JPH09222268A - Expansion valve - Google Patents

Expansion valve

Info

Publication number
JPH09222268A
JPH09222268A JP8083601A JP8360196A JPH09222268A JP H09222268 A JPH09222268 A JP H09222268A JP 8083601 A JP8083601 A JP 8083601A JP 8360196 A JP8360196 A JP 8360196A JP H09222268 A JPH09222268 A JP H09222268A
Authority
JP
Japan
Prior art keywords
rod
pressure refrigerant
valve
valve body
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8083601A
Other languages
Japanese (ja)
Other versions
JP3452719B2 (en
Inventor
Hisatoshi Hirota
久寿 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TGK Co Ltd
Original Assignee
TGK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TGK Co Ltd filed Critical TGK Co Ltd
Priority to JP08360196A priority Critical patent/JP3452719B2/en
Publication of JPH09222268A publication Critical patent/JPH09222268A/en
Application granted granted Critical
Publication of JP3452719B2 publication Critical patent/JP3452719B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas

Landscapes

  • Temperature-Responsive Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a stable operation of an expansion valve to be kept even if a pressure of high pressure refrigerant at an upstream side is varied and increased by a method wherein a biasing means for biasing a rod in a direction of right angle or an approximate right angle direction in respect to its axis is abutted against a side surface of the rod. SOLUTION: A rod 23 inserted into and passed through a through-pass hole 14 is slidably arranged in an axial direction. A push member 38 made of plastic material having a low thermal conductivity is fixed to an immovable section between a low pressure refrigerant flow passage 12 and a thermo-sensitive chamber 30 and a running-around of the low pressure refrigerant is restricted at a side of the thermo-sensitive chamber 30. Provided that the push member 38 is provided with an aeration groove 40 passed and punched for communicating between the low pressure refrigerant flow passage 12 and the thermo- sensitive chamber 30. Then, a compression spring 45 biasing the rod 23 in a direction extending in a direction which is substantially at a right angle in respect to an axial direction is arranged within the aeration groove 40 while being abutted against a side surface of the rod.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、冷凍サイクルに
おいて蒸発器に送り込まれる冷媒の流量制御を行いつつ
冷媒を断熱膨張させるための膨張弁に関する。
The present invention relates to an expansion valve for adiabatically expanding a refrigerant while controlling the flow rate of the refrigerant sent to an evaporator in a refrigeration cycle.

【0002】[0002]

【従来の技術】膨張弁には各種のタイプがあるが、蒸発
器に送り込まれる高圧冷媒が通る高圧冷媒流路の途中を
細く絞って形成された弁座孔に対して上流側から対向す
るように弁体を配置し、蒸発器から送り出される低圧冷
媒の温度に対応して弁体を開閉動作させるようにした膨
張弁が広く用いられている。
2. Description of the Related Art There are various types of expansion valves, but they are arranged so as to oppose to a valve seat hole formed by narrowing the high pressure refrigerant passage through which high pressure refrigerant sent to an evaporator is narrowed from the upstream side. There is widely used an expansion valve in which a valve element is arranged in the valve, and the valve element is opened / closed according to the temperature of the low-pressure refrigerant sent from the evaporator.

【0003】[0003]

【発明が解決しようとする課題】膨張弁に送り込まれる
高圧冷媒には、何らかの原因によって上流側において圧
力変動が発生する場合があり、その圧力変動は、高圧冷
媒液を媒体として膨張弁に伝達される。
The high-pressure refrigerant sent to the expansion valve may have a pressure fluctuation on the upstream side for some reason. The pressure fluctuation is transmitted to the expansion valve using the high-pressure refrigerant liquid as a medium. You.

【0004】すると、上述のような従来の膨張弁におい
ては、弁体の上流側の冷媒圧力が圧力変動によって上昇
すると、それが弁体を閉じる方向に作用するので、弁体
の上流側の冷媒圧力がさらに上昇して圧力変動が一層大
きなものになり、膨張弁の動作が非常に不安定なものに
なってしまう場合がある。
Then, in the conventional expansion valve as described above, when the refrigerant pressure on the upstream side of the valve body rises due to pressure fluctuation, it acts in the direction of closing the valve body, so the refrigerant on the upstream side of the valve body. There is a case where the pressure further rises, the pressure fluctuation becomes larger, and the operation of the expansion valve becomes very unstable.

【0005】そこで本発明は、上流側の高圧冷媒の圧力
が変動して上昇しても、安定した動作を維持することが
できる膨張弁を提供することを目的とする。
Accordingly, an object of the present invention is to provide an expansion valve capable of maintaining stable operation even if the pressure of the high-pressure refrigerant on the upstream side fluctuates and rises.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の膨張弁は、蒸発器に送り込まれる高圧冷媒
が通る高圧冷媒流路の途中を細く絞って形成された弁座
孔に対して上流側から対向するように弁体を配置し、上
記蒸発器から送り出される低圧冷媒の温度に対応して動
作する感温部と上記弁体とを上記弁座内に緩く挿通され
たロッドで連結して上記弁体を開閉動作させるようにし
た膨張弁において、上記ロッドをその軸線に対して直角
方向又は直角に近い角度方向に付勢する付勢手段とを上
記ロッドの側面に当接させて設けたことを特徴とする。
In order to achieve the above object, the expansion valve of the present invention has a valve seat hole formed by narrowing the middle of a high pressure refrigerant passage through which the high pressure refrigerant sent to the evaporator passes. On the other hand, the valve body is arranged so as to oppose from the upstream side, and the temperature sensing portion that operates in response to the temperature of the low-pressure refrigerant sent from the evaporator and the valve body are loosely inserted into the valve seat. In the expansion valve in which the valve element is opened and closed by connecting with a biasing means for biasing the rod in a direction orthogonal to the axial line or an angular direction close to the axis, the side face of the rod is abutted. It is characterized by being provided.

