in the fragment.

【0013】[0013]

【実施例】以下、実施例によりさらに具体的に説明す
る。しかしながら、これらの実施例は本発明の範囲を限
定するものではない。 (A)ブレビバクテリウム・フラバムMJ−233の全
DNAの抽出 ブレビバクテリウム・フラバムMJ−233(FERM
BP−1497)を、半合成培地であるA培地[組
成:尿素 2g、(NH42SO4 7g、K2HPO4
0.5g、KH2PO4 0.5g、MgSO4・7H2
O 0.5g、FeSO4・7H2O 6mg、MnSO
4・4〜6H2O 6mg、酵母エキス2.5g、カザミ
ノ酸 5g、ビオチン 200μg、塩酸チアミン 2
00μg、グルコース 20gを蒸留水に溶解して1リ
ットルとする]1リットル中で対数増殖期後期まで培養
した後に菌体を回収した。
EXAMPLES The present invention will be described in more detail below with reference to examples. However, these examples do not limit the scope of the invention. (A) Extraction of total DNA of Brevibacterium flavum MJ-233 Brevibacterium flavum MJ-233 (FERM
BP-1497) is a semi-synthetic medium A medium [composition: urea 2 g, (NH 4 ) 2 SO 4 7 g, K 2 HPO 4
0.5g, KH 2 PO 4 0.5g, MgSO 4 · 7H 2
O 0.5g, FeSO 4 · 7H 2 O 6mg, MnSO
4 · 4~6H 2 O 6mg, yeast extract 2.5g, casamino acid 5g, biotin 200 [mu] g, thiamine hydrochloride 2
00 μg and 20 g of glucose are dissolved in distilled water to make 1 liter] The cells were cultured in 1 liter until the latter phase of the logarithmic growth phase, and the cells were recovered.

【0014】得られた菌体をリゾチームを10mg/m
lの濃度で含有する溶液[組成:10mM NaCl、
20mM トリス緩衝液(pH8.0)、1mM ED
TA・2Na]15mlに懸濁した。該懸濁液にプロテ
ナーゼKを100μg/mlの最終濃度で添加し、これ
を37℃で1時間インキュベートした。次に、ドデシル
硫酸ナトリウムを最終濃度が0.5%になるように添加
し、50℃で6時間インキュベートして溶菌させた。得
られた溶菌液に等量のフェノール/クロロホルム溶液を
添加して室温で10分間穏やかに振盪した後、その全量
を10〜12℃で20分間、5,000×gの遠心分離
に供し、その上清画分を分取した。該上清画分中に酢酸
ナトリウムをその濃度が0.3Mとなるように添加し、
次いで2倍量のエタノールを穏やかに添加した。水層と
エタノール層の間に存在するDNAをガラス棒で搦め取
り、これを70%エタノールで洗浄して風乾した。得ら
れたDNAは、溶液[組成:10mM トリス緩衝液
(pH7.5)、1mM EDTA・2Na]5mlを
加えて4℃で一晩静置した後、実験に供した。
The obtained cells were lysozyme at 10 mg / m
1 solution [composition: 10 mM NaCl,
20 mM Tris buffer (pH 8.0), 1 mM ED
TA • 2Na] in 15 ml. Proteinase K was added to the suspension at a final concentration of 100 μg / ml, which was incubated at 37 ° C. for 1 hour. Next, sodium dodecyl sulfate was added to a final concentration of 0.5%, and the mixture was incubated at 50 ° C for 6 hours to lyse the cells. After adding an equal amount of a phenol / chloroform solution to the obtained lysate and gently shaking at room temperature for 10 minutes, the total amount was subjected to 5,000 × g centrifugation at 10 to 12 ° C. for 20 minutes, and The supernatant fraction was collected. Sodium acetate was added to the supernatant fraction to a concentration of 0.3M,
Then 2 volumes of ethanol were added gently. The DNA existing between the aqueous layer and the ethanol layer was picked up with a glass rod, washed with 70% ethanol and air dried. The obtained DNA was subjected to an experiment after adding 5 ml of a solution [composition: 10 mM Tris buffer (pH 7.5), 1 mM EDTA · 2Na] at 4 ° C. overnight.

【0015】(B)gnd遺伝子の部分断片の採取 エシエリヒア・コリ(Escherichia col
i)[J. Bacteriol., Vol.17
3, p.968(1991)]、エルウィニア・クリ
サンセミ(Erwinia chrysanthem
i)[Gene,Vol.101, p.51(199
1) ]、および、ロイコノストック・メセンテロイデ
ス(Leuconostoc mesenteroid
es)[J. Biol. Chem., Vol.2
66, p.13028(1991)]の6−ホスホグ
ルコン酸デヒドロゲナーゼをコードするDNA遺伝子の
塩基配列をもとに推定したアミノ酸配列の相同性部分の
配列をもとに遺伝子クローニング用のPCRプライマー
DNAを設計した。
(B) Collection of partial fragment of gnd gene (Escherichia coli)
i) [J. Bacteriol. , Vol. 17
3, p. 968 (1991)], Erwinia chrysanthem.
i) [Gene, Vol. 101, p. 51 (199
1)], and Leuconostoc mesenteroid
es) [J. Biol. Chem. , Vol. 2
66, p. 13028 (1991)], a PCR primer DNA for gene cloning was designed based on the sequence of the homologous portion of the amino acid sequence deduced from the base sequence of the DNA gene encoding 6-phosphogluconate dehydrogenase.

【0016】ポリメラーゼ連鎖反応の一例を以下に示
す。反応液は以下の組成である。濃度は最終濃度を表
す。[25ユニット/ml Taq DNAポリメラー
ゼ、10mM トリス−塩酸緩衝液(pH8.0)、5
0mM KCl、1.5mM MgCl2、0.25m
M dATP、0.25mM dCTP、0.25mM
dGTP、0.25mM dTTP、0.5μg/m
染色体DNA飽和水溶液、1μM プライマー1:A
TGGTICA(TC)AA(TC)GGNAT(ATC)GA(AG)TA(TC)GGNGA(TC)AT
G(配列番号1記載のアミノ酸配列196〜206を元
にして設計した配列:配列番号2)、1μM プライマ
ー2:GCICC(AG)AA(AG)TA(AG)TCIC(TG)(TC)TGIGC(TC)TG
(配列番号1記載のアミノ酸配列459〜467を元に
して設計した配列:配列番号3)、として100μlの
反応混合液を用いる。] ポリメラーゼ連鎖反応の反応条件は例えば、94℃で1
分、55℃で2分、72℃で3分を1サイクルとする2
5サイクルである。そして上記反応で得られたDNAを
精製した。
An example of the polymerase chain reaction is shown below. The reaction solution has the following composition. The concentration represents the final concentration. [25 units / ml Taq DNA polymerase, 10 mM Tris-HCl buffer (pH 8.0), 5
0 mM KCl, 1.5 mM MgCl 2 , 0.25 m
M dATP, 0.25 mM dCTP, 0.25 mM
dGTP, 0.25 mM dTTP, 0.5 μg / m
l Chromosome DNA saturated aqueous solution, 1 μM primer 1: A
TGGTICA (TC) AA (TC) GGNAT (ATC) GA (AG) TA (TC) GGNGA (TC) AT
G (sequence designed based on the amino acid sequence 196 to 206 of SEQ ID NO: 1; SEQ ID NO: 2), 1 μM primer 2: GCICC (AG) AA (AG) TA (AG) TCIC (TG) (TC) TGIGC ( TC) TG
(A sequence designed based on the amino acid sequences 459 to 467 described in SEQ ID NO: 1: SEQ ID NO: 3) is used as a reaction mixture of 100 μl. ] The reaction conditions of the polymerase chain reaction are, for example, 1 ° C. at 94 ° C.
Min, 55 ° C for 2 minutes, 72 ° C for 3 minutes as one cycle 2
5 cycles. Then, the DNA obtained by the above reaction was purified.

