JPS61213201A - Spherical granule of fine crystalline cellulose and production thereof - Google Patents

Spherical granule of fine crystalline cellulose and production thereof

Info

Publication number
JPS61213201A
JPS61213201A JP5465385A JP5465385A JPS61213201A JP S61213201 A JPS61213201 A JP S61213201A JP 5465385 A JP5465385 A JP 5465385A JP 5465385 A JP5465385 A JP 5465385A JP S61213201 A JPS61213201 A JP S61213201A
Authority
JP
Japan
Prior art keywords
granulation
microcrystalline cellulose
rotating plate
binder
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5465385A
Other languages
Japanese (ja)
Other versions
JPH072761B2 (en
Inventor
Yoshihiro Ito
義弘 伊藤
Yoshinori Masuda
義典 増田
Shinji Moriya
守屋 信治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Paudal Co Ltd
Original Assignee
Fuji Paudal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Paudal Co Ltd filed Critical Fuji Paudal Co Ltd
Priority to JP5465385A priority Critical patent/JPH072761B2/en
Publication of JPS61213201A publication Critical patent/JPS61213201A/en
Publication of JPH072761B2 publication Critical patent/JPH072761B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/167Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
    • A61K9/1676Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface having a drug-free core with discrete complete coating layer containing drug

Abstract

PURPOSE:To obtain the titled granule having excellent granule characteristics such as smooth surface, compact texture, high density and nearly complete sphericity, and useful in the fields of pharmaceuticals and foods, etc., by controlling the rotational speed of an aeration rotary disk and the feeding rate of a binder in a granulation apparatus. CONSTITUTION:Fine crystal cellulose powder is charged to a granulation apparatus furnished with an aeration rotary disk 4 having aeration means from the upper part 12 of the aeration rotary disk 4. A gas is supplied from the lower part 9 of the rotary disk 4, and the aeration rotary disk 4 is rotated at a circumferential speed of 1.5-15m/sec. A binder (e.g. a solution obtained by dissolving propylene glycol in a mixture of water and an alcohol) is added to the powder in an amount to give a moistened powder having a liquid content of 40-65%. The rotary fluidized granulation of the powder is carried out after or during the feeding of the binder to obtain the objective granule having an apparent density of >=0.65g/ml and a sphericity of >=0.8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は優れた顆粒特性を有し、医薬品や食品等に用い
られる微結晶セルロースの球形顆粒とその製造法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to spherical microcrystalline cellulose granules having excellent granule properties and used in pharmaceuticals, foods, etc., and a method for producing the same.

〔従来技術〕[Prior art]

球形顆粒は従来より医薬品や食品等の分野で製造され、
使用に供せられている。殊に医薬品の分野では、薬剤合
有粉体を球形顆粒とし、その複数個をもって投与単位と
し、確実な薬効発現を期待する製剤設計が行われている
。また、近年薬剤の徐放持続化製剤として、球形顆粒を
核とし、その表面に薬剤をコーティングした製剤が提案
され、注目されている。
Spherical granules have traditionally been manufactured in fields such as pharmaceuticals and food.
available for use. Particularly in the field of pharmaceuticals, drug-containing powders are made into spherical granules, and a plurality of spherical granules are used as a dosage unit, and formulations are designed to ensure reliable drug efficacy. In addition, in recent years, as a drug sustained sustained release preparation, a preparation with a spherical granule as a core and a drug coated on its surface has been proposed and is attracting attention.

かかるニーズに対応するものとしては、従来蔗糖、及び
蔗糖トウモロコシデンプンを組成とする球形顆粒が一般
的に用いられている。しかし、蔗糖は比較的活性に富み
、薬剤の種類によっては薬剤として反応して変質ないし
は不純物を生成し、また製剤加工上の強度も小さいなど
の欠点がある。
To meet these needs, spherical granules composed of sucrose and sucrose corn starch have been commonly used. However, sucrose has drawbacks such as being relatively highly active, reacting with some drugs as a drug and producing deterioration or impurities, and low strength in processing pharmaceuticals.

このような背景から化学的に不活性で生体に安全でかつ
生体に吸収されない物質を組成とし、物理的強度が大き
く製剤加工が容易な球形顆粒が要望されていた。
Against this background, there has been a demand for spherical granules that are composed of substances that are chemically inert, safe to the living body, and not absorbed by the living body, have high physical strength, and are easy to process into pharmaceutical preparations.

一方、微結晶セルロースは化学的に不活性で生体に安全
でかつ吸収されない物質として医薬品や食品の分野で汎
用されており、球形顆粒とじうることも公知である。〔
アビセル時報第4号第6頁(昭和39年6月30日、旭
化成工業(株)発行)等〕。
On the other hand, microcrystalline cellulose is widely used in the pharmaceutical and food fields as a chemically inert, biosafe, and non-absorbable substance, and it is also known that it can be formed into spherical granules. [
Avicel Jiho No. 4, page 6 (June 30, 1960, published by Asahi Kasei Kogyo Co., Ltd.), etc.).

微結晶セルロースの球形顆粒は、従来微結晶セルロース
粉末を加湿する工程、加湿、された原料を押出造粒によ
り円柱状の造粒物を作る工程、円柱状の造粒物を転動造
粒法を用いて球形の造粒物にする工程、球形造粒物を乾
燥する工程の四つの工程からなる方法により、それぞれ
の装置で製造されていた。
Spherical granules of microcrystalline cellulose are conventionally produced through a process of humidifying microcrystalline cellulose powder, a process of producing cylindrical granules by extrusion granulation of the humidified raw material, and a rolling granulation method of forming cylindrical granules. They were manufactured using different types of equipment using a method consisting of four steps: forming spherical granules using a spherical granule, and drying the spherical granules.

しかし、従来の転動造粒方法により微結晶セルロースを
造粒した場合、得られる造粒物は、粒径が不揃いで粒径
分布が広がったもので、真球度(短軸の長さ/長軸の長
さ)が小さく形状が不揃いで、粒子表面が平滑でなく、
密度の低い軽質のものである。従って、従来の微結晶セ
ルロース球形顆粒は、前記用途に適用する顆粒特性とし
ては不満足であり、製剤工程上あるいは経済上の問題点
があった。
However, when microcrystalline cellulose is granulated by the conventional rolling granulation method, the resulting granules have irregular particle sizes and a wide particle size distribution, and the sphericity (short axis length/ The length of the long axis) is small and the shape is irregular, the particle surface is not smooth,
It is light with low density. Therefore, conventional microcrystalline cellulose spherical granules are unsatisfactory in terms of granule properties applicable to the above-mentioned uses, and have problems in the formulation process or economically.

また、従来の製造法は前記四つの工程を夫々別別の装置
により行なう必要があり、多くの装置を必要とする上に
連続した作業として行ない得ないために作業時間を多く
要し、高価なものとならざるを得ないなどの欠点があっ
た。
In addition, in the conventional manufacturing method, each of the four steps mentioned above needs to be performed using separate equipment, which requires a large number of equipment, and cannot be performed as a continuous process, which requires a lot of work time and is expensive. There were drawbacks such as the fact that it had no choice but to become a product.