【0007】なお、上記ロッドを上記弁座と上記付勢手
段との間の位置において軸方向に進退自在な状態で支持
して上記ロッドが傾く支点となる支点部を設けてもよ
い。
A fulcrum portion which serves as a fulcrum for tilting the rod may be provided by supporting the rod in a position between the valve seat and the urging means in a state of being able to advance and retract in the axial direction.

【0008】また、本発明の膨張弁は、蒸発器に送り込
まれる高圧冷媒が通る高圧冷媒流路の途中を細く絞って
形成された弁座孔に対して上流側から対向するように弁
体を配置し、上記蒸発器から送り出される低圧冷媒の温
度に対応して動作する感温部と上記弁体とを上記弁座内
に緩く挿通されたロッドで連結して上記弁体を開閉動作
させるようにした膨張弁において、上記弁体を、弁が閉
じきる寸前の状態のときに上記弁体の移動量に比較して
冷媒流路の断面積変化が少なくなる形状に形成したこと
を特徴とする。
In the expansion valve of the present invention, the valve body is arranged so as to oppose from the upstream side to the valve seat hole formed by narrowing the middle of the high pressure refrigerant passage through which the high pressure refrigerant sent to the evaporator passes. The valve body is arranged to connect the temperature sensing portion, which operates according to the temperature of the low-pressure refrigerant sent from the evaporator, with the valve body by a rod that is loosely inserted into the valve seat to open and close the valve body. In the expansion valve described above, the valve body is formed in a shape in which a change in the cross-sectional area of the refrigerant flow path is small as compared with the movement amount of the valve body when the valve is on the verge of being completely closed. .

【0009】[0009]

【発明の実施の形態】図面を参照して本発明の実施の形
態を説明する。図1は本発明の第1の実施の形態を示し
ている。図中、1は蒸発器、2は圧縮機、3は凝縮器、
4は、凝縮器3の出口側に接続されて高圧の液体冷媒を
収容する受液器、10は膨張弁であり、これらによって
冷凍サイクルが形成されており、例えば自動車の室内冷
房装置(カーエアコン)に用いられる。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment of the present invention. In the figure, 1 is an evaporator, 2 is a compressor, 3 is a condenser,
Reference numeral 4 denotes a liquid receiver which is connected to the outlet side of the condenser 3 and contains a high-pressure liquid refrigerant, and 10 denotes an expansion valve, which forms a refrigeration cycle. ).

【0010】膨張弁10の本体ブロック11には、蒸発
器1から圧縮機2へ送り出される低温低圧の冷媒ガスを
通すための低圧冷媒流路12と、蒸発器1に送り込まれ
る高温高圧の冷媒液を通して断熱膨張させるための高圧
冷媒流路13とが形成されている。
In the main body block 11 of the expansion valve 10, a low-pressure refrigerant passage 12 for passing a low-temperature low-pressure refrigerant gas sent from the evaporator 1 to the compressor 2 and a high-temperature high-pressure refrigerant liquid sent to the evaporator 1 are provided. And a high-pressure refrigerant channel 13 for adiabatically expanding the same.

【0011】低圧冷媒流路12は、入口側の端部が蒸発
器1の出口に接続され、出口側が圧縮機2の入口に接続
されている。高圧冷媒流路13は、入口側の端部が受液
器4の出口に接続され、出口側が蒸発器1の入口に接続
されている。
The low-pressure refrigerant flow path 12 has an inlet end connected to the outlet of the evaporator 1 and an outlet connected to the inlet of the compressor 2. The high-pressure refrigerant flow path 13 has an inlet-side end connected to the outlet of the liquid receiver 4, and an outlet connected to the inlet of the evaporator 1.

【0012】低圧冷媒流路12と高圧冷媒流路13とは
互いに平行に形成されており、これに垂直な貫通孔14
が低圧冷媒流路12と高圧冷媒流路13との間を貫通し
ている。また、低圧冷媒流路12から外方に抜けるよう
に、貫通孔14と同じ向きに形成された開口部には、感
温室30が取り付けられている。
The low-pressure refrigerant flow path 12 and the high-pressure refrigerant flow path 13 are formed in parallel with each other, and a through hole 14 perpendicular to this is formed.
Penetrates between the low-pressure refrigerant channel 12 and the high-pressure refrigerant channel 13. In addition, a greenhouse 30 is attached to the opening formed in the same direction as the through hole 14 so as to escape to the outside from the low-pressure refrigerant channel 12.

【0013】高圧冷媒流路13の途中には、流路面積を
途中で狭く絞った形の、断面形状が円形の弁座孔15が
中央部に形成されていて、その弁座孔15に上流側から
対向して、弁座孔15の直径より大きな直径の球状の弁
体16が配置されている。
A valve seat hole 15 having a circular cross section is formed in the middle of the high pressure refrigerant flow path 13 in the middle of the flow path area. A spherical valve element 16 having a diameter larger than the diameter of the valve seat hole 15 is arranged facing each other from the side.

