JPH09215322A - Control circuit of multi-phase multiplexing chopper apparatus - Google Patents

Control circuit of multi-phase multiplexing chopper apparatus

Info

Publication number
JPH09215322A
JPH09215322A JP8170938A JP17093896A JPH09215322A JP H09215322 A JPH09215322 A JP H09215322A JP 8170938 A JP8170938 A JP 8170938A JP 17093896 A JP17093896 A JP 17093896A JP H09215322 A JPH09215322 A JP H09215322A
Authority
JP
Japan
Prior art keywords
chopper
separately
current
value
devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8170938A
Other languages
Japanese (ja)
Inventor
Masato Mitsumata
正人 三俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP8170938A priority Critical patent/JPH09215322A/en
Publication of JPH09215322A publication Critical patent/JPH09215322A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain parallel output current of each chopper apparatus forming a multi-phase multiplexing chopper apparatus without enlarging and complicating the apparatus and lowering the efficiency. SOLUTION: A deviation between an output current and average current of each chopper is input to a PID(Proportional Integral and Differential) adjusting device. Even if an integral time of the PID adjusting device is longer, the PID adjusting device outputs an amount of compensation corresponding to the change of time of a current deviation because a differential operation function is provided. Moreover, an absolute value of the current deviation is calculated and whether this absolute value has exceeded the reference voltage source 5 or not is judged by the comparator and NOR element. The switch provided in the output side of the PID adjusting device is turned on and off corresponding to the judging result to prevent unwanted compensating operation only with a little current deviation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、複数台のチョッ
パ装置を並列接続し、360度をチョッパ装置台数で割
った値を位相差にして各チョッパ装置間をこの位相差で
運転する多相多重チョッパ装置の制御回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-phase multiplex system in which a plurality of chopper devices are connected in parallel, and a value obtained by dividing 360 degrees by the number of chopper devices is used as a phase difference, and each chopper device is operated with this phase difference. The present invention relates to a control circuit for a chopper device.

【0002】[0002]

【従来の技術】図3は多相多重チョッパ装置の従来例を
示した主回路接続図である。この図3ではm台のチョッ
パ装置を並列に接続する。例えば1台目の第1チョッパ
装置はトランジスタとダイオードとの逆並列接続でなる
第1チョッパ部11と第1リアクトル21及び第1フリ
ーホイールダイオード31で構成しており、2台目の第
2チョッパ装置も同様に第2チョッパ部12と第2リア
クトル22及び第2フリーホイールダイオード32で構
成し、m台目の第mチョッパ装置も第mチョッパ部13
と第mリアクトル23及び第mフリーホイールダイオー
ド33で構成している。これらm台のチョッパ装置を並
列接続して共通の直流電源1からの直流電力を変換し、
共通の負荷としての直流電動機2を駆動する。ここで各
チョッパ装置が直流電動機2へ供給する電流は、それぞ
れが合計電流のm分の1を分担するように、各チョッパ
装置には共通の通流率指令値を与えると共に、各チョッ
パ装置相互間の位相差は360度をmで割った値を維持
して運転するように、各チョッパ装置には別個の移相変
換回路(図示せず)を備えている。
2. Description of the Related Art FIG. 3 is a main circuit connection diagram showing a conventional example of a multi-phase multiple chopper device. In FIG. 3, m chopper devices are connected in parallel. For example, the first chopper device of the first unit is composed of a first chopper section 11 which is an antiparallel connection of a transistor and a diode, a first reactor 21 and a first freewheel diode 31, and a second chopper of the second unit. Similarly, the device is composed of the second chopper unit 12, the second reactor 22, and the second freewheel diode 32. The m-th m-th chopper device is also the m-th chopper unit 13.
And the mth reactor 23 and the mth freewheel diode 33. These m chopper devices are connected in parallel to convert DC power from the common DC power supply 1,
The DC motor 2 as a common load is driven. Here, the current supplied by each chopper device to the DC motor 2 is given a common flow rate command value to each chopper device so that each of them contributes 1 / m of the total current, and the chopper devices mutually operate. Each chopper device is equipped with a separate phase shift conversion circuit (not shown) so that the phase difference between them is maintained at 360 degrees divided by m.

【0003】即ち多相多重チョッパ装置は、各チョッパ
装置間の位相を均等にずらしながら、負荷へ供給する電
流も各チョッパ装置が均等に分担しながら運転をする。
That is, the multi-phase multi-chopper device operates while the phases of the chopper devices are evenly shifted and the currents supplied to the loads are equally shared by the chopper devices.

【0004】[0004]

【発明が解決しようとする課題】多相多重チョッパ装置
の制御回路をアナログ回路で構成している場合は、各移
相変換回路の調整に誤差があると、この誤差がそれぞれ
のチョッパ装置に与える通流率指令値の誤差となり、こ
れが原因で各チョッパ装置の出力電流に不平衡を生じて
しまう。この通流率指令値の誤差が最初は僅かであって
も、通流率指令値の値が大きい方のチョッパ装置の出力
電流が通流率指令値の小さい方のチョッパ装置へ逆流す
るので、各チョッパ装置が分担する電流の不平衡の程度
は次第に大となり、遂には定格値を越えてしまう不都合
を生じる。また、通流率指令値に不平衡が無くても、例
えばそれぞれのチョッパ部を構成している半導体スイッ
チ素子の動作特性に差があると、これによっても出力電
流に不平衡を生じる。その結果、特定のチョッパ装置に
電流が集中してそのチョッパ装置が過負荷になって主回
路素子が破壊してしまう不具合を生じる。或いは主回路
素子が破損しなくても、当該多相多重チョッパ装置の運
転を継続できなくなる不具合を生じる。
In the case where the control circuit of the multi-phase multiple chopper device is composed of analog circuits, if there is an error in the adjustment of each phase shift conversion circuit, this error will be given to each chopper device. There is an error in the duty ratio command value, which causes imbalance in the output current of each chopper device. Even if the error of the duty ratio command value is small at first, the output current of the chopper device with the larger value of the duty ratio command value flows back to the chopper device with the smaller duty ratio command value. The degree of current imbalance shared by each chopper device gradually increases, and eventually the rated value is exceeded. Even if there is no imbalance in the duty ratio command values, if there is a difference in the operating characteristics of the semiconductor switch elements that make up the respective chopper sections, this also causes an imbalance in the output current. As a result, a current concentrates on a specific chopper device, which overloads the chopper device, causing a failure of the main circuit element. Alternatively, even if the main circuit element is not damaged, the operation of the multi-phase multiple chopper device cannot be continued.

