JPH09220460A - Cooling and granulating method and device therefor - Google Patents

Cooling and granulating method and device therefor

Info

Publication number
JPH09220460A
JPH09220460A JP8328882A JP32888296A JPH09220460A JP H09220460 A JPH09220460 A JP H09220460A JP 8328882 A JP8328882 A JP 8328882A JP 32888296 A JP32888296 A JP 32888296A JP H09220460 A JPH09220460 A JP H09220460A
Authority
JP
Japan
Prior art keywords
fine powder
cooling
cooling granulation
fluidized bed
cold air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8328882A
Other languages
Japanese (ja)
Inventor
Kenji Nakamura
健二 中村
Hiroshi Ashida
弘 芦田
Mitsunori Tanabe
光徳 田辺
Takashi Ito
崇 伊藤
Toshimoto Koganei
稔元 小金井
Tetsuo Yokoyama
哲夫 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OGAWARA KAKOKI KK
OOGAWARA KAKOKI KK
Takeda Pharmaceutical Co Ltd
Original Assignee
OGAWARA KAKOKI KK
OOGAWARA KAKOKI KK
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OGAWARA KAKOKI KK, OOGAWARA KAKOKI KK, Takeda Chemical Industries Ltd filed Critical OGAWARA KAKOKI KK
Priority to JP8328882A priority Critical patent/JPH09220460A/en
Publication of JPH09220460A publication Critical patent/JPH09220460A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce granulated powder in spherical particles and having fine powder only on the surface by adopting a rotary disc system or a nozzle system as an atomizing means for a raw material to introduce a warm wind to the peripheral part of the rotary disc or the nozzle and exhausting it from the upper part of equipment or the side part of equipment. SOLUTION: In the upper part of a cooling and granulating chamber 10, an atomizing means 11 of rotary disc type for a raw material A is installed. When the raw material A is atomized in the radial direction by the atomizing means 11, a warm wind C is introduced from the peripheral part of the atomizing means 11 by a warm wind introducing means 12 to heighten the temperature of the peripheral part of the atomizing means 11. Then, the temperature of the peripheral part of the atomizing means 11 is heightened to restrain the gelation velocity of the atomized liquid, allowing spherical liquid droplets to be formed. The spherical liquid droplets come into contact with fine particles 2 and fine particles 14 to form granulated powder in spherical particles only whose surface is dusted with fine powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、食品、飼料、医薬
品などの成分を含む冷却によりゲル化する物質を加温す
ることにより液状物質として噴霧し、冷風により冷却し
てゲル化を促進させるとともに、ゲル状微粒子の表面に
所定の微粉をまぶして(付着させて)装置壁面への付着
を防止して、ハンドリング容易な顆粒を得ることができ
る冷却造粒方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material containing ingredients such as foods, feeds and pharmaceuticals, which is gelled by cooling, is sprayed as a liquid material by heating, and is cooled by cold air to accelerate gelation. The present invention relates to a cooling granulation method and apparatus capable of sprinkling (adhering) predetermined fine powder on the surface of gel-like fine particles to prevent the fine particles from adhering to the wall surface of the apparatus and obtaining granules that are easy to handle.

【0002】[0002]

【従来の技術】従来、図8に示すような冷却造粒装置が
知られている。この装置においては、冷却によりゲル化
する物質を加温して液状とした原液Aを噴霧盤1により
噴霧微粒化するとともに、装置下部から導入される冷風
Bにより噴霧液を冷却してゲル状微粒子(顆粒)とし、
このゲル状微粒子と装置下部で冷風Bにより流動化して
いるデンプン、シリカ等の微粉2とが接触して、ゲル状
微粒子に微粉が付着した顆粒状製品が製造されている
(特公昭45−10958号公報、特公平4−2868
4号公報及び特表昭64−500197号公報等を参
照)。
2. Description of the Related Art Conventionally, a cooling granulating apparatus as shown in FIG. 8 has been known. In this apparatus, a stock solution A which is made into a liquid by heating a substance which is gelated by cooling is atomized by a spray disc 1, and the spray liquid is cooled by a cold air B introduced from the lower part of the apparatus to form gel fine particles. (Granule),
The gel-like fine particles and the fine powder 2 such as starch and silica fluidized by the cold air B in the lower part of the apparatus are brought into contact with each other to produce a granular product in which the fine powder is attached to the gel-like fine particles (Japanese Patent Publication No. 45-10958). Publication, Japanese Patent Publication No. 4-2868
No. 4 and Special Table Sho 64-500197, etc.).

【0003】しかしながら、図8の装置においては、冷
却によりゲル化する物質を加温し液状物質として噴霧微
粒化する際、噴霧液滴の流れによって気流が発生し、周
辺の冷却空気を巻き込むため、噴霧盤1の噴霧部分およ
び噴霧液が冷却されて、液粘度が上昇し、噴霧微粒化が
困難となるほか、図9のような繊維状物などの不定形物
が発生することがあった。また、原液を高温にすると、
顆粒のゲル化が不十分な内に顆粒が微粉と接触するため
に、図10に示すように、顆粒5の表面ばかりでなく、
内部にも微粉2が入り込み、生成される顆粒のうち、微
粉量が多くなって主成分の含有量が低下するという問題
があった。
However, in the apparatus shown in FIG. 8, when a substance that gels by cooling is heated and atomized into a liquid substance, an air flow is generated by the flow of spray droplets and the surrounding cooling air is involved. The sprayed portion of the spraying disc 1 and the sprayed liquid are cooled, the liquid viscosity increases, and it becomes difficult to atomize the sprayed particles. In addition, irregular shaped objects such as fibrous materials as shown in FIG. 9 sometimes occur. Also, when the stock solution is heated to a high temperature,
Since the granules come into contact with the fine powder while the gelation of the granules is insufficient, as shown in FIG.
There is a problem that the fine powder 2 also enters the inside, and the amount of fine powder in the produced granules is increased to lower the content of the main component.

【0004】上記の問題を解決するため、装置内に供給
する微粉の量を少なくすると、顆粒表面における粘着状
態が残り、装置壁面に未固化物が付着するという問題が
発生する。特に、噴霧微粒化手段として回転円盤を使用
した噴霧方式では、遠心力を利用して原液を噴霧微粒化
するため、回転円盤から半径方向に液滴が飛散し、微粉
の希薄な部分を通過する。従って、図8に示すように、
回転円盤の周辺の装置壁面に帯状に大量の付着生成物3
が発生した。
In order to solve the above-mentioned problems, if the amount of fine powder supplied into the apparatus is reduced, a sticky state remains on the surface of the granules, causing a problem that unsolidified matter adheres to the wall surface of the apparatus. In particular, in the spraying method using a rotating disk as the spray atomizing means, since the stock solution is atomized and atomized by using centrifugal force, droplets are scattered in the radial direction from the rotating disk and pass through a thin portion of fine powder. . Therefore, as shown in FIG.
A large amount of adhering products in the form of strips on the device wall around the rotating disk 3
There has occurred.

