JPH09222309A - Method and device for selecting shape of of uneven shape - Google Patents

Method and device for selecting shape of of uneven shape

Info

Publication number
JPH09222309A
JPH09222309A JP5684096A JP5684096A JPH09222309A JP H09222309 A JPH09222309 A JP H09222309A JP 5684096 A JP5684096 A JP 5684096A JP 5684096 A JP5684096 A JP 5684096A JP H09222309 A JPH09222309 A JP H09222309A
Authority
JP
Japan
Prior art keywords
scattered light
shape
uneven
size
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5684096A
Other languages
Japanese (ja)
Other versions
JP3523408B2 (en
Inventor
Mutsumi Hayashi
睦 林
Junichi Matsumura
淳一 松村
Tetsuya Nakamura
哲也 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP05684096A priority Critical patent/JP3523408B2/en
Publication of JPH09222309A publication Critical patent/JPH09222309A/en
Application granted granted Critical
Publication of JP3523408B2 publication Critical patent/JP3523408B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To detect the plane size and the height of an uneven object accurately when detecting the uneven object due to scattered light from an inspection target. SOLUTION: An uneven object that is formed in projecting and/or recessed shape for a reference surface 31a of an inspection target on the inspection target is measured optically. In this case, light is applied to the above inspection target, scattered light from the inspection target is received and the intensity distribution of the scattered light is detected two-dimensionally, the size of the bottom surface of the uneven object is measured from the shape of a closed loop that is formed when the intensity distribution of the scattered light exceeds the slice level of a predetermined scattered light intensity, and at the same time the volume of the uneven object and the size of a side surface are measured from the integral value of the scattered light intensity within the closed loop.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、検査対象物上にあ
る凹凸状物を光学的に測定する凹凸状物形状測定方法お
よび装置に関し、とくに、異物や意図的な注入物が検査
対象物に埋め込まれた際にできるような凸状欠陥等の凹
凸状物を、大きさとともにその高さを精度よく測定する
ことが可能な凹凸状物形状測定方法および装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an uneven object shape measuring method and apparatus for optically measuring an uneven object on an object to be inspected. The present invention relates to a concavo-convex object shape measuring method and apparatus capable of accurately measuring the size and height of a concavo-convex object such as a convex defect when embedded.

【0002】[0002]

【従来の技術】検査対象物の凹凸状物測定においては、
凹凸状物の平面的な大きさもさることながら、凹凸状物
の高さを精度よく測定することが望まれる場合が多い。
例えば液晶基板においては、カラーフィルタと基板は微
小間隔をもって対向配置されるため、凸状(突起状)欠
陥は、電極間のショート等につながるおそれがあり、あ
る高さ以上の凹凸状物の検出は極めて重要な検査項目と
なる。
2. Description of the Related Art In measuring unevenness of an inspection object,
In many cases, it is desired to accurately measure the height of the uneven material as well as the planar size of the uneven material.
For example, in a liquid crystal substrate, since the color filter and the substrate are arranged to face each other with a minute gap, a convex (projection) defect may lead to a short circuit between electrodes or the like. Is an extremely important inspection item.

【0003】凹凸状物を検出、測定する方法として、光
学的な手法が各種知られており、代表的な手法として次
のA、Bが知られている。
Various optical methods are known as methods for detecting and measuring irregularities, and the following methods A and B are known as typical methods.

【0004】〈手法A〉図1に示すように、凹凸状物2
を有する検査対象物1に光を照射し、検査対象物1から
の散乱光を、たとえば集光レンズ3を通して単一の受光
面4を有するカメラ5で測定する。測定される散乱光の
強度は、例えば図2に示すような分布をもち、予め定め
られたあるスライスレベル6以上の受光光量(散乱光強
度)を示す部分が凹凸状物として測定される。この手法
では、凹凸状物の大きさは、散乱光強度と凹凸状物の大
きさがある比例関係にあるとして、スライスレベルを超
えた部分の総散乱光強度で判定するしかない。
<Method A> As shown in FIG.
The inspection object 1 having the above is irradiated with light, and the scattered light from the inspection object 1 is measured by the camera 5 having the single light receiving surface 4 through the condenser lens 3, for example. The intensity of scattered light to be measured has a distribution as shown in FIG. 2, for example, and a portion showing a received light amount (scattered light intensity) at a predetermined slice level 6 or higher is measured as an uneven material. In this method, the size of the uneven material is determined by the total scattered light intensity of the portion exceeding the slice level, assuming that the scattered light intensity and the size of the uneven material have a proportional relationship.