更に押出造粒にて得られる円柱状の造粒物と、これをも
とにして転動造粒により得られる球形造粒物とで水分量
が異なる場合がある0そのため、押出造粒により得られ
る造粒物の水分が多い場合には、これを転動造粒方法に
より球形にする際に、遠心力により造粒物中に含まれる
水分が造粒物の表面に出て来ることがあり好ましくない
。これを防止するためには、押出造粒した造粒物を予め
乾燥して造粒物中に含まれている水分を減少せしめてか
ら転動造粒を行なう必要がある。したがって押出造粒と
転動造粒の間に更に乾燥の工程を加えなければならない
ために一層工程数が増えることになる。
Furthermore, the water content may differ between columnar granules obtained by extrusion granulation and spherical granules obtained by rolling granulation based on this. If there is a lot of moisture in the granules, when the granules are made into spheres using the rolling granulation method, the moisture contained in the granules may come out to the surface of the granules due to centrifugal force. Undesirable. In order to prevent this, it is necessary to dry the extrusion granulated product in advance to reduce the moisture contained in the granulated product before rolling granulation. Therefore, it is necessary to add a drying step between extrusion granulation and rolling granulation, which further increases the number of steps.

転動造粒の場合、処理容器の容積に比較して非常に少な
い量しか処理出来ないために経済的でなく、又人手を要
し特に熟練した者の勘にたよって行なわれる場合が多い
In the case of rolling granulation, it is not economical because only a very small amount can be processed compared to the volume of the processing container, and it requires manpower and is often carried out depending on the intuition of a particularly skilled person.

また押出造粒により形成された造粒物に含まれる水分量
が多い場合に、この造粒物を転動造粒する際に上方よ、
り熱風を吹きつけて表面に出る水分を乾燥除去しながら
造粒する方法が考えられる。
In addition, when the granules formed by extrusion granulation contain a large amount of water, when rolling the granules,
One possible method is to granulate the material by blowing hot air on it to dry and remove the moisture that appears on the surface.

しかし転動造粒を行なう造粒装置は、一般には同一の装
置で乾燥を行なうことは出来ないために、十分な乾燥に
よる水分除去効果は得られない。
However, in a granulating device that performs rolling granulation, it is generally not possible to perform drying in the same device, and therefore, sufficient moisture removal effects cannot be obtained through drying.

従来の転動造粒装置は、単に回転板を回転させる方式の
もので、前述のように乾燥工程は一般に別の装置で行な
われているが、これを同一装置で行なう場合は回転板上
方よりエアーを送るか、下方より送る場合には造粒室と
回転板の間の空隙を通して行なうもので粒子表面に出て
来る水分を蒸発させるには不十分である。そのために粗
大粒子が発生する等均−な粒子が出来ない。
Conventional rolling granulation equipment simply rotates a rotary plate, and as mentioned above, the drying process is generally performed in a separate device, but when this is done in the same device, the drying process is performed from above the rotary plate. If air is sent or sent from below, it is done through the gap between the granulation chamber and the rotating plate, which is insufficient to evaporate the water coming out on the particle surface. For this reason, coarse particles are generated and uniform particles cannot be produced.

〔発明の、目的〕[Object of the invention]

本発明は見かけ密度0.65 P/mj以上、真球度0
.8以上で、表面平滑、緻密、重質でかつ真球に近い優
れた顆粒特性を有する微結晶セルロースの球形顆粒を提
供することを目的とする。
The present invention has an apparent density of 0.65 P/mj or more and a sphericity of 0.
.. The object of the present invention is to provide spherical granules of microcrystalline cellulose having a particle size of 8 or more, smooth surface, dense, heavy, and having excellent granule properties that are close to true spheres.

また、本発明は通気機構を有する通気回転板を備えた造
粒装置の通気回転板の上部より微結晶セルロース粉体を
投入し、通気回転板の下部より気体を供給し、通気回転
板を周速1.5〜15 m/secで回転し、湿潤粒体
の湿潤率として40〜65%となる景の結合剤を供給し
て若しくは供給しながら転動流動造粒し、次いで乾燥す
ることによって前記の優れた顆粒特性を有し粒径、粒形
の揃った微結晶セルロースを直接製造する方法を提供す
ることを目的とする。
In addition, the present invention provides a granulation device equipped with an aeration rotary plate having a ventilation mechanism, in which microcrystalline cellulose powder is introduced from the upper part of the aeration rotary plate, gas is supplied from the lower part of the aeration rotary plate, and the aeration rotary plate is surrounded. By rotating at a speed of 1.5 to 15 m/sec, tumbling fluid granulation by supplying or supplying a binder with a wet granulation rate of 40 to 65%, and then drying. The object of the present invention is to provide a method for directly producing microcrystalline cellulose having the aforementioned excellent granule properties and uniform particle size and shape.

本発明における微結晶セルロースの球形顆粒は、微結晶
セルロース単体を組成とするもののみでなく、微結晶セ
ルロースの含有量が100〜20重量%を含有する組成
であってもよい。混合される組成成分としては、その数
、その種類を特に限定するものではないが、例えば球形
顆粒の崩壊性、溶解性を調節する物質、具体的にはカル
ボキシメチルセルロースカルシウム(CMC−Ca )
 、カルボキシセルロースナトリウム(CMC−Na 
) 、fンプン、D−マンニトール、乳糖、蔗糖などで
ある。
The spherical granules of microcrystalline cellulose in the present invention may not only consist of microcrystalline cellulose alone, but may also have a composition containing 100 to 20% by weight of microcrystalline cellulose. The number and type of components to be mixed are not particularly limited, but for example, substances that adjust the disintegration and solubility of spherical granules, specifically carboxymethyl cellulose calcium (CMC-Ca).
, carboxycellulose sodium (CMC-Na
), f-pun, D-mannitol, lactose, sucrose, etc.

また、結合剤は、水、水にエタノールなどのアルコール
類を1〜50%混合した溶液、水又は水にエタノールな
どのアルコール類を混合した溶液に結合性を有する物質
あるいは界面活性剤を有する物質例えばプロピレングリ
コール、ポリエチレングリコール、ポリビニルピロリド
ン(P、V、P)、ボリビ千ルアルコール(PVA)、
ヒドロキシプロピルセルロース(RPC)、ヒドロキシ
プロピルメチルセルロース(I(PMC)、メチルセル
ロース(MC)、エチルセルロース(EC)、メタクリ
ル酸/メタクリル酸エステル共重合体(オイドラギット
)、7N7ア化デンプン、デキストリンポリソルベート
80.ソルビタンモノ脂肪酸エステル、ショ糖脂肪酸エ
ステル、ステアリン酸ポリオキシA/40等を溶解又は
分散させた液等が用いられる。
In addition, the binder is a substance that has binding properties to water, a solution of 1 to 50% of water mixed with an alcohol such as ethanol, a substance that has a binding property to water or a solution of water and an alcohol such as ethanol, or a substance that has a surfactant. For example, propylene glycol, polyethylene glycol, polyvinylpyrrolidone (P, V, P), volibithyl alcohol (PVA),
Hydroxypropylcellulose (RPC), hydroxypropylmethylcellulose (I (PMC), methylcellulose (MC), ethylcellulose (EC), methacrylic acid/methacrylic acid ester copolymer (Eudragit), 7N7 oxidized starch, dextrin polysorbate 80. Sorbitan mono A liquid in which fatty acid ester, sucrose fatty acid ester, stearic acid polyoxy A/40, etc. are dissolved or dispersed is used.

本発明の微結晶セルロースの球形顆粒は、通気機構を有
する通気回転板を備えた結合剤供給、通気転動、乾燥の
各工程のすべてを行いつる装置を用いて、特に通気回転
板の回転速度、通気回転板の通気機構を通して供給され
る気体の温度と供給量、結合剤の供給量を制御すること
によって製造される。
The microcrystalline cellulose spherical granules of the present invention can be produced by using a hanging device that performs all of the steps of supplying the binder, aeration rolling, and drying, which are equipped with an aeration rotary plate having an aeration mechanism, especially at the rotational speed of the aeration rotary plate. , by controlling the temperature and amount of gas supplied through the ventilation mechanism of the ventilation rotating plate, and the amount of binder supplied.

