JPH09218208A - Method for taking out electrode and cantilever for atomic force microscope using the electrode-taking method - Google Patents

Method for taking out electrode and cantilever for atomic force microscope using the electrode-taking method

Info

Publication number
JPH09218208A
JPH09218208A JP8019870A JP1987096A JPH09218208A JP H09218208 A JPH09218208 A JP H09218208A JP 8019870 A JP8019870 A JP 8019870A JP 1987096 A JP1987096 A JP 1987096A JP H09218208 A JPH09218208 A JP H09218208A
Authority
JP
Japan
Prior art keywords
electrode
substrate
cantilever
atomic force
displacement sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8019870A
Other languages
Japanese (ja)
Inventor
Shunji Watanabe
俊二 渡辺
Tetsuo Hattori
徹夫 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP8019870A priority Critical patent/JPH09218208A/en
Publication of JPH09218208A publication Critical patent/JPH09218208A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently take out an electrode by adopting a second electrode- taking substrate having a minute continuity projection and a wiring pattern connected to the continuity projection. SOLUTION: Projections of silver paste 111-113 are formed on a rectangular float glass substrate 100 by screen printing. The projections 111, 112 among the projections are respectively printed at positions to agree with an upper and a lower electrodes of a cantilever when bonded to the electrodes. Thereafter, Al is formed from the projections 111, 112 by vacuum vapor deposition with the use of a metal mask as electrode-taking electrodes 121, 122 of a piezoelectric body film. The projection 113 is used as a dummy for figuring at the bonding time. Then, Ga-In alloys 131, 132 are screen-printed on the projections 111, 112. After the upper and lower electrodes of the cantilever are registered with the continuity projection parts of a second substrate, the electrodes and the substrate are bonded with the use of an adhesive 140. Accordingly, the cantilever is obtained with a good yield.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、誘電体薄膜の上部
電極及び下部電極を外部に取り出す技術に関するもので
あり、特に圧電変位センサー付き原子間力顕微鏡(AF
M)用カンチレバーの上部電極及び下部電極を外部に取
り出す方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for taking out an upper electrode and a lower electrode of a dielectric thin film to the outside, and particularly to an atomic force microscope (AF) equipped with a piezoelectric displacement sensor.
The present invention relates to a method for extracting the upper electrode and the lower electrode of the M) cantilever to the outside.

【0002】[0002]

【従来の技術】従来の誘電体薄膜の上部電極及び下部電
極を外部に取り出す方法の概要を図7に示す工程順で記
す。 (7−1)基板200にグランドとなる下部電極膜21
0を成膜し、その上に誘電体膜220を基板200全面
に作製する。(7−2)(7−1)に上部電極230を
成膜、パターニングを行う。(7−3)誘電体膜220
をエッチングする。(7−4)基板200全面に絶縁体
膜240を減圧CVD法等の成膜法で作製する。(7−
5)絶縁体膜240の上部電極230の上に当たる部分
をエッチングする。(7−6)最後に誘電体膜220に
関する信号を外部に取り出すための配線パターン250
を作製する。
2. Description of the Related Art An outline of a conventional method of extracting an upper electrode and a lower electrode of a dielectric thin film to the outside will be described in the order of steps shown in FIG. (7-1) Lower electrode film 21 serving as ground on the substrate 200
0 is formed, and a dielectric film 220 is formed on the entire surface of the substrate 200. (7-2) An upper electrode 230 is formed on (7-1) and patterned. (7-3) Dielectric film 220
Is etched. (7-4) The insulating film 240 is formed on the entire surface of the substrate 200 by a film forming method such as a low pressure CVD method. (7-
5) The portion of the insulator film 240 that corresponds to the upper electrode 230 is etched. (7-6) Finally, a wiring pattern 250 for extracting a signal related to the dielectric film 220 to the outside.
Is prepared.

【0003】以上のように、基板に下部電極、誘電体
膜、上部電極を成膜する他に、誘電体膜のエッチング、
絶縁体膜の作製、絶縁体膜のエッチング、配線パターン
を作製する。このように基板上に複数の電子素子をパタ
ーニングし、それらを切り放してチップ化することで電
子素子を量産することができる。
As described above, in addition to forming the lower electrode, the dielectric film and the upper electrode on the substrate, etching of the dielectric film,
Fabrication of an insulator film, etching of the insulator film, and fabrication of a wiring pattern. In this way, by patterning a plurality of electronic elements on the substrate and cutting them off into chips, electronic elements can be mass-produced.

【0004】[0004]

【発明が解決しようとする課題】従来の誘電体薄膜の上
部電極及び下電極を外部に取り出す方法は、下部電極、
誘電体膜、上部電極の成膜の他に、誘電体膜のエッチン
グ、絶縁膜の作製、絶縁膜のエッチング、配線パターン
の作製工程が必要であり、その工程の複雑化は避けるこ
とができない。又、同じ基板上で加工を重ねているた
め、歩留まりの低下を引き起こす問題があった。いずれ
の場合でも生産コストが上昇してしまう。
A conventional method for taking out the upper electrode and the lower electrode of a dielectric thin film is to use a lower electrode,
In addition to film formation of the dielectric film and the upper electrode, a dielectric film etching process, an insulating film manufacturing process, an insulating film etching process, and a wiring pattern manufacturing process are required, and the process cannot be complicated. Further, since the processes are repeated on the same substrate, there is a problem that the yield is lowered. In either case, the production cost will increase.

【0005】しかしながら、従来の誘電体薄膜の上部電
極及び下電極を外部に取り出す方法の最大の問題は、ど
の誘電体膜にもこの作製方法が適応でき、作製条件が確
立できるとは限らない点である。例えば、圧電膜変位セ
ンサー付きAFM用のカンチレバーの誘電体膜としては
圧電定数が高い鉛系圧電体を使用する。この鉛系圧電体
膜は、従来の上部電極及び下電極を外部に取り出す方法
では圧電体膜の成膜後の電気性能をどうしても維持でき
ず、工程終了後には所定の電気性能が劣化してしまうこ
とが避けられなかった。
However, the biggest problem of the conventional method of taking out the upper electrode and the lower electrode of the dielectric thin film to the outside is that this manufacturing method can be applied to any dielectric film and the manufacturing conditions cannot always be established. Is. For example, a lead-based piezoelectric material having a high piezoelectric constant is used as a dielectric film of a cantilever for an AFM with a piezoelectric film displacement sensor. This lead-based piezoelectric film cannot maintain the electrical performance after forming the piezoelectric film by the conventional method of taking out the upper electrode and the lower electrode to the outside, and the predetermined electrical performance deteriorates after the process is completed. It was inevitable.

【0006】本発明の目的は従来の方法が持っていたこ
れらの欠点を無くし、誘電体膜の上部電極及び下部電極
を外部に取り出す方法を提供することにある。
An object of the present invention is to eliminate the drawbacks of the conventional methods and to provide a method of taking out the upper electrode and the lower electrode of the dielectric film to the outside.