【0005】このように、回転円盤による噴霧方式では
液滴が微粉と接触する機会が少なく、顆粒全表面に均一
に微粉をまぶすことが困難であり、また、回転円盤の周
辺の装置壁面への付着を避けるためには、装置の直径が
大きいものが必要となるという問題がある。
As described above, in the spraying method using the rotating disk, there is little chance that the liquid droplets come into contact with the fine powder, and it is difficult to evenly apply the fine powder to the entire surface of the granule. There is a problem in that a device having a large diameter is required to avoid the adhesion.

【0006】また、図8に示すような従来の冷却造粒装
置においては、冷却用空気と流動用空気とを兼用してい
るため、噴霧液滴の冷却・ゲル化と微粉の流動のために
最適な空気の量および空気温度の範囲が小さく、その範
囲を選定することが困難であるという問題が生じる。さ
らに、図8に示す従来の装置においては、装置下部に設
けた流動層に大量の微粉2をため、大量の冷風Bにより
微粉2の流動化を行なっているが、この方式の装置で
は、原液使用量に対して過剰の微粉が必要であり、送風
機、排風機、冷凍機などの設備が大型化するという問題
が生じる。
Further, in the conventional cooling granulating apparatus as shown in FIG. 8, since the cooling air and the flowing air are both used, the cooling and gelling of the sprayed droplets and the flow of the fine powder are performed. There is a problem that the optimum amount of air and the range of the air temperature are small, and it is difficult to select the range. Further, in the conventional apparatus shown in FIG. 8, a large amount of the fine powder 2 is accumulated in the fluidized bed provided at the lower portion of the apparatus, so that the fine powder 2 is fluidized by a large amount of the cold air B. An excessive amount of fine powder is required with respect to the amount used, which causes a problem that equipment such as a blower, an exhaust fan, and a refrigerator becomes large.

【0007】[0007]

【発明が解決しようとする課題】したがって、本発明は
上記した従来の課題に鑑みてなされたものであり、顆粒
形状が球形で、表面にのみ微粉が付着された顆粒を製造
することができるとともに、冷却造粒用ガスの量・温度
のコントロール範囲が大きくかつ容易である冷却造粒方
法と装置を提供することを目的とするものである。
Therefore, the present invention has been made in view of the above-mentioned conventional problems, and it is possible to produce granules having a spherical shape and having fine powder adhered only on the surface thereof. An object of the present invention is to provide a cooling granulation method and apparatus in which the control range of the amount and temperature of the cooling granulation gas is large and easy.

【0008】[0008]

【課題を解決するための手段】すなわち、本発明によれ
ば、冷却によりゲル化する物質を加温して液状とした原
液を噴霧微粒化するとともに、装置下部に噴霧微粒子よ
りさらに微細な微粉からなる流動層を形成し、装置下部
から該流動層を介して導入される冷風により噴霧液を冷
却してゲル状微粒子とし、このゲル状微粒子が該流動層
の微粉と接触して、ゲル状微粒子に微粉が付着した顆粒
状製品を製造する冷却造粒方法であって、前記原液の噴
霧微粒化手段として回転円盤方式又はノズル方式を採用
するとともに、前記回転円盤又はノズルの周辺部に温風
を導入し、かつ、装置上部または装置側部から排気する
ことを特徴とする冷却造粒方法、が提供される。
That is, according to the present invention, a stock solution which is liquefied by heating a substance that gels by cooling is atomized into fine particles, and fine powder finer than fine particles is sprayed in the lower part of the apparatus. A fluidized bed is formed, and the spray liquid is cooled from the lower part of the apparatus by cold air introduced into the fluidized bed to form fine gel particles, and the fine gel particles come into contact with the fine powder in the fluidized bed to form fine gel particles. A cooling granulation method for producing a granular product in which fine powder is adhered to, while adopting a rotating disk method or a nozzle method as a spray atomizing means for the stock solution, and applying hot air to the peripheral portion of the rotating disk or nozzle. Provided is a cooling granulation method, which comprises introducing and evacuating from an upper part or a side part of the device.

【0009】また本発明によれば、冷却造粒室と、該冷
却造粒室の上部に設置された回転円盤方式又はノズル方
式の噴霧微粒化手段と、該噴霧微粒化手段の周辺部に温
風を導入する温風導入手段と、該冷却造粒室の下部に形
成された、冷風により微粉を流動化している流動層と、
を備えたことを特徴とする冷却造粒装置、が提供され
る。
According to the present invention, the cooling granulation chamber, the atomizing atomizing means of the rotary disc type or the nozzle type installed on the upper part of the cooling granulating chamber, and the peripheral portion of the atomizing atomizing means are heated. A warm air introduction means for introducing air, and a fluidized bed formed in the lower part of the cooling granulation chamber, which fluidizes the fine powder with cold air,
There is provided a cooling granulating device, comprising:

【0010】本発明においては、噴霧微粒化手段の周辺
部に導入する温風が、原液のゲル化温度以上の温度を有
することが、噴霧液の好適な冷却ゲル化の点から好まし
い。また、流動層の流動化用冷風に加えて、更に装置下
部より噴霧液の冷却用冷風を導入することが、噴霧液の
冷却ゲル化を最適にする冷風量、冷風温度のコントロー
ル範囲が大きくなり、そのため、コントロールを容易に
行なうことが可能となり、好ましい。さらに、装置壁面
部の微粉濃度が高くなるように、外部より微粉を装置内
に導入することが好ましい。又、この場合は装置を小型
化することができる。
In the present invention, it is preferable that the hot air introduced into the peripheral portion of the spray atomizing means has a temperature equal to or higher than the gelling temperature of the stock solution, from the viewpoint of suitable cooling and gelling of the spray solution. In addition to the cold air for fluidizing the fluidized bed, introducing cold air for cooling the spray liquid from the lower part of the device increases the control range of the cool air amount and the cool air temperature that optimize the cooling gelation of the spray liquid. Therefore, it is preferable because control can be easily performed. Further, it is preferable to introduce fine powder into the device from the outside so that the fine powder concentration on the wall surface of the device becomes high. Further, in this case, the device can be downsized.

【0011】また、冷却造粒室の下部に形成された流動
層の流動化風速を増大させることにより、流動層の微粉
を吹き飛ばし、微粉より粒径の大きな顆粒を残す粗分級
手段と、粗分級手段で粗分級され残った顆粒を熱風によ
り乾燥する乾燥手段を備えることにより、同一装置にお
いて、顆粒の粗分級および乾燥を行なうことができ、好
ましい。さらに、装置上部又は装置側部からの排気を、
循環手段により循環使用することもできる。
Further, by increasing the fluidizing air velocity of the fluidized bed formed in the lower part of the cooling granulation chamber, the fine powder in the fluidized bed is blown away, and a coarse classification means for leaving granules having a larger particle size than the fine powder, and a coarse classification. It is preferable that the granules are roughly classified and dried in the same apparatus by providing a drying means for drying the remaining granules roughly classified by the means with hot air. In addition, exhaust from the top or side of the device,
It can also be circulated and used by a circulation means.

