JPH09215180A - Supervisory control method for line - Google Patents

Supervisory control method for line

Info

Publication number
JPH09215180A
JPH09215180A JP8044202A JP4420296A JPH09215180A JP H09215180 A JPH09215180 A JP H09215180A JP 8044202 A JP8044202 A JP 8044202A JP 4420296 A JP4420296 A JP 4420296A JP H09215180 A JPH09215180 A JP H09215180A
Authority
JP
Japan
Prior art keywords
temperature
current
load
electric line
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8044202A
Other languages
Japanese (ja)
Other versions
JP3129182B2 (en
Inventor
Keiichiro Takada
啓一郎 高田
Yoshibumi Minowa
義文 蓑輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP08044202A priority Critical patent/JP3129182B2/en
Publication of JPH09215180A publication Critical patent/JPH09215180A/en
Application granted granted Critical
Publication of JP3129182B2 publication Critical patent/JP3129182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a decision with no delay by setting a current interruption rate based on an initial decision of load limitation depending on a temperature estimated from weather conditions and performing the second and subsequent interruption of load selectively with a current interruption rate being set at a predetermined minimum rate thereby limiting the load on a line depending on the temperature of line. SOLUTION: A decision section 4 makes a decision whether limitation of load is required or not base on the current temperature of a line estimated while taking account of weather conditions and the trend of predicted temperature at a predetermined time later. When limitation of load is required, an interruption rate determining section 7 increases the interruption rate as the the estimated temperature increases for a first feeder interruption command and an interruption executing section 8 interrupts the feeder selectively. Second and subsequently commands fix the current interruption rate at a predetermined minimum value and the remaining feeders are interrupted selectively. According to the method, over interruption can be prevented without causing any delay in the decision making and the conduction current of line can be farther reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、とくに架空送電線
等のより線構造の電線路の熱的限界に基づく負荷制限を
行う電線路監視制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric line monitoring and controlling method for carrying out load limitation based on the thermal limit of an electric line having a twisted wire structure such as an overhead transmission line.

【0002】[0002]

【従来の技術】従来、この種より線構造の電線路の監視
制御においては、電線温度そのものを検出してその熱的
限界を直接握把することができないため、一般に、電線
路の通電電流を検出し、この通電電流の大小に基づいて
負荷制限の要,不要を判定し、この判定の結果により負
荷側の各フィーダを予め設定した順序で選択的に遮断
し、負荷制限を実施している。
2. Description of the Related Art Conventionally, in the supervisory control of an electric line of a stranded wire structure of this kind, it is generally impossible to detect the temperature of the electric wire and directly grasp the thermal limit thereof. Detecting the load, it is determined whether load limitation is necessary or not based on the magnitude of the energizing current. Based on the result of this determination, the feeders on the load side are selectively shut off in a preset order to implement load limitation. .

【0003】この場合、電線温度が通電電流及び気温,
日射等の気象条件によって変化し、例えば熱的限界から
は夏季と冬季とでは送電可能な電流量(通電電流量)が
異なるため、一定の電流値を基準にして通電電流のみか
ら負荷制限の要,不要を判定するのでは、通常、基準の
電流値が過酷な夏季を想定して設定されることから、冬
季には限界に達するかなり前の電流量で負荷制限が作用
し、電線路の有効利用が図れない不都合がある。
In this case, the temperature of the electric wire is
The amount of current that can be transmitted (the amount of energizing current) varies depending on the weather conditions such as insolation, for example, due to the thermal limit in summer and winter, so it is necessary to limit the load only from the energizing current based on a constant current value. , When judging unnecessary, the standard current value is usually set assuming a severe summer, so in winter, the load is limited by the amount of current before reaching the limit, and the electric line is effective. There is an inconvenience that it cannot be used.

【0004】一方、本出願の出願人は、特願平7−67
09号の出願の願書に添付の明細書,図面に記載のよう
に、通電電流及び気象条件を考慮してこの種電線路の現
在の電線温度を推定する電線路の温度監視方法を既に発
明し、出願している。
On the other hand, the applicant of the present application filed Japanese Patent Application No. 7-67.
As described in the specification and drawings attached to the application for No. 09 application, a temperature monitoring method for an electric line has already been invented, which estimates the current electric wire temperature of this kind of electric line in consideration of the energizing current and the meteorological condition. , Have applied.