【0007】[0007]

【課題を解決するための手段】本発明者らは、基板上に
上部電極、誘電体膜及び下部電極を成膜する以外の工
程、すなわち誘電体膜の成膜後のエッチング、絶縁体膜
の作製、絶縁体膜のエッチング等の後工程について鋭意
研究を行った。しかしながら、このうちのどの工程が誘
電体膜の電気性能の劣化を与えるかについては何度も実
験を繰り返したが、決定することはできず、問題を解決
することはできなかった。
Means for Solving the Problems The inventors of the present invention have performed steps other than forming an upper electrode, a dielectric film, and a lower electrode on a substrate, that is, etching after forming a dielectric film, and forming an insulator film. We have earnestly studied post-processes such as fabrication and etching of the insulator film. However, an experiment was repeated many times as to which of these steps caused deterioration of the electrical performance of the dielectric film, but it could not be determined and the problem could not be solved.

【0008】そこで、本発明者らは、誘電体膜の成膜後
のエッチング処理、絶縁体膜の成膜、絶縁体膜のエッチ
ング等の後工程が誘電体膜の信号を外部に取り出すため
に行われる工程であることに着目し、これらの工程を同
一基板上では実施せず、他の基板上に信号取り出し用配
線パターンを形成しておき、両基板を誘電体膜の電気性
能が劣化しないように工夫して張り合わせ等で電気的に
導通をさせることができれば課題が解決できるのではな
いかと考えた。
Therefore, the inventors of the present invention use a post-process such as an etching process after the dielectric film is formed, an insulating film is formed, and an insulating film is etched in order to take out the signal of the dielectric film to the outside. Focusing on the steps that are performed, do not perform these steps on the same substrate, but form a signal extraction wiring pattern on another substrate so that the electrical performance of the dielectric film does not deteriorate on both substrates. It was thought that the problem could be solved if the device could be made electrically conductive by laminating etc.

【0009】。そこで、本発明は、「第1基板部材上に
形成された誘電体薄膜の上部電極と下部電極を外部に取
り出す方法において、第2基板上に微小な突起と該突起
と導通している配線パターンを形成した電極取り出し部
材を作製し、前記第1基板上の上部電極と前記と電極取
り出し部材の前記突起部分を接触又は接続することによ
って、電極取り出し部材の配線パターンより電極を取り
出すことを特徴とする電極取り出し方法(請求項1)」
を提供する。
[0009]. Therefore, the present invention provides, in a method of extracting the upper electrode and the lower electrode of the dielectric thin film formed on the first substrate member to the outside, minute protrusions on the second substrate and a wiring pattern electrically connected to the protrusions. An electrode lead-out member having the above-mentioned structure is formed, and the upper electrode on the first substrate is brought into contact with or connected to the protruding portion of the electrode lead-out member to take out the electrode from the wiring pattern of the electrode lead-out member. Electrode removal method (claim 1) "
I will provide a.

【0010】また、本発明は、「前記第1基板が圧電膜
変位センサー付き原子間力顕微鏡用カンチレバーであ
り、且つ誘電体薄膜が前記カンチレバー上に形成された
圧電薄膜であることを特徴とする請求項1記載の電極取
り出し方法(請求項2)」を提供する。また、本発明
は、「前記第1基板上の上部電極と前記電極取り出し部
材の突起部分との間に常温で液体の金属を挟み込んで、
前記第1基板と前記電極取り出し部材とを接続すること
を特徴とする請求項1又は2記載の電極取り出し方法
(請求項3)」を提供する。
Further, the present invention is characterized in that "the first substrate is a cantilever for an atomic force microscope with a piezoelectric film displacement sensor, and the dielectric thin film is a piezoelectric thin film formed on the cantilever. An electrode extraction method (claim 2) according to claim 1 is provided. Further, the present invention provides that “a liquid metal is sandwiched at room temperature between the upper electrode on the first substrate and the protruding portion of the electrode extracting member,
The electrode extraction method (claim 3) according to claim 1 or 2, wherein the first substrate and the electrode extraction member are connected.

【0011】また、本発明は、「第1基板部材上に誘電
体薄膜の上部電極及び下部電極を形成し、第2基板部材
上に電極取り出し部材の配線パターンを形成し、前記上
部電極及び下部電極上の一部に常温で液体の金属又は導
電性ペーストを塗布し、それと前記電極取り出し部材と
を接続し、それによって前記上部電極及び下部電極を前
記常温で液体の金属又は導電性ペースト及び前記取り出
し電極を介して外部と電気的に接続することを特徴とす
る電極取り出し方法(請求項4)」を提供する。
The present invention also provides that "the upper electrode and the lower electrode of the dielectric thin film are formed on the first substrate member, the wiring pattern of the electrode take-out member is formed on the second substrate member, and the upper electrode and the lower electrode are formed. A metal or conductive paste that is liquid at room temperature is applied to a part of the electrode, and the electrode lead-out member is connected to the metal or conductive paste. There is provided an electrode extraction method (claim 4) characterized in that the electrode is electrically connected to the outside through an extraction electrode.

【0012】また、本発明は、「前記常温で液体の金属
又は導電性ペーストと前記電極取り出し部材との接続
に、ガラス製又は樹脂製のビーズを含有した接着剤を用
いたことを特徴とする請求項4記載の電極取り出し方法
(請求項5)」を提供する。また、本発明は、「前記常
温で液体の金属がガリウム−インジウム系合金であるこ
とを特徴とする請求項3〜5記載の電極取り出し方法
(請求項6)」を提供する。
The present invention is also characterized in that "an adhesive containing glass or resin beads is used to connect the metal or conductive paste which is liquid at room temperature to the electrode lead-out member. An electrode extraction method (claim 5) according to claim 4 is provided. The present invention also provides "the electrode extraction method according to claims 3 to 5 (claim 6), wherein the metal that is liquid at room temperature is a gallium-indium alloy."

【0013】また、本発明は、「第1基板部材上に形成
された誘電体薄膜の上部電極と下部電極を外部に取り出
してなる圧電膜変位センサー付き原子間顕微鏡用カンチ
レバーにおいて、第2基板上に微小な突起と該突起と導
通している配線パターンを形成した電極取り出し部材を
作製し、前記第1基板上の上部電極と前記電極取り出し
部材の前記突起部分を接触又は接続することによって、
電極取り出し部材の配線パターンより電極を取り出して
なる圧電膜変位センサー付き原子間顕微鏡用カンチレバ
ー(請求項7)」を提供する。
The present invention also relates to a "cantilever for an atomic force microscope with a piezoelectric film displacement sensor, which is obtained by taking out an upper electrode and a lower electrode of a dielectric thin film formed on a first substrate member to the outside, on a second substrate. By making an electrode lead-out member on which a minute protrusion and a wiring pattern in conduction with the protrusion are formed, and by contacting or connecting the upper electrode on the first substrate and the protruding portion of the electrode lead-out member,
A cantilever for an atomic force microscope with a piezoelectric film displacement sensor, in which an electrode is taken out from a wiring pattern of an electrode taking-out member (claim 7) "is provided.