【0014】そして、弁体16と弁座孔15の入口部と
の間の隙間の最も狭い部分が高圧冷媒流路13の絞り部
になり、そこから蒸発器1に到る下流側の管路内におい
て、高圧冷媒が断熱膨張する。
Then, the narrowest part of the gap between the valve body 16 and the inlet of the valve seat hole 15 becomes the narrowed portion of the high pressure refrigerant flow path 13, and the downstream conduit from there to the evaporator 1. Inside, the high-pressure refrigerant adiabatically expands.

【0015】弁体16は、圧縮コイルスプリング17に
よって弁座孔15に接近する方向(即ち、閉じ方向)に
付勢されている。18は、本体ブロック11に螺合して
取り付けられて圧縮コイルスプリング17の付勢力を調
整する調整ナット、19は、高圧冷媒流路13と外部と
の間をシールするためのOリングである。
The valve body 16 is biased by a compression coil spring 17 in a direction approaching the valve seat hole 15 (that is, a closing direction). Reference numeral 18 denotes an adjustment nut screwed to the main body block 11 to adjust the urging force of the compression coil spring 17, and reference numeral 19 denotes an O-ring for sealing between the high-pressure refrigerant flow path 13 and the outside.

【0016】貫通孔14内に挿通されたロッド23は、
軸線方向に摺動自在に設けられていて、その上端は感温
室30に達し、中間部分が低圧冷媒流路12を垂直に横
切って貫通孔14内を通り、下端は弁体16の頭部に溶
接されている。
The rod 23 inserted in the through hole 14 is
It is slidably provided in the axial direction, the upper end of which reaches the temperature sensing chamber 30, the middle part vertically passes through the low-pressure refrigerant flow path 12, passes through the through-hole 14, and the lower end is at the head of the valve body 16 Welded.

【0017】ただし、第2の実施の形態のように、弁体
16に孔をあけてそこにロッド23の端部を嵌め込んで
もよい。なおロッド23は、弁座孔15の壁面との間を
冷媒が通過できるよう、弁座孔15に比べて細く形成さ
れている。
However, as in the second embodiment, a hole may be formed in the valve body 16 and the end portion of the rod 23 may be fitted therein. Note that the rod 23 is formed to be thinner than the valve seat hole 15 so that the refrigerant can pass between the wall surface of the valve seat hole 15 and the wall.

【0018】したがって、圧縮コイルスプリング17の
付勢力に逆らって弁体16をロッド23で押して弁座孔
15から遠ざければ、高圧冷媒流路13の流路面積が大
きくなる。このように、高圧冷媒流路13の流路面積は
ロッド23の移動量に対応して変化し、それによって蒸
発器1に供給される高圧冷媒の量が変化する。
Therefore, if the valve body 16 is pushed by the rod 23 against the biasing force of the compression coil spring 17 and moves away from the valve seat hole 15, the flow passage area of the high pressure refrigerant flow passage 13 becomes large. As described above, the flow path area of the high-pressure refrigerant flow path 13 changes in accordance with the amount of movement of the rod 23, thereby changing the amount of the high-pressure refrigerant supplied to the evaporator 1.

【0019】貫通孔14の内径寸法はロッド23の外径
寸法に比べて相当に太く、貫通孔14内でロッド23が
傾くことができるようになっている。ただし、貫通孔1
4の途中にごく短い長さに形成された支点部21だけ
は、ロッド23が軸方向に進退自在ではあるが径方向に
はほとんどがたつきのない寸法に形成されている。した
がってロッド23は、傾く場合には支点部21を支点に
して傾くことになる。
The inner diameter of the through hole 14 is considerably thicker than the outer diameter of the rod 23, so that the rod 23 can be tilted in the through hole 14. However, the through hole 1
Only the fulcrum portion 21 formed at a very short length in the middle of 4 has a dimension in which the rod 23 can freely advance and retreat in the axial direction but hardly rattles in the radial direction. Therefore, when the rod 23 is inclined, the rod 23 is inclined with the fulcrum 21 as a fulcrum.

【0020】24は、高圧冷媒流路13と低圧冷媒流路
12との間をシールするためのOリングであり、支点部
21に隣接して、ロッド23の外周面に密着して配置さ
れている。
Reference numeral 24 is an O-ring for sealing between the high-pressure refrigerant flow path 13 and the low-pressure refrigerant flow path 12, and is arranged adjacent to the fulcrum portion 21 and in close contact with the outer peripheral surface of the rod 23. There is.

【0021】感温室30は、厚い金属板製のハウジング
31と可撓性のある金属製薄板(例えば厚さ0.1mm
のステンレス鋼板)からなるダイアフラム32によって
気密に囲まれている。
The greenhouse 30 includes a housing 31 made of a thick metal plate and a flexible thin metal plate (for example, a thickness of 0.1 mm).
It is airtightly surrounded by a diaphragm 32 made of a stainless steel plate).

【0022】そして、ダイアフラム32の下面中央部に
面して、大きな皿状に形成されたダイアフラム受け盤3
3が配置されていて、その下面中央部にロッド23の頂
部が当接している。
A large dish-shaped diaphragm receiving plate 3 facing the central portion of the lower surface of the diaphragm 32.
3 is arranged, and the top part of the rod 23 is in contact with the central part of the lower surface thereof.

【0023】また、感温室30内には、冷媒流路12,
13内に流されている冷媒と同じか又は性質の似ている
飽和蒸気状態のガスが封入されていて、ガス封入用の注
入孔は、栓34によって閉塞されている。36はシール
用のOリングである。
In the greenhouse 30, the coolant flow passages 12,
A gas in a saturated vapor state, which has the same or similar properties as the refrigerant flowing in the 13, is sealed therein, and the injection hole for gas filling is closed by a stopper 34. 36 is an O-ring for sealing.

