JPH09222369A - Method for measuring slack displacement of rock ground - Google Patents

Method for measuring slack displacement of rock ground

Info

Publication number
JPH09222369A
JPH09222369A JP8052641A JP5264196A JPH09222369A JP H09222369 A JPH09222369 A JP H09222369A JP 8052641 A JP8052641 A JP 8052641A JP 5264196 A JP5264196 A JP 5264196A JP H09222369 A JPH09222369 A JP H09222369A
Authority
JP
Japan
Prior art keywords
pressure
pressurized fluid
measurement hole
displacement
rock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8052641A
Other languages
Japanese (ja)
Inventor
Shinji Fukushima
伸二 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP8052641A priority Critical patent/JPH09222369A/en
Publication of JPH09222369A publication Critical patent/JPH09222369A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure a slight slack displacement produced at a surrounding rock ground by boring accurately. SOLUTION: Water W in a water tank 8 is filled into a pressurization fluid sealing space S within a pressure sleeve 4 inserted into a measurement hole 2 of a rock ground G, cocks 10 and 11 are blocked, and water surface in the water tank 8 is pressurized by air pressure controlled from a pressurization source 13, thus setting an initial pressure to the water W in a pressurization fluid sealing space S and blocking a cock 9. After that, when a slack displacement occurs in the rock ground G due to the progress of the boring construction of, for example, a tunnel, the hole diameter of the measurement hole 2 slightly increases and the pressure sleeve 4 expands in radius direction owing to inner pressure, and an inner pressure at the pressurization fluid sealing space S decreases, thus obtaining a slack displacement distortion ε from the pressure change measured by a pressure measuring instrument 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、岩盤を掘削して、
トンネル、地下発電所、地下エネルギタンク等の地中構
造物を構築する際に、掘削に伴って周囲の岩盤に発生す
る緩み変位を測定するための岩盤の緩み変位測定方法な
関するものである。
TECHNICAL FIELD The present invention excavates rock mass,
The present invention relates to a loose displacement measurement method of rock mass for measuring loose displacement generated in surrounding rock mass due to excavation when constructing an underground structure such as a tunnel, an underground power plant, an underground energy tank.

【0002】[0002]

【従来の技術】岩盤を掘削してトンネル、地下発電所、
地下エネルギタンク等の地下構造物を構築する際には、
この地下構造物の周囲の岩盤には、掘削に伴う応力開放
によって緩み変位を発生する。このため、地下構造物周
囲の岩盤の安定性を管理するには、掘削による岩盤の緩
み変位を測定する必要があり、従来、このような緩み変
位の測定は、前記岩盤内にボーリング孔を削孔し、この
ボーリング孔内に傾斜計あるいは歪み計を埋設すること
により行われている。
[Prior Art] Excavating rock mass to excavate tunnels, underground power plants,
When constructing underground structures such as underground energy tanks,
Loose displacement occurs in the rock around this underground structure due to stress release due to excavation. Therefore, in order to manage the stability of the rock mass around the underground structure, it is necessary to measure the loose displacement of the rock mass due to excavation. Conventionally, such loose displacement displacement is measured by cutting a boring hole in the rock mass. This is done by making a hole and burying an inclinometer or strain gauge in this borehole.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術による岩
盤の緩み変位測定方法によれば、次のような問題が指摘
される。すなわち、ボーリング孔内に傾斜計あるいは歪
み計を埋設することによって、ボーリング孔に沿った連
続的な変位測定が可能であるが、変形量が極めて小さい
硬岩からなる岩盤の場合は、精度の高い測定が難しく、
このため高い測定技術が要求され、計測コストも高騰す
る問題があった。
According to the loose rock displacement measuring method of the prior art, the following problems are pointed out. In other words, by embedding an inclinometer or strain gauge in the boring hole, continuous displacement measurement along the boring hole is possible, but in the case of rock mass made of hard rock with a very small amount of deformation, it is highly accurate. Difficult to measure,
Therefore, there is a problem that a high measurement technique is required and the measurement cost also rises.