【0014】また、本発明は、「前記第1基板が圧電膜
変位センサー付き原子間力顕微鏡用カンチレバーであ
り、且つ誘電体薄膜が前記カンチレバー上に形成された
圧電薄膜であることを特徴とする請求項7記載の圧電膜
変位センサー付き原子間顕微鏡用カンチレバー(請求項
8)」を提供する。また、本発明は、「前記第1基板上
の上部電極と前記電極取り出し部材の突起部分との間に
常温で液体の金属を挟み込んで、前記第1基板と前記電
極取り出し部材を接続することを特徴とする請求項7又
は8記載の圧電膜変位センサー付き原子間顕微鏡用カン
チレバー(請求項9)」を提供する。
Further, the present invention is characterized in that "the first substrate is a cantilever for an atomic force microscope with a piezoelectric film displacement sensor, and the dielectric thin film is a piezoelectric thin film formed on the cantilever. A cantilever for an atomic force microscope with a piezoelectric film displacement sensor according to claim 7 is provided. In addition, the present invention is directed to "connecting the first substrate and the electrode lead-out member by sandwiching a liquid metal at room temperature between the upper electrode on the first substrate and the protruding portion of the electrode lead-out member. A cantilever for an atomic force microscope with a piezoelectric film displacement sensor according to claim 7 or claim 8 is provided.

【0015】また、本発明は、「誘電体薄膜の上部電極
及び下部電極が形成された第1基板部材と、前記上部電
極及び下部電極上の一部に形成された常温で液体液体の
金属または導電性ペーストと、前記常温で液体の金属又
は導電性ペーストと接続する電極取り出し部材の配線パ
ターンが形成された第2基板部材とからなることを特徴
とする圧電膜変位センサー付き原子間力顕微鏡用カンチ
レバー(請求項10)」を提供する。
The present invention also provides a "first substrate member having an upper electrode and a lower electrode of a dielectric thin film formed thereon, and a metal or liquid formed at a part of the upper electrode and the lower electrode, which is liquid or liquid at room temperature. For an atomic force microscope with a piezoelectric film displacement sensor, comprising a conductive paste and a second substrate member on which a wiring pattern of an electrode lead-out member that is connected to the metal or the conductive paste that is liquid at room temperature is formed. A cantilever (claim 10) ".

【0016】また、本発明は、「前記第1基板部材上に
カンチレバー、圧電体膜及び前記誘電体薄膜を順次形成
してなる請求項10記載の圧電膜変位センサー付き原子
間力顕微鏡用カンチレバー(請求項11)」を提供す
る。また、本発明は、「前記常温で液体の金属又は導電
性ペーストと前記電極取り出し部材との接続に、ガラス
製又は樹脂製のビーズを含有した接着剤を用いたことを
特徴とする請求項10又は11記載の圧電膜変位センサ
ー付き原子間力顕微鏡用カンチレバー(請求項12)」
を提供する。
The present invention also provides: "A cantilever for an atomic force microscope with a piezoelectric film displacement sensor according to claim 10, wherein a cantilever, a piezoelectric film, and the dielectric thin film are sequentially formed on the first substrate member. Claim 11) "is provided. Further, the present invention is characterized in that "an adhesive containing beads made of glass or resin is used for connecting the metal or conductive paste which is liquid at room temperature and the electrode lead-out member. Or a cantilever for an atomic force microscope with a piezoelectric film displacement sensor according to claim 11 (claim 12).
I will provide a.

【0017】また、本発明は、「前記常温で液体の金属
がガリウム−インジウム系合金であることを特徴とする
請求項9又は12記載の圧電膜変位センサー付き原子間
顕微鏡用カンチレバー(請求項13)」を提供する。
The present invention also provides: "A cantilever for an atomic force microscope with a piezoelectric film displacement sensor according to claim 9 or 12, wherein the metal that is liquid at room temperature is a gallium-indium alloy. )"I will provide a.

【0018】[0018]

【発明の実施の形態】誘電体薄膜の上部電極及び下部電
極を外部に取り出す場合において、微小な導通用突起と
該突起と導通した配線パターンとが存在する電極取り出
し用基板(第2基板)を別に作製し、上部電極及び下部
電極と第2基板の導通用突起とが接触するように位置合
わせを行い、電気的導通を保証して接着、固定すること
により第2基板の配線パターンに誘電体薄膜の上部電極
及び下部電極を導通させることを可能にし、又誘電体膜
の性能を劣化させる従来方法の持っていた原因を排除す
ることが可能になる。
BEST MODE FOR CARRYING OUT THE INVENTION When an upper electrode and a lower electrode of a dielectric thin film are taken out to the outside, an electrode taking-out substrate (second substrate) having a minute conducting protrusion and a wiring pattern conducting to the protrusion is provided. Separately manufactured, the upper electrode and the lower electrode are aligned so that the conductive protrusions of the second substrate come into contact with each other, and the electrical conductivity is guaranteed to adhere and fix the dielectric to the wiring pattern of the second substrate. It is possible to make the upper electrode and the lower electrode of the thin film conductive, and it is possible to eliminate the cause of the conventional method that deteriorates the performance of the dielectric film.

【0019】上部電極及び下部電極と第2基板の導通用
突起とが接触するように位置合わせを行い、接着する
際、上部電極及び下部電極と第2基板の導通用突起とは
電気的接触を保証するために両者間にガリウムーインジ
ウム系液体金属を挟み込むと良い。また、誘電体薄膜の
上部電極及び下部電極を外部に取り出す場合において、
電極取り出し部材の配線パターンを電極取り出し用基板
(第2基板)を別に作製し、前記上部電極及び下部電極
上の一部に常温で液体の金属又は導電性ペーストを塗布
し、それと前記電極取り出し部材とが接触するように位
置合わせを行い、電気的導通を保証して接着、固定する
ことにより第2基板の電極取りだし部材の配線パターン
に誘電体薄膜の上部電極及び下部電極を導通させること
を可能にし、又誘電体膜の性能を劣化させる従来方法の
持っていた原因を排除することが可能となる。
When the upper electrode and the lower electrode are aligned so that the conductive protrusions of the second substrate come into contact with each other and are bonded, the upper electrode and the lower electrode are electrically contacted with the conductive protrusions of the second substrate. It is advisable to sandwich a gallium-indium-based liquid metal between the two in order to guarantee it. Also, when taking out the upper electrode and the lower electrode of the dielectric thin film to the outside,
The wiring pattern of the electrode lead-out member is prepared separately from the electrode lead-out substrate (second substrate), and a part of the upper electrode and the lower electrode is coated with a liquid metal or a conductive paste at room temperature. It is possible to make the upper electrode and the lower electrode of the dielectric thin film conductive to the wiring pattern of the electrode extraction member of the second substrate by aligning so that it contacts with In addition, it is possible to eliminate the cause of the conventional method that deteriorates the performance of the dielectric film.