これらの制御は結合剤供給、通気転動、乾燥の種々の条
件を変えることによって粒径、粒形、顆粒特性を制御す
るもので、コンピュータ等によって自動的に行う。
These controls are to control the particle size, particle shape, and granule characteristics by changing various conditions such as binder supply, aeration rolling, and drying, and are automatically performed by a computer or the like.

粒径を決定する主たる要因は通気転動に入る前の湿潤材
料の湿潤率である。湿潤率は〔含有水分重量/(乾燥原
料粉体重量子含有水分重量)〕×100(%)で表わさ
れる。本発明においては通気転動に入る前の湿潤材料の
湿潤率として40〜65%となるように、主として結合
剤の供給量で制御されるが、粉体流動化の通気による乾
燥条件顆粒特性等を考慮して制御条件を選択する。湿潤
率が40%より下では粒径が150μ以下で粉体と余り
変らず65%より上では豆粒大以上になり、前記用途に
適さない。結合剤は通常流動状態にある微結晶セルロー
ス粉体に噴霧して供給される。従って、結合剤の総供給
量は、湿潤材料として湿潤率40〜65%となるように
するためには流動化通気の乾燥条件によって変動するが
、通常微結晶セルロース粉体重量の75〜200 (”
/w)%が適当である。
The main factor determining particle size is the wetting rate of the wet material before entering the aeration rolling. The moisture content is expressed as [weight of water content/(weight of water content of dry raw material powder weight)] x 100 (%). In the present invention, the moisture content of the wet material before entering the aeration rolling is controlled mainly by the supply amount of the binder, but the drying conditions due to the aeration during powder fluidization, the granule characteristics, etc. Select control conditions taking into consideration. When the moisture content is less than 40%, the particle size is 150 μm or less, which is not much different from a powder, and when it is more than 65%, it is larger than a pea-sized particle, making it unsuitable for the above-mentioned uses. The binder is usually supplied by spraying onto the microcrystalline cellulose powder in a fluidized state. Therefore, the total amount of binder supplied varies depending on the drying conditions of the fluidizing aeration in order to obtain a wet material with a wetness rate of 40-65%, but it is usually 75-200% of the weight of the microcrystalline cellulose powder ( ”
/w)% is appropriate.

流動化は、通気回転板の下部より通気回転板の通気機構
を通して造粒室に気体を供給することによって行われる
。制御は、主として気体の供給量で行われ、微結晶セル
ロース粉体の供給量や、流動層の形成状態を考慮して適
宜選定される。結合剤供給プロセスを他のプロセスと区
分して設定する場合であっても均一な流動化を図るため
には、通気回転板を回転しながら流動化気体を供給する
のが好適であり、この場合の通気回転板の回転は周速(
すなわち特定機器における回転数)を2〜20 m1m
の範囲内の一定の値に設定して制御するのが有利である
。また、流動化気体流の温度は、装置の外温の影響を避
けるために一定の温度に設定するのが適切であり、0〜
80°Cの範囲内の一定の温度となるように制御する。
Fluidization is performed by supplying gas to the granulation chamber from the lower part of the ventilation rotary plate through the ventilation mechanism of the ventilation rotary plate. Control is mainly performed by the amount of gas supplied, which is appropriately selected in consideration of the amount of microcrystalline cellulose powder supplied and the state of formation of the fluidized bed. Even when the binder supply process is set up separately from other processes, in order to achieve uniform fluidization, it is preferable to supply the fluidization gas while rotating the ventilation rotary plate. The rotation of the ventilation rotating plate is the circumferential speed (
In other words, the rotation speed in the specific equipment) is 2 to 20 m1m
It is advantageous to set and control the value to a constant value within the range of . In addition, it is appropriate to set the temperature of the fluidizing gas stream at a constant temperature to avoid the influence of the external temperature of the device, and between 0 and 0.
The temperature is controlled to be constant within a range of 80°C.

粒径分布を決定する主たる要因は前記湿潤率と通気転動
の乾燥条件、転動条件である。また、粒形及び表面平滑
、緻密重質、真球度など顆粒特性は、主として通気転動
の転動条件によって決定される。通気転動は、通気回転
板を回転し、通気回転板の下方より通気回転板の通気機
構を通して通気回転板の上方に気体好ましくは温風を供
給することによって行われ、通気回転板の回転と容器器
壁とにより生ずる転動作用により湿潤材料の球形化を図
り、その際球形顆粒表面に浸出する湿分を通気により除
去しようとするものである。
The main factors that determine the particle size distribution are the above-mentioned wetting rate, drying conditions of aerated rolling, and rolling conditions. In addition, the particle shape and granule characteristics such as surface smoothness, denseness, and sphericity are mainly determined by the rolling conditions of aerated rolling. Ventilation rolling is performed by rotating the ventilation rotary plate and supplying gas, preferably hot air, from below the ventilation rotary plate to the upper part of the ventilation rotary plate through the ventilation mechanism of the ventilation rotary plate, and the rotation of the ventilation rotary plate The purpose is to spheroidize the wet material by the rolling action caused by the container wall, and at this time remove the moisture leaching onto the surface of the spherical granules by aeration.

転動は主として通気回転板の周速を制御して行う。転動
プロセスにおける通気回転板の周速は1.5〜15 m
/secの範囲内の一定の値に設定し、制御する。周速
が1.5iより下及び15iより上では、粒径の分布が
悪くなり、真球度などの顆粒特性も落ち、目的とする球
形顆粒を得ることができない。
The rolling is mainly performed by controlling the circumferential speed of the ventilation rotary plate. The circumferential speed of the ventilation rotating plate in the rolling process is 1.5-15 m
It is set to a constant value within the range of /sec and controlled. When the circumferential speed is lower than 1.5i and higher than 15i, the particle size distribution deteriorates, granule properties such as sphericity deteriorate, and the desired spherical granules cannot be obtained.

気体の供給量は球形顆粒の粒径分布、顆粒特性、原料の
種類、供給量や湿潤材料の湿潤率などを考慮して適宜設
定される。温度制御は空気流を0〜90″C1好ましく
は40〜75℃の範囲内の一定の温度に設定して行う。
The amount of gas supplied is appropriately set in consideration of the particle size distribution of the spherical granules, the granule characteristics, the type of raw material, the amount of gas supplied, the wetting rate of the wet material, and the like. Temperature control is carried out by setting the air flow at a constant temperature within the range of 0 to 90"C1, preferably 40 to 75C.

乾燥は、通風、あるいは熱風乾燥で行うのが好ましく、
前記通気機構を有する通気回転板を備えた造粒装置であ
れば、同一機器で実施でき有利である。温度は常温乃至
45℃好ましくは50〜9゜°Cの範囲内の一定温度に
設定し、制御する。乾燥時乾燥効率を考慮して通気回転
板を回転して行うこともできる。
Drying is preferably carried out by ventilation or hot air drying.
A granulation apparatus equipped with an aeration rotary plate having the aeration mechanism is advantageous because it can be carried out with the same equipment. The temperature is set and controlled at a constant temperature within the range of room temperature to 45°C, preferably 50 to 9°C. Drying can also be carried out by rotating the aeration rotary plate in consideration of drying efficiency.