【0004】本発明は、上記のような事情のもとになさ
れたもので、その技術的課題とするところは、掘削によ
ってその周囲の岩盤に発生する僅かな緩み変位を高精度
で測定することの可能な技術を提供することにある。
The present invention has been made under the circumstances as described above, and its technical problem is to measure with high accuracy a slight loose displacement generated in rock around it by excavation. To provide the possible technology of

【0005】[0005]

【課題を解決するための手段】上述した技術的課題は、
本発明によって有効に解決することができる。すなわち
本発明に係る岩盤の緩み変位測定方法は、掘削により緩
み変位の発生が予想される部分の岩盤に予め測定孔を穿
孔し、この測定孔内に画成した密閉状の加圧流体封入空
間に加圧流体を封入してこの加圧流体により前記測定孔
の内周面を所定の圧力で加圧し、前記掘削により前記岩
盤に発生する緩み変位量を前記加圧流体の圧力値の変化
として測定するものである。本発明によれば、掘削に伴
う応力開放によって岩盤の緩み変位が発生すると、この
岩盤に予め穿孔された測定孔の孔径が変化することによ
って、前記測定孔内の加圧流体の圧力が変化するので、
この圧力変化の値を測定し、その測定値から緩み変位に
よる歪量を求めることができる。前記緩み変位による測
定孔の孔径変化量と、測定孔内の加圧流体の圧力変化値
とは逆比例の対応関係にあるため、僅かな緩み変位も高
精度に測定することができる。
The above-mentioned technical problems are as follows.
This can be effectively solved by the present invention. That is, the method for measuring loose displacement of rock mass according to the present invention is such that a measurement hole is preliminarily drilled in a portion of rock mass where loose displacement is expected to occur due to excavation, and a sealed pressurized fluid filled space defined in the measurement hole. A pressurized fluid is enclosed in the inner surface of the measurement hole with a predetermined pressure by the pressurized fluid, and the amount of loose displacement generated in the rock due to the excavation is determined as a change in the pressure value of the pressurized fluid. It is something to measure. According to the present invention, when loosening displacement of rock occurs due to stress release due to excavation, the pressure of the pressurized fluid in the measurement hole changes by changing the hole diameter of the measurement hole previously drilled in this rock. So
By measuring the value of this pressure change, the amount of strain due to the loose displacement can be obtained from the measured value. Since the hole diameter change amount of the measurement hole due to the loose displacement and the pressure change value of the pressurized fluid in the measurement hole are inversely proportional to each other, even a slight loose displacement can be measured with high accuracy.

【0006】加圧流体による測定孔の内周面の加圧は、
具体的には前記測定孔内には可撓性又はゴム状弾性を有
する高分子材料で形成された容積可変の袋状プレッシャ
スリーブを挿入し、前記測定孔の長手方向に対する前記
プレッシャスリーブの伸縮変形を規制する固結材を前記
測定孔の開口側に充填し、前記プレッシャスリーブ内に
加圧流体を加圧封入することにより行われる。
The pressurization of the inner peripheral surface of the measurement hole by the pressurized fluid is
Specifically, a bag-shaped pressure sleeve of variable volume formed of a polymer material having flexibility or rubber-like elasticity is inserted into the measurement hole, and the pressure sleeve expands and contracts in the longitudinal direction of the measurement hole. Is performed by filling the opening side of the measurement hole with a solidifying material that regulates the pressure, and pressurizing and enclosing a pressurized fluid in the pressure sleeve.

【0007】[0007]

【発明の実施の形態】図1乃至図3は、本発明による岩
盤の緩み変位測定方法の実施形態を示すものである。ま
ず図1において、参照符号1は地下の岩盤を掘り進まれ
る過程にあるトンネルである。このトンネル1が更に破
線で示すように掘り進まれた場合、その天盤部となる岩
盤Gには緩み変位の発生が予想される。したがってこの
岩盤Gには、トンネル1の坑内からボーリングにより測
定孔2を穿孔し、この測定孔2内に挿入した容積可変の
袋状プレッシャスリーブ(図示省略)に、加圧流体3を
封入してこの加圧流体3により測定孔2の内周面を所定
の圧力で加圧する。加圧流体3は、空気や窒素ガス等の
気体でも良いが、好ましくは液体を用いる。これは、液
体は気体に比較して漏れが著しく小さく、漏れによる圧
力測定値の誤差を生じにくいからである。
1 to 3 show an embodiment of a loose rock displacement measuring method according to the present invention. First, in FIG. 1, reference numeral 1 is a tunnel in the process of digging underground rock. When this tunnel 1 is further dug as shown by the broken line, loosening displacement is expected to occur in the rock mass G which is the roof part. Therefore, in this bedrock G, a measurement hole 2 is bored from the inside of the tunnel 1 by boring, and a pressurized fluid 3 is enclosed in a variable volume bag-shaped pressure sleeve (not shown) inserted in the measurement hole 2. The pressurized fluid 3 pressurizes the inner peripheral surface of the measurement hole 2 at a predetermined pressure. The pressurized fluid 3 may be gas such as air or nitrogen gas, but liquid is preferably used. This is because liquid leaks significantly less than gas, and errors in pressure measurement values due to leaks are less likely to occur.