【0017】それぞれ最終濃度が、50mM トリス−
塩酸緩衝液(pH7.9)、10mM MgCl2、2
0mM ジチオスレイトール、1mM ATP、1un
it/10μl T4DNAリガーゼ、50ng/10
μl pGEM−Tベクター、10ng/10μl P
CR産物となるように各成分を添加し、16℃で3時間
反応させて、PCR産物DNAを結合させた。
Each final concentration was 50 mM Tris-
Hydrochloric acid buffer (pH 7.9), 10 mM MgCl 2 , 2
0 mM dithiothreitol, 1 mM ATP, 1un
it / 10 μl T4 DNA ligase, 50 ng / 10
μl pGEM-T vector, 10 ng / 10 μl P
Each component was added so as to be a CR product and reacted at 16 ° C. for 3 hours to bind the PCR product DNA.

【0018】ついで、常法[J. Mol. Bio
l., 53, 159(1970)参照]に従って、
得られた溶液を用いてエシエリヒア・コリJM109を
形質転換した。得られた形質転換菌を選択培地[組成:
トリプトン 10g、酵母エキス 5g、NaCl 5
g、寒天 15g、アンピシリン 50mg、イソプロ
ピオチオガラクトシド 0.238g、X−gal
0.2g、ジメチルホルムアミド2mlを蒸留水に溶解
して1リットルとする]に塗抹し、37℃で16時間培
養した。
Then, the conventional method [J. Mol. Bio
l. , 53, 159 (1970)],
The resulting solution was used to transform Escherichia coli JM109. The transformant thus obtained was used as a selection medium [composition:
Tryptone 10 g, yeast extract 5 g, NaCl 5
g, agar 15 g, ampicillin 50 mg, isopropiothiogalactoside 0.238 g, X-gal
0.2 g and 2 ml of dimethylformamide were dissolved in distilled water to make 1 liter], and the mixture was incubated at 37 ° C. for 16 hours.

【0019】こうして得られたコロニーを青/白カラー
スクリーニングした。選択培地上に生育した菌株を、ア
ンピシリンを最終濃度で50μg/ml含有するL培養
液[トリプトン 10g、酵母エキス 5g、NaCl
5gを蒸留水に溶解して1リットルとする]に植菌
し、これを37℃で7時間培養した。培養液を4℃で1
0分間8,000×gの遠心分離にかけて菌体を回収し
た。回収した菌体からアルカリ−SDS法[T. Ma
niatis, E. F. Fritsch, J.
Sambrook, Molecular clon
ing, p.90−91(1982)参照]によりプ
ラスミドを抽出した。
The colonies thus obtained were blue / white color screened. L strain containing ampicillin at a final concentration of 50 μg / ml was added to the strain grown on the selection medium [trypton 10 g, yeast extract 5 g, NaCl
5 g was dissolved in distilled water to make 1 liter], and this was cultured at 37 ° C. for 7 hours. Culture at 1 ℃ at 4 ℃
The cells were recovered by centrifugation at 8,000 × g for 0 minutes. An alkali-SDS method [T. Ma
niatis, E .; F. Fritsch, J. et al.
Sambrook, Molecular clone
ing, p. 90-91 (1982)].

【0020】次に、得られた該プラスミドに挿入された
染色体DNA断片の塩基配列をジデオキシヌクレオチド
酵素法により決定した。具体的には、上記培養物より抽
出したプラスミドDNAをパーキン・エルマー社製カタ
リスト800モレキュラー・バイオロジー・ラボステー
ション(CATALYST 800 Molecule
r Biology Labostation ; P
erkin−Elmer)を用いてプロトコールに従い
反応させた後、パーキン・エルマー社製373A DN
Aシークエンサーによりプラスミドの挿入DNA断片の
塩基配列を決定した。
Next, the nucleotide sequence of the obtained chromosomal DNA fragment inserted into the plasmid was determined by the dideoxynucleotide enzyme method. Specifically, the plasmid DNA extracted from the above culture was used for Catalist 800 Molecular Biology Laboratory Station (CATALYST 800 Molecular) manufactured by Perkin Elmer.
r Biology Labostation; P
erkin-Elmer) according to the protocol, followed by 373A DN manufactured by Perkin-Elmer
The nucleotide sequence of the inserted DNA fragment of the plasmid was determined by A sequencer.

【0021】決定した塩基配列を翻訳して得られるタン
パク質と、既知のエシエリヒア・コリの6−ホスホグル
コン酸デヒドロゲナーゼとの相同性の比較により、それ
がブレビバクテイウム・フラバムMJ−233のgnd
遺伝子の一部(配列番号1記載の塩基配列中959番目
から1773番目)であることが判明した。 (C)gnd遺伝子の部分断片を含む染色体DNA制限
酵素断片の大きさ決定 染色体DNAを制限酵素BamHI、EcoRI、Hi
ndIII、SalIでそれぞれ分解した。これらをO
ncor社製Probe tech 2を用いてサザン
ハイブリダイゼーション用のナイロンメンブレンフィル
ターを作成した。
By comparing the homology between the protein obtained by translating the determined nucleotide sequence and the known 6-phosphogluconate dehydrogenase of Escherichia coli, it was found that the gnd of Brevibacterium flavum MJ-233 was obtained.
It was found to be a part of the gene (from the 959th position to the 1773rd position in the nucleotide sequence of SEQ ID NO: 1). (C) Determination of size of chromosomal DNA restriction enzyme fragment containing partial fragment of gnd gene Chromosomal DNA was subjected to restriction enzymes BamHI, EcoRI, Hi
It was digested with ndIII and SalI, respectively. O these
A nylon membrane filter for Southern hybridization was prepared using Probe tech 2 manufactured by Ncor.