【0024】低圧冷媒流路12と感温室30との間の不
動部分には、熱伝導率の低いプラスチック材などからな
るブシュ38が固定されていて、感温室30側への低圧
冷媒の回り込みが規制されている。
A bush 38 made of a plastic material having a low thermal conductivity is fixed to a stationary portion between the low-pressure refrigerant passage 12 and the greenhouse 30 to prevent the low-pressure refrigerant from flowing into the greenhouse 30 side. It is regulated.

【0025】ただしブシュ38には、低圧冷媒流路12
と感温室30側とを連通させるための通気溝40が貫通
して穿設されているので、低圧冷媒流路12を流れる低
圧冷媒が、通気溝40を通って感温室30側へ少量だけ
回り込む。その結果、低圧冷媒流路12内を流れる冷媒
の温度が、ゆっくりと感温室30に伝達される。
However, the bush 38 has a low-pressure refrigerant flow path 12
Since the ventilation groove 40 for communicating between the low pressure refrigerant and the temperature sensing chamber 30 penetrates and penetrates, the low pressure refrigerant flowing through the low pressure refrigerant flow path 12 circulates a small amount to the temperature sensing chamber 30 side through the ventilation groove 40. . As a result, the temperature of the refrigerant flowing in the low-pressure refrigerant channel 12 is transmitted to the temperature-sensitive chamber 30 slowly.

【0026】ブシュ38からキノコの茎状に下方に延び
た部分は、ロッド23をガイドするロッドガイド42に
なっていて、その端部は支点部21に隣接するOリング
24のすぐ近くまで達している。
The portion extending downward from the bush 38 in the form of a mushroom stem serves as a rod guide 42 for guiding the rod 23, and the end thereof reaches close to the O-ring 24 adjacent to the fulcrum portion 21. There is.

【0027】ロッドガイド42の軸線部には、ロッド2
3が通るガイド孔43が貫通して穿設されているが、そ
のガイド孔43の内径寸法は貫通孔14の内径寸法とほ
ぼ同じであり、内部でロッド23が傾くことができるよ
うになっている。
The rod 2 is attached to the axial portion of the rod guide 42.
Although the guide hole 43 through which the through hole 3 passes is formed, the inner diameter of the guide hole 43 is substantially the same as the inner diameter of the through hole 14 so that the rod 23 can be inclined inside. I have.

【0028】そして通気溝40内には、ダイアフラム受
け盤33のすぐ近傍においてロッド23を軸線方向とほ
ぼ直角の方向に押すように付勢する圧縮コイルバネ45
が、ロッドの側面に当接して配置されている。
In the ventilation groove 40, a compression coil spring 45 for urging the rod 23 in the vicinity of the diaphragm receiving plate 33 so as to push the rod 23 in a direction substantially perpendicular to the axial direction.
Is arranged in contact with the side surface of the rod.

【0029】その結果、図1に示されるように弁体16
が弁座孔15から離れた状態では、ロッド23が、圧縮
コイルバネ45に押されてその位置でガイド孔43の壁
面に押し付けられており、ロッド23の軸線方向への移
動に対して摩擦抵抗が作用すると共に、ロッド23が支
点部21を支点にして傾いた状態になっている。
As a result, as shown in FIG.
Is separated from the valve seat hole 15, the rod 23 is pressed by the compression coil spring 45 and pressed against the wall surface of the guide hole 43 at that position, so that the frictional resistance against the movement of the rod 23 in the axial direction is increased. While acting, the rod 23 is in a tilted state with the fulcrum portion 21 as a fulcrum.

【0030】このように構成された膨張弁においては、
低圧冷媒流路12内を流れる低圧冷媒の温度が下がる
と、ダイアフラム32の温度が下がって、感温室30内
の飽和蒸気ガスがダイアフラム32の内表面で凝結す
る。
In the expansion valve configured as described above,
When the temperature of the low-pressure refrigerant flowing in the low-pressure refrigerant passage 12 decreases, the temperature of the diaphragm 32 decreases, and the saturated vapor gas in the temperature-sensitive chamber 30 condenses on the inner surface of the diaphragm 32.

【0031】すると、感温室30内の圧力が下がってダ
イアフラム32が変位するので、ロッド23が圧縮コイ
ルスプリング17に押されて移動し、その結果、弁体1
6が弁座孔15側に移動して高圧冷媒の流路面積が狭く
なるので、蒸発器1に送り込まれる冷媒の流量が減る。
Then, the pressure in the greenhouse 30 is lowered and the diaphragm 32 is displaced, so that the rod 23 is pushed and moved by the compression coil spring 17, and as a result, the valve body 1 is moved.
Since 6 moves to the valve seat hole 15 side and the flow passage area of the high pressure refrigerant is narrowed, the flow rate of the refrigerant sent to the evaporator 1 is reduced.

【0032】低圧冷媒流路12内を流れる低圧冷媒の温
度が上がると、上記と逆の動作によって弁体16がロッ
ド23に押されて弁座孔15から離れ、高圧冷媒の流路
面積が広がるので、蒸発器1に送り込まれる高圧冷媒の
流量が増える。
When the temperature of the low-pressure refrigerant flowing in the low-pressure refrigerant passage 12 rises, the valve body 16 is pushed by the rod 23 and separated from the valve seat hole 15 by the operation opposite to the above, and the passage area of the high-pressure refrigerant widens. Therefore, the flow rate of the high-pressure refrigerant sent to the evaporator 1 increases.

