JPH09219447A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH09219447A
JPH09219447A JP2351996A JP2351996A JPH09219447A JP H09219447 A JPH09219447 A JP H09219447A JP 2351996 A JP2351996 A JP 2351996A JP 2351996 A JP2351996 A JP 2351996A JP H09219447 A JPH09219447 A JP H09219447A
Authority
JP
Japan
Prior art keywords
film
region
element isolation
type
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2351996A
Other languages
Japanese (ja)
Inventor
Toshio Hario
敏男 針生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Denshi KK
Original Assignee
Hitachi Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Denshi KK filed Critical Hitachi Denshi KK
Priority to JP2351996A priority Critical patent/JPH09219447A/en
Publication of JPH09219447A publication Critical patent/JPH09219447A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to manufacture a bipolar transistor of a high cut-off frequency by a method wherein the distances between an element isolation region and a collector buried region and a collector contact region in the depth direction of the element isolation region are shortened by etching an epitaxial layer other than an element part and with a parasitic capacity due to the element isolation region reduced, a collector resistance is reduced. SOLUTION: An N-type collector buried and diffused region 2 and a P-type element isolation buried region 3 are formed in a P-type silicon substrate 1, an N-type epitaxial layer 4 is grown on the regions 2 and 3 and moreover, after an oxide film 5 is formed on the layer 4, a resist film 6 is formed at a prescribed position on the film 5. The film 5 is removed using the film 6 as a mask, the film 4 is etched using the left film 5 as a mask and an element isolation diffused region 7 is formed. Then, the film 5 is all removed, an oxide film 8 is again formed and such a resist film 9 as the surface of the film 9 becomes flat is formed on the film 8. The film 9 is removed in such a way that the surface of the film 5 on an active part of the film 4 is exposed and P-type ions are implanted in the film 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、遮断周波数fT
高いバイポーラトランジスタを含む半導体装置の製造方
法に関する。
The present invention relates to a method of manufacturing a semiconductor device including a bipolar transistor having a high cutoff frequency f T.

【0002】[0002]

【従来の技術】バイポーラトランジスタの代表的な製造
方法を図2の工程断面図に従って説明する。
2. Description of the Related Art A typical method of manufacturing a bipolar transistor will be described with reference to process sectional views of FIG.

【0003】図2のAに示すように、P形の基板1にN
形のコレクタ埋込拡散領域2および、P形の素子分離用
埋込領域3を熱拡散法などにより形成し、さらにN形エ
ピタキシャル層4を成長させる。
As shown in FIG. 2A, the P-type substrate 1 has N
Type collector buried diffusion region 2 and P type element isolation buried region 3 are formed by a thermal diffusion method or the like, and an N type epitaxial layer 4 is further grown.

【0004】次に図2のBに示すように、P形の素子分
離用拡散領域14およびP形のベース領域15をイオン
打ち込み法により形成する。
Next, as shown in FIG. 2B, a P-type element isolation diffusion region 14 and a P-type base region 15 are formed by an ion implantation method.

【0005】最後に図2のCに示すように、N形のコレ
クタコンタクト領域16およびベース領域内にN形のエ
ミッタコンタクト領域17をイオン打ち込み法により形
成する。
Finally, as shown in FIG. 2C, an N-type emitter contact region 17 is formed in the N-type collector contact region 16 and the base region by ion implantation.

【0006】[0006]

【発明が解決しようとする課題】前述の従来技術におい
ては、素子分離領域3の深さ方向の距離が長くなるた
め、素子分離領域による寄生容量が大きくなる。また、
コレクタ埋込領域とコレクタコンタクト領域の間のエピ
タキシャル層は比抵抗が大きいため、広がり抵抗が増大
し、コレクタ抵抗が大きくなる。これらの寄生素子、素
子分離領域による接合容量Csubおよびコレクタ抵抗rC
が大きくなると遮断周波数fTが小さくなる関係より、
遮断周波数fTの高いバイポーラトランジスタの製造は
困難となる。
In the above-mentioned prior art, since the distance in the depth direction of the element isolation region 3 becomes long, the parasitic capacitance due to the element isolation region becomes large. Also,
Since the epitaxial layer between the collector buried region and the collector contact region has a large specific resistance, the spreading resistance increases and the collector resistance also increases. Junction capacitance C sub and collector resistance r C due to these parasitic elements and element isolation regions
Is larger, the cutoff frequency f T becomes smaller,
It is difficult to manufacture a bipolar transistor having a high cutoff frequency f T.