【0012】[0012]

【発明の実施の形態】本発明では、原液の噴霧微粒化手
段として回転円盤方式又はノズル方式を採用し、回転円
盤又はノズルの周辺部に温風を導入し、かつ、装置上部
または装置側部から排気している。このため、装置内の
温度分布として、図2に示すように、噴霧微粒化部分の
温度が高くなって原液のゲル化速度が抑制されることに
より、表面張力で球形の液滴が形成され、この球形の液
滴が冷風および微粉と接触して、図3のような微粉が表
面のみに付着した球形の顆粒状製品を生成させる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a rotating disk system or a nozzle system is adopted as a spray atomizing means for a stock solution, hot air is introduced into the peripheral part of the rotating disk or nozzle, and the upper part of the device or the side part of the device. Exhausted from. Therefore, as the temperature distribution in the apparatus, as shown in FIG. 2, the temperature of the spray atomization portion becomes high and the gelation rate of the stock solution is suppressed, so that spherical droplets are formed by surface tension, The spherical droplets come into contact with cold air and fine powder to generate a spherical granular product in which the fine powder adheres only to the surface as shown in FIG.

【0013】図1は、本発明に係る冷却造粒装置の一例
を示す説明図であり、10は冷却造粒室であり、冷却造
粒室10の上部には、回転円盤方式の原液Aの噴霧微粒
化手段11が設置されている。噴霧微粒化手段11の周
辺部には温風Cを導入する温風導入手段12が設けら
れ、また、冷却造粒室10の下部には、冷風Bにより多
孔板21上で微粉2を流動化している流動層13が形成
されている。
FIG. 1 is an explanatory view showing an example of a cooling granulation apparatus according to the present invention, 10 is a cooling granulation chamber, and an upper part of the cooling granulation chamber 10 is a stock solution A of a rotating disk system. A spray atomization means 11 is installed. A warm air introducing means 12 for introducing a warm air C is provided in the peripheral portion of the atomizing and atomizing means 11, and in the lower part of the cooling granulating chamber 10, the fine powder 2 is fluidized on the perforated plate 21 by the cold air B. A fluidized bed 13 is formed.

【0014】冷却造粒室10の側部には、流動層13で
流動化している微粉2とは別の微粉14を冷却造粒室1
0内に導入する微粉導入手段15が設けられている。ま
た、冷却造粒室10の頂部には排気口16が設けられて
おり、少量の微粉を同伴した排風が排出され、サイクロ
ン17により固気分離されて、微粉は冷却造粒室10の
側部18から再び導入され、一方気体はバグフィルター
19、排気ブロワ20を介して外気に排出される。
On the side of the cooling granulation chamber 10, a fine powder 14 different from the fine powder 2 fluidized in the fluidized bed 13 is provided.
There is provided a fine powder introducing means 15 for introducing the fine powder. Further, an exhaust port 16 is provided at the top of the cooling granulation chamber 10, the exhaust air accompanied with a small amount of fine powder is discharged, and solid particles are separated by a cyclone 17, and the fine powder is on the side of the cooling granulation chamber 10. The gas is reintroduced from the section 18, while the gas is discharged to the outside air through the bag filter 19 and the exhaust blower 20.

【0015】原液Aが噴霧微粒化手段11により半径方
向に噴霧されると、噴霧微粒化手段11の周辺部から温
風導入手段12により温風Cが導入され、噴霧微粒化手
段11の周辺部の温度を高くする。そうすると、図2に
示すように、噴霧微粒化手段11の周辺部の温度が高く
なって噴霧液のゲル化速度が抑制されることにより、球
形の液滴が形成され、この球形の液滴が冷風Bおよび微
粉2、微粉14と接触して、表面にのみ微粉がまぶされ
た球形の顆粒状物が生成する。
When the stock solution A is sprayed in the radial direction by the spray atomizing means 11, warm air C is introduced from the peripheral part of the spray atomizing means 11 by the hot air introducing means 12, and the peripheral part of the spray atomizing means 11 is introduced. Raise the temperature of. Then, as shown in FIG. 2, the temperature of the peripheral portion of the spray atomizing means 11 rises and the gelation rate of the spray liquid is suppressed, whereby spherical droplets are formed, and the spherical droplets are formed. In contact with the cold air B and the fine powder 2 and the fine powder 14, a spherical granular material in which the fine powder is sprinkled only on the surface is generated.

【0016】生成した球形の顆粒状物は、次いで粗分級
および乾燥される。粗分級は、顆粒状物(粒径100〜
500μm程度)と流動層13の微粉(粒径10〜50
μm程度)との終末沈降速度の差(粒度の違いによる)
を利用するものであり、流動層13に吹き込む冷風の流
動化風速を増大することにより、微粉を吹き飛ばし、層
内に微粉より粒径の大きな顆粒状物のみを残す粗分級を
行なう。粗分級後、流動層13の流動化用冷風の代りに
熱風を導入して、顆粒状物の乾燥を行なう。次に、これ
を篩などの分級手段26を通過させることにより、製品
とされる。
The spherical granules produced are then coarsely classified and dried. Coarse classification is a granular material (particle size 100-
500 μm) and fine powder of the fluidized bed 13 (particle size 10 to 50)
difference in terminal sedimentation velocity (due to differences in particle size)
By increasing the fluidizing air velocity of the cold air blown into the fluidized bed 13, fine powder is blown away, and coarse classification is performed in which only granular material having a particle size larger than that of the fine powder is left in the bed. After the coarse classification, hot air is introduced in place of the cold fluidizing air of the fluidized bed 13 to dry the granular material. Next, this is passed through a classifying means 26 such as a sieve to obtain a product.

【0017】本発明においては、図2に示すように、温
風C、冷風Bともに旋回流で導入し、噴霧微粒化手段1
1の周辺部分の温度が高く、さらにその周辺部分及び下
方部(底部)の温度は低くなるように、装置(冷却造粒
室)10内の温度分布をもたせる。さらに本発明では、
微粉が装置(冷却造粒室)10の壁面部分において高濃
度となるように、外部より微粉14を冷却造粒室10内
に導入し、原液Aの噴霧微粒化手段11の周辺部分は微
粉2、14が希薄な雰囲気となり、噴霧された液滴がゲ
ル化がある程度進んだ状態で微粉2、14と接触するよ
うにした。このため、液滴が装置壁面に付着することな
く、ゲル状微粒子(顆粒)の表面にほぼ一層で微粉が付
着することができ、得られる顆粒状製品の主成分の含有
率を高くすることができ、しかも微粉の消費量を少なく
することができる。
In the present invention, as shown in FIG. 2, both the warm air C and the cold air B are introduced in a swirling flow, and the spray atomization means 1 is used.
The temperature distribution in the apparatus (cooling granulation chamber) 10 is set such that the temperature of the peripheral portion of 1 is high and the temperatures of the peripheral portion and the lower portion (bottom portion) thereof are low. Further, in the present invention,
The fine powder 14 is introduced into the cooling granulation chamber 10 from the outside so that the fine powder has a high concentration in the wall surface portion of the apparatus (cooling granulation chamber) 10, and the peripheral portion of the spray atomization means 11 of the stock solution A is the fine powder 2 , 14 became a dilute atmosphere, and the sprayed droplets were brought into contact with the fine powders 2, 14 in a state where gelation proceeded to some extent. For this reason, the fine particles can be attached to the surface of the gel-like fine particles (granules) almost in one layer without the droplets adhering to the wall surface of the apparatus, and the content rate of the main component of the obtained granular product can be increased. In addition, the consumption of fine powder can be reduced.