本発明の方法は、前記のような気体流通路を有する通気
回転板を備えた造粒装置を用いて行なわれるもので、し
たがって気体流通路を通って粉粒体に供給される乾燥空
気量が大であり、乾燥効率が良い0そのために造粒工程
中に粒体内部より表面にしみ出る湿分は効果的に除去さ
れる。更に回転板による旋回流は、気体流通路を通って
の空気の外周方向へ向けての流れによって促進され、原
料供給料が多くても十分に旋回流が形成されるために転
動効果が促進されるため真球度の高い微結晶セルロース
の球形顆粒を得ることが可能となる。
The method of the present invention is carried out using a granulation device equipped with an aeration rotary plate having a gas flow path as described above, and therefore the amount of dry air supplied to the powder through the gas flow path is reduced. It is large in size and has good drying efficiency. Therefore, moisture seeping from the inside of the granules to the surface during the granulation process is effectively removed. Furthermore, the swirling flow caused by the rotating plate is promoted by the flow of air toward the outer circumferential direction through the gas flow passage, and even if there is a large amount of raw material to be supplied, a sufficient swirling flow is formed, which promotes the rolling effect. This makes it possible to obtain spherical granules of microcrystalline cellulose with high sphericity.

従って、本発明に用いる装置は、スリット、多数の小孔
、又は一部あるいは全部が網状になっている等の通気機
構を有し、造粒室内底部で高速回転が可能な通気回転板
を備え、この通気回転板の下方より通気機構を通して(
あるいは更に回転板周縁部と器壁との間隙が通気機構と
なっていてもよい)通気回転板の上方に湿度制御した気
体を供給できる構造を有するものであれば、特°に限定
はない。就中、本発明の目的達成の上で後述する装置が
最適である。
Therefore, the apparatus used in the present invention has a ventilation mechanism such as a slit, a large number of small holes, or a part or all of a mesh, and is equipped with a ventilation rotating plate that can rotate at high speed at the bottom of the granulation chamber. , through the ventilation mechanism from below this ventilation rotary plate (
Alternatively, the gap between the peripheral edge of the rotating plate and the vessel wall may serve as a ventilation mechanism.) There is no particular limitation as long as it has a structure that can supply humidity-controlled gas above the ventilation rotating plate. Among these, the apparatus described below is most suitable for achieving the object of the present invention.

〔実施例〕〔Example〕

本発明の微結晶セルロースの球形顆粒を製造する実施例
を示す。
An example of manufacturing microcrystalline cellulose spherical granules of the present invention is shown.

まず次に示す実施例において使用した造粒装置の主な、
構造について説明する。
First, the main components of the granulation equipment used in the following examples are:
Explain the structure.

第1図は造粒装置全体を示す図で、この図において1は
造粒室、2はバッグフィルターケース、3は掻き羽根、
4は後に述べる構造の通気回転板で軸受5により支持さ
れている回転軸6に固定されている。この回転軸6は駆
動用モーター7によりプーリー、ベルト等の回転伝達機
構を介して回転されこの回転軸6の回転により回転板4
が回転される。8は回転板4の表面上に複数枚取付けら
れた造粒作用増強用の傾斜板、9は造粒室2の回転板4
の下方に連結されている送風管、1oは結合剤を噴霧す
るスプレーガン、11はバッグフィルター、12は原料
投入口、13は造粒物°排出口である。
Figure 1 is a diagram showing the entire granulation device, in which 1 is a granulation chamber, 2 is a bag filter case, 3 is a scraper,
Reference numeral 4 denotes a ventilation rotating plate having a structure to be described later, and is fixed to a rotating shaft 6 supported by a bearing 5. This rotating shaft 6 is rotated by a drive motor 7 via a rotation transmission mechanism such as a pulley or a belt, and the rotation of this rotating shaft 6 causes the rotating plate 4 to rotate.
is rotated. Reference numeral 8 indicates a plurality of inclined plates for enhancing the granulation effect attached to the surface of the rotating plate 4, and 9 indicates the rotating plate 4 of the granulation chamber 2.
1o is a spray gun for spraying the binder, 11 is a bag filter, 12 is a raw material inlet, and 13 is a granulated material outlet.

前記の回転板4は、第2図、第3図に拡大して示すよう
な構造で、20は大きな開口20aを有し回転軸6に固
定されている円板状の基板、21゜な間隙24が夫々形
成されている。この各間隙24はいずれも回転板4の上
方の口24bが下方の口24aよりも中心より離れた外
側に位置しその間がほぼ水平方向に走る空隙にて連通さ
れた形状になっている。したがって第2図に示す矢印A
のような下方よりの空気は、下方の口24aより入り、
中心より離れる方向にほぼ水平に流れた後に上方の口2
4bより出るような気体流通路を形成する構造になって
いる。
The rotating plate 4 has a structure as shown enlarged in FIGS. 2 and 3, and 20 is a disc-shaped substrate having a large opening 20a and fixed to the rotating shaft 6, with a gap of 21°. 24 are formed respectively. Each of the gaps 24 has a shape in which the upper opening 24b of the rotary plate 4 is located on the outer side farther from the center than the lower opening 24a, and the openings 24b and 24a communicate with each other through a gap running substantially horizontally. Therefore, arrow A shown in FIG.
Air from below enters from the lower opening 24a,
After flowing almost horizontally away from the center, the upper mouth 2
It has a structure that forms a gas flow passage that exits from 4b.

このような造粒装置にて微結晶セルロース粒体を製造す
る場合、原料投入口12より原料の微結晶セルロースを
投入し、スプレーガン1oより所定量の結合剤を噴霧し
、所定回転数にて回転板4を回転せしめ、送風管9より
所定温度の気体を所定量供給することによって行なわれ
る。これによが加えられ回転板4の回転により転動作用
が加えられる0更に送風管9よりの気体は、回転板4の
下から回転板4の気体流通路を通って回転板4の上に通
り抜ける。ここで回転板4の回転による遠心力も加わっ
て気体は中心より周辺へ向かいながら上昇して行く。
When producing microcrystalline cellulose granules using such a granulating device, the raw material microcrystalline cellulose is introduced from the raw material input port 12, a predetermined amount of binder is sprayed from the spray gun 1o, and the mixture is heated at a predetermined rotation speed. This is carried out by rotating the rotary plate 4 and supplying a predetermined amount of gas at a predetermined temperature from the blast pipe 9. Further, the gas from the blow pipe 9 passes from below the rotary plate 4 through the gas flow path of the rotary plate 4 and onto the rotary plate 4. Pass through. Here, the centrifugal force due to the rotation of the rotary plate 4 is also applied, and the gas rises from the center toward the periphery.

このような作用によって回転板4上の微結晶セルロース
は、適度な湿気を与えられると共に回転板4の回転およ
び回転、板4の流通路を通り抜けて流れる気体とによっ
て中心より周辺へ移動しながら上昇してから中心方向へ
向けて落下しながらしかも全体として回転する旋回流を
なして移動することになる。したがってこの旋回流にの
って移動する原料は自転、公転をしその転動作用によっ
て造粒される0しかも気体(転動時は好ましくは熱風)
が、前記のような流れとなって移動するので原料が旋回
流となって移動するのを促進すると共に適度の乾燥作用
を加えることになり、原料粉末の表面のぬれによって原
料の粉粒体が互に付着して不定形の塊を形成することな
く真球状の粒体が形成されていく。更に回転板4上に設
けた造粒作用増強用の傾斜板8によって、造粒室の容積
に比較して多量の原料を投入しても造粒が可能である。
Due to this action, the microcrystalline cellulose on the rotary plate 4 is given appropriate moisture and is moved upwards from the center to the periphery due to the rotation and rotation of the rotary plate 4 and the gas flowing through the flow path of the plate 4. Then, it falls towards the center and moves in a swirling flow that rotates as a whole. Therefore, the raw material moving along with this swirling flow rotates and revolves, and is granulated by the rolling action, and gas (preferably hot air when rolling)
However, since it moves in the flow as described above, it promotes the movement of the raw material in a swirling flow and adds an appropriate drying effect, and the wetting of the surface of the raw material powder causes the raw material powder to True spherical particles are formed without adhering to each other to form irregularly shaped lumps. Furthermore, the inclined plate 8 provided on the rotary plate 4 for enhancing the granulation effect enables granulation even if a large amount of raw material is introduced compared to the volume of the granulation chamber.