【0020】常温で液体の金属は、様々な材質に対して
濡れ性の良いガリウム−インジウム系合金が好ましい。
また、導電性ペーストとしては、低温で処理可能なカー
ボンペースト又は銀ペーストが好ましい。本発明を採用
することにより、誘電体膜のエッチング、絶縁体膜の成
膜、該絶縁体膜のエッチング等の工程は全く不要となる
と共に、これらの後工程を採用することによる、誘電体
膜の電気性能の劣化をなくすことができる。
The metal which is liquid at room temperature is preferably a gallium-indium alloy having good wettability to various materials.
Further, as the conductive paste, a carbon paste or a silver paste that can be processed at a low temperature is preferable. By adopting the present invention, the steps of etching the dielectric film, forming the insulating film, etching the insulating film and the like are completely unnecessary, and by adopting these post-processes, the dielectric film can be formed. It is possible to eliminate the deterioration of the electric performance of.

【0021】本発明は特に電子素子の形状の加工が困難
で、誘電体膜の上部電極及び下部電極を外部に取り出す
処理がカンチレバー等の形状が完成した後に限られ、電
気性能の維持が困難な鉛系強誘電体膜を使用する圧電膜
変位センサー付きAFM用カンチレバーの誘電体膜の上
部電極及び下部電極を外部に取り出す場合に特に有効で
ある。
In the present invention, it is particularly difficult to process the shape of the electronic element, and the process of extracting the upper electrode and the lower electrode of the dielectric film to the outside is limited after the shape of the cantilever or the like is completed, and it is difficult to maintain the electrical performance. This is particularly effective when the upper electrode and the lower electrode of the dielectric film of the cantilever for AFM with the piezoelectric film displacement sensor using the lead-based ferroelectric film are taken out to the outside.

【0022】尚、本発明は誘電体膜の上部電極及び下部
電極を外部に取り出すだけに限らず、抵抗用金属膜、半
導体膜の上部電極及び下部電極を外部に取り出す場合に
も応用することができる。以下の実施例にて本発明を詳
細に説明する。
The present invention can be applied not only to taking out the upper electrode and the lower electrode of the dielectric film to the outside but also to taking out the upper electrode and the lower electrode of the resistance metal film and the semiconductor film to the outside. it can. The following examples illustrate the invention in detail.

【0023】[0023]

【実施例】【Example】

[実施例1]図1には本発明の上部電極及び下部電極取
り出し法の実施例の一例を示す。図1を用いて本発明を
説明する前に、圧電膜変位センサー付きAFM用のカン
チレバーの作製法に付いて図2を用いて説明する。尚、
図2の2−2から図4の4−6までの各工程図の上図は
上面から見た図、下図は側面から見た断面図を示す。た
だし、3−3、3−4では下面を説明するため逆になっ
ている。
[Embodiment 1] FIG. 1 shows an embodiment of a method for extracting upper and lower electrodes of the present invention. Before describing the present invention with reference to FIG. 1, a method for manufacturing a cantilever for an AFM with a piezoelectric film displacement sensor will be described with reference to FIG. still,
The upper view of each process drawing from 2-2 in FIG. 2 to 4-6 in FIG. 4 is a view seen from the upper side, and the lower view is a cross-sectional view seen from the side. However, in 3-3 and 3-4, they are reversed to explain the lower surface.

【0024】(100)の方位を持つシリコン単結晶ウ
エハー10上にCVD法にて両面に窒化珪素(Si
34)膜20、21を膜厚100nmの厚みに成膜す
る。なお、ウエハー10上に示す46個の長方形は、こ
の部分からカンチレバーを作製する暫定的な位置を示
す。最終的にカンチレバーはこの実線に沿ってダイシン
グソーにて切断され、チップ化して得られる(2−
1)。以下、ウエハー10上の1つのチップを例に作製
方法を示す。
On a silicon single crystal wafer 10 having a (100) orientation, silicon nitride (Si
3 N 4 ) films 20 and 21 are formed to a thickness of 100 nm. The 46 rectangles shown on the wafer 10 indicate the provisional positions where the cantilevers are manufactured from this portion. Finally, the cantilever is cut along the solid line with a dicing saw to obtain chips (2-
1). Hereinafter, a manufacturing method will be described by taking one chip on the wafer 10 as an example.

【0025】まず、ウエハー10の片面全面にフォトレ
ジスト30を塗布し、探針を作製する位置のフォトレジ
ストをフォトリソグラフィーにて取り除く(2−2)。
次に、反応性イオンエッチング(RIE)法にて、フォ
トレジストの無い部分の窒化珪素膜20を除去する(2
−3)。さらに、水酸化カリウム(KOH)溶液にてシ
リコンの異方性エッチングを行うと、エッチングに対す
る保護膜となる窒化珪素膜20の無い部分からエッチン
グが進み、ピット11を形成する。その後、フォトレジ
スト30は剥がしておく(3−1)。ピット11に探針
となる窒化珪素(Si34)膜22をCVD法にて膜厚
400nm成膜する(3−2)。
First, the photoresist 30 is applied to the entire surface of one side of the wafer 10, and the photoresist at the position where the probe is to be produced is removed by photolithography (2-2).
Next, by reactive ion etching (RIE), the portion of the silicon nitride film 20 where there is no photoresist is removed (2
-3). Further, when anisotropic etching of silicon is performed with a potassium hydroxide (KOH) solution, the etching proceeds from a portion without the silicon nitride film 20 serving as a protective film against the etching to form the pit 11. Then, the photoresist 30 is peeled off (3-1). A silicon nitride (Si 3 N 4 ) film 22 serving as a probe is formed in the pit 11 by a CVD method to a film thickness of 400 nm (3-2).

【0026】次に、上記ウエハー裏面に対しても窒化珪
素膜21の全面にバックエッチング用のフォトレジスト
31を塗布し、方持ち梁を形成するのに必要な空隙とな
る部分のフォトレジストをフォトリソグラフィーにて取
り除く(3−3)。同様に、RIE法にて、裏面の所定
形状の窒化珪素膜21を除去する(3−4)。さらに、
KOH水溶液にてシリコン裏面を異方性エッチングす
る。その後、フォトレジスト31は剥がしておく(3−
5)。
Next, a photoresist 31 for back etching is applied to the entire surface of the silicon nitride film 21 also on the back surface of the wafer, and the photoresist in the portion which becomes a void necessary for forming the cantilever is photo-resisted. Remove by lithography (3-3). Similarly, the silicon nitride film 21 having a predetermined shape on the back surface is removed by the RIE method (3-4). further,
The back surface of silicon is anisotropically etched with a KOH aqueous solution. After that, the photoresist 31 is peeled off (3-
5).