【0008】図2に示すように、図1における破線位置
までトンネル1が掘り進まれると、その天盤1a側の岩
盤Gには、掘削に伴う応力開放によって緩み変位を生
じ、測定孔2における加圧流体封入空間Sの孔径は、図
2及び図3に破線で示すように、穿孔時の初期孔径D0
からD(=D0 +ΔD)に変化するため、加圧流体封入
空間Sの内圧は、初期圧力P0 からP(=P0 +ΔP;
但しΔDとΔPは符号が逆となる)に変化する。ここ
で、加圧流体封入空間Sの初期容積をV0 、岩盤Gの緩
み変位による孔径変化後の容積をV(=V0 +ΔV)と
すると、加圧流体封入空間Sの内圧はボイル−シャルル
の法則によって、次式で与えられる。 P0・V0 =P・V ・・・・・・・・・・・・・・
As shown in FIG. 2, when the tunnel 1 is dug up to the position indicated by the broken line in FIG. 1, the rock G on the roof 1a side is loosened and displaced due to the stress release due to the excavation. The hole diameter of the pressurized fluid-filled space S is, as shown by the broken lines in FIGS. 2 and 3, the initial hole diameter D 0 during drilling.
To D (= D 0 + ΔD), the internal pressure of the pressurized fluid filled space S changes from the initial pressure P 0 to P (= P 0 + ΔP;
However, the signs of ΔD and ΔP are opposite). Here, if the initial volume of the pressurized fluid enclosed space S is V 0 and the volume after the hole diameter change due to the loose displacement of the bedrock G is V (= V 0 + ΔV), the internal pressure of the pressurized fluid enclosed space S is Boil-Charles. Is given by the following equation. P 0 · V 0 = P · V

【0009】測定孔2の周辺岩盤Gの緩み変位による歪
εは、測定孔2における加圧流体封入空間Sの初期孔径
0 及び長さLによって、次式で求められる。 V0 = (π・D0 2/4) ・L V={π・(D0 +ΔD)2/4}・L =π・(D0 2+2D・ΔD) /4}・L これを式に代入すると、 P0 ・(π・D0 2/4)・L=Pπ・(D0 2+2D・ΔD) /
4}・L となり、孔径変化量ΔDは、次式; ΔD= (P0 /P−1)・D0 /2 で求められる。したがって緩み変位による歪εは、 ε=ΔD/D0 = (P0 /P−1) /2 ・・・・・・・・・・・・・・ である。ここでは、加圧流体封入空間Sの長さLは孔径
0 に比較して大きくとり、好ましくはL/D0 >5と
することによって、加圧流体封入空間Sの内圧変化によ
る長さ変化の影響を小さくし、計算ではL=一定として
扱う。
The strain ε due to the loose displacement of the rock mass G around the measurement hole 2 is obtained by the following equation based on the initial hole diameter D 0 and the length L of the pressurized fluid filled space S in the measurement hole 2. V 0 = (π · D 0 2/4) · L V = {π · (D 0 + ΔD) 2/4} · L = π · (D 0 2 + 2D · ΔD) / 4} · L which in formula substituting, P 0 · (π · D 0 2/4) · L = Pπ · (D 0 2 + 2D · ΔD) /
4} · L, and the pore diameter change amount ΔD is calculated by the following equation: ΔD = (P 0 / P-1) · D 0/2 . Therefore, the strain ε due to the loosening displacement is ε = ΔD / D 0 = (P 0 / P-1) / 2 .... Here, the length L of the pressurized fluid enclosed space S is set larger than the hole diameter D 0 , and preferably L / D 0 > 5, so that the length change due to the change in the internal pressure of the pressurized fluid enclosed space S. The effect of is reduced and L = constant in the calculation.

【0010】[0010]

【実施例】図4乃至図10は、本発明に係る岩盤の緩み
変位測定方法の具体的な一実施例を示すものである。ま
ず図4に示す全体構成において、参照符号Gは掘削予定
部周辺の緩み変位の発生が予想される岩盤であり、この
岩盤Gに穿孔された断面円形の測定孔2の行き止まりの
内端近傍には、気密性の高いゴム又は軟質プラスチック
等の素材からなる細長い袋状のプレッシャスリーブ4に
よって密閉状の加圧流体封入空間Sが画成されている。
EXAMPLE FIG. 4 to FIG. 10 show a specific example of the loosening displacement measuring method for rock mass according to the present invention. First, in the overall structure shown in FIG. 4, reference numeral G is rock that is expected to cause loose displacement around the planned excavation portion, and is located near the inner end of the dead end of the measurement hole 2 having a circular cross section formed in this rock G. A closed pressurized fluid enclosed space S is defined by an elongated bag-shaped pressure sleeve 4 made of a highly airtight material such as rubber or soft plastic.