【0005】そこでこのような不具合の発生を防止する
べく、各チョッパ装置のチョッパ部に逆流阻止用のダイ
オードを直列に接続して、通流率指令値の値が大きい方
のチョッパ装置から通流率指令値の小さい方のチョッパ
装置へ電流が逆流するのを阻止する。または、各チョッ
パ装置のそれぞれが電流制御回路を備えることにより、
所定の出力電流を維持できるようにして過電流状態にな
るのを防止する。しかしながら、各チョッパ装置に逆流
阻止用ダイオードを備えることは装置の大形化と運転効
率の低下をもたらすし、各チョッパ装置に別個の電流制
御回路を設けることは、装置の大形化と複雑化をもたら
す欠点がある。
Therefore, in order to prevent the occurrence of such a problem, a diode for preventing backflow is connected in series to the chopper portion of each chopper device so that the current flows from the chopper device with the larger value of the conduction ratio command value. The current is prevented from flowing backward to the chopper device having the smaller rate command value. Or, by providing each chopper device with a current control circuit,
A predetermined output current can be maintained to prevent an overcurrent state. However, providing a backflow prevention diode in each chopper device causes the device to become large in size and reduces operating efficiency, and providing a separate current control circuit in each chopper device makes the device large and complicated. There is a drawback that brings.

【0006】そこでこの発明の目的は、装置を大形化・
複雑化したり効率を低下させたりすることをせずに、多
相多重チョッパ装置を構成する各チョッパ装置の出力電
流の平衡を図ることにある。
Therefore, an object of the present invention is to increase the size of the device.
The object is to balance the output currents of the chopper devices constituting the multi-phase multiple chopper device without complicating or reducing the efficiency.

【0007】[0007]

【課題を解決するための手段】前記の目的を達成するた
めにこの発明の多相多重チョッパ装置の制御回路は、直
流電源に接続して、この直流電源とは異なる電圧の直流
を出力するチョッパ装置の複数台を並列に接続し、これ
ら各チョッパ装置には共通の通流率指令値を与え、36
0度をチョッパ装置の台数で割った値を各チョッパ装置
間の動作位相差にして前記各チョッパ装置を運転する多
相多重チョッパ装置において、第1の発明は、前記各チ
ョッパ装置の出力電流の合計値を合計電流検出器で検出
し、除算器がこの合計電流をチョッパ装置台数で割り算
して平均電流を演算する。この平均電流とチョッパ装置
ごとの出力電流との電流偏差を差電流検出器で求め、こ
れを比例積分微分調節器へ入力させて、この入力電流偏
差を零にする調節信号を当該比例積分微分調節器から出
力させるが、この比例積分微分調節器の積分時間はチョ
ッパ装置の動作周期よりも充分に長く設定して、通流率
制御とチョッパ電流の不平衡抑制動作とが相互干渉する
のを防いでいる。しかし積分時間が長いと急峻な電流偏
差が生じたときの過渡応答性能が低下するが、この第1
発明では調節器に微分演算機能を備えて、電流偏差発生
時に大きな調節信号を出力させることにより、過渡応答
度を向上させている。更に、比例積分微分調節器の出力
側にはスイッチを設け、前述した電流偏差の絶対値が予
め定めた値を越えたときにのみこのスイッチをオンにす
ることで、電流偏差が小さいときに不要な補正動作が行
われるのを回避する。
In order to achieve the above object, the control circuit of the multi-phase multi-chopper device of the present invention is connected to a DC power supply and outputs a DC voltage different from that of the DC power supply. A plurality of devices are connected in parallel and a common flow rate command value is given to each of these chopper devices.
In a multi-phase multiple chopper device for operating each of the chopper devices, a value obtained by dividing 0 degree by the number of the chopper devices is set as an operation phase difference between the chopper devices. The total value is detected by the total current detector, and the divider calculates the average current by dividing the total current by the number of chopper devices. The current deviation between this average current and the output current of each chopper device is determined by the difference current detector, and this is input to the proportional-plus-integral-derivative controller, and the adjustment signal for making this input-current deviation zero is the relevant proportional-integral-derivative adjustment. The output time is set to be sufficiently longer than the operating cycle of the chopper device to prevent mutual interference between the conduction ratio control and the chopper current imbalance suppression operation. I'm out. However, if the integration time is long, the transient response performance when a steep current deviation occurs decreases.
According to the invention, the controller is provided with the differential operation function and outputs a large adjustment signal when the current deviation occurs, thereby improving the transient response. Furthermore, a switch is provided on the output side of the proportional-plus-integral-derivative controller, and this switch is turned on only when the absolute value of the current deviation exceeds a predetermined value, which is unnecessary when the current deviation is small. It is possible to prevent the correction operation from being performed.

【0008】第2の発明は、前記各チョッパ装置の出力
電流の合計値を合計電流検出器で検出し、除算器がこの
合計電流をチョッパ装置台数で割り算して平均電流を演
算する。この平均電流とチョッパ装置ごとの出力電流と
の電流偏差を差電流検出器で求め、これを比例積分調節
器へ入力させて、この入力電流偏差を零にする調節信号
を当該比例積分調節器から出力させるが、この比例積分
調節器の積分時間はチョッパ装置の動作周期よりも充分
に長く設定して、通流率制御とチョッパ電流の不平衡抑
制動作とが相互干渉するのを防いでいる。しかし積分時
間が長いと急峻な電流偏差が生じたときの過渡応答性能
が低下するが、この第2発明ではこの比例積分調節器の
出力値と前述した電流偏差の絶対値との積を演算する乗
算器を設け、この乗算演算結果を補正両にすることで、
急峻な電流偏差が生じたときの過渡応答度を向上させて
いる。更に、比例積分調節器の出力側にスイッチを設
け、前述した電流偏差の絶対値が予め定めた値を越えた
ときにのみこのスイッチをオンにすることで、電流偏差
が小さいときに不要な補正動作が行われるのを回避す
る。
In the second invention, the total value of the output currents of the chopper devices is detected by the total current detector, and the divider divides the total current by the number of chopper devices to calculate the average current. The current deviation between the average current and the output current of each chopper device is obtained by the difference current detector, and this is input to the proportional-plus-integral regulator, and the adjustment signal that makes this input-current deviation zero is output from the proportional-plus-integral regulator. The output is performed, but the integration time of the proportional-plus-integral regulator is set to be sufficiently longer than the operation cycle of the chopper device to prevent mutual interference between the conduction ratio control and the chopper current imbalance suppression operation. However, if the integration time is long, the transient response performance when a steep current deviation occurs decreases, but in the second invention, the product of the output value of the proportional-plus-integral regulator and the absolute value of the above-mentioned current deviation is calculated. By providing a multiplier and correcting this multiplication operation result,
The transient response when a steep current deviation occurs is improved. Furthermore, a switch is provided on the output side of the proportional-plus-integral controller, and this switch is turned on only when the absolute value of the current deviation exceeds a predetermined value, and unnecessary correction is made when the current deviation is small. Avoid taking action.