【0018】微粉14の供給方式としては、図4に示す
ように、空円錐状の噴霧パターンをもつ粉体ノズル22
を使用する場合、あるいは、図5に示すように、冷却造
粒室10の円錐部23または直胴部24から接線方向に
供給する手法などが、好ましいものとして挙げられる。
As a method of supplying the fine powder 14, as shown in FIG. 4, a powder nozzle 22 having an empty cone spray pattern.
5, or a method of supplying in a tangential direction from the conical portion 23 or the straight body portion 24 of the cooling granulation chamber 10 as shown in FIG. 5 is preferable.

【0019】本発明の冷却造粒装置において、下部に形
成する流動層13の構造としては、図6のように、多孔
板21の下部から副冷風Fを導入して微粉2を流動化し
流動層13を形成するとともに、多孔板21を貫通して
主冷風Eの供給管25を設け、供給管25の冷風吹出し
部の上方に傘部材27を設けた構造、あるいは、図7に
示すように、流動層13の上部に旋回スリット28を設
置して旋回流を起こす構造が望ましい。図6〜7のよう
に、流動層部分を従来より小さく形成し、しかも冷風吹
出速度を最小流動化風速以上、好ましくは10倍以上と
し、冷風吹出し部が旋回流を起こす構造とすると、微粉
が冷却造粒室10の壁面において高濃度となり、好まし
い。
In the cooling granulating apparatus of the present invention, as a structure of the fluidized bed 13 formed in the lower part, as shown in FIG. 6, the sub-cooled air F is introduced from the lower part of the perforated plate 21 to fluidize the fine powder 2 and fluidized bed. 13 is formed, a supply pipe 25 for the main cold air E is provided through the perforated plate 21, and a umbrella member 27 is provided above the cold air blowout portion of the supply pipe 25, or, as shown in FIG. 7, A structure in which a swirl slit 28 is installed above the fluidized bed 13 to generate a swirl flow is desirable. As shown in FIGS. 6 to 7, if the fluidized bed portion is formed smaller than the conventional one, and the cold air blowing speed is set to be the minimum fluidizing air speed or more, preferably 10 times or more, and the cold air blowing portion has a structure that causes a swirling flow, fine powder is generated. The concentration becomes high on the wall surface of the cooling granulation chamber 10, which is preferable.

【0020】本発明で用いる冷却によりゲル化する物質
の例としては、ゼラチン、カゼインなどのたんぱく質、
アラビアゴム、セルロース化合物、デキストリン、多糖
類、ポリビニルアルコール(PVA)、ヒドロキシプロ
ピルセルロース(HPC)などの高分子化合物を挙げる
ことができる。また、ゲル化物質に分散させる物質の例
としては、ビタミンC、ビタミンB1、ビタミンB6な
どの水溶性ビタミン類、ビタミンA、ビタミンD、ビタ
ミンEなどの脂溶性ビタミン類、精油、食品、飼料、医
薬品、農薬、色素などを挙げることができる。
Examples of the substance which gels upon cooling used in the present invention include proteins such as gelatin and casein,
Polymeric compounds such as gum arabic, cellulose compounds, dextrins, polysaccharides, polyvinyl alcohol (PVA), hydroxypropyl cellulose (HPC) and the like can be mentioned. Examples of the substance dispersed in the gelling substance include water-soluble vitamins such as vitamin C, vitamin B1 and vitamin B6, fat-soluble vitamins such as vitamin A, vitamin D and vitamin E, essential oils, foods, feeds, Pharmaceuticals, agricultural chemicals, pigments, etc. can be mentioned.

【0021】ゲル状微粒子の表面に付着する微粉として
は、シリカ、ケイ酸ソーダ、ケイ酸カルシウム、カーボ
ン、タルク、アルミナ、デンプンなどを挙げることがで
きる。ゲル状微粒子の表面に付着する量は最小量で、で
きるだけゲル状微粒子の表面に一層の付着となることが
望ましく、そのためには、微粉の分散性、流動性がよ
く、粒度が細かいこと、例えばゲル状微粒子の1/10
以下の粒径であることが望ましい。
Examples of the fine powder adhering to the surface of the gelled fine particles include silica, sodium silicate, calcium silicate, carbon, talc, alumina and starch. The amount adhered to the surface of the gel particles is the minimum amount, and it is desirable that the gel particles further adhere to the surface of the gel particles as much as possible. For that purpose, dispersibility of fine powder, good fluidity, and fine particle size, for example, 1/10 of gel-like particles
The following particle sizes are desirable.

【0022】本発明において、微粉の流動化、噴霧液の
冷却に用いる冷風、あるいは噴霧微粒化手段の周辺部に
導入する温風としては、空気のほか、窒素ガス、炭酸ガ
ス、アルゴンガス、ヘリウムガスなどを使用することが
できる。また、装置(冷却造粒室)からの排気を、図1
に示すように、サイクロン17、バグフィルタ19、排
気ブロワ20、冷凍機29あるいはヒータ30などを介
して、冷風または温風として循環使用することもでき
る。
In the present invention, cold air used for fluidizing the fine powder, cooling the spray liquid, or hot air introduced into the peripheral portion of the spray atomizing means may be air, nitrogen gas, carbon dioxide gas, argon gas, or helium. Gas or the like can be used. In addition, the exhaust from the device (cooling granulation chamber) is shown in FIG.
As shown in FIG. 5, it can be circulated and used as cold air or hot air through the cyclone 17, the bag filter 19, the exhaust blower 20, the refrigerator 29, the heater 30, and the like.

【0023】冷風または温風の温度は、原液のゲル化温
度との関係で決定されるが、温風の温度としては原液の
ゲル化温度以上の温度が好ましく、例えば、原液のゲル
化温度が40℃の場合、温風温度は40〜110℃が好
ましく、40〜90℃がさらに好ましい。また、冷風温
度は−5〜30℃が好ましく、5〜20℃がさらに好ま
しい。
The temperature of the cold air or the warm air is determined in relation to the gelling temperature of the stock solution, but the temperature of the hot air is preferably a temperature above the gelling temperature of the stock solution, for example, the gelling temperature of the stock solution. In the case of 40 ° C, the warm air temperature is preferably 40 to 110 ° C, more preferably 40 to 90 ° C. The cold air temperature is preferably -5 to 30 ° C, more preferably 5 to 20 ° C.

【0024】[0024]

【実施例】以下、本発明を実施例に基づいて更に詳しく
説明するが、本発明はこれらの実施例に限定されるもの
ではない。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to these examples.