【0007】[0007]

【課題を解決するための手段】本発明は、遮断周波数f
Tの高いバイポーラトランジスタを製造するために、素
子部以外のエピタキシャル層をエッチングし、深さ方向
の素子分離領域およびコレクタ埋込領域とコレクタコン
タクト領域との距離を短縮し、エピタキシャル層のエッ
チングしていない部分(以後これをアクティブ部とい
う)全体に拡散領域を形成する際に、マスクを必要とし
ない拡散領域の形成が可能になる製造方法を提供するも
のである。
The present invention is based on the cutoff frequency f
In order to manufacture a bipolar transistor with a high T , the epitaxial layer other than the element part is etched, the distance between the element isolation region and the collector buried region and the collector contact region in the depth direction is shortened, and the epitaxial layer is etched. It is intended to provide a manufacturing method capable of forming a diffusion region that does not require a mask when the diffusion region is formed over the entire non-existing portion (hereinafter referred to as an active portion).

【0008】本発明によると、素子分離領域による寄生
容量およびコレクタ抵抗が低減し、またエピタキシャル
層のアクティブ部に形成される拡散領域は、セルフアラ
インで全くずれ無く所定の位置に形成できるため、マス
ク合わせ余裕を考慮する必要が無く、そのため素子寸法
も縮小できる。またマスクずれにより拡散領域がエピタ
キシャル層のエッチングした部分(以後これをパッシブ
部という)にまで形成されることが無くなるので、設計
通りのベース・コレクタ間耐圧を確保できる。
According to the present invention, the parasitic capacitance and collector resistance due to the element isolation region are reduced, and the diffusion region formed in the active portion of the epitaxial layer can be formed at a predetermined position by self-alignment without any deviation. Since it is not necessary to consider the alignment margin, the element size can be reduced. Further, since the diffusion region is not formed even in the etched portion of the epitaxial layer (hereinafter referred to as the passive portion) due to the mask shift, the designed base-collector breakdown voltage can be secured.

【0009】[0009]

【発明の実施の形態】以下に、本発明の実施例を図1の
工程断面図に従って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the cross-sectional views of FIG.

【0010】図1のAに示すように、P形シリコン基板
1にN形のコレクタ埋込拡散領域2および、P形の素子
分離用埋込領域3を熱拡散法により形成し、その上にN
形エピタキシャル層4を成長させ、さらに酸化膜5を形
成した後、所定の位置にフォトレジスト工程によりレジ
スト膜6を形成する。
As shown in FIG. 1A, an N type collector buried diffusion region 2 and a P type element isolation buried region 3 are formed on a P type silicon substrate 1 by a thermal diffusion method, and are formed thereon. N
After the epitaxial layer 4 is grown and an oxide film 5 is further formed, a resist film 6 is formed at a predetermined position by a photoresist process.

【0011】次に図1のBに示すように、レジスト膜6
をマスクにして酸化膜5を除去し、残った酸化膜5をマ
スクにしてエピタキシャル層4をエッチングし、素子分
離用拡散領域7を形成する。
Next, as shown in FIG. 1B, the resist film 6
Is used as a mask to remove the oxide film 5, and the remaining oxide film 5 is used as a mask to etch the epitaxial layer 4 to form a diffusion region 7 for element isolation.

【0012】次に図1のCに示すように、1度酸化膜を
すべて除去し再び酸化膜8を形成し、その上に表面が平
坦になるようにレジスト膜9を形成する。
Next, as shown in FIG. 1C, the oxide film is completely removed once, an oxide film 8 is formed again, and a resist film 9 is formed thereon so that the surface becomes flat.