【0011】プレッシャスリーブ4による加圧流体封入
空間Sからは、第一及び第二の配管5,6が測定孔2の
外部へ延在されている。また、測定孔2におけるプレッ
シャスリーブ4の挿入部の外側部分は、固結材7が充填
されることによって密閉されており、第一及び第二の配
管5,6はこの固結材7を貫通して測定孔2の外部へ導
出されている。固結材7としては、好ましくは岩盤Gの
強度及び変形特性に近似した特性を持つように配合され
たモルタル等が用いられる。この固結材7は、加圧流体
封入空間S内を加圧することによってプレッシャスリー
ブ4が測定孔2の外側へ向けて大きく膨張し、破裂する
ようなことがないように、測定孔2の長手方向に対する
プレッシャスリーブ4の変形を規制するものである。
From the space S filled with the pressurized fluid by the pressure sleeve 4, first and second pipes 5 and 6 extend to the outside of the measurement hole 2. The outer portion of the insertion portion of the pressure sleeve 4 in the measurement hole 2 is sealed by being filled with the solidifying material 7, and the first and second pipes 5 and 6 penetrate the solidifying material 7. Then, it is led to the outside of the measurement hole 2. As the solidifying material 7, it is preferable to use mortar or the like that is mixed so as to have characteristics similar to the strength and deformation characteristics of the bedrock G. The solidifying material 7 has a long length in the measurement hole 2 so that the pressure sleeve 4 is not greatly expanded toward the outside of the measurement hole 2 and ruptured by pressurizing the pressurized fluid filled space S. The deformation of the pressure sleeve 4 with respect to the direction is restricted.

【0012】測定孔2の外部へ導出された第一の配管5
は水圧タンク8の底部に接続されており、その配管中途
にはコック9が設けられている。第二の配管6は測定孔
2の外部でエア抜き用配管6aと圧力測定用配管6bに
分岐しており、それぞれコック10,11が設けられて
いると共に、圧力測定用配管6bにおけるコック11の
上流側には圧力測定器12が設けられている。また、水
圧タンク8の上部にはエアコンプレッサ等の加圧源13
から延在された第三の配管14が接続され、その配管中
途には圧力制御弁15及び圧力測定器16が設けられて
いる。
The first pipe 5 led out of the measurement hole 2
Is connected to the bottom of the water pressure tank 8, and a cock 9 is provided in the middle of the pipe. The second pipe 6 branches outside the measurement hole 2 into an air bleeding pipe 6a and a pressure measuring pipe 6b, which are provided with cocks 10 and 11, respectively, and of the cock 11 in the pressure measuring pipe 6b. A pressure measuring device 12 is provided on the upstream side. A pressure source 13 such as an air compressor is provided above the water pressure tank 8.
Is connected to a third pipe 14, and a pressure control valve 15 and a pressure measuring device 16 are provided in the middle of the pipe.

【0013】水圧タンク8内の水Wは、第一の配管5を
介してプレッシャスリーブ4による加圧流体封入空間S
に充填され、更にこの水Wは第二の配管6を締め切った
コック10,11に達している。加圧流体封入空間Sの
内圧は、圧力制御弁15によって制御され水圧タンク8
の水面に作用する加圧源13からの空気圧PA 及び前記
水面の高さhに対応するヘッド圧よって、一定の初期圧
力P0 が設定され、その圧力値は第二の配管6における
圧力測定用配管6bの圧力測定器12で測定される。
The water W in the water pressure tank 8 passes through the first pipe 5 and is filled with the pressurized fluid by the pressure sleeve 4.
The water W has reached the cocks 10 and 11 with the second pipe 6 closed. The internal pressure of the pressurized fluid filled space S is controlled by the pressure control valve 15 and the hydraulic tank 8
A constant initial pressure P 0 is set by the air pressure P A from the pressure source 13 acting on the water surface and the head pressure corresponding to the height h of the water surface, and the pressure value is measured in the second pipe 6. It is measured by the pressure measuring device 12 of the piping 6b.