【0022】上記、PCRで得られたgnd遺伝子の部
分断片を鋳型に、標識にはアマシャム社製[α−32P]
dCTP AA0005を用いて、宝酒造社製Ramd
omPrimer DNA Labelling Ki
t Ver.2の方法でプローブを標識した。フィルタ
ーを以下の組成の溶液[5×SSC溶液、5×デンハル
ト溶液、0.5% ドデシル硫酸ナトリウム、0.1m
g/ml SIGMA社製SALMON TESTES
DNA For Hybridization(10
mg/ml)]で65℃で2時間プレハイブリダイゼー
ションを行った。なお20×SSC溶液は、以下の組成
[3M NaCl、0.3M クエン酸ナトリウム]、
100×デンハルト溶液は以下の組成[2% 牛血清ア
ルブミン、2% ポリビニルピロリドン、2% フィコ
ール]である。
The partial fragment of the gnd gene obtained by PCR as described above was used as a template, and the labeling was made by Amersham [α- 32 P].
Ramd manufactured by Takara Shuzo Co., Ltd. using dCTP AA0005
omPrimer DNA Labeling Ki
t Ver. Probes were labeled in two ways. The filter is a solution having the following composition [5 × SSC solution, 5 × Denhardt's solution, 0.5% sodium dodecyl sulfate, 0.1 m
g / ml SIGMA SALMON TESTES
DNA For Hybridization (10
mg / ml)] at 65 ° C. for 2 hours. The 20 × SSC solution had the following composition [3M NaCl, 0.3M sodium citrate],
The 100 × Denhardt's solution has the following composition [2% bovine serum albumin, 2% polyvinylpyrrolidone, 2% Ficoll].

【0023】上記で調製したプローブを加え、65℃で
一晩サザンハイブリダイゼーションを行った。フィルタ
ーを2×SSC、0.1% SDSにて65℃で15分
間緩やかに振盪させながら洗浄した。次にフィルターを
1×SSC、0.1% SDSにて65℃で15分間緩
やかに振盪させながら洗浄した。フィルターを風乾した
後、オートラジオグラフィーを行った。読みとりは、富
士写真フィルム社製バイオイメージングアナライザーB
AS−2000を用いた。
The probe prepared above was added, and Southern hybridization was carried out at 65 ° C. overnight. The filter was washed with 2 × SSC, 0.1% SDS at 65 ° C. for 15 minutes with gentle shaking. The filter was then washed with 1 × SSC, 0.1% SDS at 65 ° C. for 15 minutes with gentle shaking. After air-drying the filter, autoradiography was performed. Read the bioimaging analyzer B manufactured by Fuji Photo Film Co., Ltd.
AS-2000 was used.

【0024】この結果、gnd遺伝子の部分断片を含む
染色体DNA制限酵素断片の大きさは、BamHI断
片、EcoRI断片、HindIII断片、SalI断
片が、それぞれ約5kb、8kb、5kb、9kbであ
った。 (D)gnd遺伝子の部分断片を含む染色体DNA B
amHI断片の単離 0.2% マルトース、10mM MgSO4を添加し
たLB培養液に、エシエリヒア・コリP2329を植菌
し、37℃で培養した。そして遺伝子ライブラリーλF
IXIIファージ溶液400μlにP2329培養液を
混合し、37℃で15分間培養した。次に4mlのλト
ップアガー(50℃保温)を加え、λプレートに均一に
なるように撒いて、37℃で一晩培養した。
As a result, the size of the chromosomal DNA restriction enzyme fragment containing the partial fragment of the gnd gene was about 5 kb, 8 kb, 5 kb and 9 kb for the BamHI fragment, the EcoRI fragment, the HindIII fragment and the SalI fragment, respectively. (D) Chromosomal DNA B containing a partial fragment of gnd gene
Isolation of amHI fragment Escherichia coli P2329 was inoculated into an LB culture medium supplemented with 0.2% maltose and 10 mM MgSO 4 , and cultured at 37 ° C. And the gene library λF
The P2329 culture solution was mixed with 400 μl of the IXII phage solution and incubated at 37 ° C. for 15 minutes. Next, 4 ml of λ top agar (preserved at 50 ° C.) was added, spread uniformly on a λ plate, and cultured at 37 ° C. overnight.

【0025】ニトロセルロースフィルターをλプレート
上に空気が入らないように静かに置いて、予めフィルタ
ーに書いた目印の点をプレートに写した。フィルターを
剥がし、吸着面を上にして、以下の溶液に浸した濾紙上
に置き、順次5分間処理した(溶液1:[0.5M N
aOH、1.5M NaCl]、溶液2:[1M トリ
ス−塩酸(pH7.5)、0.75M NaCl]、溶
液3:2×SSC)。フィルターを乾燥させた後、80
℃で30分間加熱してフィルターへDNAを固定化し
た。
The nitrocellulose filter was gently placed on the λ plate so that air could not enter, and the mark points previously written on the filter were copied on the plate. The filter was peeled off, and the adsorption surface was placed on the filter paper, which was soaked in the following solution, and sequentially treated for 5 minutes (Solution 1: [0.5M N
aOH, 1.5 M NaCl], solution 2: [1 M Tris-hydrochloric acid (pH 7.5), 0.75 M NaCl], solution 3: 2 x SSC). After drying the filter, 80
The DNA was immobilized on the filter by heating at 30 ° C. for 30 minutes.

【0026】フィルターを以下の混合溶液[5×SSP
E、1×デンハルト溶液、50%ホルムアミド、0.1
mg/ml SIGMA社製SALMON TESTE
SDNA For Hybridization(10
mg/ml)]にて42℃で1時間プレハイブリダイゼ
ーションを行った。20×SSPEの組成は、3.6M
NaCl、0.2M NaH2PO4、0.02M E
DTAである。上記(C)項で調製したDNAプローブ
を加え、42℃で一晩、ハイブリダイゼーションを行っ
た。
The filter was mixed with the following mixed solution [5 × SSP
E, 1 × Denhardt's solution, 50% formamide, 0.1
mg / ml SIGMA SALMON TESTE
SDNA For Hybridization (10
mg / ml)] at 42 ° C. for 1 hour. The composition of 20 × SSPE is 3.6M
NaCl, 0.2M NaH 2 PO 4 , 0.02M E
DTA. The DNA probe prepared in the above item (C) was added, and hybridization was carried out at 42 ° C. overnight.

【0027】フィルターを5×SSPE、1×デンハル
ト溶液、50% ホルムアミド溶液にて42℃で15分
間緩やかに振盪させながら洗浄した。次にフィルターを
2×SSPE、0.1% ドデシル硫酸ナトリウム溶液
にて42℃で15分間緩やかに振盪させながら洗浄し
た。フィルターを風乾した後、オートラジオグラフィー
を行った。読みとりは、富士写真フィルム社製バイオイ
メージングアナライザーBAS−2000を用いた。
The filters were washed with 5 × SSPE, 1 × Denhardt's solution, 50% formamide solution at 42 ° C. for 15 minutes with gentle shaking. The filter was then washed with 2 × SSPE, 0.1% sodium dodecyl sulfate solution at 42 ° C. for 15 minutes with gentle shaking. After air-drying the filter, autoradiography was performed. A bioimaging analyzer BAS-2000 manufactured by Fuji Photo Film Co., Ltd. was used for reading.