以下上記の造粒装置を用いて行なった結晶セルロース粒
子の製造方法の実施例を示す。
An example of a method for manufacturing crystalline cellulose particles using the above-mentioned granulation apparatus will be shown below.

実施例1  ′ 直径500fiの通気回転板を有する第1図乃至回転さ
せ、通気回転板の下部より50”0〜60°Cの空気を
3〜8rnζ造粒室内に供給し、結合剤として水を0.
24/mis噴霧して75分間造粒した。その抜水の噴
霧を停止し造粒室内へ供給する熱風の温度を徐々に上昇
せしめて80″Cまで高め、一方通気回転板の回転数を
徐々に下げて50 R,P、M、にし80分間乾燥して
微結晶セルロース粒子を得た〇このようにして形成した
微結晶セルロース粒子の粒径分布は下記の通りである。
Example 1' A rotary aeration plate with a diameter of 500fi was rotated, and air at 0 to 60°C was supplied into the granulation chamber from 3 to 8rnζ from the bottom of the aeration rotary plate, and water was added as a binder. 0.
The mixture was granulated for 75 minutes by spraying at 24/mis. The spraying of the drained water was stopped, and the temperature of the hot air supplied into the granulation chamber was gradually increased to 80"C, while the rotational speed of the ventilation rotating plate was gradually lowered to 50 R, P, M, and 80" C. Microcrystalline cellulose particles were obtained by drying for 1 minute. The particle size distribution of the microcrystalline cellulose particles thus formed is as follows.

12〜24メツシユ    2.2% 24〜48メツシユ   97.1% 48メツシユ通過     0.6% 見かけ密度        0.781肩真球度   
       0.96 安息角         29゜ 実施例2 実施例1と同じ造粒装置で同じ造粒条件で造粒時間を7
0分にし、つまり水の全供給量を更に減少せしめた結果
、微結晶セルロース粒子の粒径分布は下記の通りになっ
た。
12-24 mesh 2.2% 24-48 mesh 97.1% 48 mesh passing 0.6% Apparent density 0.781 Shoulder sphericity
0.96 Angle of repose 29° Example 2 Using the same granulating device as in Example 1 and under the same granulating conditions, the granulating time was 7.
0 minutes, that is, further reducing the total amount of water supplied, the particle size distribution of the microcrystalline cellulose particles was as follows.

12〜32メツシユ    1.8% 32〜60メツシユ   91.6% 60メツシユ通過     7.1% 見かけ密度        0.762肩真球度   
       0.97 安息角         30゜ 実施例3 実施例1と同じ造粒装置を用い、微結晶セルロース9.
5に、オイドラギットL30D (ロームアンドハース
社製でオイドラギットは登録商標)1.67Kgを投入
し、通気回転板を25 OR,P、Mで回転させ通気回
転板の下部より35°Cの空気を3〜8I造粒室内に供
給し、水を0.217mで67分間噴霧し、その後噴霧
を停止して40″Cの空気を3〜3 m”/−t−造粒
室内に供給し、30分間転動し、次いで熱風の温度を徐
々に上昇せしめて80″Cまで高め、一方通気回転板の
回転数を徐々に下げて150 R,P、Mにし、90分
間乾燥して微結晶セルロース球形顆粒を得た。
12-32 mesh 1.8% 32-60 mesh 91.6% 60 mesh passing 7.1% Apparent density 0.762 Shoulder sphericity
0.97 Angle of repose 30° Example 3 Using the same granulation device as in Example 1, microcrystalline cellulose 9.
5, put 1.67 kg of Eudragit L30D (manufactured by Rohm and Haas, Eudragit is a registered trademark) and rotate the ventilation rotating plate at 25 OR, P, M to blow air at 35°C from the bottom of the ventilation rotating plate. ~8I was supplied into the granulation chamber and water was sprayed at 0.217 m for 67 minutes, then the spraying was stopped and air at 40"C was supplied into the granulation chamber at 3-3 m"/-t for 30 minutes. Then, the temperature of the hot air was gradually increased to 80"C, while the rotation speed of the ventilation rotating plate was gradually lowered to 150 R, P, M, and dried for 90 minutes to form microcrystalline cellulose spherical granules. I got it.

粒度分布 12〜16メツシユ  2%16〜32メツ
シユ 97% 32メツシュ通過   1% 見かけ密度   0.782肩 真球度     0.96 安息角    28゜ 実施例4 微結晶セルロース6Kg、乳糖5 K?、水の総供給量
14.2に9結合剤供給プロセス、転動プロセスにおけ
る空気流の温度70°C1結合剤の供給方法を間懸に噴
霧とし、転動プロセス時の通気回転板の回転数を30 
OR,P、M、乾燥時の空気流の温度90°Cで乾燥時
間60分とした他は実施例3とほぼ同様にして微結晶セ
ルロース球形顆粒を得た。
Particle size distribution 12-16 mesh 2% 16-32 mesh 97% Passage through 32 mesh 1% Apparent density 0.782 Shoulder sphericity 0.96 Angle of repose 28° Example 4 Microcrystalline cellulose 6 kg, lactose 5 K? , the total water supply amount is 14.2 to 9 binder supply process, the air flow temperature in the rolling process is 70 ° C1, the binder supply method is interval spraying, and the rotation speed of the ventilation rotary plate during the rolling process. 30
Microcrystalline cellulose spherical granules were obtained in substantially the same manner as in Example 3, except that OR, P, M, and the air flow temperature during drying were 90° C. and the drying time was 60 minutes.

粒度分布 20〜24メツシユ  2%24〜42メツ
シユ 91% 42メツシュ通過   7% 見かけ密度   0.76?鷹。
Particle size distribution 20-24 mesh 2% 24-42 mesh 91% Passed through 42 mesh 7% Apparent density 0.76? hawk.

真球度     0.90 安息角    33゜ 実施例5 微結晶セルロース8Kg、蔗糖(粉糖)4Kg、水総供
給量12Kgとした他は実施例4とほぼ同様にして微結
晶セルロース球形顆粒を得た。
Sphericity 0.90 Angle of repose 33° Example 5 Microcrystalline cellulose spherical granules were obtained in almost the same manner as in Example 4, except that 8 kg of microcrystalline cellulose, 4 kg of sucrose (powdered sugar), and 12 kg of total water supply were used. .

粒度分布 20〜24メツシユ  3%24〜42メツ
シユ 92% 42メツシュ通過   5% 見かけ密度   0.77を膚 真球度     0.95 安息角    31゜ 上記の実施例では、結合剤として水を用いたが前記のよ
うな他の結合剤を用いてもよい。更に結合剤としてコー
テイング液を噴霧することによっても造粒が可能である
Particle size distribution 20-24 mesh 3% 24-42 mesh 92% Passage through 42 mesh 5% Apparent density 0.77 Sphericity 0.95 Angle of repose 31° In the above example, water was used as the binder. Other binders as described above may also be used. Furthermore, granulation is also possible by spraying a coating liquid as a binder.