【0033】このような動作において、弁座孔15に対
して弁体16が離れた図1の状態から弁座孔15に弁体
16がちょうど触る図2の状態までの範囲では、ロッド
23は傾いた状態のまま軸線方向に進退動作する。
In such an operation, in the range from the state of FIG. 1 where the valve body 16 is separated from the valve seat hole 15 to the state of FIG. 2 where the valve body 16 just touches the valve seat hole 15, the rod 23 is It moves back and forth in the axial direction while it is tilted.

【0034】したがって、そのロッド23の進退動作に
対して圧縮コイルバネ45の付勢力にもとづく摩擦抵抗
が作用し、高圧冷媒流路13内の瞬間的な圧力上昇では
弁体21は閉じきらない。
Therefore, a frictional resistance based on the urging force of the compression coil spring 45 acts on the forward / backward movement of the rod 23, and the valve body 21 is not completely closed by the instantaneous pressure increase in the high pressure refrigerant flow passage 13.

【0035】図2に示されるようにロッド23が傾いて
いる状態では、ロッド23に溶接された弁体16は弁座
孔15の中央に位置しないので、弁は閉じきらずに開い
ている。したがって、弁を閉じきるためには、弁体16
を弁座孔15の中央位置に持ってくる必要がある。
As shown in FIG. 2, when the rod 23 is tilted, the valve element 16 welded to the rod 23 is not located at the center of the valve seat hole 15, so the valve is open without being closed. Therefore, in order to close the valve completely, the valve body 16
Needs to be brought to the central position of the valve seat hole 15.

【0036】そこで、図2に示される状態から、弁体1
6が弁座孔15の全周に密着して弁が閉じきられる図3
の状態に移行する範囲では、ロッド23が、傾いた状態
から真っ直ぐな状態に支点部21を中心にして傾動する
ので、図4の作動特性にも示されるように、さらに圧縮
コイルバネ45の付勢力に抗して圧縮コイルバネ45を
縮める力が余分に必要となる。
Therefore, from the state shown in FIG.
6 is in close contact with the entire circumference of the valve seat hole 15 to close the valve.
In the range of shifting to the state of, the rod 23 tilts from the tilted state to the straight state around the fulcrum portion 21, so that the biasing force of the compression coil spring 45 is further increased as shown in the operating characteristics of FIG. An extra force for compressing the compression coil spring 45 against the force is required.

【0037】したがって、高圧冷媒流路13の冷媒圧力
が上流側の圧力変動によって上昇すると、それが弁体1
6を閉じる方向に作用するが、上述のように弁体16を
完全に閉じきるためには圧縮コイルバネ45の付勢力に
抗する大きな力が必要なので、短時間の圧力上昇では弁
体16は閉じきらず、大きな圧力変動に発展しない。
Therefore, when the refrigerant pressure in the high-pressure refrigerant flow path 13 rises due to the pressure fluctuation on the upstream side, it rises.
6 acts to close the valve 6, but as described above, a large force against the biasing force of the compression coil spring 45 is required to completely close the valve element 16, so that the valve element 16 closes when the pressure rises for a short time. It does not develop into a large pressure fluctuation.

【0038】図5は、本発明の第2の実施の形態の膨張
弁を示しており、弁体16を、弁が閉じきる寸前の状態
のときに弁体16の移動量に比較して冷媒流路の断面積
変化が少なくなる形状に形成したものである。
FIG. 5 shows an expansion valve according to a second embodiment of the present invention, in which the valve element 16 is compared with the amount of movement of the valve element 16 when the valve is on the verge of being completely closed. It is formed in a shape that reduces the change in cross-sectional area of the flow path.

【0039】この実施の形態においては、ロッド23が
傾かないように、貫通孔14がロッド23と嵌合するよ
うに形成されていて、ロッド23を側方から付勢する圧
縮コイルバネ45や細長いロッドガイド等は設けられて
いない。51は、シール用のOリング24を押さえるた
めの圧縮コイルバネである。
In this embodiment, the through hole 14 is formed so as to fit with the rod 23 so that the rod 23 does not incline, and the compression coil spring 45 and the elongated rod which bias the rod 23 from the side. There is no guide, etc. Reference numeral 51 is a compression coil spring for pressing the O-ring 24 for sealing.

【0040】弁体16は円錐形状に形成されていて、そ
の頂部に穿設された孔内にロッド23の端部が嵌め込ま
れている。弁体16の円錐斜面は、弁座孔15の入口口
元部に形成されたテーパ面の角度より急な角度に形成さ
れている。
The valve body 16 is formed in a conical shape, and the end portion of the rod 23 is fitted into the hole formed at the top of the valve body 16. The conical inclined surface of the valve element 16 is formed at an angle that is steeper than the angle of the tapered surface formed at the inlet opening of the valve seat hole 15.

【0041】弁体16の頂部には、図6に拡大図示され
るように、弁座孔15の内径より少し細い外径の段差5
2が形成されていて、その段差52の側壁面は、弁座孔
15の内周面と同じように、ロッド23の軸線と平行の
向きに形成されている。また、段差52より頂部側の範
囲では、円錐斜面が下部より緩やかな角度に形成されて
いる。
At the top of the valve body 16, as shown in an enlarged view in FIG. 6, a step 5 having an outer diameter slightly smaller than the inner diameter of the valve seat hole 15 is formed.
2 is formed, and the side wall surface of the step 52 is formed in a direction parallel to the axis of the rod 23, like the inner peripheral surface of the valve seat hole 15. Further, in the range closer to the top than the step 52, the conical slope is formed at a gentler angle than the lower part.