【0028】目的プラークのソフトアガロースを砕い
て、200μlのSM緩衝液に懸濁した。上記溶液10
μlを、37℃で3〜4時間培養したエシエリヒア・コ
リP2329株300μlと混合し、トップアガロース
を加えてλプレートに撒いた。37℃で一晩培養し、プ
ラークを形成させた。このλプレートに4mlのSM緩
衝液を加え、トップアガロースを掻き取って、4℃で1
時間穏やかに振盪した。トップアガロースを混入させな
いよう、上澄みを新しいチューブに移し、クロロホルム
を数滴加えた。そして5,000rpmで5分間遠心
し、上澄みを得た。さらにDNaseおよびRNase
(最終濃度1μg/ml)を加え、37℃で15分間保
温した。等量の20% ポリエチレングリコール(平均
分子量6,000)−2M NaClを加え、氷上で1
時間放置した後、4℃、10,000rpmで10分間
遠心後、上澄みを完全に除去した。250μlのトリス
−EDTA緩衝液を加えて懸濁し、5μlの10% ド
デシル硫酸ナトリウムを加え、68℃で5分間加熱後、
10μlの5M NaClを加え、等量のフェノール/
クロロホルムを加え、よく懸濁した。12,000rp
mで10分間遠心し、水層を新しいチューブに移した。
イソプロパノール沈殿後、70% エタノール洗浄・乾
燥させ、50μlのトリス−塩酸緩衝液に懸濁した。
The target plaque soft agarose was crushed and suspended in 200 μl of SM buffer. The above solution 10
μl was mixed with 300 μl of the Escherichia coli P2329 strain cultured at 37 ° C. for 3 to 4 hours, top agarose was added, and the mixture was spread on a λ plate. The cells were cultured overnight at 37 ° C. to form plaques. Add 4 ml of SM buffer to the λ plate, scrape off the top agarose,
Shake gently for hours. The supernatant was transferred to a new tube so that top agarose was not mixed, and a few drops of chloroform were added. Then, the mixture was centrifuged at 5,000 rpm for 5 minutes to obtain a supernatant. In addition DNase and RNase
(Final concentration 1 μg / ml) was added, and the mixture was incubated at 37 ° C. for 15 minutes. Add an equal amount of 20% polyethylene glycol (average molecular weight 6,000) -2M NaCl and add 1 on ice.
After standing for 4 hours, the mixture was centrifuged at 10,000 rpm at 4 ° C. for 10 minutes, and the supernatant was completely removed. 250 μl of Tris-EDTA buffer was added and suspended, 5 μl of 10% sodium dodecyl sulfate was added, and after heating at 68 ° C. for 5 minutes,
Add 10 μl of 5M NaCl and add equal volume of phenol /
Chloroform was added and well suspended. 12,000 rp
The mixture was centrifuged at m for 10 minutes, and the aqueous layer was transferred to a new tube.
After isopropanol precipitation, it was washed with 70% ethanol, dried and suspended in 50 μl of Tris-HCl buffer.

【0029】以上の操作で得られたλFIXIIのDN
AをBamHIで切断した。切断物をアガロース電気泳
動して、gnd遺伝子の一部を含む染色体DNAのBa
mHI断片を分離・精製した。このBamHI断片をp
UC118でサブクローニングした。サブクローニング
したBamHI断片を含むpUC118をBamHIで
切断し、BamHI断片を回収した。
DN of λFIXII obtained by the above operation
A was cut with BamHI. The digested product was subjected to agarose gel electrophoresis to obtain Ba of chromosomal DNA containing a part of the gnd gene.
The mHI fragment was separated and purified. This BamHI fragment was added to p
Subcloned in UC118. PUC118 containing the subcloned BamHI fragment was cleaved with BamHI to recover the BamHI fragment.

【0030】(E)gnd遺伝子の全塩基配列決定 (D)で得られた大きさ約5kbのDNA断片溶液を制
限酵素Sau3AIを用いて37℃で処理してDNA断
片を部分分解した。また、クローニングベクターpUC
118を制限酵素BamHIで切断した。得られたベク
ターDNA断片と部分分解DNA断片とを混合し、この
混合液にそれぞれ最終濃度が50mM トリス緩衝液
(pH7.6)、10mM ジチオスレイトール、1m
M ATP、10mM MgCl2、および1unit
/10μl T4DNAリガーゼとなるように各成分を
添加し、ベクターDNA断片と部分分解DNA断片とを
結合させた。
(E) Determination of total nucleotide sequence of gnd gene The DNA fragment solution of about 5 kb obtained in (D) was treated at 37 ° C. with the restriction enzyme Sau3AI to partially decompose the DNA fragment. Also, cloning vector pUC
118 was cleaved with the restriction enzyme BamHI. The obtained vector DNA fragment and the partially decomposed DNA fragment were mixed, and the final concentration of the mixture was 50 mM Tris buffer (pH 7.6), 10 mM dithiothreitol, 1 m, respectively.
M ATP, 10 mM MgCl 2 , and 1 unit
Each component was added so as to obtain / 10 μl T4 DNA ligase, and the vector DNA fragment and the partially degraded DNA fragment were ligated.

【0031】上記と同様に大きさ約5kbのDNA断片
溶液を制限酵素TaqIと反応させて部分分解DNA断
片を調製した。クローニングベクターpUC118を制
限酵素AccIで切断した後、これを上記と同様にして
部分分解DNAと結合させた。得られたプラスミド混液
を用い、常法によりエシエリヒア・コリJM109株を
形質転換し、前記の選択培地に塗抹した。
Similarly to the above, a solution of a DNA fragment having a size of about 5 kb was reacted with a restriction enzyme TaqI to prepare a partially degraded DNA fragment. After cloning the cloning vector pUC118 with the restriction enzyme AccI, this was ligated to the partially degraded DNA in the same manner as above. Using the obtained plasmid mixture, Escherichia coli JM109 strain was transformed by a conventional method and smeared on the selection medium.

【0032】上記選択培地に生育した菌株を常法に従い
液体培養し、得られた培養物よりプラスミドDNAを抽
出した。抽出したプラスミドDNAを用いて、ベクター
pUC118に挿入された部分分解DNA断片の塩基配
列を決定した。そして、これらの個々の配列の連結は、
パーキン・エルマー社製のシークエンス解析ソフト オ
ートアッセンブラー(Autoassembler)を
用いて行った。
The strain grown in the above selection medium was liquid-cultured according to a conventional method, and plasmid DNA was extracted from the obtained culture. Using the extracted plasmid DNA, the base sequence of the partially degraded DNA fragment inserted into the vector pUC118 was determined. And the concatenation of these individual sequences is
It was performed using a sequence analysis software Autoassembler (Autoassembler) manufactured by Perkin-Elmer.