【0005】〈手法B〉図3に示すように、アレイ状に
複数の画素をもつ受光面7を有するカメラ8で散乱光を
測定する手法である。この手法では、図4に示すよう
に、あるスライスレベル9以上の受光光量で凹凸状物を
測定し、その部分の画素数で凹凸状物の大きさ(凹凸状
物サイズ)を判定できる。
<Method B> As shown in FIG. 3, this is a method of measuring scattered light with a camera 8 having a light receiving surface 7 having a plurality of pixels in an array. With this method, as shown in FIG. 4, the unevenness is measured with a received light amount of a certain slice level 9 or higher, and the size of the unevenness (size of the unevenness) can be determined by the number of pixels in that portion.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記のよう
な従来の凹凸状物測定方法には、以下のような問題があ
る。図5の(a)、(b)に示すように、同じ高さの凹
凸状物11、12(図示例では凸状欠陥)であっても、
凹凸状物11、12の大きさに比べて照射光の照射面積
が大きい場合には、凹凸状物の大きさ(とくに平面的な
大きさ)、形状が異なると総散乱光量は異なる。逆に、
図6の(a)、(b)に示すように、凹凸状物13、1
4(図示例では凸状欠陥)の高さが異なっても総散乱光
量は等しくなることもある。したがって、スライスレベ
ルを超えた部分の総散乱光量(強度)で凹凸状物の大き
さを測定する前記手法Aでは、凹凸状物の高さを判定す
ることはできない。また、前記手法Bにおいても、凹凸
状物の底面積あるいは底面形状は測定することができて
も、やはり高さを判定することはできない。
However, the conventional method for measuring unevenness as described above has the following problems. As shown in FIGS. 5 (a) and 5 (b), even the concavo-convex objects 11 and 12 (convex defects in the illustrated example) having the same height,
When the irradiation area of the irradiation light is larger than the size of the uneven objects 11 and 12, the total scattered light amount differs depending on the size (particularly the planar size) and shape of the uneven object. vice versa,
As shown in (a) and (b) of FIG.
Even if the heights of 4 (convex defects in the illustrated example) are different, the total amount of scattered light may be the same. Therefore, it is not possible to determine the height of the unevenness by the above-mentioned method A in which the size of the unevenness is measured by the total scattered light amount (intensity) of the portion exceeding the slice level. Further, also in the method B, even if the bottom area or bottom shape of the uneven material can be measured, the height cannot be determined.

【0007】そこで本発明の課題は、上記のような事情
に鑑み、基本的には前記手法Bを前提として、検査対象
物からの散乱光により凹凸状物を測定するに際し、凹凸
状物の平面的な大きさのみならずその高さについても精
度よく測定できるようにすることにある。
In view of the above-mentioned circumstances, the object of the present invention is to basically measure the uneven surface of the uneven material by measuring the uneven material by the scattered light from the inspection object, based on the method B. The objective is to be able to accurately measure not only the size but also its height.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明の凹凸状物検出方法は、検査対象物上に該検
査対象物の基準面に対し凸および/または凹状に形成さ
れた凹凸状物を光学的に測定する凹凸状物形状測定方法
であって、前記検査対象物に光を照射し、該検査対象物
からの散乱光を受光して該散乱光の強度分布を二次元的
に検出し、該散乱光の強度分布が予め定められた散乱光
強度のスライスレベルを超えるときに形成される閉ルー
プの形状から凹凸状物の底面の大きさを測定するととも
に、該閉ループ内における散乱光強度の積分値から凹凸
状物の体積または側面の大きさを測定することを特徴と
する方法からなる。
In order to solve the above-mentioned problems, the uneven object detecting method of the present invention is formed on the inspection object in a convex and / or concave shape with respect to the reference surface of the inspection object. An uneven object shape measuring method for optically measuring an uneven object, comprising irradiating light to the inspection object, receiving scattered light from the inspection object, and receiving a two-dimensional intensity distribution of the scattered light. Detected, the intensity distribution of the scattered light to measure the size of the bottom surface of the uneven article from the shape of the closed loop formed when the slice level of the scattered light intensity is predetermined, in the closed loop The method is characterized by measuring the volume or the size of the side surface of an uneven material from the integrated value of the scattered light intensity.