【0009】第3の発明は、前記各チョッパ装置の出力
電流の合計値を合計電流検出器で検出し、除算器がこの
合計電流をチョッパ装置台数で割り算して平均電流を演
算する。この平均電流とチョッパ装置ごとの出力電流と
の電流偏差を差電流検出器で求め、これを比例調節器へ
入力させて、この入力電流偏差を零にする調節信号を当
該比例調節器から出力させるが、この比例調節器の比例
ゲインを所望の値にすることにより補正量が時間遅れ無
しで得られ、過渡応答度を向上させている。更に、比例
調節器の出力側にはスイッチを設け、前述した電流偏差
の絶対値が予め定めた値を越えたときにのみこのスイッ
チをオンにすることで、電流偏差が小さいときに不要な
補正動作が行われるのを回避する。
In a third aspect of the invention, the total value of the output currents of the chopper devices is detected by a total current detector, and the divider divides the total current by the number of chopper devices to calculate an average current. A current deviation between this average current and the output current of each chopper device is obtained by a difference current detector, and this is input to a proportional controller, and an adjustment signal for making this input current deviation zero is output from the proportional controller. However, by setting the proportional gain of this proportional controller to a desired value, the correction amount can be obtained without a time delay, and the transient response is improved. Furthermore, a switch is provided on the output side of the proportional controller, and this switch is turned on only when the absolute value of the current deviation exceeds a predetermined value, and unnecessary correction is made when the current deviation is small. Avoid taking action.

【0010】第4の発明は、前記各チョッパ装置の出力
電流の合計値を合計電流検出器で検出し、除算器がこの
合計電流をチョッパ装置台数で割り算して平均電流を演
算する。この平均電流とチョッパ装置ごとの出力電流と
の電流偏差を差電流検出器で求め、これを比例調節器へ
入力させて、この入力電流偏差を零にする調節信号を当
該比例調節器から出力させるが、この比例調節器の比例
ゲインを所望の値にすることにより補正量が時間遅れ無
しで得られ、過渡応答度を向上させている。更に、比例
調節器の演算増幅部の入出力間にはスイッチを設け、前
述した電流偏差の絶対値が予め定めた値を越えたときに
のみこのスイッチをオフにすることで、電流偏差が小さ
いときに不要な補正動作が行われるのを回避する。
In a fourth aspect of the invention, the total value of the output currents of the chopper devices is detected by a total current detector, and the divider divides the total current by the number of chopper devices to calculate an average current. A current deviation between this average current and the output current of each chopper device is obtained by a difference current detector, and this is input to a proportional controller, and an adjustment signal for making this input current deviation zero is output from the proportional controller. However, by setting the proportional gain of this proportional controller to a desired value, the correction amount can be obtained without a time delay, and the transient response is improved. Further, a switch is provided between the input and output of the operational amplifier of the proportional controller, and the switch is turned off only when the absolute value of the current deviation exceeds a predetermined value, so that the current deviation is small. Avoiding unnecessary correction operations sometimes being performed.

【0011】[0011]

【発明の実施の形態】図1はこの発明の第1実施例を表
した回路図であって、請求項1に対応する。この第1実
施例回路もm台のチョッパ装置を並列に接続して多相多
重装置を形成するのであるが、図面が複雑になるのを避
けるために、1台目とm台目のみを図示し、残余のチョ
ッパ装置の図示は省略している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a circuit diagram showing a first embodiment of the present invention and corresponds to claim 1. In this first embodiment circuit as well, m chopper devices are connected in parallel to form a polyphase multiplexer, but in order to avoid complicating the drawing, only the first and mth units are shown. The remaining chopper device is not shown.

【0012】この第1実施例回路では、第1チョッパ装
置の出力電流を第1電流検出器131で検出し、第mチ
ョッパ装置の出力電流を第m電流検出器133で検出す
る。更に直流電動機2へ流れる全電流を合計電流検出器
3で検出する。除算器4は合計電流検出器3が検出する
全電流を運転台数mで割ることにより、一台当たりの平
均電流を求める。第1差電流検出器41はこの平均電流
と第1チョッパ装置出力電流との偏差を求め、この偏差
を第1の比例積分微分調節器(以下ではPID調節器と
略記する)51へ入力させると、この入力偏差を零にす
る調節信号が第1スイッチ61を介して第1加算器71
へ補正信号として与えられる。第1加算器71は通流率
指令値にこの補正信号を加算した結果を第1移相変換器
81へ与え、これが第1チョッパ部11へ通流率指令値
として与えられることになる。m台目のチョッパ装置で
も同様に、第m差電流検出器43が平均電流と第mチョ
ッパ装置出力電流との偏差を演算し、この偏差を第mP
ID調節器53へ入力させるので、この入力偏差を零に
する調節信号が第mスイッチ63を介して第m加算器7
3へ補正信号として与えられ、この補正信号を加算した
結果が第m移相変換器83を介して第mチョッパ部13
へ通流率指令値として与えられる。
In this first embodiment circuit, the output current of the first chopper device is detected by the first current detector 131, and the output current of the mth chopper device is detected by the mth current detector 133. Further, the total current detector 3 detects all the currents flowing to the DC motor 2. The divider 4 divides the total current detected by the total current detector 3 by the operating number m to obtain the average current per unit. When the first difference current detector 41 obtains the deviation between this average current and the output current of the first chopper device, and inputs this deviation to the first proportional-plus-integral-derivative controller (abbreviated as PID controller below) 51. , An adjustment signal for making the input deviation zero is transmitted via the first switch 61 to the first adder 71.
To the correction signal. The first adder 71 gives the result obtained by adding the correction signal to the flow rate command value to the first phase shift converter 81, and this is given to the first chopper section 11 as the flow rate command value. Similarly, in the m-th chopper device, the m-th differential current detector 43 calculates the deviation between the average current and the m-th chopper device output current, and this deviation is calculated as
Since the input signal is input to the ID adjuster 53, an adjustment signal for making the input deviation zero is output via the m-th switch 63.
3 as a correction signal, and the result of adding the correction signals is sent to the m-th chopper unit 13 via the m-th phase shift converter 83.
Is given as a flow rate command value.