【0014】すなわち、この実施例によって岩盤の緩み
変位を測定するには、まず図5に示すように、トンネル
等の掘削工事の進行によって緩み変位の発生が予想され
る岩盤Gに向けて、掘削に先立ってボーリング装置によ
り測定孔2を穿孔する。穿孔された測定孔2は、その初
期孔径D0 を測定しておく。
That is, in order to measure the loose displacement of the rock mass according to this embodiment, as shown in FIG. 5, first, as shown in FIG. 5, the excavation is performed toward the rock mass G where the loose displacement is expected to occur due to the progress of excavation work such as a tunnel. Prior to the above, the measurement hole 2 is bored by a boring device. With respect to the measurement hole 2 that has been drilled, its initial hole diameter D 0 is measured.

【0015】次に図6に示すように、第一及び第二の配
管5,6を接続したプレッシャスリーブ4を、導入圧力
設定時の膨張によってこの測定孔2の内端に密接可能と
なる位置に挿入し、このプレッシャスリーブ4による測
定範囲長さLを設定する。そしてこの測定範囲長さLを
維持しながら、図7に示すように、測定孔2内における
プレッシャスリーブ4の挿入位置よりも外側の空間に、
モルタル等の固結材7を充填することによって、プレッ
シャスリーブ4を測定対象の岩盤G内に密封状態とし、
測定範囲長さLを固定する。
Next, as shown in FIG. 6, a position where the pressure sleeve 4 to which the first and second pipes 5 and 6 are connected can be brought into close contact with the inner end of the measuring hole 2 by expansion when the introduction pressure is set. And the measuring range length L by the pressure sleeve 4 is set. Then, while maintaining this measurement range length L, as shown in FIG. 7, in the space outside the insertion position of the pressure sleeve 4 in the measurement hole 2,
By filling the solidifying material 7 such as mortar, the pressure sleeve 4 is sealed in the rock mass G to be measured,
The measurement range length L is fixed.

【0016】次に図8に示すように、測定孔2の外部へ
導出された第一の配管5の上流端部に水タンク8を接続
し、更にこの水タンク8に、圧力制御弁15及び圧力測
定器16を有する第三の配管14を介してエアコンプレ
ッサ等の加圧源13を接続する。一方、第二の配管6に
おける圧力測定用配管6bには圧力測定器12を取り付
ける。
Next, as shown in FIG. 8, a water tank 8 is connected to the upstream end of the first pipe 5 led out of the measurement hole 2, and the water tank 8 is further provided with a pressure control valve 15 and A pressure source 13 such as an air compressor is connected through a third pipe 14 having a pressure measuring device 16. On the other hand, the pressure measuring device 12 is attached to the pressure measuring pipe 6b in the second pipe 6.

【0017】次に、第一の配管5のコック9を開放する
ことによって、水タンク8内の水Wをプレッシャスリー
ブ4内の加圧流体封入空間Sへ充填する。図9に示すよ
うに、加圧流体封入空間Sに水Wが充填されて行くのに
伴い、プレッシャスリーブ4は膨張変形し、測定孔2の
内周面及び内端面に密接する。加圧流体封入空間Sや第
一及び第二の配管5,6内の空気は、第二の配管6にお
けるエア抜き用配管6a及び圧力測定用配管6bのコッ
ク10,11を開放することによって、加圧流体封入空
間S内への水Wの流入と共に排出される。また、水タン
ク8からの水Wの供給は、加圧源13からの空気圧で水
タンク8内の水面を適当に加圧することによって円滑に
行うことができる。
Next, the cock 9 of the first pipe 5 is opened to fill the water W in the water tank 8 into the pressurized fluid-filled space S in the pressure sleeve 4. As shown in FIG. 9, as the pressurized fluid-filled space S is filled with water W, the pressure sleeve 4 expands and deforms, and comes into close contact with the inner peripheral surface and the inner end surface of the measurement hole 2. Air in the pressurized fluid filled space S and the first and second pipes 5 and 6 is opened by opening the cocks 10 and 11 of the air bleeding pipe 6a and the pressure measuring pipe 6b in the second pipe 6, The water W is discharged as it flows into the pressurized fluid-filled space S. Further, the supply of the water W from the water tank 8 can be smoothly performed by appropriately pressurizing the water surface in the water tank 8 with the air pressure from the pressure source 13.