【0009】上記方法においては、凹凸状物の形状を円
錐等の立体と仮定し、前記凹凸状物の底面の大きさを前
記立体の底面積に相当する値とするとともに、前記凹凸
状物の体積を前記立体の体積に相当する値、もしくは、
側面の大きさを前記立体の側面積に相当する値とし、両
値から前記立体の高さを算出して凹凸状物の高さとする
ことができる。
In the above method, the shape of the uneven object is assumed to be a solid such as a cone, the size of the bottom surface of the uneven object is set to a value corresponding to the bottom area of the solid object, and the uneven object is A value corresponding to the volume of the solid, or
The size of the side surface may be a value corresponding to the side area of the solid body, and the height of the solid body may be calculated from the two values to obtain the height of the uneven material.

【0010】また、本発明に係る凹凸状物検出装置は、
検査対象物に光を照射する照光手段と、該検査対象物か
らの散乱光を最終的に二次元の散乱光強度分布の形で受
光可能な受光手段とを備え、検査対象物上に該検査対象
物の基準面に対し凸および/または凹状に形成された凹
凸状物を光学的に測定する凹凸状物形状測定装置であっ
て、前記散乱光強度分布が予め定められた散乱光強度の
スライスレベルを超えるときに形成される閉ループの形
状を測定する手段と、該閉ループ内における散乱光強度
の積分値を演算する手段とを備えたことを特徴とするも
のからなる。
The uneven object detecting device according to the present invention is
The inspection means is provided with an illuminating means for irradiating the inspection object with light and a light receiving means capable of finally receiving scattered light from the inspection object in the form of a two-dimensional scattered light intensity distribution. A concave-convex object shape measuring device for optically measuring an uneven object formed in a convex and / or concave shape with respect to a reference surface of an object, wherein the scattered light intensity distribution is a slice of a predetermined scattered light intensity. And a means for measuring the shape of the closed loop formed when the level is exceeded, and a means for calculating the integrated value of the scattered light intensity in the closed loop.

【0011】上記装置においては、前記閉ループ形状測
定手段からの情報と、前記散乱光強度積分値演算手段か
らの情報から、凹凸状物の形状を円錐等の立体と仮定し
た際の該凹凸状物の高さを算出する手段を備えることに
より、前述の方法により凹凸状物の高さについても測定
できる。
In the above-mentioned apparatus, when the shape of the uneven object is assumed to be a solid such as a cone based on the information from the closed loop shape measuring means and the information from the scattered light intensity integral value calculating means, the uneven object is obtained. By providing a means for calculating the height of the unevenness, the height of the uneven material can be measured by the method described above.

【0012】上記受光手段は、検査対象物からの散乱光
を二次元的に受光するセンサを備えたものとすることも
でき、ラインセンサ等の一次元センサでも構成可能であ
る。例えば、前記受光手段が、検査対象物から散乱光を
受光するラインセンサを備えたカメラと、該カメラと検
査対象物とを所定方向に相対移動させる相対移動手段と
を有しているものとすることができる。
The light receiving means may be provided with a sensor for receiving the scattered light from the inspection object in a two-dimensional manner, and may be constituted by a one-dimensional sensor such as a line sensor. For example, it is assumed that the light receiving unit has a camera including a line sensor that receives scattered light from the inspection target and a relative movement unit that relatively moves the camera and the inspection target in a predetermined direction. be able to.

【0013】以下に、本発明に係る凹凸状物形状測定方
法の測定原理を、図面を参照して説明する。本発明は、
前述したように、基本的には前述の手法Bを前提とす
る。図7に示すように、検査対象物からの散乱光の強度
の分布において、予め設定した散乱光強度のスライスレ
ベル21を超える部分について、その画素数をサイズ、
散乱光強度の積分値である総散乱光量をパワーと呼ぶこ
とにする。
The measuring principle of the uneven object shape measuring method according to the present invention will be described below with reference to the drawings. The present invention
As described above, the above method B is basically premised. As shown in FIG. 7, in the distribution of the intensity of scattered light from the inspection object, the number of pixels of a portion of the intensity of scattered light that exceeds the slice level 21 is set to the size,
The total amount of scattered light, which is the integrated value of scattered light intensity, is called power.