【0027】再びウエハー上面の作製工程に戻り、ウエ
ハー上面にフォトレジスト32を塗布して、フォトリソ
グラフィーにてレバー部のパターンを作製する(3−
6)。次に、RIE法にて上面の所定形状の窒化珪素膜
を除去する(4−1)。さらに、KOH水溶液にてシリ
コンの異方性エッチングを行い、レバー部を作製する
(4−2)。
Returning again to the step of producing the upper surface of the wafer, the photoresist 32 is applied to the upper surface of the wafer and the pattern of the lever portion is produced by photolithography (3-).
6). Next, the silicon nitride film having a predetermined shape on the upper surface is removed by the RIE method (4-1). Further, anisotropic etching of silicon is performed with a KOH aqueous solution to manufacture a lever portion (4-2).

【0028】ここまではカンチレバーの形状の作製工程
である。以下に上部電極及び下部電極、圧電体膜の成膜
工程を順を追って示す。ウエハー表面全面にスパッタ法
にてタンタル(Ta)膜 41を10nm、白金(P
t)膜42を200nm、圧電体膜としてチタン酸ジル
コン酸鉛(PZT)膜43を0.8μmの膜厚で形成す
る。Pt膜は下部電極となり、Ta膜はPt膜と窒化珪
素膜との密着性を向上させ、又、次の工程(4−4)に
おいてアニール処理する際の原子の拡散を防止する役目
をする(4−3)。次にPZT膜の圧電特性を引き出す
ために、アニール処理(650℃、30分)を施す(4
−4)。下部電極を外部に取り出すために、表面の一部
にダイヤモンドペンで傷を付け、下部電極を露出させる
(4−5)。前工程の下部電極とレバー部の2箇所にA
lをマスク蒸着し、それぞれ上部電極及び下部電極用電
極50、51とする(4−6)。
Up to this point, the process of forming the cantilever shape has been completed. The steps of forming the upper electrode, the lower electrode, and the piezoelectric film will be described below in order. A tantalum (Ta) film 41 of 10 nm and platinum (P) is formed on the entire surface of the wafer by a sputtering method.
t) A film 42 having a thickness of 200 nm and a lead zirconate titanate (PZT) film 43 having a film thickness of 0.8 μm are formed as piezoelectric films. The Pt film serves as a lower electrode, and the Ta film serves to improve the adhesion between the Pt film and the silicon nitride film, and to prevent the diffusion of atoms during the annealing treatment in the next step (4-4) ( 4-3). Next, in order to bring out the piezoelectric characteristics of the PZT film, annealing treatment (650 ° C., 30 minutes) is performed (4
-4). In order to take out the lower electrode to the outside, a part of the surface is scratched with a diamond pen to expose the lower electrode (4-5). A at the two locations of the lower electrode and lever in the previous process
1 is mask-deposited to form upper electrode and lower electrode electrodes 50 and 51, respectively (4-6).

【0029】さて、図1に戻り、本発明の電極取り出し
用の第2基板の作製方法と前記したカンチレバー、すな
わち第1基板と第2基板の接続に付いて説明する。尚、
図1中の各工程図の上図は上面から見た図、下図は側面
から見た断面図を示す。長方形フロートガラス基板10
0上に3箇所銀ペースト突起111、112、113を
スクリーン印刷法にて作製する。このうち2箇所11
1、112は前記カンチレバーの上部電極及び下部電極
と張り合わせたときに一致する位置にスクリーン印刷す
る(1−1)。次にその2箇所111、112から圧電
体膜の電極取出し用電極121、122として真空蒸着
法にてアルミニウム(Al)をメタルマスクを使用して
作製する。尚、残りの1箇所の突起は張り合わせる時の
面出し用のダミーとして使用する(1−2)。その後、
初めの2箇所の導通用突起部分にGa−In合金13
1、132をスクリーン印刷する。この合金は液体なの
でこの工程が可能になる。又、この合金はカンチレバー
と張り合わせた際、カンチレバーの上部電極及び下部電
極と第2基板上の電極取出し用電極の電気的導通を保証
することができる(1−3)。
Now, returning to FIG. 1, the method for producing the second substrate for electrode extraction of the present invention and the above-described cantilever, that is, the connection between the first substrate and the second substrate will be described. still,
The top view of each process diagram in FIG. 1 is a top view, and the bottom view is a side cross-sectional view. Rectangular float glass substrate 10
Three silver paste protrusions 111, 112, 113 are formed on the surface 0 by screen printing. 2 of these 11
Screens 1 and 112 are screen-printed at positions that coincide with the upper electrode and the lower electrode of the cantilever (1-1). Next, aluminum (Al) is produced from the two places 111 and 112 as electrodes 121 and 122 for taking out electrodes of the piezoelectric film by a vacuum evaporation method using a metal mask. The remaining one projection is used as a dummy for surfacing at the time of laminating (1-2). afterwards,
Ga-In alloy 13 is formed on the first two conductive projections.
1 and 132 are screen printed. This process is possible because this alloy is a liquid. Further, this alloy can ensure electrical conduction between the upper electrode and the lower electrode of the cantilever and the electrode for taking out the electrode on the second substrate when laminated with the cantilever (1-3).

【0030】最後にカンチレバーの上部電極及び下部電
極と第2基板の導通用突起部を位置合わせ後、接着剤1
40を用いて張り合わせる。図にはシリコン単結晶ウエ
ハーからダイシングソーで長方形のカンチレバーのチッ
プを切断し、先端保護用外枠がすでに取り除かれたカン
チレバーを使用しているが、外枠付きのカンチレバーを
使用してももちろん良い。その際には接続後、保護外枠
を取り除けば良い(1−4)。
Finally, after aligning the upper and lower electrodes of the cantilever with the conductive projections of the second substrate, the adhesive 1
Laminate with 40. In the figure, a rectangular cantilever chip is cut from a silicon single crystal wafer with a dicing saw, and the cantilever with the outer frame for tip protection already removed is used, but it is of course possible to use a cantilever with an outer frame. . In that case, after connection, the protective outer frame may be removed (1-4).

【0031】以上の作製方法により歩留まり良く、圧電
膜変位センサー付きAFM用のカンチレバーが得られ、
PZT膜の電気性能を劣化させることなく、上部電極及
び下部電極を外部に取出すことができる。 [実施例2]図5に第2基板の実施例1とは別の圧電膜
変位センサー付きAFM用のカンチレバーの電極取り出
し用の第2基板の作製方法の例を示す。ただし、カンチ
レバーは実施例1で作製したものと同一である。
By the above manufacturing method, a cantilever for AFM with a piezoelectric film displacement sensor can be obtained with good yield,
The upper electrode and the lower electrode can be taken out without deteriorating the electrical performance of the PZT film. [Embodiment 2] FIG. 5 shows an example of a method of manufacturing a second substrate for extracting electrodes of a cantilever for an AFM with a piezoelectric film displacement sensor, which is different from that of the first substrate. However, the cantilever is the same as that manufactured in Example 1.