【0018】なお、図示の便宜上、図4及び図6〜図9
においては、第二の配管6が第一の配管5の下側に描か
れているが、第二の配管6は、プレッシャスリーブ4内
の加圧流体封入空間Sに空気が残存しないように、この
加圧流体封入空間Sにおける上端位置に開口されてい
る。
For convenience of illustration, FIG. 4 and FIGS.
In FIG. 2, the second pipe 6 is drawn on the lower side of the first pipe 5, but the second pipe 6 does not allow air to remain in the pressurized fluid filled space S in the pressure sleeve 4. It is opened at the upper end position in this pressurized fluid enclosed space S.

【0019】加圧流体封入空間Sや第一及び第二の配管
5,6内に水Wが満たされ、空気が完全に排出された
ら、コック10,11を閉塞し、水タンク8の水面を加
圧する加圧源13からの空気圧PA を、圧力制御弁15
で調圧することによって、加圧流体封入空間Sの適切な
初期圧力P0 を設定し、第一の配管5のコック9を閉塞
する。これによって、加圧流体封入空間Sの初期圧力P
0 が封じ込まれる。加圧流体封入空間Sの内圧は、第二
の配管6における圧力測定用配管6b内の水にも作用し
ているため、圧力測定器12によって測定することがで
きる。なお、前記初期圧力は、岩盤Gを破壊させない程
度の値とする。
When the pressurized fluid-filled space S and the first and second pipes 5 and 6 are filled with water W and the air is completely discharged, the cocks 10 and 11 are closed and the water surface of the water tank 8 is closed. The air pressure P A from the pressurizing source 13 that pressurizes the pressure control valve 15
By adjusting the pressure with, the appropriate initial pressure P 0 of the pressurized fluid filled space S is set, and the cock 9 of the first pipe 5 is closed. As a result, the initial pressure P of the pressurized fluid filled space S
0 is contained. The internal pressure of the pressurized fluid-filled space S also acts on the water in the pressure measuring pipe 6b of the second pipe 6, and thus can be measured by the pressure measuring device 12. The initial pressure is set to a value at which the rock G is not destroyed.

【0020】その後、トンネル等の掘削工事の進行によ
って地盤Gに緩み変位が発生すると、測定孔2の孔径が
僅かに拡大してプレッシャスリーブ4が内圧により半径
方向に膨張し、加圧流体封入空間Sの内圧がP0 →Pに
低下するため、圧力測定器12によって測定されるその
圧力変化から、先に述べた式によって緩み変位歪みε
を求める。測定終了後は、加圧流体封入空間S内の水を
排出してから、この加圧流体封入空間Sにモルタル等を
充填することが好ましい。
After that, when the ground G is loosely displaced due to the progress of excavation work such as a tunnel, the diameter of the measurement hole 2 is slightly expanded, and the pressure sleeve 4 is expanded in the radial direction by the internal pressure, so that the pressurized fluid filled space is filled. Since the internal pressure of S decreases to P 0 → P, the loose displacement strain ε is calculated from the pressure change measured by the pressure measuring device 12 according to the above-described equation.
Ask for. After the measurement is completed, it is preferable to discharge the water in the pressurized fluid filled space S and then fill the pressurized fluid filled space S with mortar or the like.

【0021】なお、本発明は、図示の実施形態あるいは
実施例によって限定的に解釈されるものではない。例え
ば、プレッシャスリーブ4に封入する加圧流体として
は、油等、他の液体でも良く、加圧流体封入空間S内に
初期圧力を与えるための加圧手段や配管構成も、種々の
ものを適用可能である。
The present invention should not be limitedly interpreted by the illustrated embodiment or example. For example, as the pressurized fluid sealed in the pressure sleeve 4, other liquid such as oil may be used, and various pressurizing means and piping configurations for applying an initial pressure in the pressurized fluid sealing space S are applicable. It is possible.

【0022】[0022]

【発明の効果】本発明の岩盤の緩み変位測定方法によれ
ば次のような効果が実現される。 (1) 掘削に伴う岩盤の微小な緩み変位を流体圧力に変換
して測定するため、容易に測定することができる。 (2) 測定孔内の加圧流体封入空間の長さを長くすること
によって、測定精度を向上させることができる。 (3) 従来方法では、硬い岩盤ほど緩み変位の測定が困難
であったが、本発明では亀裂の少ない硬い岩盤ほど測定
精度が高くなる。
According to the looseness displacement measuring method for rock mass of the present invention, the following effects are realized. (1) It can be easily measured because the minute looseness displacement of rock mass due to excavation is converted into fluid pressure and measured. (2) The measurement accuracy can be improved by increasing the length of the pressurized fluid filled space in the measurement hole. (3) In the conventional method, it was difficult to measure the loosening displacement for a hard rock, but in the present invention, the measurement accuracy becomes higher for a hard rock with less cracks.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明をトンネルの掘削による岩盤の緩み変位
測定に適用した一実施形態を示す説明図である。
FIG. 1 is an explanatory diagram showing an embodiment in which the present invention is applied to loosening displacement measurement of rock mass by excavating a tunnel.