【0013】ここで各PID調節器の積分時間は、制御
の際に干渉が発生するのを回避するべく、各チョッパ部
の動作周期よりも充分に長い時間に設定する。この長い
積分時間のために過渡応答性能が低下することが無いよ
うに、当該調節器には微分演算機能が備えられていて、
電流偏差の時間的変化の大きさに対応した補正量を出力
する。更に、第1絶対値演算器101,第m絶対値演算
器103が前記の電流偏差の絶対値を演算し、この絶対
値が基準電圧源5を越えたか否かを、第1コンパレータ
111と第1否定論理和素子121とで、或いは第mコ
ンパレータ113と第m否定論理和素子123とで判定
し、この判定結果に対応して第1スイッチ61或いは第
mスイッチ63をオン・オフさせる。即ち、電流偏差が
基準電圧源5で定めた値を越えないときは各スイッチは
オフにして、僅かな電流偏差で無用な補正動作がなされ
るのを妨げている。
Here, the integration time of each PID controller is set to a time sufficiently longer than the operation cycle of each chopper section in order to avoid interference during control. In order to prevent the deterioration of the transient response performance due to this long integration time, the regulator is equipped with a differential operation function,
The correction amount corresponding to the magnitude of the temporal change in the current deviation is output. Further, the first absolute value calculator 101 and the m-th absolute value calculator 103 calculate the absolute value of the current deviation, and it is determined whether the absolute value exceeds the reference voltage source 5 by the first comparator 111 and the first comparator 111. The 1-NOR element 121 or the m-th comparator 113 and the m-NOR element 123 make a decision, and the first switch 61 or the m-th switch 63 is turned on / off according to the decision result. That is, when the current deviation does not exceed the value defined by the reference voltage source 5, each switch is turned off to prevent unnecessary correction operation with a slight current deviation.

【0014】図2はこの発明の第2実施例を表した回路
図であって、請求項2に対応する。この第2実施例回路
もm台のチョッパ装置を並列に接続して多相多重装置を
形成するのであるが、図面が複雑になるのを避けるため
に、制御回路は1台目とm台目のみを図示し、残余の図
示は省略するのは前述した第1実施例回路の場合と同様
である。
FIG. 2 is a circuit diagram showing a second embodiment of the present invention and corresponds to claim 2. In this second embodiment circuit as well, m chopper devices are connected in parallel to form a polyphase multiplexer, but in order to avoid complicating the drawing, the control circuits are the first and mth units. It is the same as in the case of the first embodiment circuit described above, in which only the illustration is shown and the rest is omitted.

【0015】この第2実施例回路は、第1PID調節器
51及び第mPID調節器53の代わりに、第1PI調
節器151と第1乗算器161、及び第mPI調節器1
53と第m乗算器163とを備えているのが前述した第
1実施例回路と異なってところであり、それ以外はすべ
て同じであるから、同じ部分の説明は省略する。この第
2実施例回路では電流偏差をPI調節器(比例積分調節
器)へ入力させているが、これには微分演算機能が備え
られていないので、過渡応答性能がPID調節器よりも
劣る。そこでPI調節器の出力信号と電流偏差の絶対値
との積を演算する乗算器を設け、この乗算演算結果を補
正信号として通流率指令値に加算することにより、過渡
応答性能が低下しないようにしている。
In the second embodiment circuit, instead of the first PID controller 51 and the mPID controller 53, a first PI controller 151, a first multiplier 161, and an mPI controller 1 are provided.
The third embodiment is different from the above-described first embodiment circuit in that it is provided with 53 and the m-th multiplier 163, and is otherwise the same, so the description of the same parts will be omitted. In the circuit of the second embodiment, the current deviation is input to the PI controller (proportional-integral controller), but since it does not have a differential operation function, the transient response performance is inferior to that of the PID controller. Therefore, by providing a multiplier that calculates the product of the output signal of the PI controller and the absolute value of the current deviation, and adding the multiplication calculation result as a correction signal to the flow rate command value, transient response performance is not deteriorated. I have to.

【0016】図4はこの発明の第3実施例を表した回路
図であって、請求項3に対応する。この第3実施例回路
もm台のチョッパ装置を並列に接続して多相多重装置を
形成するのであるが、図面が複雑になるのを避けるため
に、制御回路は1台目とm台目のみを図示し、残余の図
示は省略するのは前述した第1実施例回路の場合と同様
である。
FIG. 4 is a circuit diagram showing a third embodiment of the present invention and corresponds to claim 3. This third embodiment circuit also connects m chopper devices in parallel to form a polyphase multiplexer. However, in order to avoid complicating the drawing, the control circuits are the first and mth units. It is the same as in the case of the first embodiment circuit described above, in which only the illustration is shown and the rest is omitted.

【0017】この第3実施例回路は、第1PID調節器
51及び第mPID調節器53の代わりに、第1P調節
器251と第mP調節器253とを備えているのが前述
した第1実施例回路と異なってところであり、それ以外
はすべて同じであるから、同じ部分の説明は省略する。
この第3実施例回路では電流偏差をP調節器(比例調節
器)へ入力させているが、それぞれのP調節器の比例ゲ
インを最適化することにより、補正量が時間遅れ無しで
得られ、過渡応答性能が低下しないようにしている。
The circuit of the third embodiment includes the first P controller 251 and the mP controller 253 instead of the first PID controller 51 and the mPID controller 53. Since it is different from the circuit and is otherwise the same, the description of the same parts will be omitted.
In the circuit of the third embodiment, the current deviation is input to the P adjusters (proportional adjusters), but by optimizing the proportional gain of each P adjuster, the correction amount can be obtained without a time delay. The transient response performance is not reduced.