【0033】この結果、配列番号1記載の塩基配列が判
明した。それを翻訳したタンパク質のアミノ酸一次構造
と既知のエシエリヒア・コリの6−ホスホグルコン酸デ
ヒドロゲナーゼのアミノ酸一次構造との相同性の比較に
より、それがブレビバクテイウム・フラバムMJ−23
3のgnd遺伝子オープンリーディングフレーム配列番
号1記載の塩基配列中374番目から1852番目)を
含んでいることが判明した。
As a result, the base sequence shown in SEQ ID NO: 1 was identified. By comparing the homology between the amino acid primary structure of the translated protein and the amino acid primary structure of the known 6-phosphogluconate dehydrogenase of Escherichia coli, it was found that it was Brevibacterium flavum MJ-23.
3 gnd gene open reading frame 374th to 1852th in the nucleotide sequence described in SEQ ID NO: 1).

【0034】[0034]

【発明の効果】本発明により提供される6−ホスホグル
コン酸デヒドロゲナーゼをコードする遺伝子を含むDN
A断片を用いてコリネ型細菌を育種改良することによ
り、6−ホスホグルコン酸デヒドロゲナーゼ高産生能を
有するコリネ型細菌の取得が可能となる。
ADVANTAGES OF THE INVENTION DN containing a gene encoding 6-phosphogluconate dehydrogenase provided by the present invention
By breeding and improving a coryneform bacterium using the A fragment, it becomes possible to obtain a coryneform bacterium having a high productivity of 6-phosphogluconate dehydrogenase.

【0035】[0035]

【配列表】[Sequence list]