実施例において用いた造粒装置は、第2図に示すような
傾斜板を設けた回転板を備えたものであるが、傾斜板を
設けない回転板を備えた造粒装置でも微結晶セルロース
の造粒を行なうことが出来る。又第5図や第6図、第7
図に示す構造の回転板を有する造粒装置でもよい。
The granulator used in the examples was equipped with a rotary plate provided with an inclined plate as shown in Fig. 2, but even a granulator equipped with a rotating plate without an inclined plate could produce microcrystalline cellulose. Granulation can be performed. Also, Figures 5, 6, and 7
A granulating device having a rotary plate having the structure shown in the figure may be used.

これらの回転板のうち第5図に示すものは、造粒促進用
の傾斜板25が、図示するように中央から周辺に向けて
斜め上方へ延びる形状のものである0 また第6図、第7図に示す回転板26は、第2図、第3
図に示す回転板のような流出口24bが流入口、74a
より外側に位置する気体流通路24を設けず単に開口2
7を有する構造のものである。
Among these rotary plates, the one shown in FIG. 5 has an inclined plate 25 for promoting granulation extending diagonally upward from the center toward the periphery as shown in the figure. The rotating plate 26 shown in FIG.
The outflow port 24b, which looks like a rotating plate shown in the figure, is the inflow port, and the inflow port 74a
Only the opening 2 is provided without providing the gas flow passage 24 located on the outer side.
7.

又傾斜板28として開口27を覆うようにして回転板の
回転方向と逆方向に向は上昇するものでその端部211
&に多数の小孔29を設けたものである。この通気回転
板を用いた場合、送気管よりの空気は開口27を通り傾
斜板28の小孔29より造粒物中に供給されることにな
る。
In addition, the inclined plate 28 covers the opening 27 and rises in the direction opposite to the rotating direction of the rotary plate, and its end 211
A large number of small holes 29 are provided in &. When this ventilation rotary plate is used, air from the air pipe passes through the opening 27 and is supplied into the granules through the small holes 29 of the inclined plate 28.

〔発明の効果〕〔Effect of the invention〕

本発明によって提供される微結晶セルロースの球形顆粒
は、以上の実施例から明らかなように表面平滑で緻密重
質な構造を有しほぼ真球に近いものである。すなわち、
本発明の球形顆粒は見かけ密度が0.6597m1以上
好ましくは0.7 r/i以上、真球度が0.8以上好
ましくは0.90以上の顆粒特性を有する。
As is clear from the above examples, the spherical granules of microcrystalline cellulose provided by the present invention have a smooth surface, a dense and heavy structure, and are almost true spheres. That is,
The spherical granules of the present invention have granule characteristics such as an apparent density of 0.6597 m1 or more, preferably 0.7 r/i or more, and a sphericity of 0.8 or more, preferably 0.90 or more.

このような顆粒特性をもつ、微結晶セルロースの球形顆
粒は従来得られなかったものであり、以下番こ示す製剤
上経済上の多くの利点をもたらす。
Spherical granules of microcrystalline cellulose having such granule characteristics have not been previously available, and offer many pharmaceutical and economical advantages as listed below.

(1)表面平滑さは、球形顆粒に自由流動性を与えると
共に、球形顆粒に薬物あるいはコーテイング液をコーテ
ィングする場合のコーティングのむらをなくシ、コーテ
ィング粒子の歩留りを高める。従って、製剤化の取扱い
の容易さ、製剤化上の経済性を大巾に改善する。
(1) Surface smoothness provides free-flowing properties to the spherical granules, eliminates coating unevenness when coating the spherical granules with a drug or coating liquid, and increases the yield of coated particles. Therefore, the ease of handling and economical efficiency of formulation are greatly improved.

(2)緻密かつ重質であることは、球形顆粒の物理的強
度を高めると共に、かさ高さをなくし、製剤上の取扱い
を容易にし、加工時輸送時などの衝撃に対する安定性を
高める。
(2) Being dense and heavy increases the physical strength of the spherical granules, eliminates bulk, facilitates handling in formulations, and increases stability against impact during processing and transportation.

(3)  真球度が大きいことは、表面平滑さと同様、
自由流動性、コーティングの経済性を改善し、かつ製品
美観を良好にする。
(3) High sphericity is similar to surface smoothness,
Improves free flow properties, coating economy, and improves product aesthetics.

又微結晶セルロースは不活性であるので、結晶セルロー
ス単体のみでなく他のものを混合した原料を用いて前述
のような真球度の高い平滑で硬質な造粒物を得ることが
可能である。また膨潤性が犬であるのでこれを薬剤用に
用いた場合、薬剤にて要望される持効性、徐放性等のす
ぐれた薬剤の製剤が可能であって、使用にあたって均一
に溶出するので所望の薬効が得られることになる。
Furthermore, since microcrystalline cellulose is inert, it is possible to obtain smooth, hard granules with high sphericity as described above by using not only crystalline cellulose alone but also a mixture of other materials. . In addition, since it has a swellable property, when used for medicine, it is possible to formulate a drug with excellent long-acting properties and controlled release properties, which are required for drugs, and it dissolves uniformly during use. The desired medicinal effect will be obtained.

また、本発明の製造法によれば上記の実験データーより
明らかなように粒度分布も、粒径の狭い範囲に極めて多
くの粒子が集っており、つまり目的とする粒径のものが
ほとんどばらつきなしに得られることが明らかである。
In addition, according to the production method of the present invention, as is clear from the above experimental data, the particle size distribution is such that an extremely large number of particles are concentrated in a narrow range of particle sizes, meaning that the target particle size is almost non-uniform. It is clear that it can be obtained without

更に結合剤の供給量(供給時間)のコントロールによっ
て目的とする粒径の粒子を得ることが出来る。即ち、結
合剤の供給時間が短い場合には粒径の小さい粒子が得ら
れ、また結合剤の供給時間を長くすれば粒径の大きい粒
子が得られる。
Furthermore, by controlling the supply amount (supply time) of the binder, particles of a desired particle size can be obtained. That is, if the binder supply time is short, particles with a small particle size can be obtained, and if the binder supply time is long, particles with a large particle size can be obtained.

本発明の微結晶セルロース球形顆粒の製造法によれば、
微結晶セルロースの原料は通気回転板の回転による遠心
力により回転板の外周方向への移動と全体としての回転
運動を行ない、これによって旋回流となり又結合剤の噴
霧により造粒が行なオ)れる。それに加えて通気回転板
の下方に供給される熱風が回転板の気体流通路を通って
流れ回転板の遠心力による外周方向の流れとなって原料
の自転公転を含む旋回流を促進することになり原料の造
粒作用が増大する。又、結合剤の噴霧による湿気が遠心
力により粉粒体表面に出たものを原料中を通りぬける熱
風により適度に乾燥せしめることになる。したがって従
来原料粉末より直接造粒することの出来なかった微結晶
セルロースを直接しかも表面が平滑で真球度の高い硬質
の微結晶セルロース球形顆粒となし得、更に要望する粒
径のものが得られる。
According to the method for producing microcrystalline cellulose spherical granules of the present invention,
The raw material for microcrystalline cellulose moves toward the outer circumference of the rotating plate and rotates as a whole due to the centrifugal force caused by the rotation of the aeration rotating plate, which creates a swirling flow and is granulated by spraying the binder. It will be done. In addition, the hot air supplied below the ventilation rotary plate flows through the gas flow passage of the rotary plate and becomes a flow in the outer circumferential direction due to the centrifugal force of the rotary plate, promoting a swirling flow including rotation and revolution of the raw material. This increases the granulation effect of the raw material. Moreover, the moisture generated by the spraying of the binder and released onto the surface of the powder by centrifugal force is appropriately dried by the hot air passing through the raw material. Therefore, microcrystalline cellulose, which conventionally could not be directly granulated from raw material powder, can be directly made into hard microcrystalline cellulose spherical granules with a smooth surface and high sphericity, and the desired particle size can also be obtained. .