【0018】図5はこの発明の第4実施例を表した部分
回路図であって、請求項4に対応する。この第4実施例
部分回路は、第3実施例回路の第1P調節器251と第
mP調節器253と、第1P調節器251と第mP調節
器253それぞれの演算増幅部の入出力間に第1アナロ
グスイッチ261および第mアナログスイッチ263と
を備え、第3の実施例回路の第1スイッチ61および第
mスイッチ63を削除し、第1否定論理和素子121お
よび第m否定論理和素子123の代わりに、第1論理和
素子221および第m論理和素子223を備えているの
が前述した第3実施例回路と異なってところであり、そ
れ以外はすべて同じであるから、同じ部分の説明は省略
する。
FIG. 5 is a partial circuit diagram showing a fourth embodiment of the present invention and corresponds to claim 4. The partial circuit of the fourth embodiment includes a first P regulator 251 and an mP regulator 253 of the third embodiment circuit, and a first P regulator 251 and an mP regulator 253. The first analog switch 261 and the m-th analog switch 263 are provided, and the first switch 61 and the m-th switch 63 of the circuit of the third embodiment are deleted, and the first NOR gate element 121 and the m-th NOR gate element 123 are included. Instead, it is different from the circuit of the third embodiment described above in that the first OR element 221 and the m-th element 223 are provided, and the other parts are the same, and therefore the description of the same parts will be omitted. To do.

【0019】すなわち、第1絶対値演算器101,第m
絶対値演算器103が前記の電流偏差の絶対値を演算
し、この絶対値が基準電圧源5を越えたか否かを、第1
コンパレータ111と第1論理和素子221とで、或い
は第mコンパレータ113と第m論理和素子223とで
判定し、この判定結果に対応して第1アナログスイッチ
261或いは第mアナログスイッチ63をオン・オフさ
せる。即ち、電流偏差が基準電圧源5で定めた値を越え
ないときは各アナログスイッチをオンにすることにより
第1P調節器251と第mP調節器253それぞれの演
算増幅部の入出力間が短絡され、第1P調節器251と
第mP調節器253の出力値が零となり、僅かな電流偏
差で無用な補正動作がなされるのを妨げている。
That is, the first absolute value calculator 101, the m-th
The absolute value calculator 103 calculates the absolute value of the current deviation, and it is first determined whether the absolute value exceeds the reference voltage source 5.
The comparator 111 and the first logical sum element 221 or the mth comparator 113 and the mth logical sum element 223 make a decision, and the first analog switch 261 or the mth analog switch 63 is turned on according to the decision result. Turn off. That is, when the current deviation does not exceed the value determined by the reference voltage source 5, each analog switch is turned on to short-circuit the input and output of the operational amplifier of each of the first P regulator 251 and the mP regulator 253. , The output values of the first P adjuster 251 and the mP adjuster 253 become zero, which prevents useless correction operation with a slight current deviation.

【0020】この第4実施例部分回路では電流偏差をP
調節器(比例調節器)へ入力させているが、それぞれの
P調節器の比例ゲインを最適化することにより、補正量
が時間遅れ無しで得られ、過渡応答性能が低下しないよ
うにしている。なお、図示しないが前述の第1〜第2実
施例回路においても、第1PID調節器51,第mPI
D調節器53或いは第1PI調節器151,第mPI調
節器153のそれぞれの演算増幅部の入出力間に第1ア
ナログスイッチ261および第mアナログスイッチ26
3とを備え、第1スイッチ61および第mスイッチ63
を削除し、第1否定論理和素子121および第m否定論
理和素子123の代わりに、第1論理和素子221およ
び第m論理和素子223を備えてもよい。
In the partial circuit of the fourth embodiment, the current deviation is P
Although it is input to the regulators (proportional regulators), the proportional gain of each P regulator is optimized so that the correction amount can be obtained without a time delay and the transient response performance is not deteriorated. Although not shown in the drawings, the first PID controller 51 and the mPI
The first analog switch 261 and the m-th analog switch 26 are provided between the input and output of the operational amplifiers of the D adjuster 53 or the first PI adjuster 151 and the m-th PI adjuster 153, respectively.
3 and includes a first switch 61 and an m-th switch 63.
May be deleted, and instead of the first NOR element 121 and the m-th NOR element 123, a first OR element 221 and an m-th element 223 may be provided.

【0021】[0021]

【発明の効果】この発明によれば、複数のチョッパ装置
を並列に接続して運転する多相多重チョッパ装置で、各
チョッパ装置毎の電流偏差を検出し、この偏差を零にす
るPID調節器からの補正信号、或いはPI調節器とそ
の出力信号と電流偏差絶対値との積を演算する乗算器と
で得られる補正信号、或いはこの偏差を零にするP調節
器からの補正信号のいずれかに通流率指令値に加算する
ことにより、各チョッパ装置に逆流阻止用ダイオードの
設置が不要になり、或いは各チョッパ装置に備える電流
制御回路が不要になるので、当該多相多重チョッパ装置
を大形化・複雑化させることがなく、且つ装置の運転効
率や過渡応答性能を低下させずに、各チョッパ装置が均
等に電流を分担しながら運転することができる効果が得
られる。
According to the present invention, in a multi-phase multiple chopper device in which a plurality of chopper devices are connected in parallel and operated, a current deviation of each chopper device is detected and the PID controller that makes this deviation zero. Correction signal obtained from the PI controller and the multiplier that calculates the product of the output signal and the absolute value of the current deviation, or the correction signal from the P controller that makes this deviation zero. By adding the duty factor command value to each chopper device, it becomes unnecessary to install a backflow prevention diode in each chopper device, or a current control circuit provided in each chopper device becomes unnecessary. It is possible to obtain an effect that each chopper device can operate while sharing the current evenly without making the device complicated and complicated and without lowering the operating efficiency and transient response performance of the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例を表した回路図FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

【図2】この発明の第2実施例を表した回路図FIG. 2 is a circuit diagram showing a second embodiment of the present invention.

【図3】多相多重チョッパ装置の従来例を示した主回路
接続図
FIG. 3 is a main circuit connection diagram showing a conventional example of a multiphase multiple chopper device.

【図4】この発明の第3実施例を表した回路図FIG. 4 is a circuit diagram showing a third embodiment of the present invention.