【0025】(実施例1)水259重量部に攪拌しなが
らゼラチン57重量部を加え、1時間膨潤させた。これ
にあらかじめ65℃で溶融させたビタミンAアセテート
52重量部(2.8×106 国際単位/g)とエトキシ
キン10重量部、さらにグリセリン17重量部を混合
し、60〜65℃で乳化した。噴霧微粒化手段として選
んだ回転円盤の周辺部に温風を60℃で導入し、回転数
を5000rpmに調整した。冷却造粒室の下部から、
循環再使用する装置からの冷排気を入れ、冷却造粒室内
の温度が10〜15℃になるように調整した。
Example 1 57 parts by weight of gelatin was added to 259 parts by weight of water while stirring and swelled for 1 hour. 52 parts by weight of vitamin A acetate (2.8 × 10 6 international units / g) which had been melted at 65 ° C. in advance, 10 parts by weight of ethoxyquin and 17 parts by weight of glycerin were mixed and emulsified at 60 to 65 ° C. Hot air was introduced at 60 ° C. into the peripheral portion of the rotating disk selected as the atomizing means for atomization, and the rotation speed was adjusted to 5000 rpm. From the bottom of the cooling granulation chamber,
Cold exhaust from a device for circulation and reuse was put in, and the temperature in the cooling granulation chamber was adjusted to 10 to 15 ° C.

【0026】以上において、上記の乳化液を回転円盤に
て噴霧した。噴霧中、同時に、冷却造粒室の円錐部から
とうもろこし澱粉を冷却造粒室内壁部の澱粉濃度が濃く
なるように接線方向に導入した。予定量の乳化液を噴霧
後、冷却造粒室の下部からの冷風量を多くすることによ
り、得た顆粒と微粉とを粗分級した後、冷風からヒータ
ーにより80〜90℃に加熱された熱風に切替え乾燥を
行なった。乾燥された少量の微粉と顆粒とを装置から取
り出し、ふるいにより微粉と顆粒とを精密に分級した。
得られた顆粒は平均粒子径が237μmの自由流動性の
球形顆粒であり、ビタミンA含量が793000国際単
位/gであった。
In the above, the above emulsion was sprayed on a rotating disk. During the spraying, at the same time, corn starch was introduced tangentially from the conical portion of the cooling granulation chamber so that the starch concentration on the inner wall of the cooling granulation chamber became thick. After spraying a predetermined amount of emulsion and increasing the amount of cold air from the lower part of the cooling granulation chamber, the obtained granules and fine powder are roughly classified, and then hot air heated to 80 to 90 ° C by a heater from cold air. And was dried. A small amount of the dried fine powder and granules was taken out from the apparatus, and the fine powder and granules were precisely classified by a sieve.
The obtained granules were free-flowing spherical granules having an average particle diameter of 237 μm and had a vitamin A content of 793,000 international units / g.

【0027】(実施例2)水360重量部に攪拌しなが
らゼラチン75重量部を加えて1時間膨潤させ、さら
に、デキストリン67重量部を加え、これにあらかじめ
65℃で溶融させたビタミンAアセテート52重量部
(2.8×106 国際単位/g)とdl−α−トコフェ
ノール2重量部を混合し、60〜65℃で乳化した。こ
の乳化液から、実施例1と同操作にて顆粒を得た。得ら
れた顆粒は、平均粒子径が240μmの自由流動性の球
形顆粒であり、ビタミンA含量が530000国際単位
/gであった。
EXAMPLE 2 75 parts by weight of gelatin was added to 360 parts by weight of water with stirring to swell for 1 hour, 67 parts by weight of dextrin was further added, and vitamin A acetate 52 was melted at 65 ° C. in advance. Parts by weight (2.8 × 10 6 international units / g) and 2 parts by weight of dl-α-tocophenol were mixed and emulsified at 60 to 65 ° C. Granules were obtained from this emulsion by the same procedure as in Example 1. The obtained granules were free-flowing spherical granules having an average particle diameter of 240 μm and had a vitamin A content of 530000 international units / g.

【0028】(比較例1)回転円盤の周辺部に温風を導
入せずに、冷却造粒室内の温度が10〜15℃になるよ
うに調整後、実施例1と同組成の乳化液を回転円盤の回
転数を5000rpmとして噴霧したが、繊維状の不定
形物が発生し、噴霧不可となった。
(Comparative Example 1) The temperature in the cooling granulation chamber was adjusted to 10 to 15 ° C without introducing hot air into the peripheral portion of the rotating disk, and then an emulsion having the same composition as in Example 1 was used. When spraying was carried out with the rotation speed of the rotating disk set at 5000 rpm, a fibrous amorphous product was generated and spraying was impossible.

【0029】(実施例3)大豆硬化油450重量部を8
0℃で溶融し、これに親油性界面活性剤を50重量部
と、さらにL−アスコルビン酸550重量部を混合し、
80℃で乳化した。この乳化液から公知の噴霧造粒法に
て油脂被覆粒子を得た。次に、水475重量部に攪拌し
ながらゼラチン25重量部を加え50℃で溶解した、ゼ
ラチン溶液中にさらに上記の油脂被覆粒子100重量部
を分散した。この分散液から、実施例1と同操作にて水
溶性ビタミン顆粒を得た。得られた顆粒は平均粒子径が
280μmの自由流動性の球形顆粒であり、L−アスコ
ルビン酸含量が20%であった。
(Example 3) 8 parts by weight of 450 parts by weight of soybean hydrogenated oil
Melt at 0 ° C., mix with 50 parts by weight of a lipophilic surfactant, and further mix 550 parts by weight of L-ascorbic acid,
It was emulsified at 80 ° C. Oil-and-fat coated particles were obtained from this emulsion by a known spray granulation method. Next, 25 parts by weight of gelatin was added to 475 parts by weight of water with stirring and dissolved at 50 ° C. Further, 100 parts by weight of the above oil-and-fat coated particles were dispersed in a gelatin solution. Water-soluble vitamin granules were obtained from this dispersion by the same procedure as in Example 1. The obtained granules were free-flowing spherical granules having an average particle diameter of 280 μm, and the L-ascorbic acid content was 20%.

【0030】(実施例4)大豆硬化油450重量部を8
0℃で溶融し、これに親油性界面活性剤を50重量部
と、さらに硝酸チアミン550重量部を混合し、80℃
で乳化した。この乳化液から公知の噴霧造粒法にて油脂
被覆粒子を得た。次に、水475重量部に攪拌しながら
ゼラチン25重量部を加え50℃で溶解した、ゼラチン
溶液中にさらに上記の粒子100重量部を分散した。こ
の分散液から、実施例1と同操作にて水溶性ビタミン顆
粒を得た。得られた顆粒は平均粒子径が270μmの自
由流動性の球形顆粒であり、硝酸チアミン含量が30%
であった。
Example 4 8 parts by weight of 450 parts by weight of soybean hydrogenated oil
Melt at 0 ° C, mix with 50 parts by weight of lipophilic surfactant and 550 parts by weight of thiamine nitrate and mix at 80 ° C.
And emulsified. Oil-and-fat coated particles were obtained from this emulsion by a known spray granulation method. Next, 25 parts by weight of gelatin was added to 475 parts by weight of water with stirring and dissolved at 50 ° C. Further, 100 parts by weight of the above particles were dispersed in a gelatin solution. Water-soluble vitamin granules were obtained from this dispersion by the same procedure as in Example 1. The obtained granules are free-flowing spherical granules having an average particle size of 270 μm and a thiamine nitrate content of 30%.
Met.