又処理容器(造粒室)の容積に応じた十分な処理量の造
粒が可能であり、しかも同一の装置ですべての工程を連
続して行ない得るので、微結晶セルロース原料を投入し
てから最終造粒製品の形成まで連続した一工程で処理出
来る。又コンピューターによる自動制御により所望のも
のが正確に得られる。更に結合剤の分散性が極めて良い
ため均一な粒子が得られる。
In addition, it is possible to produce a sufficient amount of granulation according to the volume of the processing container (granulation chamber), and all processes can be performed continuously with the same equipment, so the microcrystalline cellulose raw material can be It can be processed in one continuous step until the final granulated product is formed. Moreover, the desired result can be obtained accurately by automatic control by a computer. Furthermore, since the binder has extremely good dispersibility, uniform particles can be obtained.

さらに、得られた球形顆粒を更にコーティングする場合
、同一装置で行うことができる。
Furthermore, if the obtained spherical granules are further coated, this can be done in the same equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の造粒方法により造粒の際に使の一部分
を示す断面図および平面図、第4図は前記回転板に設け
られている傾斜板の第2図において矢印■方向よりみた
端面図、第5図および第6図は夫々他の回転板を示す図
、第7図は第6図における■−■線断面図である。
FIG. 1 is a sectional view and a plan view showing a part of the part used during granulation by the granulation method of the present invention, and FIG. 5 and 6 are views showing other rotating plates, respectively, and FIG. 7 is a cross-sectional view taken along the line ■--■ in FIG. 6.

Claims (1)

【特許請求の範囲】 1、見かけ密度0.65g/ml以上、真球度0.8以
上の顆粒特性を有する微結晶セルロースの球形顆粒 2、通気機構を有する通気回転板を備えた造粒装置の通
気回転板の上部より微結晶セルロース粉体を投入し、通
気回転板の下部より気体を供給し、通気回転板を周速1
.5〜15m/secで回転し、湿潤粒体の湿潤率とし
て40〜65%となる量の結合剤を供給して若しくは供
給しながら転動流動造粒し、次いで乾燥することを特徴
とする粒径分布の狭く粒形のそろった見かけ密度0.6
5g/ml以上、真球度0.8以上の顆粒特性を有する
微結晶セルロースの球形顆粒の製造法 3、造粒装置が、上方の流入口が下方の流入口より周辺
側に位置する多数の気体流通路を有する通気回転板と前
記通気回転板に取付けた傾斜板と前記回転板の下部に設
けた送風管と前記回転板の上部に配置された原料投入口
並びに結合剤噴霧用のスプレーガンとを備えた装置であ
る特許請求の範囲第2項記載の製造法
[Claims] 1. Spherical granules of microcrystalline cellulose having granule characteristics of an apparent density of 0.65 g/ml or more and a sphericity of 0.8 or more. 2. A granulation device equipped with an aeration rotary plate having an aeration mechanism. Microcrystalline cellulose powder is introduced from the top of the ventilation rotating plate, gas is supplied from the bottom of the ventilation rotating plate, and the ventilation rotating plate is rotated at a circumferential speed of 1.
.. Granules characterized by rotating at 5 to 15 m/sec, tumbling fluid granulation by supplying or supplying a binder in an amount such that the wetness ratio of the wet granules is 40 to 65%, and then drying. Apparent density 0.6 with narrow diameter distribution and uniform grain shape
Method 3 for producing spherical granules of microcrystalline cellulose having granule characteristics of 5 g/ml or more and sphericity of 0.8 or more. A ventilation rotating plate having a gas flow path, an inclined plate attached to the ventilation rotating plate, a blower pipe provided at the bottom of the rotating plate, a raw material input port disposed at the top of the rotating plate, and a spray gun for spraying a binder. The manufacturing method according to claim 2, which is an apparatus comprising:
JP5465385A 1985-03-20 1985-03-20 Microcrystalline cellulose spherical granules and method for producing the same Expired - Lifetime JPH072761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5465385A JPH072761B2 (en) 1985-03-20 1985-03-20 Microcrystalline cellulose spherical granules and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5465385A JPH072761B2 (en) 1985-03-20 1985-03-20 Microcrystalline cellulose spherical granules and method for producing the same

Publications (2)

Publication Number Publication Date
JPS61213201A true JPS61213201A (en) 1986-09-22
JPH072761B2 JPH072761B2 (en) 1995-01-18

Family

ID=12976741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5465385A Expired - Lifetime JPH072761B2 (en) 1985-03-20 1985-03-20 Microcrystalline cellulose spherical granules and method for producing the same

Country Status (1)

Country Link
JP (1) JPH072761B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268536A (en) * 1985-09-20 1987-03-28 Freunt Ind Co Ltd Method and apparatus for treating particulate material
EP0452862A2 (en) * 1990-04-18 1991-10-23 Asahi Kasei Kogyo Kabushiki Kaisha Spherical seed cores, spherical granules and process for production thereof
EP0587830A1 (en) * 1992-01-10 1994-03-23 Accurate Polymers, Ltd. Cellulose chromatographic supports and method
US5384130A (en) * 1990-04-18 1995-01-24 Asahi Kasei Kogyo Kabushiki Kaisha Spherical seed cores, spherical granules and process for production thereof
EP0661934A1 (en) * 1992-09-22 1995-07-12 Fmc Corporation Product and process of making microcrystalline cellulose
WO2001034684A1 (en) * 1999-11-12 2001-05-17 R.P. Scherer Technologies, Inc. Microcrystalline cellulose cushioning granules
CN1075515C (en) * 1998-12-30 2001-11-28 中国科学院广州化学研究所 Preparation of microcrystal cellulose colloid
JP2006225367A (en) * 2005-01-19 2006-08-31 Taisho Pharmaceut Co Ltd Core particle for drug-containing coating
EP1736144A2 (en) 1998-05-18 2006-12-27 Takeda Pharmaceutical Company Limited Orally disintegrable tablets
WO2007074856A1 (en) 2005-12-28 2007-07-05 Takeda Pharmaceutical Company Limited Method of producing solid preparation disintegrating in the oral cavity
WO2008013197A1 (en) * 2006-07-26 2008-01-31 Asahi Kasei Chemicals Corporation Spherical crude granule and method for production thereof
WO2008081891A1 (en) 2006-12-28 2008-07-10 Takeda Pharmaceutical Company Limited Orally disintegrating solid preparation
WO2008149894A1 (en) * 2007-06-06 2008-12-11 Asahi Kasei Chemicals Corporation Cellulose fine core particle, and method for production thereof
JP2009051715A (en) * 2007-08-29 2009-03-12 Kyowa Chem Ind Co Ltd Amorphous spherical aluminum silicate, method for producing the same and drug preparation using this aluminum silicate
WO2009066644A1 (en) * 2007-11-19 2009-05-28 Freund Corporation Spherical particle and method for producing the same
JP2010174020A (en) * 2010-03-01 2010-08-12 Nipro Corp Solid agent for sodium bicarbonate dialysis
WO2012074110A1 (en) 2010-12-03 2012-06-07 武田薬品工業株式会社 Orally disintegrating tablet
WO2012091153A2 (en) 2010-12-27 2012-07-05 Takeda Pharmaceutical Company Limited Orally disintegrating tablet
WO2013081177A1 (en) 2011-11-30 2013-06-06 Takeda Pharmaceutical Company Limited Dry coated tablet
US8529953B2 (en) 2008-07-01 2013-09-10 Sawai Pharmaceutical Co., Ltd. Process for production of spherical microparticles comprising tamsulosin hydrochloride
WO2014189034A1 (en) 2013-05-21 2014-11-27 武田薬品工業株式会社 Orally disintegrable tablet
WO2019013310A1 (en) 2017-07-10 2019-01-17 Takeda Pharmaceutical Company Limited Preparation comprising vonoprazan