【0014】本発明は、凹凸状物からの散乱光量が凹凸
状物の高さと相関があることを利用し、パワーおよびサ
イズから高さを算出する手法である。すなわち、上記総
散乱光量(パワー)は、例えば凸状に突出した欠陥の体
積あるいは側面積と相関があり、体積あるいは側面積が
大きい程パワーも大きくなる。また、上記サイズは、凹
凸状物の底面積と相関があり、サイズが大きい程底面積
も大きい。さらに、凹凸状物を立体に近似すると、上記
体積あるいは側面積は底面積と高さの関数であるから、
底面積に相当する値と体積あるいは側面積に相当する値
が求まれば、高さを算出できることになる。
The present invention is a method of calculating the height from the power and size by utilizing the fact that the amount of scattered light from the uneven material correlates with the height of the uneven material. That is, the total scattered light amount (power) has a correlation with, for example, the volume or side area of a defect protruding in a convex shape, and the larger the volume or side area, the larger the power. Further, the above size has a correlation with the bottom area of the uneven material, and the larger the size, the larger the bottom area. Furthermore, when the uneven object is approximated to a solid, the above-mentioned volume or side area is a function of the bottom area and the height,
If the value corresponding to the bottom area and the value corresponding to the volume or the side area are obtained, the height can be calculated.

【0015】例えば、図8に示すように凹凸状物を円錐
モデル22に近似し、上記サイズから得られる凹凸状物
の底面形状をそれと同一面積をもつ円に補完し、上記パ
ワーと相関する凹凸状物の体積を円錐の体積、あるいは
上記パワーと相関する表面積を円錐の側面積に補完する
と、その円錐モデル22の高さを算出でき、それを凹凸
状物の高さとすることができる。
For example, as shown in FIG. 8, the unevenness is approximated to a conical model 22, and the bottom shape of the unevenness obtained from the above size is complemented by a circle having the same area as that of the unevenness to correlate with the power. By supplementing the volume of the conical material with the volume of the conical material or the surface area of the conical material with the side surface area of the conical material, the height of the conical model 22 can be calculated and used as the height of the concavo-convex material.

【0016】上記円錐モデルとパワーおよびサイズとの
関係は次式のような関係がある。 (パワー)=f(体積) ・・・(1) =g(側面積) ・・・(2) (サイズ)=h(底面積) ・・・(3) f、g、hは( )内を変数とした関数である。例え
ば、パワーが体積と比例関係にあり、かつ、サイズが底
面積と比例関係にある場合は、 (パワー)=a×(体積)=aπr2 h ・・・(4) (サイズ)=b×(底面積)=bπr2 ・・・(5) と表すことができ、(パワー)÷(サイズ)により底面
の円の半径rが消去されて、高さhを求めることができ
る。ここで、a、bは検査基準により定まる定数であ
る。また、パワーが側面積と比例関係にある場合には、 (パワー)=c×(側面積)=c・πr(r2 +h2 1/2 ・・・(6) と表すことができ、(5)、(6)式から底面の円の半
径rを消去して、高さhを求めることができる。ここ
で、cは検査基準により定まる定数である。なお、f、
g、hの関数は、ここで例示したような比例関係(原点
を通る一次式)に限らず、一般的な一次式、高次式、指
数関数、対数関数、その他の関数となる可能性もある。
The relationship between the conical model and the power and size is as follows. (Power) = f (volume) ... (1) = g (side area) ... (2) (size) = h (bottom area) ... (3) f, g, and h are in () Is a function with a variable. For example, when power is proportional to volume and size is proportional to bottom area, (power) = a × (volume) = aπr 2 h (4) (size) = b × It can be expressed as (bottom area) = bπr 2 (5), and the radius r of the bottom circle is erased by (power) ÷ (size), and the height h can be obtained. Here, a and b are constants determined by the inspection standard. When the power is proportional to the side area, (power) = c × (side area) = c · πr (r 2 + h 2 ) 1/2 (6) The height h can be obtained by eliminating the radius r of the circle on the bottom surface from the equations (5) and (6). Here, c is a constant determined by the inspection standard. Note that f,
The functions of g and h are not limited to the proportional relationships (linear expressions passing through the origin) as illustrated here, but may be general linear expressions, higher-order expressions, exponential functions, logarithmic functions, and other functions. is there.

【0017】立体モデルとしては、上記円錐モデルに限
らず、四角錐モデル、円柱モデル、四角柱モデル、円錐
台モデル、四角錐台モデル等も適用可能である。検査対
象物や頻度の高い欠陥(凹凸状物)の形状に応じてモデ
ル形状を決定すればよい。
The three-dimensional model is not limited to the above-mentioned conical model, but a quadrangular pyramid model, a cylindrical model, a quadrangular prism model, a truncated cone model, a quadrangular truncated pyramid model and the like can be applied. The model shape may be determined according to the shape of the inspection object or the defect (concavo-convex object) having a high frequency.