【0013】次に図1のDに示すように、エピタキシャ
ル層のアクティブ部上の酸化膜の表面が露出するように
レジスト膜を除去し、イオン打ち込み法によりP形のイ
オン10を打ち込む。この時、前記エッチングした部分
はマスク材により充填されているため、パッシブ部には
不純物イオンは導入されない。
Next, as shown in FIG. 1D, the resist film is removed so that the surface of the oxide film on the active portion of the epitaxial layer is exposed, and P-type ions 10 are implanted by the ion implantation method. At this time, since the etched portion is filled with the mask material, impurity ions are not introduced into the passive portion.

【0014】最後に図1のEに示すように、レジスト膜
をすべて除去して、アニール工程によりベース拡散領域
11を形成し、N形のコレクタコンタクト領域12をイ
オン打ち込み法により形成し、ベース拡散領域11内に
N形のエミッタコンタクト領域13をイオン打ち込み法
により形成する。バイポーラトランジスタにおける、素
子分離領域による寄生容量Csubおよびコレクタ抵抗rC
の値が小さくなるとfTは大きくなる。
Finally, as shown in FIG. 1E, the resist film is completely removed and an annealing process is performed to form a base diffusion region 11, and an N-type collector contact region 12 is formed by an ion implantation method. An N type emitter contact region 13 is formed in the region 11 by an ion implantation method. Parasitic capacitance C sub and collector resistance r C due to the element isolation region in the bipolar transistor
The smaller the value of, the larger f T.

【0015】以上の理由から、この製造方法により、バ
イポーラトランジスタの遮断周波数fTを向上させるこ
とができる。
For the above reasons, this manufacturing method can improve the cutoff frequency f T of the bipolar transistor.

【0016】[0016]

【発明の効果】以上のように本発明によれば、素子部以
外のエピタキシャル層をエッチングすることにより、素
子分離領域の深さ方向の距離が短縮されるため素子分離
領域による寄生容量が低減できる。また、コレクタ埋込
領域とコレクタコンタクト領域の広がり抵抗も減少する
ため、コレクタ抵抗が低減できる。また、エピタキシャ
ル層のアクティブ部全体に拡散領域を形成する際は、マ
スクを必要としないベース拡散領域の形成が可能になる
ので、全くずれ無く所定の位置に形成でき、マスク合わ
せ余裕を考慮する必要が無く、そのため素子寸法も縮小
できる。また、マスクずれが無いことで、ずれにより拡
散領域がエピタキシャル層のパッシブ部にまで形成され
ることが無くなるので、設計通りのベース・コレクタ間
耐圧を確保できる。これらの改善項目により、遮断周波
数fT の高いバイポーラトランジスタを含む半導体装置
が製造できる。
As described above, according to the present invention, by etching the epitaxial layer other than the element portion, the distance in the depth direction of the element isolation region is shortened, so that the parasitic capacitance due to the element isolation region can be reduced. . Further, since the spreading resistance of the collector buried region and the collector contact region is also reduced, the collector resistance can be reduced. Further, when forming the diffusion region in the entire active portion of the epitaxial layer, it is possible to form a base diffusion region that does not require a mask, so it can be formed at a predetermined position without any deviation, and it is necessary to consider the mask alignment margin. Therefore, the element size can be reduced. Further, since there is no mask displacement, the diffusion region is prevented from being formed even in the passive portion of the epitaxial layer, so that the base-collector breakdown voltage as designed can be secured. With these improvements, a semiconductor device including a bipolar transistor having a high cutoff frequency f T can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による半導体装置の工程を示す断面図。FIG. 1 is a sectional view showing a process of a semiconductor device according to the present invention.

【図2】従来例による半導体装置の工程を示す断面図。FIG. 2 is a sectional view showing a process of a semiconductor device according to a conventional example.