【図5】この発明の第4実施例を表した部分回路図FIG. 5 is a partial circuit diagram showing a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 直流電源 2 負荷としての直流電動機 3 合計電流検出器 4 除算器 5 基準電圧源 11,12,13 第1,第2,第mチョッパ部 21,22,23 第1,第2,第mリアクトル 31,32,33 第1,第2,第mフリーホイール
ダイオード 41,43 第1,第m差電流検出器 51,53 第1,第mPID調節器 61,63 第1,第mスイッチ 71,73 第1,第m加算器 81,83 第1,第m移相変換器 101,103 第1,第m絶対値演算器 111,113 第1,第mコンパレータ 121,123 第1,第m否定論理和素子 131,133 第1,第m電流検出器 151,153 第1,第mPI調節器 161,163 第1,第m乗算器 221,223 第1,第m否定論理和素子 251,253 第1,第mP調節器 261,263 第1,第mアナログスイッチ
1 DC power supply 2 DC motor as load 3 Total current detector 4 Divider 5 Reference voltage source 11, 12, 13 1st, 2nd, 2nd m-th chopper part 21, 22, 23 1st, 2nd-mth reactor 31, 32, 33 1st, 2nd, mth freewheeling diode 41, 43 1st, mth difference current detector 51, 53 1st, mth PID controller 61, 63 1st, mth switch 71, 73 1st, mth adder 81, 83 1st, mth phase shift converter 101, 103 1st, mth absolute value calculator 111, 113 1st, mth comparator 121, 123 1st, mth negative logic Sum element 131, 133 1st, mth current detector 151, 153 1st, mth PI regulator 161, 163 1st, mth multiplier 221, 223 1st, mth NOR element 251, 253 1st , MP regulator 2 1,263 first, the m-th analog switch