【0018】また、上記説明は、検査対象物の基準面か
ら凸状に突出した欠陥について行ったが、凹状にへこん
だ欠陥に対しても、その部分で総散乱光が増加すること
から本発明方法が同様に適用可能である。この場合、凹
凸状物の深さを測定することになる。
Further, although the above description has been made with respect to a defect protruding in a convex shape from the reference surface of the object to be inspected, the present invention is also applicable to a defect dented in a concave shape because the total scattered light increases at that portion. The method is applicable as well. In this case, the depth of the uneven material is measured.

【0019】[0019]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて、図面を参照して説明する。図9は、本発明の一実
施態様に係る凹凸状物形状測定装置の概略構成を、図1
0は、図9のカメラで検査対象物からの散乱光を検出す
る様子を平面的に示したものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 9 shows a schematic configuration of an uneven object shape measuring apparatus according to one embodiment of the present invention.
0 is a plane view showing how the camera of FIG. 9 detects scattered light from the inspection object.

【0020】図9において、検査対象物としての基板3
1上には、異物32が埋めこまれて、基板31の基準面
31aに対し上方に凸状に突出した突起欠陥33(凹凸
状物)が形成されている。基板31の上方(本実施態様
では斜め上方)には、基板31に向けて光(例えばレー
ザ光)を照射する照光手段34が設けられており、基板
31からの散乱光が上方に設けられたカメラ35で撮像
される。カメラ35は、本実施態様ではラインセンサ3
6を有しており、図10に示したようにラインセンサ3
6における各画素にて凹凸状物33からの散乱光の強度
が測定される。
In FIG. 9, a substrate 3 as an inspection object
A foreign matter 32 is embedded on the surface 1 and a protrusion defect 33 (an uneven material) is formed so as to protrude upward with respect to the reference surface 31 a of the substrate 31. Above the substrate 31 (obliquely above in this embodiment), an illuminating means 34 for irradiating the substrate 31 with light (for example, laser light) is provided, and scattered light from the substrate 31 is provided above. The image is taken by the camera 35. The camera 35 is the line sensor 3 in this embodiment.
6 and has the line sensor 3 as shown in FIG.
The intensity of the scattered light from the uneven material 33 is measured at each pixel in 6.

【0021】基板31は、ラインセンサ36の走査方向
Yと直交する方向Xに、カメラ35に対して相対移動さ
れる。基板31は移動テーブル37上に装着固定され、
テーブル37がスクリュ38を介してモータ39によっ
てX方向に移動される。基板31側ではなくカメラ35
側を移動するようにしてもよい。
The substrate 31 is moved relative to the camera 35 in a direction X orthogonal to the scanning direction Y of the line sensor 36. The substrate 31 is mounted and fixed on the moving table 37,
The table 37 is moved in the X direction by the motor 39 via the screw 38. The camera 35 instead of the substrate 31 side
The side may be moved.

【0022】また、ラインセンサ等の一次元センサでは
なく、二次元センサを配し、図示したような相対移動機
構をなくすことも可能である。
It is also possible to dispose a two-dimensional sensor instead of a one-dimensional sensor such as a line sensor and eliminate the relative movement mechanism as shown in the figure.

【0023】図9の装置で測定した、ある瞬間における
凹凸状物測定状態は、例えば図11に示すようになる。
すなわち、ラインセンサ36によって基板31からの散
乱光の強度の分布が測定され、予め定められた散乱光強
度のスライスレベル40を超える領域が欠陥(凹凸状
物)として認識、検出される。この領域41は、基板3
1とカメラ35との相対移動によって、図12に示すよ
うな、時間的に積算した状態の閉ループの領域42とし
て測定される。
FIG. 11 shows, for example, the state of measuring irregularities at a certain moment measured by the apparatus of FIG.
That is, the distribution of the intensity of scattered light from the substrate 31 is measured by the line sensor 36, and a region having a predetermined scattered light intensity exceeding the slice level 40 is recognized and detected as a defect (uneven object). This area 41 is the substrate 3
By the relative movement between the camera 1 and the camera 35, it is measured as a closed-loop region 42 in a time-integrated state as shown in FIG.