配列番号:1 配列の長さ:1916 鎖の数:二本鎖 配列の型:核酸 トポロジー:直鎖状 配列の種類:Genomic DNA 配列 AATGATCCAG TGGATTCGGC AATGGCGGCG TAGACACCAC CGTTGACCAA GCCCACCACT 60 TGCAGGTGCT TGGATGCCAC GTGAAGTTCG CTGACCACGT GACCGGGTTC GATGGTGGTG 120 TAGCGCAGTC CAAGATTGCG GTCGAGGCCG TAATTGGCGT TGTTGAGTGC TTCAAGTTCG 180 TCAGTTGTTA AAGCTCTGGT GGCGGCAAGT TCTGCAAGCG AAAGCAGATC TTGGGGTTGA 240 TCATCGCGGG AAGTCATATT TTATTACTCT AGTCGGCCTA AAATGGTTGG ATTTTCACCT 300 GCTGTGACCT GGTAAAATGG CCACTACCCC CAAATGGTCA CACCTTTTAG GCCGATTTTG 360 CTGACACCGG GCT 373 ATG CCG TCA AGT ACG ATC AAT AAC ATG ACT AAT GGA GAT AAT CTC GCA 421 Met Pro Ser Ser Thr Ile Asn Asn Met Thr Asn Gly Asp Asn Leu Ala 1 5 10 15 CAG ATC GGC GTT GTA GGC CTA GCA GTA ATG GGC TCA AAC CTC GCC CGC 469 Gln Ile Gly Val Val Gly Leu Ala Val Met Gly Ser Asn Leu Ala Arg 20 25 30 AAC TTC GCC CGC AAC GGC CAC ACT GTC GCT GTC TAC AAC CGC AGC ACT 517 Asn Phe Ala Arg Asn Gly His Thr Val Ala Val Tyr Asn Arg Ser Thr 35 40 45 GAC AAA ACC GAC AAG CTC ATC GCC GAT CAC GGC TCC GAA GGC AAC TTC 565 Asp Lys Thr Asp Lys Leu Ile Ala Asp His Gly Ser Glu Gly Asn Phe 50 55 60 ATC CCT TCC GCA ACC GTC GAA GAG TTC GTA GCA TCC CTG GAA AAG CCA 613 Ile Pro Ser Ala Thr Val Glu Glu Phe Val Ala Ser Leu Glu Lys Pro 65 70 75 80 CGC CGC GCC ATC ATC ATG GTT CAG GCT GGT AAC GCC ACC GAC GCA GTC 661 Arg Arg Ala Ile Ile Met Val Gln Ala Gly Asn Ala Thr Asp Ala Val 85 90 95 ATC AAC CAG CTG GCA GAC GCC ATG GAC GAA GGC GAC ATC ATC ATC GAC 709 Ile Asn Gln Leu Ala Asp Ala Met Asp Glu Gly Asp Ile Ile Ile Asp 100 105 110 GGC GGC AAC GCC CTC TAC ACC GAC ACC ATT CGT CGC GAG AAG GAA ATC 757 Gly Gly Asn Ala Leu Tyr Thr Asp Thr Ile Arg Arg Glu Lys Glu Ile 115 120 125 TCC GCA CGC GGT CTC CAC TTC GTC GGT GCT GGT ATC TCT GGC GGC GAA 805 Ser Ala Arg Gly Leu His Phe Val Gly Ala Gly Ile Ser Gly Gly Glu 130 135 140 GAA GGC GCA CTC AAC GGC CCA TCC ATC ATG CCT GGT GGC CCA GCA AAG 853 Glu Gly Ala Leu Asn Gly Pro Ser Ile Met Pro Gly Gly Pro Ala Lys 145 150 155 160 TCC TAC GAG TCC CTC GGA CCA CTG CTT GAG TCC ATC GCT GCC AAC GTT 901 Ser Tyr Glu Ser Leu Gly Pro Leu Leu Glu Ser Ile Ala Ala Asn Val 165 170 175 GAC GGC ACC CCA TGT GTC ACC CAC ATC GGC CCA GAC GGC GCC GGC CAC 949 Asp Gly Thr Pro Cys Val Thr His Ile Gly Pro Asp Gly Ala Gly His 180 185 190 TTC GTC AAG ATG GTC CAC AAC GGC ATC GAG TAC GCC GAC ATG CAG GTC 997 Phe Val Lys Met Val His Asn Gly Ile Glu Tyr Ala Asp Met Gln Val 195 200 205 ATC GGC GAG GCA TAC CAC CTT CTC CCG TAC GCA GCA GGC ATG CAG CCA 1045 Ile Gly Glu Ala Tyr His Leu Leu Pro Tyr Ala Ala Gly Met Gln Pro 210 215 220 GCT GAA ATC GCT GAG GTT TTC AAG GAA TGG AAC GCA GGC GAC CTG GAT 1093 Ala Glu Ile Ala Glu Val Phe Lys Glu Trp Asn Ala Gly Asp Leu Asp 225 230 235 240 TCC TAC CTC ATC GAG ATC ACC GCA GAG GTT CTC TCC CAG GTG GAT GCT 1141 Ser Tyr Leu Ile Glu Ile Thr Ala Glu Val Leu Ser Gln Val Asp Ala 245 250 255 GAA ACC GGC AAG CCA CTG ATC GAC GTC ATC GTT GAC GCT GCA GGC CAG 1189 Glu Thr Gly Lys Pro Leu Ile Asp Val Ile Val Asp Ala Ala Gly Gln 260 265 270 AAG GGC ACC GGA CGT TGG ACC GTC AAG GCT GCT CTT GAT CTG GGT ATT 1237 Lys Gly Thr Gly Arg Trp Thr Val Lys Ala Ala Leu Asp Leu Gly Ile 275 280 285 GCT ACC ACC GGC ATC GGC GAA GCT GTT TTC GCA CGT GCA CTC TCC GGC 1285 Ala Thr Thr Gly Ile Gly Glu Ala Val Phe Ala Arg Ala Leu Ser Gly 290 295 300 GCA ACC AGC CAG CGC GCT GCA GCA CAG GGC AAC CTA CCT GCA GGT GTC 1333 Ala Thr Ser Gln Arg Ala Ala Ala Gln Gly Asn Leu Pro Ala Gly Val 305 310 315 320 CTC ACC GAT CTG GAA GCA CTT GGC GTG GAC AAG GCA CAG TTC GTC GAA 1381 Leu Thr Asp Leu Glu Ala Leu Gly Val Asp Lys Ala Gln Phe Val Glu 325 330 335 GAC GTT CGC CGT GCA CTG TAC GCA TCC AAG CTT GTT GCT TAC GCA CAG 1429 Asp Val Arg Arg Ala Leu Tyr Ala Ser Lys Leu Val Ala Tyr Ala Gln 340 345 350 GGC TTC GAC GAG ATC AAG GCT GGC TCC GAC GAG AAC AAC TGG GAT GTT 1477 Gly Phe Asp Glu Ile Lys Ala Gly Ser Asp Glu Asn Asn Trp Asp Val 355 360 365 GAC CCT CGC GAC CTC GCT ACC ATC TGG CGC GGC GGC TGC ATT ATT CGC 1525 Asp Pro Arg Asp Leu Ala Thr Ile Trp Arg Gly Gly Cys Ile Ile Arg 370 375 380 GCT AAG TTC CTC AAC CGC ATC GTC GAA GCA TAC GAT GCA AAC GCT GAA 1573 Ala Lys Phe Leu Asn Arg Ile Val Glu Ala Tyr Asp Ala Asn Ala Glu 385 390 395 400 CTT GAG TCC CTG CTG CTC GAC CCT TAC TTC AAG AGC GAG CTC GGC GAC 1621 Leu Glu Ser Leu Leu Leu Asp Pro Tyr Phe Lys Ser Glu Leu Gly Asp 405 410 415 CTC ATC GAT TCA TGG CGT CGC GTG ATT GTC ACC GCC ACC CAG CTT GGC 1669 Leu Ile Asp Ser Trp Arg Arg Val Ile Val Thr Ala Thr Gln Leu Gly 420 425 430 CTG CCA ATC CCA GTG TTC GCT TCC TCC CTG TCC TAC TAC GAC AGC CTG 1717 Leu Pro Ile Pro Val Phe Ala Ser Ser Leu Ser Tyr Tyr Asp Ser Leu 435 440 445 CGT GCA GAG CGT CTG CCA GCA GCC CTG ATC CAG GGA CAG CGC GAC TTC 1765 Arg Ala Glu Arg Leu Pro Ala Ala Leu Ile Gln Gly Gln Arg Asp Phe 450 455 460 TTC GGT GCG GAC ACC TAC AAG GGC ATC GAC AAG GAT GGC CCC TTC CAC 1813 Phe Gly Ala Asp Thr Tyr Lys Gly Ile Asp Lys Asp Gly Pro Phe His 465 470 475 480 ACC GAG TGG TCC GGC GAC CGC TCC GAG GTG GAA GCT 1849 Thr Glu Trp Ser Gly Asp Arg Ser Glu Val Glu Ala 485 490 TAAAGGCTCC CCCTAAATAG CAAAACGCTA AAACCCCTCA CAGTCACCTT AGGTTGTAAG 1909 GGGTTTT 1916 配列番号:2 配列の長さ: 鎖の数:1本鎖 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列 ATGGTNCAYA AYGGNATHGA RTAYGGNGAY ATG 33 配列番号:3 配列の長さ: 鎖の数:1本鎖 配列の型:核酸 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列 GCNCCRAART ARTCNCKYTG NGCYTG 26 SEQ ID NO: 1 Sequence length: 1916 Number of strands: Double-stranded Sequence type: Nucleic acid Topology: Linear Sequence type: Genomic DNA sequence AATGATCCAG TGGATTCGGC AATGGCGGCG TAGACACCAC CGTTGACCAA GCCCACCACT 60 TGCAGGTGCTTGCGTGACAC GTGAAGTTCGG CGTACCAGGT GACC GTCGAGGCCG TAATTGGCGT TGTTGAGTGC TTCAAGTTCG 180 TCAGTTGTTA AAGCTCTGGT GGCGGCAAGT TCTGCAAGCG AAAGCAGATC TTGGGGTTGA 240 TCATCGCGGG AAGTCATATT TTATTACTCT AGTCGGCCTA AAATGGTTGG ATTTTCACCT 300 GCTGTGACCT GGTAAAATGG CCACTACCCC CAAATGGTCA CACCTTTTAG GCCGATTTTG 360 CTGACACCGG GCT 373 ATG CCG TCA AGT ACG ATC AAT AAC ATG ACT AAT GGA GAT AAT CTC GCA 421 Met Pro Ser Ser Thr Ile Asn Asn Met Thr Asn Gly Asp Asn Leu Ala 1 5 10 15 CAG ATC GGC GTT GTA GGC CTA GCA GTA ATG GGC TCA AAC CTC GCC CGC 469 Gln Ile Gly Val Val Gly Leu Ala Val Met Gly Ser Asn Leu Ala Arg 20 25 30 AAC TTC GCC CGC AAC GGC CAC ACT GTC GCT GTC TAC AAC CGC AGC ACT 517 Asn Phe Ala Arg Asn Gly His Thr Val Ala Val Tyr Asn Arg Ser Thr 35 40 45 GAC AAA ACC GAC AAG CTC ATC GCC GAT CAC GGC TCC GAA GGC AAC TTC 565 Asp Lys Thr Asp Lys Leu Ile Ala Asp His Gly Ser Glu Gly Asn Phe 50 55 60 ATC CCT TCC GCA ACC GTC GAA GAG TTC GTA GCA TCC CTG GAA AAG CCA 613 Ile Pro Ser Ala Thr Val Glu Glu Phe Val Ala Ser Leu Glu Lys Pro 65 70 75 80 CGC CGC GCC ATC ATC ATG GTT CAG GCT GGT AAC GCC ACC GAC GCA GTC 661 Arg Arg Ala Ile Ile Met Val Gln Ala Gly Asn Ala Thr Asp Ala Val 85 90 95 ATC AAC CAG CTG GCA GAC GCC ATG GAC GAA GGC GAC ATC ATC ATC GAC 709 Ile Asn Gln Leu Ala Asp Ala Met Asp Glu Gly Asp Ile Ile Ile Asp 100 105 110 GGC GGC AAC GCC CTC TAC ACC GAC ACC ATT CGT CGC GAG AAG GAA ATC 757 Gly Gly Asn Ala Leu Tyr Thr Asp Thr Ile Arg Arg Glu Lys Glu Ile 115 120 125 TCC GCA CGC GGT CTC CAC TTC GTC GGT GCT GGT ATC TCT GGC GGC GAA 805 Ser Ala Arg Gly Leu His Phe Val Gly Ala Gly Ile Ser Gly Gly Glu 130 135 140 GAA GGC GCA CTC AAC GGC CCA TCC ATC ATG CCT GGT GGC CCA GCA AAG 853 Glu Gly Ala Leu Asn Gly Pro Ser Ile Met Pro Gly Gly P ro Ala Lys 145 150 155 160 TCC TAC GAG TCC CTC GGA CCA CTG CTT GAG TCC ATC GCT GCC AAC GTT 901 Ser Tyr Glu Ser Leu Gly Pro Leu Leu Glu Ser Ile Ala Ala Asn Val 165 170 175 GAC GGC ACC CCA TGT GTC ACC CAC ATC GGC CCA GAC GGC GCC GGC CAC 949 Asp Gly Thr Pro Cys Val Thr His Ile Gly Pro Asp Gly Ala Gly His 180 185 190 TTC GTC AAG ATG GTC CAC AAC GGC ATC GAG TAC GCC GAC ATG CAG GTC 997 Phe Val Lys Met Val His Asn Gly Ile Glu Tyr Ala Asp Met Gln Val 195 200 205 ATC GGC GAG GCA TAC CAC CTT CTC CCG TAC GCA GCA GGC ATG CAG CCA 1045 Ile Gly Glu Ala Tyr His Leu Leu Pro Tyr Ala Ala Gly Met Gln Pro 210 215 220 GCT GAA ATC GCT GAG GTT TTC AAG GAA TGG AAC GCA GGC GAC CTG GAT 1093 Ala Glu Ile Ala Glu Val Phe Lys Glu Trp Asn Ala Gly Asp Leu Asp 225 230 235 240 TCC TAC CTC ATC GAG ATC ACC GCA GAG GTT CTC TCC CAG GTG GAT GCT 1141 Ser Tyr Leu Ile Glu Ile Thr Ala Glu Val Leu Ser Gln Val Asp Ala 245 250 255 GAA ACC GGC AAG CCA CTG ATC GAC GTC ATC GTT GAC GCT GCA GGC CAG 1189 Glu Thr Gly Lys Pro Leu Ile Asp V al Ile Val Asp Ala Ala Gly Gln 260 265 270 AAG GGC ACC GGA CGT TGG ACC GTC AAG GCT GCT CTT GAT CTG GGT ATT 1237 Lys Gly Thr Gly Arg Trp Thr Val Lys Ala Ala Leu Asp Leu Gly Ile 275 280 285 GCT ACC ACC GGC ATC GGC GAA GCT GTT TTC GCA CGT GCA CTC TCC GGC 1285 Ala Thr Thr Gly Ile Gly Glu Ala Val Phe Ala Arg Ala Leu Ser Gly 290 295 300 GCA ACC AGC CAG CGC GCT GCA GCA CAG GGC AAC CTA CCT GCA GGT GTC 1333 Ala Thr Ser Gln Arg Ala Ala Ala Gln Gly Asn Leu Pro Ala Gly Val 305 310 315 320 CTC ACC GAT CTG GAA GCA CTT GGC GTG GAC AAG GCA CAG TTC GTC GAA 1381 Leu Thr Asp Leu Glu Ala Leu Gly Val Asp Lys Ala Gln Phe Val Glu 325 330 335 GAC GTT CGC CGT GCA CTG TAC GCA TCC AAG CTT GTT GCT TAC GCA CAG 1429 Asp Val Arg Arg Ala Leu Tyr Ala Ser Lys Leu Val Ala Tyr Ala Gln 340 345 350 GGC TTC GAC GAG ATC AAG GCT GGC TCC GAC GAG AAC AAC TGG GAT GTT 1477 Gly Phe Asp Glu Ile Lys Ala Gly Ser Asp Glu Asn Asn Trp Asp Val 355 360 365 GAC CCT CGC GAC CTC GCT ACC ATC TGG CGC GGC GGC TGC ATT ATT CGC 1525 Asp Pro Arg As p Leu Ala Thr Ile Trp Arg Gly Gly Cys Ile Ile Arg 370 375 380 GCT AAG TTC CTC AAC CGC ATC GTC GAA GCA TAC GAT GCA AAC GCT GAA 1573 Ala Lys Phe Leu Asn Arg Ile Val Glu Ala Tyr Asp Ala Asn Ala Glu 385 390 395 400 CTT GAG TCC CTG CTG CTC GAC CCT TAC TTC AAG AGC GAG CTC GGC GAC 1621 Leu Glu Ser Leu Leu Leu Asp Pro Tyr Phe Lys Ser Glu Leu Gly Asp 405 410 415 CTC ATC GAT TCA TGG CGT CGC GTG ATT GTC ACC GCC ACC CAG CTT GGC 1669 Leu Ile Asp Ser Trp Arg Arg Val Ile Val Thr Ala Thr Gln Leu Gly 420 425 430 CTG CCA ATC CCA GTG TTC GCT TCC TCC CTG TCC TAC TAC GAC AGC CTG 1717 Leu Pro Ile Pro Val Phe Ala Ser Ser Leu Ser Tyr Tyr Asp Ser Leu 435 440 445 CGT GCA GAG CGT CTG CCA GCA GCC CTG ATC CAG GGA CAG CGC GAC TTC 1765 Arg Ala Glu Arg Leu Pro Ala Ala Leu Ile Gln Gly Gln Arg Asp Phe 450 455 460 TTC GGT GCG GAC ACC TAC AAG GGC ATC GAC AAG GAT GGC CCC TTC CAC 1813 Phe Gly Ala Asp Thr Tyr Lys Gly Ile Asp Lys Asp Gly Pro Phe His 465 470 475 480 ACC GAG TGG TCC GGC GAC CGC TCC GAG GTG GAA GCT 1849 Thr Glu Trp Ser Gly Asp Arg Ser Glu Val Glu Ala 485 490 TAAAGGCTCC CCCTAAATAG CAAAACGCTA AAACCCCTCA CAGTCACCTT AGGTTGTAAG 1909 GGGTTTT 1916 SEQ ID NO: 2 Sequence length: Number of chains: Single-stranded Sequence type: Nucleic acid Topology: Linear Sequence type : Other nucleic acid (synthetic DNA) sequence ATGGTNCAYA AYGGNATHGA RTAYGGNGAY ATG 33 SEQ ID NO: 3 Sequence length: Number of strands: Single strand Sequence type: Nucleic acid Topology: Linear Sequence type: Other nucleic acid (synthetic DNA) ) Sequence GCNCCRAART ARTCNCKYTG NGCYTG 26