【0031】(実施例5)大豆硬化油450重量部を8
0℃で溶融し、これに親油性界面活性剤を50重量部
と、さらに塩酸ピリドキシン550重量部を混合し、8
0℃で乳化した。この乳化液から公知の噴霧造粒法にて
油脂被覆粒子を得た。次に、水475重量部に攪拌しな
がらゼラチン25重量部を加え50℃で溶解した、ゼラ
チン溶液中にさらに上記の粒子100重量部を分散し
た。この分散液から、実施例1と同操作にて水溶性ビタ
ミン顆粒を得た。得られた顆粒は平均粒子径が270μ
mの自由流動性の球形顆粒であり、塩酸ピリドキシン含
量が30%であった。
(Example 5) 8 parts by weight of 450 parts by weight of soybean hydrogenated oil
Melt at 0 ° C., mix with 50 parts by weight of lipophilic surfactant and 550 parts by weight of pyridoxine hydrochloride,
Emulsified at 0 ° C. Oil-and-fat coated particles were obtained from this emulsion by a known spray granulation method. Next, 25 parts by weight of gelatin was added to 475 parts by weight of water with stirring and dissolved at 50 ° C. Further, 100 parts by weight of the above particles were dispersed in a gelatin solution. Water-soluble vitamin granules were obtained from this dispersion by the same procedure as in Example 1. The obtained granules have an average particle size of 270μ.
m free-flowing spherical granules with a pyridoxine hydrochloride content of 30%.

【0032】(比較例2)大豆硬化油450重量部を8
0℃で溶融し、これに親油性界面活性剤を50重量部
と、さらにL−アスコルビン酸550重量部を混合し、
80℃で乳化した。この乳化液から公知の噴霧造粒法に
て油脂被覆粒子を得た。
Comparative Example 2 450 parts by weight of soybean hydrogenated oil was added to 8 parts.
Melt at 0 ° C., mix with 50 parts by weight of a lipophilic surfactant, and further mix 550 parts by weight of L-ascorbic acid,
It was emulsified at 80 ° C. Oil-and-fat coated particles were obtained from this emulsion by a known spray granulation method.

【0033】(比較例3)大豆硬化油450重量部を8
0℃で溶融し、これに親油性界面活性剤を50重量部
と、さらに硝酸チアミン550重量部を混合し、80℃
で乳化した。この乳化液から公知の噴霧造粒法にて油脂
被覆粒子を得た。
Comparative Example 3 450 parts by weight of hydrogenated soybean oil was added to 8 parts.
Melt at 0 ° C, mix with 50 parts by weight of lipophilic surfactant and 550 parts by weight of thiamine nitrate and mix at 80 ° C.
And emulsified. Oil-and-fat coated particles were obtained from this emulsion by a known spray granulation method.

【0034】(比較例4)大豆硬化油450重量部を8
0℃で溶融し、これに親油性界面活性剤を50重量部
と、さらに塩酸ピリドキシン550重量部を混合し、8
0℃で乳化した。この乳化液から公知の噴霧造粒法にて
油脂被覆粒子を得た。
Comparative Example 4 450 parts by weight of soybean hydrogenated oil was added to 8 parts.
Melt at 0 ° C., mix with 50 parts by weight of lipophilic surfactant and 550 parts by weight of pyridoxine hydrochloride,
Emulsified at 0 ° C. Oil-and-fat coated particles were obtained from this emulsion by a known spray granulation method.

【0035】(試験例1)実施例3〜5で得られた水溶
性ビタミン顆粒と比較例2〜4で得られた油脂被覆粒子
について圧縮試験を実施した。試験はオートグラフ(島
津オートグラフ AG−5000型)に水溶性ビタミン
顆粒又は油脂被覆粒子を約30g量り込み、上面に1.
7Kg/cm2の荷重を加え、5分間維持する方法にて
実施した。その結果を表1に示す。
Test Example 1 A compression test was carried out on the water-soluble vitamin granules obtained in Examples 3 to 5 and the oil-and-fat coated particles obtained in Comparative Examples 2 to 4. In the test, about 30 g of water-soluble vitamin granules or oil-coated particles were weighed into an autograph (Shimadzu Autograph AG-5000 type), and 1.
It was carried out by a method of applying a load of 7 kg / cm 2 and maintaining it for 5 minutes. Table 1 shows the results.

【0036】[0036]

【表1】 [Table 1]

【0037】(試験例2)実施例4〜5で得られた水溶
性ビタミン顆粒について、官能試験を実施した。試験は
実施例で得られた顆粒については50mg(硝酸チアミ
ン、塩酸ピリドキシンとも含量は30%)、対照として
選んだ硝酸チアミン(日本薬局方)および塩酸ピリドキ
シン(日本薬局方)については15mgを口中に10秒
間含んだ後、水100mlとともに服用する方法で実施
し、この時の苦み(硝酸チアミン)、収斂味(塩酸ピリ
ドキシン)の程度を±〜++で表した。その結果を表2
に示す。
Test Example 2 Sensory tests were conducted on the water-soluble vitamin granules obtained in Examples 4-5. In the test, 50 mg of the granules obtained in the examples (thiamin nitrate and pyridoxine hydrochloride content were 30%), and 15 mg of thiamine nitrate (Japanese Pharmacopoeia) and pyridoxine hydrochloride (Japanese Pharmacopoeia) selected as controls were taken in the mouth. After containing for 10 seconds, it was taken with 100 ml of water, and the degree of bitterness (thiamine nitrate) and astringency (pyridoxine hydrochloride) at this time was expressed as ± to ++. The results are shown in Table 2.
Shown in

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【発明の効果】以上説明したように、本発明によれば、
装置が大型あるいは小型にかかわらず、顆粒形状が球形
で、表面にのみ微粉が付着された顆粒をロスを少なくし
て製造することができ、かつ、冷却造粒用ガスの量・温
度のコントロール範囲が大きく、そのためコントロール
が容易であるという効果を奏する。
As described above, according to the present invention,
Regardless of whether the device is large or small, it is possible to manufacture granules with spherical shape and fine powder only on the surface with less loss, and control range of cooling granulation gas amount and temperature. Is large, and therefore the control is easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る冷却造粒装置の一例を示す説明
図である。
FIG. 1 is an explanatory diagram showing an example of a cooling granulating apparatus according to the present invention.

【図2】 本発明に係る冷却造粒装置の装置内温度分布
を示す概要図である。
FIG. 2 is a schematic diagram showing the temperature distribution inside the cooling granulating apparatus according to the present invention.

【図3】 本発明により製造される顆粒状製品の例を示
す断面図である。
FIG. 3 is a cross-sectional view showing an example of a granular product manufactured according to the present invention.

【図4】 外部からの微粉の供給方式の一例を示す説明
図である。
FIG. 4 is an explanatory diagram showing an example of a method of supplying fine powder from the outside.

【図5】 外部からの微粉の供給方式の他の例を示す説
明図である。
FIG. 5 is an explanatory diagram showing another example of a method of supplying fine powder from the outside.