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】直流電源に接続して、この直流電源とは異
なる電圧の直流を出力するチョッパ装置の複数台を並列
に接続し、これら各チョッパ装置には共通の通流率指令
値を与え、360度をチョッパ装置の台数で割った値を
各チョッパ装置間の動作位相差にして前記各チョッパ装
置を運転する多相多重チョッパ装置において、 前記各チョッパ装置の出力電流の合計値を検出する合計
電流検出器と、この合計電流をチョッパ装置台数で割り
算して平均電流を演算する除算器と、この平均電流とチ
ョッパ装置ごとの出力電流との差を別個に検出する差電
流検出器と、これら各差電流検出値の絶対値を別個に演
算する絶対値演算器と、前記各差電流検出値を別個に入
力してその入力信号を零にする調節信号を別個に出力す
る比例積分微分調節器と、これら各比例積分微分調節器
の出力側に別個に設けるスイッチと、これら各スイッチ
を介して得られる前記調節信号と前記通流率指令値とを
別個に加算する加算器と、前記各差電流検出値絶対値と
別途に設定する基準値との比較を別個に行い、前記差電
流検出値に対応したチョッパ装置に属する前記スイッチ
をこの比較結果に基づいて動作させる比較演算器とを備
え、前記各加算器の演算結果に基づいて各チョッパ装置
を別個に制御することを特徴とする多相多重チョッパ装
置の制御回路。
1. A plurality of chopper devices which are connected to a DC power source and output a DC voltage different from the DC power source are connected in parallel, and a common flow rate command value is given to each of these chopper devices. In a multi-phase multiple chopper device that operates each of the chopper devices, a value obtained by dividing 360 degrees by the number of the chopper devices is used as an operation phase difference between the chopper devices, and a total value of output currents of the chopper devices is detected. A total current detector, a divider that calculates the average current by dividing the total current by the number of chopper devices, and a difference current detector that separately detects the difference between the average current and the output current of each chopper device, An absolute value calculator for individually calculating the absolute value of each of the differential current detection values, and a proportional-integral-derivative adjustment for separately inputting each of the differential current detection values and individually outputting an adjustment signal for making the input signal zero. A vessel, A switch provided separately on the output side of each of the proportional-plus-integral-derivative regulators, an adder for separately adding the regulation signal and the duty ratio command value obtained through the respective switches, and each of the differential current detectors. The absolute value and a reference value set separately are compared separately, and a comparison calculator that operates the switches belonging to the chopper device corresponding to the difference current detection value based on the comparison result is provided. A control circuit for a multi-phase multiple chopper device, wherein each chopper device is individually controlled based on the calculation result of the adder.
【請求項2】直流電源に接続して、この直流電源とは異
なる電圧の直流を出力するチョッパ装置の複数台を並列
に接続し、これら各チョッパ装置には共通の通流率指令
値を与え、360度をチョッパ装置の台数で割った値を
各チョッパ装置間の動作位相差にして前記各チョッパ装
置を運転する多相多重チョッパ装置において、 前記各チョッパ装置の出力電流の合計値を検出する合計
電流検出器と、この合計電流をチョッパ装置台数で割り
算して平均電流を演算する除算器と、この平均電流とチ
ョッパ装置ごとの出力電流との差を別個に演算する差電
流検出器と、これら各差電流検出値の絶対値を別個に演
算する絶対値演算器と、前記各差電流検出値を別個に入
力してその入力信号を零にする調節信号を別個に出力す
る比例積分調節器と、これら各比例積分調節器の出力側
に別個に設けるスイッチと、これら各スイッチを介して
得られる前記調節信号と前記差電流検出値絶対値との積
を別個に演算する乗算器と、それぞれの乗算演算結果と
前記通流率指令値とを別個に加算する加算器と、前記各
差電流検出値絶対値と別途に設定する基準値との比較を
別個に行ってその差電流検出値に対応したチョッパ装置
に属する前記スイッチをこの比較結果に基づいて動作さ
せる比較演算器とを備え、前記各加算器の演算結果に基
づいて各チョッパ装置を別個に制御することを特徴とす
る多相多重チョッパ装置の制御回路。
2. A plurality of chopper devices which are connected to a DC power source and which output a DC voltage different from that of the DC power source are connected in parallel, and a common flow rate command value is given to each of these chopper devices. In a multi-phase multiple chopper device that operates each of the chopper devices, a value obtained by dividing 360 degrees by the number of the chopper devices is used as an operation phase difference between the chopper devices, and a total value of output currents of the chopper devices is detected. A total current detector, a divider that calculates the average current by dividing this total current by the number of chopper devices, and a difference current detector that separately calculates the difference between this average current and the output current of each chopper device, An absolute value calculator that separately calculates the absolute value of each of the differential current detection values, and a proportional-plus-integral controller that individually inputs the differential current detection values and separately outputs an adjustment signal that makes the input signal zero. And this Switch provided separately on the output side of each proportional-plus-integral regulator, a multiplier for separately computing the product of the regulation signal obtained through each of these switches and the absolute value of the difference current detection value, and each multiplication Corresponding to the difference current detection value by separately comparing the absolute value of each of the difference current detection values and the reference value set separately, with an adder that adds the calculation result and the conduction ratio command value separately A multi-phase multiple chopper device, comprising: a comparison operator that operates the switch belonging to the chopper device based on the comparison result, and individually controls each chopper device based on the operation result of each adder. Control circuit.
【請求項3】直流電源に接続して、この直流電源とは異
なる電圧の直流を出力するチョッパ装置の複数台を並列
に接続し、これら各チョッパ装置には共通の通流率指令
値を与え、360度をチョッパ装置の台数で割った値を
各チョッパ装置間の動作位相差にして前記各チョッパ装
置を運転する多相多重チョッパ装置において、 前記各チョッパ装置の出力電流の合計値を検出する合計
電流検出器と、この合計電流をチョッパ装置台数で割り
算して平均電流を演算する除算器と、この平均電流とチ
ョッパ装置ごとの出力電流との差を別個に検出する差電
流検出器と、これら各差電流検出値の絶対値を別個に演
算する絶対値演算器と、前記各差電流検出値を別個に入
力してその入力信号を零にする調節信号を別個に出力す
る比例調節器と、これら各比例調節器の出力側に別個に
設けるスイッチと、これら各スイッチを介して得られる
前記調節信号と前記通流率指令値とを別個に加算する加
算器と、前記各差電流検出値絶対値と別途に設定する基
準値との比較を別個に行い、前記差電流検出値に対応し
たチョッパ装置に属する前記スイッチをこの比較結果に
基づいて動作させる比較演算器とを備え、前記各加算器
の演算結果に基づいて各チョッパ装置を別個に制御する
ことを特徴とする多相多重チョッパ装置の制御回路。
3. A plurality of chopper devices which are connected to a DC power source and which output a DC voltage different from that of the DC power source are connected in parallel, and a common flow rate command value is given to each of these chopper devices. In a multi-phase multiple chopper device that operates each of the chopper devices, a value obtained by dividing 360 degrees by the number of the chopper devices is used as an operation phase difference between the chopper devices, and a total value of output currents of the chopper devices is detected. A total current detector, a divider that calculates the average current by dividing the total current by the number of chopper devices, and a difference current detector that separately detects the difference between the average current and the output current of each chopper device, An absolute value calculator that separately calculates the absolute value of each of the differential current detection values, and a proportional controller that separately inputs the differential current detection values and separately outputs an adjustment signal that makes the input signal zero. , Each of these A switch provided separately on the output side of the proportional controller, an adder for separately adding the adjustment signal and the duty ratio command value obtained via these respective switches, and each absolute value of the difference current detection value A comparator for separately performing a comparison with a reference value set separately, and operating the switches belonging to the chopper device corresponding to the differential current detection value based on the comparison result. A control circuit for a multi-phase multiple chopper device, wherein each chopper device is controlled individually based on the result.
【請求項4】直流電源に接続して、この直流電源とは異
なる電圧の直流を出力するチョッパ装置の複数台を並列
に接続し、これら各チョッパ装置には共通の通流率指令
値を与え、360度をチョッパ装置の台数で割った値を
各チョッパ装置間の動作位相差にして前記各チョッパ装
置を運転する多相多重チョッパ装置において、 前記各チョッパ装置の出力電流の合計値を検出する合計
電流検出器と、この合計電流をチョッパ装置台数で割り
算して平均電流を演算する除算器と、この平均電流とチ
ョッパ装置ごとの出力電流との差を別個に検出する差電
流検出器と、これら各差電流検出値の絶対値を別個に演
算する絶対値演算器と、前記各差電流検出値を別個に入
力してその入力信号を零にする調節信号を別個に出力す
る比例調節器と、これら各比例調節器の演算増幅部の入
出力間に別個に設けるスイッチと、前記角調節信号と前
記通流率指令値とを別個に加算する加算器と、前記各差
電流検出値絶対値と別途に設定する基準値との比較を別
個に行い、前記差電流検出値に対応したチョッパ装置に
属する前記スイッチをこの比較結果に基づいて動作させ
る比較演算器とを備え、前記各加算器の演算結果に基づ
いて各チョッパ装置を別個に制御することを特徴とする
多相多重チョッパ装置の制御回路。
4. A plurality of chopper devices connected to a direct current power source and outputting direct current of a voltage different from the direct current power source are connected in parallel, and a common flow rate command value is given to each of these chopper devices. In a multi-phase multiple chopper device that operates each of the chopper devices, a value obtained by dividing 360 degrees by the number of the chopper devices is used as an operation phase difference between the chopper devices, and a total value of output currents of the chopper devices is detected. A total current detector, a divider that calculates the average current by dividing the total current by the number of chopper devices, and a difference current detector that separately detects the difference between the average current and the output current of each chopper device, An absolute value calculator that separately calculates the absolute value of each of the differential current detection values, and a proportional controller that separately inputs the differential current detection values and separately outputs an adjustment signal that makes the input signal zero. , Each of these A switch provided separately between the input and output of the operational amplifier of the proportional controller, an adder for adding the angle adjustment signal and the duty ratio command value separately, and the absolute value of each differential current detection value separately. The comparison with the reference value to be set is performed separately, and the comparator belonging to the chopper device corresponding to the difference current detection value is operated based on the comparison result. A control circuit for a multi-phase multiple chopper device, wherein each chopper device is controlled individually based on the above.
JP8170938A 1995-11-30 1996-07-01 Control circuit of multi-phase multiplexing chopper apparatus Pending JPH09215322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8170938A JPH09215322A (en) 1995-11-30 1996-07-01 Control circuit of multi-phase multiplexing chopper apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31146195 1995-11-30
JP7-311461 1995-11-30
JP8170938A JPH09215322A (en) 1995-11-30 1996-07-01 Control circuit of multi-phase multiplexing chopper apparatus

Publications (1)

Publication Number Publication Date
JPH09215322A true JPH09215322A (en) 1997-08-15

Family

ID=26493797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8170938A Pending JPH09215322A (en) 1995-11-30 1996-07-01 Control circuit of multi-phase multiplexing chopper apparatus

Country Status (1)