【符号の説明】[Explanation of symbols]

1:P形シリコン基板、2:コレクタ埋込拡散領域、
3:素子分離用拡散埋込領域、4:N形エピタキシャル
層、5:第1酸化膜、6:第1レジスト膜、7:素子分
離用拡散領域、8:第二酸化膜、9:第二レジスト膜、
10:P形のイオン、11:ベース拡散領域、12:コ
レクタコンタクト領域、13:エミッタコンタクト領
域、14:従来方法による素子分離用拡散領域、15:
従来方法によるベース拡散領域、16:従来方法による
コレクタコンタクト領域、17:従来方法によるエミッ
タコンタクト領域。
1: P-type silicon substrate, 2: collector buried diffusion region,
3: element isolation diffusion buried region, 4: N type epitaxial layer, 5: first oxide film, 6: first resist film, 7: element isolation diffusion region, 8: second dioxide film, 9: second resist film,
10: P-type ions, 11: base diffusion region, 12: collector contact region, 13: emitter contact region, 14: element isolation diffusion region by conventional method, 15:
Base diffusion region by a conventional method, 16: collector contact region by a conventional method, 17: emitter contact region by a conventional method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の半導体基板の表面に受動素
子を形成した半導体装置において、 前記半導体基板の任意部分をエッチングする工程と、 前記半導体基板上の全面に酸化膜を形成させ、該酸化膜
上にマスクとなる材料膜を表面が平坦になるように形成
する工程と、 前記エッチング工程においてエッチングしなかった半導
体基板上の前記酸化膜の表面が露出するまで、前記材料
膜をエッチングする工程と、 前記表面の露出した領域にイオン打ち込みを行う工程を
有することを特徴とした半導体装置の製造方法。
1. A semiconductor device having a passive element formed on the surface of a first conductivity type semiconductor substrate, the step of etching an arbitrary portion of the semiconductor substrate, and forming an oxide film on the entire surface of the semiconductor substrate. Forming a material film serving as a mask on the oxide film so as to have a flat surface; and etching the material film until the surface of the oxide film on the semiconductor substrate not etched in the etching step is exposed A method of manufacturing a semiconductor device, comprising: a step of implanting ions into the exposed region of the surface.
JP2351996A 1996-02-09 1996-02-09 Manufacture of semiconductor device Pending JPH09219447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2351996A JPH09219447A (en) 1996-02-09 1996-02-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2351996A JPH09219447A (en) 1996-02-09 1996-02-09 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH09219447A true JPH09219447A (en) 1997-08-19

Family

ID=12112706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2351996A Pending JPH09219447A (en) 1996-02-09 1996-02-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH09219447A (en)

Similar Documents

Publication Publication Date Title
JP2543224B2 (en) Semiconductor device and manufacturing method thereof
US5424227A (en) Method of manufacture of silicon-germanium heterobipolar transistors
KR0139805B1 (en) Method of making single polysilicon self-aligned transistor
EP0224717B1 (en) Self-aligned channel stop
JPH0666325B2 (en) Vertical bipolar transistor having a concave epitaxially grown intrinsic base region and method of making the same
US4619036A (en) Self-aligned low-temperature emitter drive-in
WO1987001238A1 (en) Fabricating a semiconductor device with buried oxide
US6403437B1 (en) Method for making hyperfrequency transistor
JPS62113471A (en) Formation of external factor base region doped with high concentration and shallow depth in bipolar transistor
JPH0897170A (en) Formation of low ohmic contact between metallized layer and semiconductor material
US5747374A (en) Methods of fabricating bipolar transistors having separately formed intrinsic base and link-up regions
US20040209433A1 (en) Method for manufacturing and structure of semiconductor device with shallow trench collector contact region
JPH09172062A (en) Semiconductor device and its manufacture
JPH09219447A (en) Manufacture of semiconductor device
KR0166069B1 (en) Semiconductor device
KR930010118B1 (en) Making method of semiconductor device
JP3063122B2 (en) Semiconductor device and manufacturing method thereof
JP2770762B2 (en) Method for manufacturing semiconductor device
JPH0344077A (en) Manufacture of semiconductor device
US5376563A (en) Method of manufacturing an emitter base self alignment structure
KR950000139B1 (en) Bipolar transistor and manufacturing method thereof
KR100325446B1 (en) Method for manufacturing bipolar junction transistor
KR100325447B1 (en) Method for fabricating bipolar junction transistor
JP2847773B2 (en) Method for manufacturing semiconductor device
KR970004430B1 (en) Fabrication method of hbt