【図6】 本発明の装置下部に形成する流動層の一例を
示す断面説明図である。
FIG. 6 is a cross-sectional explanatory view showing an example of a fluidized bed formed in the lower part of the device of the present invention.

【図7】 本発明の装置下部に形成する流動層の他の例
を示す断面説明図である。
FIG. 7 is a cross-sectional explanatory view showing another example of the fluidized bed formed in the lower portion of the device of the present invention.

【図8】 従来の冷却造粒装置の例を示す断面説明図で
ある。
FIG. 8 is a cross-sectional explanatory view showing an example of a conventional cooling granulating apparatus.

【図9】 従来装置により製造される顆粒状製品の一例
を示す断面図である。
FIG. 9 is a cross-sectional view showing an example of a granular product manufactured by a conventional device.

【図10】従来装置により製造される顆粒状製品の他の
例を示す断面図である。
FIG. 10 is a cross-sectional view showing another example of a granular product manufactured by a conventional device.

【符合の説明】[Description of sign]

2…微粉、10…冷却造粒室、11…回転円盤方式の噴
霧微粒化手段、12…温風導入手段、13…流動層、1
4…微粉、15…微粉導入手段、16…排気口、17…
サイクロン、18…冷却造粒室の側部、19…バグフィ
ルター、20…排気ブロワ、21…多孔板。
2 ... Fine powder, 10 ... Cooling granulation chamber, 11 ... Rotating disc type spray atomizing means, 12 ... Warm air introducing means, 13 ... Fluidized bed, 1
4 ... Fine powder, 15 ... Fine powder introducing means, 16 ... Exhaust port, 17 ...
Cyclone, 18 ... Side part of cooling granulation chamber, 19 ... Bag filter, 20 ... Exhaust blower, 21 ... Perforated plate.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // A23L 1/06 A23L 1/06 (72)発明者 田辺 光徳 大阪府泉北郡忠岡町高月南2丁目7番19号 (72)発明者 伊藤 崇 神奈川県横浜市都筑区池辺町3847 大川原 化工機株式会社内 (72)発明者 小金井 稔元 神奈川県横浜市都筑区池辺町3847 大川原 化工機株式会社内 (72)発明者 横山 哲夫 神奈川県横浜市都筑区池辺町3847 大川原 化工機株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location // A23L 1/06 A23L 1/06 (72) Inventor Mitsunori Tanabe 2 Takatsuki South, Tadaoka-cho, Senboku-gun, Osaka Prefecture No. 7-19 (72) Inventor Takashi Ito 3847 Ikebe-cho, Tsuzuki-ku, Yokohama-shi, Kanagawa Okawara Kakoki Co., Ltd. (72) Minoru Koganei 3847 Ikebe-cho, Tsuzuki-ku, Yokohama, Kanagawa (72) Inventor Tetsuo Yokoyama 3847 Ikebe-cho, Tsuzuki-ku, Yokohama-shi, Kanagawa Okawara Kakoki Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 冷却によりゲル化する物質を加温して液
状とした原液を噴霧微粒化するとともに、装置下部に噴
霧微粒子よりさらに微細な微粉からなる流動層を形成
し、装置下部から該流動層を介して導入される冷風によ
り噴霧液を冷却してゲル状微粒子とし、このゲル状微粒
子が該流動層の微粉と接触して、ゲル状微粒子に微粉が
付着した顆粒状製品を製造する冷却造粒方法であって、 前記原液の噴霧微粒化手段として回転円盤方式又はノズ
ル方式を採用するとともに、前記回転円盤又はノズルの
周辺部に温風を導入し、かつ、装置上部または装置側部
から排気することを特徴とする冷却造粒方法。
1. A liquid material which is made into a liquid by heating a substance which gels by cooling is atomized into fine particles, and a fluidized bed made of fine powder finer than the atomized fine particles is formed in the lower portion of the apparatus, and the fluidized layer is formed from the lower portion of the apparatus. The spray liquid is cooled by the cold air introduced through the layer to form gel fine particles, and the gel fine particles come into contact with the fine powder in the fluidized bed to produce a granular product in which the fine powder is attached to the gel fine particles. A granulation method, which employs a rotating disk system or a nozzle system as the spray atomizing means of the stock solution, introduces hot air into the peripheral part of the rotating disk or the nozzle, and from the device upper part or the device side part. A cooling granulation method characterized by exhausting.
【請求項2】 前記噴霧微粒化手段の周辺部に導入する
温風が、前記原液のゲル化温度以上の温度を有する請求
項1に記載の冷却造粒方法。
2. The cooling granulation method according to claim 1, wherein the hot air introduced into the peripheral portion of the spray atomization means has a temperature equal to or higher than the gelation temperature of the stock solution.
【請求項3】 前記流動層の流動化用冷風に加えて、更
に装置下部より噴霧液の冷却用冷風を導入する請求項1
又は2に記載の冷却造粒方法。
3. In addition to the cold air for fluidizing the fluidized bed, cold air for cooling the spray liquid is further introduced from the lower part of the apparatus.
Or the cooling granulation method described in 2.
【請求項4】 さらに、装置壁面部の微粉濃度が高くな
るように、外部より微粉を装置内に導入する請求項1〜
3のいずれかに記載の冷却造粒方法。
4. The fine powder is introduced into the device from the outside so that the fine powder concentration on the wall surface of the device is high.
The cooling granulation method according to any one of 3 above.
【請求項5】 冷却造粒室と、 該冷却造粒室の上部に設置された噴霧微粒化手段と、 該噴霧微粒化手段の周辺部に温風を導入する温風導入手
段と、 該冷却造粒室の下部に形成された、冷風により微粉を流
動化している流動層と、を備えたことを特徴とする冷却
造粒装置。
5. A cooling granulation chamber, a spray atomizing means installed in the upper part of the cooling granulation chamber, a hot air introducing means for introducing hot air to the peripheral portion of the spray atomizing means, and the cooling. A cooling granulation apparatus, comprising: a fluidized bed formed in the lower part of the granulation chamber, the fluidized bed fluidizing fine powder with cold air.
【請求項6】 前記冷却造粒室の下部に、微粉流動化用
冷風とは別に冷風導入手段を備えた請求項5に記載の冷
却造粒装置。
6. The cooling granulation apparatus according to claim 5, further comprising a cold air introduction unit provided in the lower part of the cooling granulation chamber, in addition to the cold air for fluidizing the fine powder.
【請求項7】 さらに、冷却造粒室壁面部の微粉濃度が
高くなるように、外部より冷却造粒室内に微粉を導入す
る微粉導入手段を備えた請求項5又は6に記載の冷却造
粒装置。
7. The cooling granulation according to claim 5, further comprising a fine powder introducing means for introducing the fine powder into the cooling granulation chamber from the outside so that the fine powder concentration in the wall surface of the cooling granulation chamber becomes high. apparatus.
【請求項8】 冷却造粒室の下部に形成された流動層の
流動化風速を増大させることにより、流動層の微粉を吹
き飛ばし、該微粉より粒径の大きな微粒子を残す粗分級
手段と、該粗分級手段で粗分級され残った微粒子を熱風
により乾燥する乾燥手段を備えた請求項5〜7のいずれ
かに記載の冷却造粒装置。
8. A coarse classification means for blowing away fine powder of the fluidized bed by increasing the fluidizing air velocity of the fluidized bed formed in the lower part of the cooling granulation chamber to leave fine particles having a larger particle size than the fine powder. The cooling granulating apparatus according to any one of claims 5 to 7, further comprising a drying unit that dries the fine particles remaining after being roughly classified by the coarse classifying unit with hot air.
【請求項9】 前記装置上部又は装置側部からの排気を
循環使用するための循環手段を備えた請求項5〜8のい
ずれかに記載の冷却造粒装置。
9. The cooling granulating apparatus according to claim 5, further comprising a circulation means for circulating and using exhaust gas from the upper portion or the side portion of the apparatus.
JP8328882A 1995-12-14 1996-12-09 Cooling and granulating method and device therefor Withdrawn JPH09220460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8328882A JPH09220460A (en) 1995-12-14 1996-12-09 Cooling and granulating method and device therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32534695 1995-12-14
JP7-325346 1995-12-14
JP8328882A JPH09220460A (en) 1995-12-14 1996-12-09 Cooling and granulating method and device therefor