【0032】ガラス基板150片面全面にCr膜160
を真空蒸着法にて50nmの厚みに成膜する(5−
1)。次に、実施例1と同様の位置の3箇所にフォトレ
ジストパターンで突起を作製する(5−2)。フォトレ
ジスト以外のCr膜を酸で除去し、突起171、17
2、173を作製する(5−3)。実施例1と同様にそ
の内の2箇所171、172から圧電体膜の電極取出し
用アルミニウム電極181、182をマスク蒸着で作製
する(5−4)。以上により第2基板を作製する。これ
をカンチレバーの上部及び下部電極に導通用突起を合わ
せるようにしてエポキシ接着剤190で接着する。
A Cr film 160 is formed on one surface of the glass substrate 150.
To a thickness of 50 nm by vacuum deposition (5-
1). Next, protrusions are formed with a photoresist pattern at three positions similar to those in Example 1 (5-2). The Cr film other than the photoresist is removed with an acid, and the protrusions 171 and 17 are formed.
2, 173 is prepared (5-3). Similar to the first embodiment, aluminum electrodes 181 and 182 for extracting the electrodes of the piezoelectric film are produced from two locations 171 and 172 of them by mask vapor deposition (5-4). The second substrate is manufactured as described above. This is bonded with an epoxy adhesive 190 so that the conducting projections are aligned with the upper and lower electrodes of the cantilever.

【0033】[実施例3]ガラス基板300の片面に真
空蒸着法を用いて、クロム100nm、金100nmを
金属タルマスクにて順次パターン蒸着して上部電極取り
出し電極301及び下部電極取り出し電極302を作製
する(8−1)。一方、実施例1と同様の作製方法で作
製されたカンチレバーの下部電極310及び上部電極3
11にGa−In合金312、313をディスペンサー
にて塗布する(8−2)。上部電極取り出し電極301
及び下部電極取り出し電極302と、Ga−In合金3
12、313とを位置合わせ後、接続し、φ8μmのナ
イロン製ビーズ入りエポキシ接着剤320でカンチレバ
ーとガラス基板を接着する(8−3)。
[Embodiment 3] Chromium 100 nm and gold 100 nm are sequentially pattern-deposited on one surface of a glass substrate 300 by a vacuum evaporation method using a metal tar mask to produce an upper electrode extraction electrode 301 and a lower electrode extraction electrode 302. (8-1). On the other hand, the lower electrode 310 and the upper electrode 3 of the cantilever manufactured by the same manufacturing method as in Example 1.
Ga-In alloys 312 and 313 are applied to 11 by a dispenser (8-2). Upper electrode extraction electrode 301
And the lower electrode extraction electrode 302 and the Ga-In alloy 3
After positioning 12 and 313, they are connected, and the cantilever and the glass substrate are bonded with an epoxy adhesive 320 containing nylon beads of φ8 μm (8-3).

【0034】ナイロン製ビーズがカンチレバーとガラス
基板の間にあるので、間隔が8μmに保たれ、上部電極
及び下部電極に塗布されたGa−In合金312、31
3が必要以上に押し広げられることはない。この方法は
実施例1、2の方法のように突起部を形成する工程がな
いので、より一層のコストダウンが可能である。
Since the beads made of nylon are located between the cantilever and the glass substrate, the spacing is kept at 8 μm and the Ga—In alloys 312 and 31 applied to the upper and lower electrodes are coated.
3 will not be unfolded more than necessary. Since this method does not have the step of forming the protrusion as in the methods of Embodiments 1 and 2, the cost can be further reduced.

【0035】以上の実施例により、本発明は圧電体膜付
きカンチレバーの電極を外部に取り出すことができる。
また、このようにして第2基板上に作製された電極より
電極を取り出せば、従来の方法の電極取り出し法による
圧電膜の劣化は無く、優れた圧電膜変位センサー付きA
FM用カンチレバーを提供できる。また、本実施例では
圧電体膜の電極取り出し用電極の作製方法として、金属
マスクを使用した。しかし、電極の作製方法はこの方法
のみによる必要はなく、通常のリソグラフィーを使用し
ても良いことは言うまでもないし、第1基板の下部電極
を傷を付けて露出する方法も、リソグラフィーを使用し
て露出させても良いことはもちろん言うまでもない。
According to the above embodiment, the electrode of the cantilever with a piezoelectric film can be taken out to the outside according to the present invention.
Further, when the electrode is taken out from the electrode thus manufactured on the second substrate, the piezoelectric film is not deteriorated by the conventional electrode taking-out method, and the excellent piezoelectric film displacement sensor-equipped A
A cantilever for FM can be provided. In addition, in this example, a metal mask was used as a method for producing an electrode for taking out the electrode of the piezoelectric film. However, it is needless to say that the method for producing the electrode is not limited to this method, and ordinary lithography may be used, and the method for exposing the lower electrode of the first substrate by scratching also uses lithography. It goes without saying that you can expose it.

【0036】[0036]

【発明の効果】以上のように本発明によれば圧電体膜の
上部電極及び下部電極の信号を外部に取り出す場合にお
いて、微小な導通用突起とそれと導通している配線パタ
ーンとが存在する第2の電極取り出し用基板を採用する
ことにより、従来の誘電体膜が、該膜形成後の工程をす
ることにより避け得なかった膜の電気性能の劣化をなく
すことができる。本発明は圧電膜変位センサー付きAF
Mのカンチレバーの圧電信号を取り出す場合に特に有効
である。又、従来の電子素子の作製工程で誘電体膜形成
後の作製工程が不要となり、コストダウンを可能にし
た。更に、本発明は誘電体膜材料に依存せず、同一の工
程で誘電体膜からの電極を取り出すことが可能になり、
第2基板さえ用意しておけば、誘電体の材質に関係な
く、効率的に電極の取り出しが可能になる。
As described above, according to the present invention, when the signals of the upper electrode and the lower electrode of the piezoelectric film are taken out to the outside, there are minute conductive projections and wiring patterns which are conductive with them. By adopting the electrode taking-out substrate of No. 2, it is possible to eliminate the deterioration of the electric performance of the conventional dielectric film, which cannot be avoided by carrying out the steps after the film formation. The present invention is an AF with a piezoelectric film displacement sensor.
This is particularly effective when extracting the piezoelectric signal of the M cantilever. Further, the manufacturing process after forming the dielectric film is not required in the conventional manufacturing process of the electronic element, and the cost can be reduced. Furthermore, the present invention does not depend on the material of the dielectric film, and it is possible to take out the electrode from the dielectric film in the same process,
If only the second substrate is prepared, the electrodes can be efficiently taken out regardless of the dielectric material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に基づく実施例1の電極取り出し用基板
の作製工程及び圧電体膜の電極を外部に取り出す方法を
示す図である。
FIG. 1 is a diagram showing a manufacturing process of an electrode extracting substrate and a method of extracting an electrode of a piezoelectric film to the outside of Example 1 according to the present invention.