【0024】この領域42における、上記スライスレベ
レル40を超えた総画素数が前述のサイズ値となり、そ
の領域42の総受光光量、つまり散乱光強度の積分値が
前述のパワー値となる。そして、図12に示した領域4
2の形状から、突起欠陥33(凹凸状物)の平面形状を
認識でき総画素数から平面的な大きさを把握できる。
The total number of pixels in the area 42 exceeding the slice level 40 is the size value described above, and the total received light amount of the area 42, that is, the integrated value of the scattered light intensity is the power value described above. Then, the area 4 shown in FIG.
From the shape of No. 2, the planar shape of the protrusion defect 33 (uneven object) can be recognized and the planar size can be grasped from the total number of pixels.

【0025】また、前述の測定原理によって、演算処理
装置50により、上記サイズ値を凹凸状物の立体モデル
の底面積相関成分とし、上記パワー値を該立体モデルの
体積相関成分あるいは側面積相関成分として、欠陥33
(凹凸状物)の高さが算出される。
According to the above-described measurement principle, the arithmetic processing unit 50 uses the size value as the bottom area correlation component of the three-dimensional model of the uneven body, and the power value as the volume correlation component or side area correlation component of the three-dimensional model. As a defect 33
The height of the (uneven object) is calculated.

【0026】[0026]

【発明の効果】以上説明したように、本発明の凹凸状物
形状測定方法および装置によれば、検査対象物からの散
乱光により凹凸状物の大きさを光学的に測定するに際
し、凹凸状物の平面的な大きさのみならずその高さにつ
いても精度よく検出できるようになる。したがって、液
晶表示装置用のカラーフィルタ等、凹凸状物の高さを非
接触状態で精度よく検出、測定することが要求されるも
のの検査工程に用いて最適な方法および装置を提供でき
る。
As described above, according to the uneven object shape measuring method and apparatus of the present invention, the uneven shape is optically measured when the size of the uneven object is optically measured by the scattered light from the inspection object. It becomes possible to accurately detect not only the planar size of an object but also its height. Therefore, it is possible to provide the optimum method and apparatus for use in the inspection process of those that require accurate detection and measurement of the height of the uneven object such as a color filter for a liquid crystal display device in a non-contact state.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の光学的凹凸状物測定方法を示す説明図で
ある。
FIG. 1 is an explanatory diagram showing a conventional optical unevenness measuring method.

【図2】図1の方法における散乱光強度と位置との平面
図である。
FIG. 2 is a plan view of scattered light intensity and position in the method of FIG.

【図3】従来の別の光学的凹凸状物測定方法を示す説明
図である。
FIG. 3 is an explanatory diagram showing another conventional method for measuring an optical uneven material.

【図4】図3の方法における散乱光強度と画素との関係
図である。
FIG. 4 is a relationship diagram between scattered light intensity and pixels in the method of FIG.

【図5】同じ高さで異なる散乱光量の凹凸状物の概略側
面図である。
FIG. 5 is a schematic side view of an uneven material having the same height and different scattered light amounts.

【図6】同じ散乱光量で異なる高さの凹凸状物の概略側
面図である。
FIG. 6 is a schematic side view of an uneven object having the same scattered light amount but different heights.

【図7】本発明の測定原理を説明するための散乱光強度
と画素との関係図である。
FIG. 7 is a relational diagram between scattered light intensity and pixels for explaining the measurement principle of the present invention.

【図8】凹凸状物の高さを算出する際の円錐立体モデル
の斜視図である。
FIG. 8 is a perspective view of a conical three-dimensional model when calculating the height of an uneven object.

【図9】本発明の一実施態様に係る凹凸状物形状測定装
置の概略構成図である。
FIG. 9 is a schematic configuration diagram of an uneven object shape measuring apparatus according to an embodiment of the present invention.

【図10】図9の装置におけるカメラでの撮像状態を示
す概略平面図である。
10 is a schematic plan view showing an image pickup state by a camera in the apparatus of FIG.

【図11】図9の装置における、ラインセンサによる凹
凸状物測定の様子を併せて示した、散乱光強度と画素位
置との関係図である。
FIG. 11 is a relational diagram between scattered light intensity and pixel position, which also shows how unevenness is measured by a line sensor in the apparatus of FIG.

【図12】図9の装置で測定された凹凸状物の平面形状
を示す、画素マトリックス上の平面図である。
12 is a plan view on a pixel matrix showing a planar shape of an uneven object measured by the device of FIG.