Country Link
JP (1) JPH09215322A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086998A (en) * 2003-09-04 2005-03-31 Marvell World Trade Ltd Dynamic polyphase operation
JP2006271102A (en) * 2005-03-24 2006-10-05 Toshiba Mitsubishi-Electric Industrial System Corp Parallel multiplex chopper
JP2008092662A (en) * 2006-10-02 2008-04-17 Toyota Motor Corp Converter controller
JP2008289317A (en) * 2007-05-21 2008-11-27 Fuji Electric Holdings Co Ltd Controller of parallel multiplex chopper
JP2010119289A (en) * 2008-11-14 2010-05-27 Ford Global Technologies Llc Multiphase dc-dc converter control system
JP2010539870A (en) * 2007-09-13 2010-12-16 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Multiphase DC voltage converter
DE112009001399T5 (en) 2008-06-13 2011-05-05 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Signal control device
US8050065B2 (en) 2007-01-24 2011-11-01 Toyota Jidosha Kabushiki Kaisha Multi-phase voltage converting device, vehicle and control method of multi-phase voltage converting device
KR20140116117A (en) 2012-03-13 2014-10-01 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Reactor and power supply apparatus using same
JP2018014855A (en) * 2016-07-22 2018-01-25 ローム株式会社 Dc/dc converter, control circuit thereof, and system power supply
JP2018019447A (en) * 2016-07-25 2018-02-01 東洋電機製造株式会社 Power supply unit
CN107742191A (en) * 2017-11-16 2018-02-27 哈尔滨理工大学 The grid power transmission quality evaluating method subtracted each other based on phase compensation amplitude
JP2018107886A (en) * 2016-12-26 2018-07-05 株式会社京三製作所 Power supply device and control method of the same
JP2019176606A (en) * 2018-03-28 2019-10-10 サンケン電気株式会社 Switching power supply device
WO2019207747A1 (en) * 2018-04-27 2019-10-31 サンケン電気株式会社 Switching power supply device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086998A (en) * 2003-09-04 2005-03-31 Marvell World Trade Ltd Dynamic polyphase operation
JP2006271102A (en) * 2005-03-24 2006-10-05 Toshiba Mitsubishi-Electric Industrial System Corp Parallel multiplex chopper
JP4642517B2 (en) * 2005-03-24 2011-03-02 東芝三菱電機産業システム株式会社 Parallel multiple chopper device
JP2008092662A (en) * 2006-10-02 2008-04-17 Toyota Motor Corp Converter controller
US8050065B2 (en) 2007-01-24 2011-11-01 Toyota Jidosha Kabushiki Kaisha Multi-phase voltage converting device, vehicle and control method of multi-phase voltage converting device
JP2008289317A (en) * 2007-05-21 2008-11-27 Fuji Electric Holdings Co Ltd Controller of parallel multiplex chopper
JP2010539870A (en) * 2007-09-13 2010-12-16 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Multiphase DC voltage converter
DE112009001399T5 (en) 2008-06-13 2011-05-05 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Signal control device
US8378729B2 (en) 2008-06-13 2013-02-19 Toyota Jidosha Kabushiki Kaisha Signal control device
JP2010119289A (en) * 2008-11-14 2010-05-27 Ford Global Technologies Llc Multiphase dc-dc converter control system
US9824813B2 (en) 2012-03-13 2017-11-21 Toshiba Mitsubishi-Electric Industrial Systems Corporation Reactor and power supply device employing the same
CN104170227A (en) * 2012-03-13 2014-11-26 东芝三菱电机产业系统株式会社 Reactor and power supply apparatus using same
KR20140116117A (en) 2012-03-13 2014-10-01 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Reactor and power supply apparatus using same
JP2018014855A (en) * 2016-07-22 2018-01-25 ローム株式会社 Dc/dc converter, control circuit thereof, and system power supply
JP2018019447A (en) * 2016-07-25 2018-02-01 東洋電機製造株式会社 Power supply unit
US10594220B2 (en) 2016-12-26 2020-03-17 Kyosan Electric Mfg. Co., Ltd. Power supply device and method for controlling power supply device
JP2018107886A (en) * 2016-12-26 2018-07-05 株式会社京三製作所 Power supply device and control method of the same
WO2018123083A1 (en) * 2016-12-26 2018-07-05 株式会社京三製作所 Power supply device and method for controlling power supply device
KR20190084306A (en) * 2016-12-26 2019-07-16 가부시끼가이샤교산세이사꾸쇼 Control method of power supply and power supply
CN110114967A (en) * 2016-12-26 2019-08-09 株式会社京三制作所 The control method of power supply device and power supply device
CN110114967B (en) * 2016-12-26 2021-01-15 株式会社京三制作所 Power supply device and control method of power supply device
CN107742191B (en) * 2017-11-16 2019-08-27 哈尔滨理工大学 The grid power transmission quality evaluating method subtracted each other based on phase compensation amplitude
CN107742191A (en) * 2017-11-16 2018-02-27 哈尔滨理工大学 The grid power transmission quality evaluating method subtracted each other based on phase compensation amplitude
JP2019176606A (en) * 2018-03-28 2019-10-10 サンケン電気株式会社 Switching power supply device
JP2022031962A (en) * 2018-03-28 2022-02-22 株式会社Gsユアサ インフラシステムズ Switching power supply device
WO2019207747A1 (en) * 2018-04-27 2019-10-31 サンケン電気株式会社 Switching power supply device
US11424681B2 (en) 2018-04-27 2022-08-23 Gs Yuasa Infrastructure Systems Co., Ltd. Multiphase switching power supply device

Similar Documents

Publication Publication Date Title
JPH09215322A (en) Control circuit of multi-phase multiplexing chopper apparatus
US8374008B2 (en) Power converter
JP2022031962A (en) Switching power supply device
WO2018131086A1 (en) Power conversion device
US9998029B2 (en) Inverter and inverter device
JP2003309975A (en) Pwm cycloconverter and control method therefor
JP2014108010A (en) Power compensation system
JP2002176735A (en) Uninterrupted power supply device, parallel operation type uninterrupted power supply device, inverter device and parallel operation type inverter device
JP7371545B2 (en) Power conversion device and its control method
JP2004120844A (en) Step-up converter controller
JP2000037082A (en) Power factor control system for plant power supply employing inverter driver
JP3752804B2 (en) AC machine control device
JP3812726B2 (en) Control method and apparatus for parallel-connected power converter
JPH08228475A (en) Control circuit of two-phase double chopper device
JP3312178B2 (en) Control device for self-excited inverter
JPH08223927A (en) Control apparatus of uninterruptible power-supply system
JPH06261584A (en) Control device of ac motor
JP2002262577A (en) Control method for parallel operation of voltage-type inverter
JP4319868B2 (en) Power converter
JP2777491B2 (en) Interphase reactor multiplex inverter
JP3379130B2 (en) Parallel converter for cycloconverter
JP4258228B2 (en) Control method and control apparatus for power conversion device for fuel cell
JPH0898589A (en) Current controller of three-phase inverter
JP2793095B2 (en) Parallel converter for cycloconverter
JP2000333372A (en) Method for controlling power supply system