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139659A (en) * 1996-09-10 1998-05-26 Freunt Ind Co Ltd Spherical particle group, its production and spherical particle formulation using the same
KR101581572B1 (en) * 2014-07-29 2015-12-30 현대제철 주식회사 Methods of manufacturing pellet for blast furnace

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616827B2 (en) * 1985-09-20 1994-03-09 フロイント産業株式会社 Granule processing method and device
JPS6268536A (en) * 1985-09-20 1987-03-28 Freunt Ind Co Ltd Method and apparatus for treating particulate material
US5505983A (en) * 1990-04-18 1996-04-09 Asahi Kasei Kogyo Kabushiki Kaisha Spherical seed cores, spherical granules and process for production thereof
US5384130A (en) * 1990-04-18 1995-01-24 Asahi Kasei Kogyo Kabushiki Kaisha Spherical seed cores, spherical granules and process for production thereof
EP0452862A2 (en) * 1990-04-18 1991-10-23 Asahi Kasei Kogyo Kabushiki Kaisha Spherical seed cores, spherical granules and process for production thereof
CN1040721C (en) * 1990-04-18 1998-11-18 旭化成工业株式会社 Spherical seed cores, spherical granules and process for production thereof
EP0587830A1 (en) * 1992-01-10 1994-03-23 Accurate Polymers, Ltd. Cellulose chromatographic supports and method
EP0587830A4 (en) * 1992-01-10 1995-06-21 Accurate Polymers Ltd Cellulose chromatographic supports and method.
EP0661934A4 (en) * 1992-09-22 1996-07-24 Fmc Corp Product and process of making microcrystalline cellulose.
JPH07507692A (en) * 1992-09-22 1995-08-31 エフ エム シー コーポレーション Microcrystalline cellulose product and method for producing the same
EP0661934A1 (en) * 1992-09-22 1995-07-12 Fmc Corporation Product and process of making microcrystalline cellulose
EP2263660A2 (en) 1998-05-18 2010-12-22 Takeda Pharmaceutical Company Limited Orally disintegrable tablets
EP1736144A2 (en) 1998-05-18 2006-12-27 Takeda Pharmaceutical Company Limited Orally disintegrable tablets
CN1075515C (en) * 1998-12-30 2001-11-28 中国科学院广州化学研究所 Preparation of microcrystal cellulose colloid
WO2001034684A1 (en) * 1999-11-12 2001-05-17 R.P. Scherer Technologies, Inc. Microcrystalline cellulose cushioning granules
JP2006225367A (en) * 2005-01-19 2006-08-31 Taisho Pharmaceut Co Ltd Core particle for drug-containing coating
WO2007074856A1 (en) 2005-12-28 2007-07-05 Takeda Pharmaceutical Company Limited Method of producing solid preparation disintegrating in the oral cavity
WO2008013197A1 (en) * 2006-07-26 2008-01-31 Asahi Kasei Chemicals Corporation Spherical crude granule and method for production thereof
JP5271081B2 (en) * 2006-07-26 2013-08-21 旭化成ケミカルズ株式会社 Spherical granule and method for producing the same
WO2008081891A1 (en) 2006-12-28 2008-07-10 Takeda Pharmaceutical Company Limited Orally disintegrating solid preparation
WO2008149894A1 (en) * 2007-06-06 2008-12-11 Asahi Kasei Chemicals Corporation Cellulose fine core particle, and method for production thereof
JP5461179B2 (en) * 2007-06-06 2014-04-02 旭化成ケミカルズ株式会社 Cellulosic micronucleus particles and method for producing the same
US8298585B2 (en) 2007-06-06 2012-10-30 Asahi Kasei Chemicals Corporation Cellulose-based fine core particle and process for producing the same
JP2009051715A (en) * 2007-08-29 2009-03-12 Kyowa Chem Ind Co Ltd Amorphous spherical aluminum silicate, method for producing the same and drug preparation using this aluminum silicate
WO2009066644A1 (en) * 2007-11-19 2009-05-28 Freund Corporation Spherical particle and method for producing the same
US8529953B2 (en) 2008-07-01 2013-09-10 Sawai Pharmaceutical Co., Ltd. Process for production of spherical microparticles comprising tamsulosin hydrochloride
JP2010174020A (en) * 2010-03-01 2010-08-12 Nipro Corp Solid agent for sodium bicarbonate dialysis
WO2012074110A1 (en) 2010-12-03 2012-06-07 武田薬品工業株式会社 Orally disintegrating tablet
WO2012091153A2 (en) 2010-12-27 2012-07-05 Takeda Pharmaceutical Company Limited Orally disintegrating tablet
WO2013081177A1 (en) 2011-11-30 2013-06-06 Takeda Pharmaceutical Company Limited Dry coated tablet
WO2014189034A1 (en) 2013-05-21 2014-11-27 武田薬品工業株式会社 Orally disintegrable tablet
WO2019013310A1 (en) 2017-07-10 2019-01-17 Takeda Pharmaceutical Company Limited Preparation comprising vonoprazan

Also Published As

Publication number Publication date
JPH072761B2 (en) 1995-01-18

Similar Documents

Publication Publication Date Title
JPS61213201A (en) Spherical granule of fine crystalline cellulose and production thereof
JP3447042B2 (en) Method for producing single substance spherical particles
JP3261707B2 (en) Pellet manufacturing method
Srivastava et al. Fluid bed technology: overview and parameters for process selection
Vuppala et al. Application of powder-layering technology and film coating for manufacture of sustained-release pellets using a rotary fluid bed processor
KR100227999B1 (en) Process for preparing drug substances in beadlet form
CA1318482C (en) Granular product (i)
JP4090529B2 (en) Lactose spherical particles and method for producing the same
Hirjau et al. Pelletization techniques used in pharmaceutical fields
HU196717B (en) Apparatus and method for fluidization contacting materials
AU4365299A (en) Layering process and apparatus therefor
JP3349535B2 (en) Method for producing spherical granules
US4994458A (en) Process for rotary fluid bed granulation of riboflavin
WO1998010751A1 (en) Spherical particle groups, process for preparing the same and spherical particulate pharmaceuticals using the same
JP3219787B2 (en) Method for producing spherical particles
JP3910939B2 (en) Single-substance spherical particles, foods and medicines using them, and methods for producing them
JPS6323731A (en) Continuous production of globular particles
JP3354172B2 (en) Heavy granulation of high drug content powder
WO2009133774A1 (en) Spherical granules and method of producing the same
Shankar et al. Pelletization: a most significant technology in the pharmaceuticals
JPH10192687A (en) Powdery particle treatment apparatus and powdery particle treatment using the same
JP2888581B2 (en) Method for producing solid pharmaceutical preparation
El-Mahrouk et al. Preparation and evaluation of sustained release indomethacin nonpareil seeds
Bhagat Application of Powder-Layering Technology and Film Coating for
JPS63240934A (en) Method for granulating medicinal material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term