【0042】弁体16を上述のような形状に形成したこ
とにより、弁が大きく開いたの状態から段差52が弁
座孔15内に入り込み始めるの状態までの範囲では、
弁体16の移動量と冷媒流路の断面積の変化はリニアで
ある。
By forming the valve element 16 in the above-described shape, in the range from the state where the valve is wide open to the state where the step 52 begins to enter the valve seat hole 15,
The amount of movement of the valve element 16 and the change in the cross-sectional area of the refrigerant channel are linear.

【0043】しかし、図7の特性線図にも示されるよう
に、段差52が弁座孔15内に入り込み始めるの付近
からさらに弁が閉じる側の範囲においては、弁体16の
移動量に比較して冷媒流路の断面積の変化が非常に少な
くなる。そして、全閉であるの状態に近い範囲では、
また、弁体16の移動量と冷媒流路の断面積の変化の関
係が元に戻る。
However, as shown in the characteristic diagram of FIG. 7, in comparison with the amount of movement of the valve body 16 in the range where the step 52 begins to enter the valve seat hole 15 and the side where the valve is closed further. As a result, the change in the cross-sectional area of the refrigerant flow path becomes very small. And in the range close to the state of being fully closed,
Further, the relationship between the amount of movement of the valve element 16 and the change in the cross-sectional area of the refrigerant channel is restored.

【0044】したがって、高圧冷媒流路13内の圧力変
動によって弁体16が閉じ方向に移動しても弁体16が
閉じきる前の段階で冷媒流路の断面積があまり変化しな
くなるので、短時間の圧力上昇では弁が閉じきらず、大
きな圧力変動に発展しない。
Therefore, even if the valve body 16 moves in the closing direction due to pressure fluctuations in the high-pressure refrigerant passage 13, the cross-sectional area of the refrigerant passage does not change much at the stage before the valve body 16 is completely closed. When the pressure rises over time, the valve does not close and does not develop into a large pressure fluctuation.

【0045】なお、本発明は上記の各実施の形態に限定
されるものではなく、例えば弁体の形状については、第
1の実施の形態においては必ずしも球状である必要はな
く、第2の実施の形態において必ずしも円錐状である必
要はない。
The present invention is not limited to the above-mentioned respective embodiments. For example, the shape of the valve body is not necessarily spherical in the first embodiment, and the second embodiment is not necessary. The shape does not necessarily have to be conical.

【0046】[0046]

【発明の効果】本発明によれば、弁体に連結されたロッ
ドをその軸線に対して直角方向又は直角に近い角度方向
に付勢する付勢手段をロッドの側面に当接させて設けた
ことにより、またさらに弁座と付勢手段との間の位置を
支点にしてロッドが傾くようにしたことにより、弁を閉
じきるためには付勢手段から与えられる摩擦力及び付勢
力そのものに抗する大きな力が必要なので、冷媒の圧力
変動により高圧冷媒流路内の圧力が短時間上昇しても弁
が閉じきらず、大きな圧力変動に発展しない。したがっ
て、冷媒流路内の圧力変動がすぐに安定し、膨張弁が安
定した動作を維持することができる。
According to the present invention, the urging means for urging the rod connected to the valve body in the direction perpendicular to the axis of the rod or in the angular direction close to the axis is provided in contact with the side surface of the rod. In addition, the rod is tilted about the position between the valve seat and the biasing means as a fulcrum, so that in order to close the valve, the frictional force and the biasing force itself exerted by the biasing means are counteracted. Therefore, even if the pressure in the high-pressure refrigerant flow path rises for a short time due to the pressure fluctuation of the refrigerant, the valve does not close and the pressure does not greatly fluctuate. Therefore, the pressure fluctuation in the refrigerant channel is immediately stabilized, and the expansion valve can maintain a stable operation.

【0047】また、弁体とロッドとの連結部分を、弁が
閉じきる寸前の状態のときに弁体の移動量に比較して冷
媒流路の断面積変化が少なくなる形状に形成したことに
より、高圧冷媒流路内の圧力変動によって弁体が閉じ方
向に移動しても流路断面積があまり変化しないので、冷
媒の圧力変動により高圧冷媒流路内の圧力が短時間上昇
しても弁が閉じきらず、大きな圧力変動に発展しない。
したがって、冷媒流路内の圧力変動がすぐに安定し、膨
張弁が安定した動作を維持することができる。
Further, the connecting portion between the valve body and the rod is formed in a shape in which the change in the cross-sectional area of the refrigerant passage is smaller than the moving amount of the valve body when the valve is almost closed. , Even if the valve body moves in the closing direction due to pressure fluctuations in the high-pressure refrigerant flow path, the cross-sectional area of the flow path does not change so much. Does not close and does not develop into large pressure fluctuations.
Therefore, the pressure fluctuation in the refrigerant channel is immediately stabilized, and the expansion valve can maintain a stable operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態の弁が大きく開いて
いる状態の膨張弁の縦断面図である。
FIG. 1 is a longitudinal sectional view of an expansion valve according to a first embodiment of the present invention in a state where a valve is largely opened.

【図2】本発明の第1の実施の形態の弁が少し開いてい
る状態の膨張弁の縦断面図である。
FIG. 2 is a vertical cross-sectional view of the expansion valve according to the first embodiment of the present invention with the valve being slightly open.

【図3】本発明の第1の実施の形態の弁が閉じきってい
る状態の膨張弁の縦断面図である。
FIG. 3 is a vertical sectional view of the expansion valve according to the first embodiment of the present invention in a state where the valve is completely closed.