【図2】上記実施形態において、掘削の進行に伴って岩
盤の緩み変位を生じることによる測定孔の孔径の変化を
示す説明図である。
FIG. 2 is an explanatory diagram showing a change in hole diameter of a measurement hole due to loosening displacement of rock mass accompanying progress of excavation in the above embodiment.

【図3】本発明の方法における測定原理を示す説明図で
ある。
FIG. 3 is an explanatory diagram showing a measurement principle in the method of the present invention.

【図4】本発明の具体的な一実施例を示す全体構成説明
図である。
FIG. 4 is an explanatory diagram of an overall configuration showing a specific embodiment of the present invention.

【図5】上記実施例における測定孔の穿孔状態を示す説
明図である。
FIG. 5 is an explanatory diagram showing a punched state of measurement holes in the above-described embodiment.

【図6】上記実施例における測定孔へのプレッシャスリ
ーブの挿入状態を示す説明図である。
FIG. 6 is an explanatory view showing a state in which the pressure sleeve is inserted into the measurement hole in the above embodiment.

【図7】上記実施例における固結材によるプレッシャス
リーブの固定状態を示す説明図である。
FIG. 7 is an explanatory view showing a fixed state of the pressure sleeve by the solidifying material in the above embodiment.

【図8】上記実施例におけるプレッシャスリーブ内への
加圧水充填前の状態を示す説明図である。
FIG. 8 is an explanatory diagram showing a state before the pressurized water is filled in the pressure sleeve in the embodiment.

【図9】上記実施例におけるプレッシャスリーブ内へ加
圧水を充填して初期圧力を与えた状態を示す説明図であ
る。
FIG. 9 is an explanatory diagram showing a state in which pressurized water is filled into the pressure sleeve and an initial pressure is applied in the above-described embodiment.

【符号の説明】[Explanation of symbols]

2 測定孔 3 加圧流体 4 プレッシャスリーブ 7 固結材 8 水タンク 12,16 圧力測定器 13 加圧源 G 岩盤 S 加圧流体封入空間 W 水(加圧流体) 2 Measuring hole 3 Pressurized fluid 4 Pressure sleeve 7 Consolidation material 8 Water tank 12, 16 Pressure measuring instrument 13 Pressurization source G Rock bed S Pressurized fluid enclosed space W Water (pressurized fluid)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 掘削により緩み変位の発生が予想される
部分の岩盤に予め測定孔を穿孔し、 この測定孔内に画成した密閉状の加圧流体封入空間に加
圧流体を封入してこの加圧流体により前記測定孔の内周
面を所定の圧力で加圧し、 前記掘削により前記岩盤に発生する緩み変位量を前記加
圧流体の圧力値の変化として測定することを特徴とする
岩盤の緩み変位測定方法。
1. A measurement hole is preliminarily drilled in a portion of rock mass where loosening displacement is expected to occur due to excavation, and a pressurized fluid is enclosed in a closed pressurized fluid enclosure space defined in the measurement hole. The inner peripheral surface of the measurement hole is pressurized with this pressurized fluid at a predetermined pressure, and the amount of loose displacement generated in the rock by the excavation is measured as a change in the pressure value of the pressurized fluid. Looseness displacement measuring method.
【請求項2】 請求項1の記載において、 加圧流体封入空間を、測定孔内に挿入された可撓性又は
ゴム状弾性を有する高分子材料からなる容積可変の袋状
プレッシャスリーブで形成し、 前記測定孔の長手方向に対する前記プレッシャスリーブ
の伸縮変形を前記測定孔の開口側に充填した固結材で規
制してなることを特徴とする岩盤の緩み変位測定方法。
2. The pressurizing fluid-filled space according to claim 1, wherein the volumetric variable bag-like pressure sleeve made of a polymeric material having flexibility or rubber-like elasticity is inserted into the measurement hole. A method for measuring a loose displacement of rock mass, wherein expansion / contraction deformation of the pressure sleeve with respect to a longitudinal direction of the measurement hole is restricted by a solidifying material filled in an opening side of the measurement hole.
【請求項3】 請求項1又は2の記載において、 測定孔における加圧流体封入空間の長さをこの加圧流体
封入空間よりも大きく設定することを特徴とする岩盤の
緩み変位測定方法。
3. The loose rock displacement measuring method according to claim 1, wherein the length of the pressurized fluid filled space in the measurement hole is set to be larger than that of the pressurized fluid filled space.
JP8052641A 1996-02-16 1996-02-16 Method for measuring slack displacement of rock ground Withdrawn JPH09222369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8052641A JPH09222369A (en) 1996-02-16 1996-02-16 Method for measuring slack displacement of rock ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8052641A JPH09222369A (en) 1996-02-16 1996-02-16 Method for measuring slack displacement of rock ground