【図2】FIG. 2

【図3】FIG. 3

【図4】実施例1で使用するカンチレバーの作製工程を
示す図である。
FIG. 4 is a diagram showing a manufacturing process of a cantilever used in Example 1.

【図5】実施例2で使用するカンチレバーの作製工程を
示す図である。
5A to 5D are diagrams showing a manufacturing process of a cantilever used in Example 2.

【図6】本発明に基づく実施例2の電極取り出し用基板
の作製工程及び圧電体膜の電極を外部に取り出す方法を
示す図である。
FIG. 6 is a diagram showing a manufacturing process of an electrode extraction substrate and a method of extracting electrodes of a piezoelectric film to the outside according to Example 2 of the present invention.

【図7】従来の誘電体膜から電極を外部に取り出す方法
を示す図である。
FIG. 7 is a diagram showing a conventional method for extracting an electrode from a dielectric film.

【図8】本発明に基づく実施例3の電極取り出し用基板
の作製工程及び圧電体膜の電極を外部に取り出す方法を
示す図である。
FIG. 8 is a diagram showing a manufacturing process of an electrode extracting substrate and a method of extracting electrodes of a piezoelectric film to the outside according to Example 3 of the present invention.

【符号の説明】[Explanation of symbols]

10 シリコン単結晶ウエハー 20、21、22 窒化珪素膜 30、31、32 フォトレジスト 41 タンタル膜 42 白金膜 43 PZT膜 50、230 上部電極 51、210 下部電極 100、150、300 ガラス基板 111、112、113 銀ペーストで作製した突起 171、172、173 クロム膜で作製した突起 121、122、181、182 電極 131、132、312、313 ガリウム−インジウ
ム合金 140、190 接着剤 160 クロム層 200 基板 220 誘電体膜 240 絶縁体膜 250 誘電体膜の電極を外部に取り出す配線パターン 301 上部電極取り出し電極 302 下部電極取り出し電極 310 下部電極 311 上部電極 320 φ8μmのナイロン製ビーズ入りエポキシ接着
10 silicon single crystal wafer 20, 21, 22 silicon nitride film 30, 31, 32 photoresist 41 tantalum film 42 platinum film 43 PZT film 50, 230 upper electrode 51, 210 lower electrode 100, 150, 300 glass substrate 111, 112, 113 Protrusions 171, 172, 173 Produced with Silver Paste 121, 122, 181, 182 Electrodes 131, 132, 312, 313 Gallium-Indium Alloy 140, 190 Adhesive 160 Chrome Layer 200 Substrate 220 Dielectric Film 240 Insulator film 250 Wiring pattern for extracting the dielectric film electrode to the outside 301 Upper electrode extraction electrode 302 Lower electrode extraction electrode 310 Lower electrode 311 Upper electrode 320 φ8 μm nylon beads epoxy adhesive