【図4】本発明の第1の実施の形態の膨張弁の特性線図
である。
FIG. 4 is a characteristic diagram of the expansion valve according to the first embodiment of the present invention.

【図5】本発明の第2の実施の形態の膨張弁の縦断面図
である。
FIG. 5 is a vertical sectional view of an expansion valve according to a second embodiment of the present invention.

【図6】本発明の第2の実施の形態の膨張弁の弁の移動
状態を示す部分拡大断面図である。
FIG. 6 is a partial enlarged cross-sectional view showing a moving state of the expansion valve according to the second embodiment of the present invention.

【図7】本発明の第2の実施の形態の膨張弁の特性線図
である。
FIG. 7 is a characteristic diagram of an expansion valve according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 蒸発器 10 膨張弁 12 低圧冷媒流路 13 高圧冷媒流路 15 弁座孔 16 弁体 21 支点部 23 ロッド 30 感温室 45 圧縮コイルバネ 52 段差 1 Evaporator 10 Expansion Valve 12 Low Pressure Refrigerant Flow Path 13 High Pressure Refrigerant Flow Path 15 Valve Seat Hole 16 Valve Body 21 Support Point 23 Rod 30 Greenhouse 45 Compression Coil Spring 52 Step

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】蒸発器に送り込まれる高圧冷媒が通る高圧
冷媒流路の途中を細く絞って形成された弁座孔に対して
上流側から対向するように弁体を配置し、上記蒸発器か
ら送り出される低圧冷媒の温度に対応して動作する感温
部と上記弁体とを上記弁座内に緩く挿通されたロッドで
連結して上記弁体を開閉動作させるようにした膨張弁に
おいて、 上記ロッドをその軸線に対して直角方向又は直角に近い
角度方向に付勢する付勢手段を上記ロッドの側面に当接
させて設けたことを特徴とする膨張弁。
1. A valve body is arranged so as to oppose from a upstream side to a valve seat hole formed by narrowing the middle of a high-pressure refrigerant passage through which high-pressure refrigerant sent to an evaporator passes, and the evaporator is provided. In an expansion valve configured to open and close the valve body by connecting the temperature sensing portion that operates in response to the temperature of the low-pressure refrigerant sent out and the valve body with a rod that is loosely inserted into the valve seat, An expansion valve, characterized in that a biasing means for biasing the rod in a direction at right angles to the axis thereof or in an angular direction close to the right angle is provided in contact with the side surface of the rod.
【請求項2】上記ロッドを上記弁座と上記付勢手段との
間の位置において軸方向に進退自在な状態で支持して上
記ロッドが傾く支点となる支点部が設けられている請求
項1記載の膨張弁。
2. A fulcrum portion serving as a fulcrum for supporting the rod in a position between the valve seat and the urging means so as to be axially movable back and forth, and serving as a fulcrum for tilting the rod. Expansion valve described.
【請求項3】蒸発器に送り込まれる高圧冷媒が通る高圧
冷媒流路の途中を細く絞って形成された弁座孔に対して
上流側から対向するように弁体を配置し、上記蒸発器か
ら送り出される低圧冷媒の温度に対応して動作する感温
部と上記弁体とを上記弁座内に緩く挿通されたロッドで
連結して上記弁体を開閉動作させるようにした膨張弁に
おいて、 上記弁体を、弁が閉じきる寸前の状態のときに上記弁体
の移動量に比較して冷媒流路の断面積変化が少なくなる
形状に形成したことを特徴とする膨張弁。
3. A valve body is arranged so as to oppose from a upstream side to a valve seat hole formed by narrowing a high-pressure refrigerant passage through which a high-pressure refrigerant sent to an evaporator passes, and a valve body is arranged from the evaporator. In an expansion valve configured to open and close the valve body by connecting a temperature-sensing portion that operates in response to the temperature of the low-pressure refrigerant sent out and the valve body with a rod that is loosely inserted into the valve seat, An expansion valve, wherein the valve body is formed in a shape in which a change in cross-sectional area of the refrigerant flow path is smaller than a movement amount of the valve body when the valve is in a state of being almost closed.
JP08360196A 1995-12-14 1996-04-05 Expansion valve Expired - Lifetime JP3452719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08360196A JP3452719B2 (en) 1995-12-14 1996-04-05 Expansion valve

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-324941 1995-12-14
JP32494195 1995-12-14
JP08360196A JP3452719B2 (en) 1995-12-14 1996-04-05 Expansion valve

Publications (2)

Publication Number Publication Date
JPH09222268A true JPH09222268A (en) 1997-08-26
JP3452719B2 JP3452719B2 (en) 2003-09-29

Family

ID=26424648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08360196A Expired - Lifetime JP3452719B2 (en) 1995-12-14 1996-04-05 Expansion valve

Country Status (1)