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12R 1:13) (C12N 1/20 C12R 1:13) (72)発明者 湯川 英明 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C12R 1:13) (C12N 1/20 C12R 1:13) (72) Inventor Hideaki Yukawa Inashiki, Ibaraki Prefecture 3-1-3 Chuo 8-chome, Ami-cho, Gunma

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 配列表の配列番号1記載のアミノ酸配列
で示される6−ホスホグルコン酸デヒドロゲナーゼ。
1. A 6-phosphogluconate dehydrogenase represented by the amino acid sequence set forth in SEQ ID NO: 1 in the Sequence Listing.
【請求項2】 請求項1記載の6−ホスホグルコン酸デ
ヒドロゲナーゼをコードするDNA。
2. A DNA encoding the 6-phosphogluconate dehydrogenase according to claim 1.
【請求項3】 配列表の配列番号1記載の塩基配列中3
74番目から1849番目の塩基配列で示される6−ホ
スホグルコン酸デヒドロゲナーゼをコードするDNA。
3. The base sequence of SEQ ID NO: 1 in the sequence listing, which is 3
A DNA encoding the 6-phosphogluconate dehydrogenase represented by the nucleotide sequences from 74th to 1849th.
JP8036346A 1996-02-23 1996-02-23 6-phosphogluconate dehydrogenase and dna capable of coding the same Pending JPH09224662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8036346A JPH09224662A (en) 1996-02-23 1996-02-23 6-phosphogluconate dehydrogenase and dna capable of coding the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8036346A JPH09224662A (en) 1996-02-23 1996-02-23 6-phosphogluconate dehydrogenase and dna capable of coding the same

Publications (1)

Publication Number Publication Date
JPH09224662A true JPH09224662A (en) 1997-09-02

Family

ID=12467285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8036346A Pending JPH09224662A (en) 1996-02-23 1996-02-23 6-phosphogluconate dehydrogenase and dna capable of coding the same

Country Status (1)

Country Link
JP (1) JPH09224662A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004325A1 (en) 1999-07-09 2001-01-18 Degussa Ag Nucleotide sequences for the tal gene
WO2001007626A3 (en) * 1999-07-23 2001-05-31 Archer Daniels Midland Co Methods for producing l-amino acids by increasing cellular nadph
WO2001071012A1 (en) * 2000-03-20 2001-09-27 Degussa Ag Process for the fermentative preparation of l-amino acids with amplification of the gnd gene
WO2003048351A1 (en) * 2001-12-03 2003-06-12 Kyowa Hakko Kogyo Co., Ltd. Mutated 6-phosphogluconate dehydrogenase
US7078204B2 (en) 2000-06-21 2006-07-18 Kyowa Hakko Kogyo Co., Ltd. Glucose-6-phosphate dehydrogenase
US7585650B2 (en) 2005-03-24 2009-09-08 Degussa Ag Alleles of the zwf gene from coryneform bacteria

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004325A1 (en) 1999-07-09 2001-01-18 Degussa Ag Nucleotide sequences for the tal gene
WO2001007626A3 (en) * 1999-07-23 2001-05-31 Archer Daniels Midland Co Methods for producing l-amino acids by increasing cellular nadph
WO2001071012A1 (en) * 2000-03-20 2001-09-27 Degussa Ag Process for the fermentative preparation of l-amino acids with amplification of the gnd gene
US7078204B2 (en) 2000-06-21 2006-07-18 Kyowa Hakko Kogyo Co., Ltd. Glucose-6-phosphate dehydrogenase
WO2003048351A1 (en) * 2001-12-03 2003-06-12 Kyowa Hakko Kogyo Co., Ltd. Mutated 6-phosphogluconate dehydrogenase
US7524667B2 (en) 2001-12-03 2009-04-28 Kyowa Hakko Food Specialties Co., Ltd. Mutated 6-phosphogluconate dehydrogenase
US7989191B2 (en) 2001-12-03 2011-08-02 Kyowa Hakko Bio Co., Ltd. Mutant 6-phosphogluconate dehydrogenase
US7585650B2 (en) 2005-03-24 2009-09-08 Degussa Ag Alleles of the zwf gene from coryneform bacteria
US8153404B2 (en) 2005-03-24 2012-04-10 Evonik Degussa Gmbh Alleles of the zwf gene from coryneform bacteria

Similar Documents

Publication Publication Date Title
JPH09224661A (en) Glucose-6-phosphate dehydrogenase and dna capable of coding the same
JP4074365B2 (en) Lactate dehydrogenase gene and gene-disrupted strain
JPH11103863A (en) Maleate isomerase gene
JPH10108675A (en) New cell surface protein derived from corynebacterium ammoniagenes
JP2729628B2 (en) Method for preparing glucose dehydrogenase from macrobacteria
JPH09224662A (en) 6-phosphogluconate dehydrogenase and dna capable of coding the same
JPH10337185A (en) New protein having aspartase activity and genetic dna encoding the same
US6461842B1 (en) Process for producing coenzyme Q10
JP2002291477A (en) Dna encoding fumarase and its utilization
JPH05260979A (en) Production of d-ribose
JPH08107788A (en) Dna fragment containing gene capable of coding serine hydroxymethyl transferase
JP3709422B2 (en) Regulators involved in nitrilase gene expression and genes thereof
AU659237B2 (en) Gene coding for esterase and novel microorganism containing said gene
JPH11253162A (en) Dna encoding monoamine oxidase
JPH0731478A (en) Dna fragment having promoter function in coryneform bacterium
JPH07107981A (en) New dna fragment
JPH06303971A (en) New protein having nitrile hydratase activity, gene coding the protein and production of amide from nitrile using transformant containing the gene
JP3489604B2 (en) 5-aminolevulinic acid synthase gene
JPH0866189A (en) New dna fragment
JP2003189863A (en) Method for producing aspartic acid amide and derivative thereof
JPH04325093A (en) Thermostable hydantoinase and gene encoding the same hydantoinase
JPH0779775A (en) Nad(h) bonding type oxidation and reduction disproportionation enzyme and its gene
JPH09248188A (en) Nitrile hydratase, its gene and its use
JPH1036393A (en) New ftsz protein and dna coding for the protein
JP2000245471A (en) Formate dehydrogenase gene, recombinant vector containing the same, transformant containing the recombinant vector and production of formate dehydrogenase using the transformant

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050412