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 第1基板部材上に形成された誘電体薄膜
の上部電極と下部電極を外部に取り出す方法において、 第2基板上に微小な突起と該突起と導通している配線パ
ターンを形成した電極取り出し部材を作製し、 前記第1基板上の上部電極と前記と電極取り出し部材の
前記突起部分を接触又は接続することによって、電極取
り出し部材の配線パターンより電極を取り出すことを特
徴とする電極取り出し方法。
1. A method of extracting an upper electrode and a lower electrode of a dielectric thin film formed on a first substrate member to the outside, wherein minute projections and a wiring pattern electrically connected to the projections are formed on a second substrate. An electrode taking out the electrode from the wiring pattern of the electrode taking-out member by contacting or connecting the upper electrode on the first substrate and the protruding portion of the electrode taking-out member with each other. How to take out.
【請求項2】 前記第1基板が圧電膜変位センサー付き
原子間力顕微鏡用カンチレバーであり、且つ誘電体薄膜
が前記カンチレバー上に形成された圧電薄膜であること
を特徴とする請求項1記載の電極取り出し方法。
2. The first substrate is a cantilever for an atomic force microscope with a piezoelectric film displacement sensor, and the dielectric thin film is a piezoelectric thin film formed on the cantilever. How to take out electrodes.
【請求項3】 前記第1基板上の上部電極と前記電極取
り出し部材の突起部分との間に常温で液体の金属を挟み
込んで、前記第1基板と前記電極取り出し部材とを接続
することを特徴とする請求項1又は2記載の電極取り出
し方法。
3. The first substrate and the electrode lead-out member are connected by sandwiching a liquid metal at room temperature between the upper electrode on the first substrate and the protruding portion of the electrode lead-out member. The electrode extraction method according to claim 1 or 2.
【請求項4】 第1基板部材上に誘電体薄膜の上部電極
及び下部電極を形成し、第2基板部材上に電極取り出し
部材の配線パターンを形成し、前記上部電極及び下部電
極上の一部に常温で液体の金属又は導電性ペーストを塗
布し、それと前記電極取り出し部材とを接続し、それに
よって前記上部電極及び下部電極を前記常温で液体の金
属又は導電性ペースト及び前記取り出し電極を介して外
部と電気的に接続することを特徴とする電極取り出し方
法。
4. An upper electrode and a lower electrode of a dielectric thin film are formed on a first substrate member, a wiring pattern of an electrode lead-out member is formed on a second substrate member, and a part of the upper electrode and the lower electrode is formed. A metal or conductive paste that is liquid at room temperature, and connects it to the electrode lead-out member, whereby the upper electrode and the lower electrode are connected through the metal or conductive paste that is liquid at room temperature and the lead-out electrode. An electrode extraction method characterized by electrically connecting to the outside.
【請求項5】 前記常温で液体の金属又は導電性ペース
トと前記電極取り出し部材との接続に、ガラス製又は樹
脂製のビーズを含有した接着剤を用いたことを特徴とす
る請求項4記載の電極取り出し方法。
5. An adhesive containing beads made of glass or resin is used to connect the metal or conductive paste liquid at room temperature to the electrode lead-out member. How to take out electrodes.
【請求項6】 前記常温で液体の金属がガリウム−イン
ジウム系合金であることを特徴とする請求項3〜5記載
の電極取り出し方法。
6. The electrode extraction method according to claim 3, wherein the metal that is liquid at room temperature is a gallium-indium alloy.
【請求項7】 第1基板部材上に形成された誘電体薄膜
の上部電極と下部電極を外部に取り出してなる圧電膜変
位センサー付き原子間顕微鏡用カンチレバーにおいて、 第2基板上に微小な突起と該突起と導通している配線パ
ターンを形成した電極取り出し部材を作製し、 前記第1基板上の上部電極と前記電極取り出し部材の前
記突起部分を接触又は接続することによって、電極取り
出し部材の配線パターンより電極を取り出してなる圧電
膜変位センサー付き原子間顕微鏡用カンチレバー。
7. A cantilever for an atomic force microscope with a piezoelectric film displacement sensor, which is obtained by taking out an upper electrode and a lower electrode of a dielectric thin film formed on a first substrate member to an outside, and a minute protrusion on a second substrate. A wiring pattern of an electrode lead-out member is produced by producing an electrode lead-out member having a wiring pattern in conduction with the protrusion and contacting or connecting the upper electrode on the first substrate and the protruding portion of the electrode lead-out member. A cantilever for atomic force microscopy with a piezoelectric film displacement sensor, which is obtained by taking out the electrode.
【請求項8】 前記第1基板が圧電膜変位センサー付き
原子間力顕微鏡用カンチレバーであり、且つ誘電体薄膜
が前記カンチレバー上に形成された圧電薄膜であること
を特徴とする請求項7記載の圧電膜変位センサー付き原
子間顕微鏡用カンチレバー。
8. The method according to claim 7, wherein the first substrate is a cantilever for an atomic force microscope with a piezoelectric film displacement sensor, and the dielectric thin film is a piezoelectric thin film formed on the cantilever. Cantilever for atomic force microscope with piezoelectric film displacement sensor.
【請求項9】 前記第1基板上の上部電極と前記電極取
り出し部材の突起部分との間に常温で液体の金属を挟み
込んで、前記第1基板と前記電極取り出し部材を接続す
ることを特徴とする請求項7又は8記載の圧電膜変位セ
ンサー付き原子間顕微鏡用カンチレバー。
9. The first substrate and the electrode lead-out member are connected by sandwiching a liquid metal at room temperature between the upper electrode on the first substrate and the protruding portion of the electrode lead-out member. 9. A cantilever for an atomic force microscope with a piezoelectric film displacement sensor according to claim 7 or 8.
【請求項10】 誘電体薄膜の上部電極及び下部電極が
形成された第1基板部材と、 前記上部電極及び下部電極上の一部に形成された常温で
液体液体の金属または導電性ペーストと、 前記常温で液体の金属又は導電性ペーストと接続する電
極取り出し部材の配線パターンが形成された第2基板部
材とからなることを特徴とする圧電膜変位センサー付き
原子間力顕微鏡用カンチレバー。
10. A first substrate member having an upper electrode and a lower electrode of a dielectric thin film formed thereon, and a metal or a conductive paste which is formed on a part of the upper electrode and the lower electrode and is liquid and liquid at room temperature, A cantilever for an atomic force microscope with a piezoelectric film displacement sensor, comprising a second substrate member on which a wiring pattern of an electrode lead-out member connected to the liquid metal or conductive paste at room temperature is formed.
【請求項11】 前記第1基板部材上にカンチレバー、
圧電体膜及び前記誘電体薄膜を順次形成してなる請求項
10記載の圧電膜変位センサー付き原子間力顕微鏡用カ
ンチレバー。
11. A cantilever on the first substrate member,
The cantilever for an atomic force microscope with a piezoelectric film displacement sensor according to claim 10, wherein a piezoelectric film and the dielectric thin film are sequentially formed.
【請求項12】 前記常温で液体の金属又は導電性ペー
ストと前記電極取り出し部材との接続に、ガラス製又は
樹脂製のビーズを含有した接着剤を用いたことを特徴と
する請求項10又は11記載の圧電膜変位センサー付き
原子間力顕微鏡用カンチレバー。
12. An adhesive containing beads made of glass or resin is used to connect the metal or conductive paste liquid at room temperature to the electrode lead-out member. A cantilever for an atomic force microscope with the piezoelectric film displacement sensor described.
【請求項13】 前記常温で液体の金属がガリウム−イ
ンジウム系合金であることを特徴とする請求項9又は1
2記載の圧電膜変位センサー付き原子間顕微鏡用カンチ
レバー。
13. The metal which is liquid at room temperature is a gallium-indium-based alloy.
A cantilever for an atomic force microscope with a piezoelectric film displacement sensor according to 2.
JP8019870A 1995-02-06 1996-02-06 Method for taking out electrode and cantilever for atomic force microscope using the electrode-taking method Pending JPH09218208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8019870A JPH09218208A (en) 1995-02-06 1996-02-06 Method for taking out electrode and cantilever for atomic force microscope using the electrode-taking method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP1825395 1995-02-06
JP31762995 1995-12-06
JP7-18253 1995-12-06
JP7-317629 1995-12-06
JP8019870A JPH09218208A (en) 1995-02-06 1996-02-06 Method for taking out electrode and cantilever for atomic force microscope using the electrode-taking method

Publications (1)

Publication Number Publication Date
JPH09218208A true JPH09218208A (en) 1997-08-19

Family

ID=27282142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8019870A Pending JPH09218208A (en) 1995-02-06 1996-02-06 Method for taking out electrode and cantilever for atomic force microscope using the electrode-taking method

Country Status (1)

Country Link
JP (1) JPH09218208A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015115272A1 (en) * 2014-01-31 2017-03-23 アルプス電気株式会社 Channel plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015115272A1 (en) * 2014-01-31 2017-03-23 アルプス電気株式会社 Channel plate

Similar Documents

Publication Publication Date Title
JP3846271B2 (en) Thin film piezoelectric element and manufacturing method thereof
US7006334B2 (en) Magnetic disc device piezoelectric actuator with mirror-symmetrical relationship and connection arrangement
WO2005104257A1 (en) Micro-electromechanical device
JP2001210789A (en) Electronic circuit with built-in thin-film capacitor and manufacturing method therefor
US4112196A (en) Beam lead arrangement for microelectronic devices
JPS63213943A (en) Three-dimensional semiconductor integrated circuit
JPH09218208A (en) Method for taking out electrode and cantilever for atomic force microscope using the electrode-taking method
EP0756303A2 (en) Method of manufacturing a field emission array
JP3432887B2 (en) Ultrasonic transducer
JPH09116173A (en) Semiconductor sensor and its manufacture
US5679889A (en) Method for extracting electrode and cantilever for AFM using said method for extracting electrode
JP2001201418A (en) Electrostatic capacity type semiconductor pressure sensor and its manufacturing method
JP2004354755A (en) Diaphragm joining structure
CN100470781C (en) Semiconductor device and method of manufacturing same
JPS6347981A (en) Thin film transistor and manufacture thereof
JPS60140747A (en) Manufacture of semiconductor device
JP2984152B2 (en) Semiconductor element mounting method
JP2866216B2 (en) Cantilever manufacturing method
JP2643004B2 (en) Hybrid IC substrate
US6355578B1 (en) Manufacturing method for a composite device
JP3953849B2 (en) Optical switch device and method of manufacturing optical switch device
JP2745913B2 (en) Manufacturing method of plated wiring
JPH10116996A (en) Composite device manufacture and composite device
JP3343282B2 (en) Hybrid integrated circuit components
JPH01136124A (en) Manufacture of electrode substrate for liquid crystal display panel