Country Link
JP (1) JP3452719B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020690A2 (en) 1999-01-13 2000-07-19 TGK Co., Ltd. Expansion valve
EP1069385A2 (en) * 1999-07-12 2001-01-17 TGK Co., Ltd. An expansion valve in a refrigerating cycle
EP1265041A2 (en) * 2001-06-07 2002-12-11 TGK Co., Ltd. Refrigerating cycle
US6702188B2 (en) 2001-07-12 2004-03-09 Fujikoki Corporation Expansion valve
EP1457747A2 (en) * 2003-03-12 2004-09-15 Fujikoki Corporation Expansion valve
FR2910601A1 (en) * 2006-12-20 2008-06-27 Valeo Systemes Thermiques Triggering device i.e. thermostatic valve, for air-conditioning circuit of motor vehicle, has force regulator for regulating spring force based on operating parameters of refrigerant in inlet of main path
CN100441924C (en) * 2005-08-12 2008-12-10 浙江三花制冷集团有限公司 Temp. expansion valve
CN102525097A (en) * 2010-12-31 2012-07-04 上海万盛保温容器有限公司 Plug-in assembly of thermos
CN102620491A (en) * 2011-01-31 2012-08-01 浙江三花股份有限公司 Refrigerating system and thermoexpension valve thereof
JP2014126280A (en) * 2012-12-26 2014-07-07 Fuji Koki Corp Thermostatic expansion valve
US9766001B2 (en) 2014-09-24 2017-09-19 Tgk Co., Ltd. Control valve

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100582534C (en) * 2006-07-07 2010-01-20 浙江三花汽车控制系统有限公司 Thermal expansion valve

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4978956A (en) * 1972-12-06 1974-07-30
JPS50114651A (en) * 1974-02-22 1975-09-08
JPS60156373U (en) * 1984-03-28 1985-10-18 三菱重工業株式会社 automatic expansion valve
JPS6315465U (en) * 1986-07-14 1988-02-01
JPH03117171U (en) * 1990-03-14 1991-12-04
JPH076652U (en) * 1993-06-18 1995-01-31 カルソニック株式会社 Expansion valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4978956A (en) * 1972-12-06 1974-07-30
JPS50114651A (en) * 1974-02-22 1975-09-08
JPS60156373U (en) * 1984-03-28 1985-10-18 三菱重工業株式会社 automatic expansion valve
JPS6315465U (en) * 1986-07-14 1988-02-01
JPH03117171U (en) * 1990-03-14 1991-12-04
JPH076652U (en) * 1993-06-18 1995-01-31 カルソニック株式会社 Expansion valve

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020690A2 (en) 1999-01-13 2000-07-19 TGK Co., Ltd. Expansion valve
JP2001141335A (en) * 1999-01-13 2001-05-25 Tgk Co Ltd Expansion valve
US6296194B1 (en) 1999-01-13 2001-10-02 Tgk Co., Ltd. Expansion valve
EP1069385A2 (en) * 1999-07-12 2001-01-17 TGK Co., Ltd. An expansion valve in a refrigerating cycle
EP1069385A3 (en) * 1999-07-12 2002-01-02 TGK Co., Ltd. An expansion valve in a refrigerating cycle
EP1265041A2 (en) * 2001-06-07 2002-12-11 TGK Co., Ltd. Refrigerating cycle
EP1265041A3 (en) * 2001-06-07 2004-03-17 TGK Co., Ltd. Refrigerating cycle
US6702188B2 (en) 2001-07-12 2004-03-09 Fujikoki Corporation Expansion valve
EP1457747A2 (en) * 2003-03-12 2004-09-15 Fujikoki Corporation Expansion valve
EP1457747A3 (en) * 2003-03-12 2006-03-22 Fujikoki Corporation Expansion valve
US7299995B2 (en) 2003-03-12 2007-11-27 Fujikoki, Corporation Expansion valve
CN100441924C (en) * 2005-08-12 2008-12-10 浙江三花制冷集团有限公司 Temp. expansion valve
FR2910601A1 (en) * 2006-12-20 2008-06-27 Valeo Systemes Thermiques Triggering device i.e. thermostatic valve, for air-conditioning circuit of motor vehicle, has force regulator for regulating spring force based on operating parameters of refrigerant in inlet of main path
CN102525097A (en) * 2010-12-31 2012-07-04 上海万盛保温容器有限公司 Plug-in assembly of thermos
CN102620491A (en) * 2011-01-31 2012-08-01 浙江三花股份有限公司 Refrigerating system and thermoexpension valve thereof
CN102620491B (en) * 2011-01-31 2016-06-01 浙江三花股份有限公司 Refrigeration system and heating power expansion valve thereof
JP2014126280A (en) * 2012-12-26 2014-07-07 Fuji Koki Corp Thermostatic expansion valve
US9766001B2 (en) 2014-09-24 2017-09-19 Tgk Co., Ltd. Control valve

Also Published As

Publication number Publication date
JP3452719B2 (en) 2003-09-29

Similar Documents

Publication Publication Date Title
JPH08145505A (en) Expansion valve
JPH09222268A (en) Expansion valve
JP3576886B2 (en) Expansion valve
US6702188B2 (en) Expansion valve
JP2004076920A (en) Differential pressure control valve
JP3481036B2 (en) Expansion valve
JP3485748B2 (en) Expansion valve
JP3507616B2 (en) Expansion valve
JP3507615B2 (en) Expansion valve
JPH10238903A (en) Expansion valve
JP3897974B2 (en) Expansion valve
JPH09113072A (en) Expansion valve
JP3924119B2 (en) Expansion valve
JP3418238B2 (en) Expansion valve
JP2001159465A (en) Structure of seal part
JP2000055512A (en) Controlled degree of supercooling expansion valve
JP3780127B2 (en) Expansion valve
JPH10253200A (en) Expansion valve
JP3442949B2 (en) Refrigeration cycle using variable capacity compressor
JP3507612B2 (en) Expansion valve
JP3859913B2 (en) Expansion valve
JPH10205926A (en) Expansion valve
JP2001091109A (en) Expansion valve
KR101027488B1 (en) Expansion valve
JP2001091107A (en) Expansion valve

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140718

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term