Publications (1)

Publication Number Publication Date
JPH09222369A true JPH09222369A (en) 1997-08-26

Family

ID=12920469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8052641A Withdrawn JPH09222369A (en) 1996-02-16 1996-02-16 Method for measuring slack displacement of rock ground

Country Status (1)

Country Link
JP (1) JPH09222369A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206907A (en) * 2001-01-10 2002-07-26 Central Res Inst Of Electric Power Ind Rockbed crack measuring method and device thereof
KR100765973B1 (en) * 2005-11-09 2007-10-15 주식회사 동호 instrument measuring underground stress and method measuring of ground movements in case of build in tunnel
JP2011252370A (en) * 2010-06-04 2011-12-15 Okumura Corp Installation method of strain-measuring pipe in face front natural ground
JP2015113572A (en) * 2013-12-09 2015-06-22 株式会社大林組 Method to install precedent underground displacement gage
CN105909257A (en) * 2016-05-31 2016-08-31 山东大学 Separated grouting device in drilled hole and sectional grouting operation process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206907A (en) * 2001-01-10 2002-07-26 Central Res Inst Of Electric Power Ind Rockbed crack measuring method and device thereof
JP4562158B2 (en) * 2001-01-10 2010-10-13 財団法人電力中央研究所 Rock crack measuring method and apparatus
KR100765973B1 (en) * 2005-11-09 2007-10-15 주식회사 동호 instrument measuring underground stress and method measuring of ground movements in case of build in tunnel
JP2011252370A (en) * 2010-06-04 2011-12-15 Okumura Corp Installation method of strain-measuring pipe in face front natural ground
JP2015113572A (en) * 2013-12-09 2015-06-22 株式会社大林組 Method to install precedent underground displacement gage
CN105909257A (en) * 2016-05-31 2016-08-31 山东大学 Separated grouting device in drilled hole and sectional grouting operation process

Similar Documents

Publication Publication Date Title
CN104329076B (en) A kind of deviational survey hole osmotic pressure counter device and installation method
CN102721634B (en) Method and device for in-situ penetration test by means of water injection under drilling pressure
US5542786A (en) Apparatus for monitoring grout pressure during construction of auger pressure grouted piling
US20070280786A1 (en) Advancement Of Pipe Elements In The Ground
CN105178319A (en) Pore pressure counterforce steel tube pile pulling method and device and soil removing device
US20090269146A1 (en) Method for Construction of Piles and Caissons and Soil Improvement by Using Rubber Hoses
KR100687630B1 (en) Ground packer test apparatus measuring porewater pressure at the hole
US11566985B1 (en) Expandable jackets for Pressuremeter Probes for maintaining uniform radial expansion of soils for determining stress-strain relationship in subsurface soils, intermediate geomaterials and rock
JP4036303B2 (en) Ground injection method
CN112485125A (en) Tunnel model test device and method capable of controlling soil loss rate
JP4458451B2 (en) Chemical injection method
JPH09222369A (en) Method for measuring slack displacement of rock ground
JP4034305B2 (en) Ground injection method
US3518840A (en) Method of and apparatus for connecting a pipeline across an obstruction
CN2112152U (en) Borehole two-end seal leakage detector
CN110778308A (en) Device and method for testing gas flow while drilling
Handfelt et al. Instrumentation for test fill in Hong Kong
CN111794209B (en) Embedded precast concrete column isolation pile and construction method thereof
CN109853506B (en) Pore pressure meter embedding device and method suitable for sludge soil
CN210714663U (en) Device for testing gas flow while drilling
JP2804995B2 (en) Multi-point packer type permeation test method and test equipment
JPH09209349A (en) Method for testing strength of rockbed at original position
JP3065208B2 (en) On-site permeability test equipment
CN106948388A (en) A kind of magnet ring type test excavation of foundation pit causes the device and method that ground swells
Hanna The measurement of pore water pressures adjacent to a driven pile

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030506