【符号の説明】[Explanation of symbols]

21 スライスレベル 22 円錐モデル 31 検査対象物としての基板 31a 基準面 32 異物 33 凹凸状物(欠陥) 34 照光手段 35 カメラ 36 ラインセンサ 37 移動テーブル 38 スクリュ 39 モータ 40 スライスレベル 41、42 領域 50 演算処理装置 21 Slice Level 22 Cone Model 31 Substrate as Inspection Object 31a Reference Surface 32 Foreign Material 33 Concavo-convex Object (Defect) 34 Illuminating Means 35 Camera 36 Line Sensor 37 Moving Table 38 Screw 39 Motor 40 Slice Level 41, 42 Area 50 Calculation Processing apparatus

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 検査対象物上に該検査対象物の基準面に
対し凸および/または凹状に形成された凹凸状物を光学
的に測定する凹凸状物形状測定方法であって、前記検査
対象物に光を照射し、該検査対象物からの散乱光を受光
して該散乱光の強度分布を二次元的に検出し、該散乱光
の強度分布が予め定められた散乱光強度のスライスレベ
ルを超えるときに形成される閉ループの形状から凹凸状
物の底面の大きさを測定するとともに、該閉ループ内に
おける散乱光強度の積分値から凹凸状物の体積または側
面の大きさを測定することを特徴とする凹凸状物形状測
定方法。
1. A concavo-convex shape measuring method for optically measuring a concavo-convex object formed on a test object in a convex and / or concave shape with respect to a reference surface of the test object, wherein the test object is The object is irradiated with light, the scattered light from the inspection object is received, and the intensity distribution of the scattered light is two-dimensionally detected, and the intensity distribution of the scattered light is a slice level of a predetermined scattered light intensity. It is possible to measure the size of the bottom surface of the uneven material from the shape of the closed loop formed when the value exceeds, and to measure the size of the volume or the side surface of the uneven material from the integrated value of the scattered light intensity in the closed loop. Characteristic method for measuring the shape of irregularities.
【請求項2】 凹凸状物の形状を円錐等の立体と仮定
し、前記凹凸状物の底面の大きさを前記立体の底面積に
相当する値とするとともに、前記凹凸状物の体積を前記
立体の体積に相当する値、もしくは、側面の大きさを前
記立体の側面積に相当する値とし、両値から前記立体の
高さを算出して凹凸状物の高さとする、請求項1の凹凸
状物形状測定方法。
2. Assuming that the shape of the unevenness is a solid such as a cone, the size of the bottom surface of the unevenness is set to a value corresponding to the bottom area of the solid, and the volume of the unevenness is defined as The value corresponding to the volume of the solid body or the size of the side surface is set to the value corresponding to the side area of the solid body, and the height of the solid body is calculated from both values to be the height of the uneven article. Method for measuring the shape of irregularities.
【請求項3】 検査対象物に光を照射する照光手段と、
該検査対象物からの散乱光を最終的に二次元の散乱光強
度分布の形で受光可能な受光手段とを備え、検査対象物
上に該検査対象物の基準面に対し凸および/または凹状
に形成された凹凸状物を光学的に測定する凹凸状物形状
測定装置であって、前記散乱光強度分布が予め定められ
た散乱光強度のスライスレベルを超えるときに形成され
る閉ループの形状を測定する手段と、該閉ループ内にお
ける散乱光強度の積分値を演算する手段とを備えたこと
を特徴とする凹凸状物形状測定装置。
3. Illuminating means for irradiating the inspection object with light,
A light receiving means capable of finally receiving scattered light from the inspection object in the form of a two-dimensional scattered light intensity distribution, and having a convex and / or concave shape on the inspection object with respect to the reference plane of the inspection object. An uneven shape measuring device for optically measuring the uneven shape formed in, wherein the scattered light intensity distribution has a shape of a closed loop formed when the predetermined scattered light intensity exceeds a slice level. A concavo-convex shape measuring device comprising: a means for measuring and a means for calculating an integrated value of scattered light intensity in the closed loop.
【請求項4】 前記閉ループ形状測定手段からの情報
と、前記散乱光強度積分値演算手段からの情報から、凹
凸状物の形状を円錐等の立体と仮定した際の該凹凸状物
の高さを算出する手段を備えている、請求項3の凹凸状
物形状測定装置。
4. The height of the uneven object when the shape of the uneven object is assumed to be a solid such as a cone based on the information from the closed loop shape measuring means and the information from the scattered light intensity integral value calculating means. The concavo-convex object shape measuring apparatus according to claim 3, further comprising:
【請求項5】 前記受光手段が、検査対象物から散乱光
を受光するラインセンサを備えたカメラと、該カメラと
検査対象物とを所定方向に相対移動させる相対移動手段
とを有している、請求項3または4の凹凸状物形状測定
装置。
5. The light receiving means includes a camera having a line sensor for receiving scattered light from the inspection object, and relative movement means for relatively moving the camera and the inspection object in a predetermined direction. The uneven shape measuring device according to claim 3 or 4.
JP05684096A 1996-02-19 1996-02-19 Method and apparatus for measuring shape of uneven object Expired - Lifetime JP3523408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05684096A JP3523408B2 (en) 1996-02-19 1996-02-19 Method and apparatus for measuring shape of uneven object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05684096A JP3523408B2 (en) 1996-02-19 1996-02-19 Method and apparatus for measuring shape of uneven object