Publications (1)

Publication Number Publication Date
JPH09220460A true JPH09220460A (en) 1997-08-26

Family

ID=26571801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8328882A Withdrawn JPH09220460A (en) 1995-12-14 1996-12-09 Cooling and granulating method and device therefor

Country Status (1)

Country Link
JP (1) JPH09220460A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231470A (en) * 2000-02-24 2001-08-28 Taiyo Kagaku Co Ltd Gel composition
JP2003062449A (en) * 2001-08-29 2003-03-04 Tomohiko Hashiba Manufacturing apparatus for ultrafine particle
JP2004097146A (en) * 2002-09-12 2004-04-02 Meiji Seika Kaisha Ltd Granular food and method for producing the same
JP2005523963A (en) * 2002-04-25 2005-08-11 アメルシャム・バイオサイエンシーズ・アクチボラグ Manufacture of polysaccharide beads
JP2007159450A (en) * 2005-12-12 2007-06-28 Mametora Noki Kk Food kneader
JP2009537322A (en) * 2006-05-19 2009-10-29 フイルメニツヒ ソシエテ アノニム One-step spray drying method
JP2015504682A (en) * 2012-01-19 2015-02-16 ディーエスエム アイピー アセッツ ビー.ブイ. Small beads containing hops in a protein matrix
JP2015505456A (en) * 2012-01-19 2015-02-23 ディーエスエム アイピー アセッツ ビー.ブイ. Small beads containing hops in a starch matrix
JP2016026867A (en) * 2014-06-30 2016-02-18 株式会社パウレック Continuous particle production device
CN105433411A (en) * 2015-12-13 2016-03-30 重庆长源饲料有限公司 Cooling device for feed
CN107530664A (en) * 2015-06-30 2018-01-02 株式会社保锐士 Continous way particle manufacture device
JP2019069913A (en) * 2017-10-06 2019-05-09 株式会社シャネル化粧品技術開発研究所 Manufacturing method of nonaqueous skin external composition
CN114405394A (en) * 2022-02-14 2022-04-29 南京博纳能源环保科技有限公司 Granulating device and granulating method for discharging molten silicon

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231470A (en) * 2000-02-24 2001-08-28 Taiyo Kagaku Co Ltd Gel composition
JP2003062449A (en) * 2001-08-29 2003-03-04 Tomohiko Hashiba Manufacturing apparatus for ultrafine particle
JP2005523963A (en) * 2002-04-25 2005-08-11 アメルシャム・バイオサイエンシーズ・アクチボラグ Manufacture of polysaccharide beads
JP4874525B2 (en) * 2002-04-25 2012-02-15 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ Manufacture of polysaccharide beads
JP2004097146A (en) * 2002-09-12 2004-04-02 Meiji Seika Kaisha Ltd Granular food and method for producing the same
JP2007159450A (en) * 2005-12-12 2007-06-28 Mametora Noki Kk Food kneader
JP2009537322A (en) * 2006-05-19 2009-10-29 フイルメニツヒ ソシエテ アノニム One-step spray drying method
JP2015505456A (en) * 2012-01-19 2015-02-23 ディーエスエム アイピー アセッツ ビー.ブイ. Small beads containing hops in a starch matrix
JP2015504682A (en) * 2012-01-19 2015-02-16 ディーエスエム アイピー アセッツ ビー.ブイ. Small beads containing hops in a protein matrix
JP2016026867A (en) * 2014-06-30 2016-02-18 株式会社パウレック Continuous particle production device
CN107530664A (en) * 2015-06-30 2018-01-02 株式会社保锐士 Continous way particle manufacture device
US10661238B2 (en) 2015-06-30 2020-05-26 Kabushiki Kaisha Powrex Continuous particle manufacturing device
CN107530664B (en) * 2015-06-30 2021-03-19 株式会社保锐士 Continuous particle manufacturing apparatus
CN105433411A (en) * 2015-12-13 2016-03-30 重庆长源饲料有限公司 Cooling device for feed
JP2019069913A (en) * 2017-10-06 2019-05-09 株式会社シャネル化粧品技術開発研究所 Manufacturing method of nonaqueous skin external composition
CN114405394A (en) * 2022-02-14 2022-04-29 南京博纳能源环保科技有限公司 Granulating device and granulating method for discharging molten silicon

Similar Documents

Publication Publication Date Title
EP0237345B1 (en) Method and apparatus for granulation and granulated product
JP3447042B2 (en) Method for producing single substance spherical particles
Li et al. Recent advances in microencapsulation technology and equipment
JPH09220460A (en) Cooling and granulating method and device therefor
JPH0428684B2 (en)
Hirjau et al. Pelletization techniques used in pharmaceutical fields
JP4679696B2 (en) Granulation method for granular materials
JP2003501252A (en) Spray drying plant and method of using same
US20120189679A1 (en) Method for coating powders
JPS61213201A (en) Spherical granule of fine crystalline cellulose and production thereof
US5044093A (en) Spray-drying granulation apparatus
US4690834A (en) Process for coating solid particles
JP2000501981A (en) Apparatus and method for treating particulate material
US5447565A (en) Apparatus and method for coating particles
JPH1033973A (en) Method and apparatus for coagulating easily hydrolyzable substance by steam
Maa et al. Spray-coating of rhDNase on lactose: effect of system design, operational parameters and protein formulation
JPH07507230A (en) Method and apparatus for producing granules from powder materials
JPH0827133B2 (en) Wet powder processing equipment
JP2008518942A (en) Method for granulating particles
JPH0613091B2 (en) Spray drying fluidized granulation method
US5236920A (en) Granulated riboflavin product having high flowability, high riboflavin content
Wan et al. Effect of polyvinylpyrrolidone solutions containing dissolved drug on characteristics of lactose fluidized bed granules
JPH1025304A (en) Granulation and granule of powder composed of substances taken in body of animal
Appelgren Recent advances in granulation technology and equipment
Jafari et al. Spray Drying for the Food Industry: Unit Operations and Processing Equipment in the Food Industry

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040302