Publications (2)

Publication Number Publication Date
JPH09222309A true JPH09222309A (en) 1997-08-26
JP3523408B2 JP3523408B2 (en) 2004-04-26

Family

ID=13038608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05684096A Expired - Lifetime JP3523408B2 (en) 1996-02-19 1996-02-19 Method and apparatus for measuring shape of uneven object

Country Status (1)

Country Link
JP (1) JP3523408B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018591A1 (en) * 2006-08-10 2008-02-14 I-Pulse Kabushiki Kaisha Inspecting apparatus, and inspecting method
JP2012019224A (en) * 1998-06-25 2012-01-26 Applied Materials Inc Wafer defect classification
JP2013083628A (en) * 2011-09-27 2013-05-09 Shibaura Mechatronics Corp Apparatus and method for inspecting pasted panel-like body
WO2013139061A1 (en) * 2012-03-21 2013-09-26 深圳市华星光电技术有限公司 Substrate detection method and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019224A (en) * 1998-06-25 2012-01-26 Applied Materials Inc Wafer defect classification
WO2008018591A1 (en) * 2006-08-10 2008-02-14 I-Pulse Kabushiki Kaisha Inspecting apparatus, and inspecting method
JP2013083628A (en) * 2011-09-27 2013-05-09 Shibaura Mechatronics Corp Apparatus and method for inspecting pasted panel-like body
WO2013139061A1 (en) * 2012-03-21 2013-09-26 深圳市华星光电技术有限公司 Substrate detection method and device

Also Published As

Publication number Publication date
JP3523408B2 (en) 2004-04-26

Similar Documents

Publication Publication Date Title
US7430047B2 (en) Small container fluid dynamics to produce optimized inspection conditions
EP0244781B1 (en) Method and apparatus of using a two beam interference microscope for inspection of integrated circuits and the like
JP4246438B2 (en) Lens inspection
US5790247A (en) Technique for determining defect positions in three dimensions in a transparent structure
US4223346A (en) Automatic defect detecting inspection apparatus
FI94551C (en) Method and apparatus for monitoring the surface profile of a moving workpiece
JPH03267745A (en) Surface property detecting method
JP3036049B2 (en) Particle aggregation pattern determination method
US4498776A (en) Electro-optical method and apparatus for measuring the fit of adjacent surfaces
CN101907490B (en) Method for measuring small facula intensity distribution based on two-dimension subdivision method
JPH0711490B2 (en) Defect detection method and device for transparent object
JP2947513B1 (en) Pattern inspection equipment
JP3523408B2 (en) Method and apparatus for measuring shape of uneven object
JPH0373831A (en) Device for inspecting defect
WO2021118838A1 (en) Laser based inclusion detection system and methods
JP3368512B2 (en) Defect inspection method for transparent sheet-like molded product
JP2000018922A (en) Apparatus for thickness defect inspection and its inspection method
EP1209443A1 (en) Method and apparatus for direct image pick-up of granular speck patterns
JPH06281593A (en) Method and apparatus for inspecting surface
JP2002139455A (en) Apparatus and method for inspection
JPS6259913A (en) Observing device for skin surface shape
JP3280401B2 (en) Defect inspection device and defect inspection method
JP3141470B2 (en) Three-dimensional shape detection method and apparatus
JP2006003168A (en) Measurement method for surface shape and device therefor
JPH09210660A (en) Image pick-up inspection system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040206

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term