【0005】この既出願の温度監視方法においては、監
視対象の電線路(以下監視線路という)の通電電流から
監視線路の電線内部温度の推定値を演算して求め、気
温,日射強度等の周囲の気象条件から監視線路の電線表
面温度の推定値を演算して求め、両推定値の差から監視
線路の電線内部と電線表面との温度差を求め、監視線路
の電線表面温度の気温に前記温度差を加算して監視線路
の温度を求める。
In the temperature monitoring method of the above-mentioned application, the estimated value of the internal temperature of the electric wire of the monitoring line is calculated from the energization current of the electric line to be monitored (hereinafter referred to as the monitoring line), and the surrounding temperature such as temperature and insolation intensity is calculated. The calculated value of the wire surface temperature of the monitoring line is calculated from the meteorological conditions, and the temperature difference between the inside and the wire surface of the monitoring line is calculated from the difference between the two estimated values. The temperature difference is calculated by adding the temperature difference.

【0006】この場合、監視線路の電線内部の温度と電
線表面の温度とにより電線温度が電線路の通電電流及び
気象条件を考慮して推定されるため、監視線路の現在の
温度が気象条件をも考慮して推定される。
In this case, since the wire temperature is estimated by considering the temperature inside the wire of the monitoring line and the temperature of the wire surface in consideration of the current flowing through the wire and the weather condition, the current temperature of the monitoring line indicates the weather condition. It is estimated in consideration of

【0007】この推定温度に基づいて負荷制限の要,不
要を判定すれば、通電電流のみに基づいて判定する場合
より現実の電線温度に合致した条件で判定が行え、より
適切な負荷制限が行える。
If it is determined whether or not load limitation is required based on this estimated temperature, the determination can be performed under conditions that match the actual wire temperature, and more appropriate load limitation can be performed, as compared with the case where determination is made based on the energized current only. .

【0008】[0008]

【発明が解決しようとする課題】前記従来の電線路監視
制御方法の場合、前記既出願の温度監視方法により気象
条件を考慮して現在の電線温度を推定し、この推定温度
に基づいて負荷制限の要,不要を判定したとしても、電
線路の現在の温度を推定するのみであるため、電線温度
が実際に負荷制限が必要な温度以上になってからでなけ
れば負荷制限の要判定がなされず、その逆の判定につい
ても同様であり、判定の遅れが生じる。
In the case of the conventional electric line monitoring and controlling method, the current electric wire temperature is estimated in consideration of the weather conditions by the temperature monitoring method of the above-mentioned application, and the load limitation is performed based on the estimated temperature. Even if it is determined whether the load is required or not, it is only necessary to estimate the current temperature of the electric line. Therefore, it is necessary to determine whether load limiting is required until the wire temperature actually exceeds the temperature at which load limiting is required. However, the same applies to the reverse determination, and the determination is delayed.

【0009】したがって、負荷制限の遅れが生じる問題
点があるとともに、負荷制限が頻繁にくり返されててい
わゆる制御のハンチング現象等を招来し、適切な負荷制
限が行えない問題点がある。
Therefore, there is a problem in that the load limitation is delayed, and the load limitation is frequently repeated, which causes a so-called hunting phenomenon of control and the like, and there is a problem that an appropriate load limitation cannot be performed.

【0010】本発明は、気象条件を考慮した電線路の現
在の推定温度及び一定時間後の予測温度に基づき、迅速
にしかも過不足なく必要量のフィーダを遮断して理想的
な負荷制限が行えるようにすることを目的とする。
According to the present invention, based on the current estimated temperature of the electric line in consideration of weather conditions and the predicted temperature after a certain period of time, the required amount of feeders can be cut off quickly and without excess or deficiency to ideally limit the load. The purpose is to do so.

【0011】[0011]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明の電線路監視制御方法においては、周期的
な負荷制限の判定により、電線路の現在の通電電流及び
気象条件から電線路の現在の温度を推定するとともに一
定時間後の温度を予測し、少なくとも電線路の現在の推
定温度,一定時間後の予測温度の変化傾向から電線路の
熱的限界に基づく負荷制限の要,不要を事前予測して判
定し、負荷制限の要判定によりフィーダ遮断指令を不要
判定になるまで出力し、フィーダ遮断指令の出力中の要
判定毎の負荷制限の実行により、最初の要判定に基づく
電流遮断率は推定温度に応じて設定し、2回目以降の要
判定に基づく電流遮断率は所定の最小率に固定して電線
路の通電中の各フィーダを設定された電流遮断率で選択
的に遮断し、電線路の負荷を前記電線路の温度に応じて
制限する。
In order to solve the above-mentioned problems, in the electric line monitoring and controlling method of the present invention, the electric wire is determined from the current flowing current and the meteorological condition of the electric line by the periodical load limitation judgment. The current temperature of the line is estimated and the temperature after a certain time is predicted, and at least the current estimated temperature of the electric line and the tendency of the predicted temperature after a certain time to change the load based on the thermal limit of the electric line, It is determined based on the first determination that the need is determined by predicting the needlessness in advance, outputting the feeder cutoff command until the load is determined to be unnecessary, and executing the load limitation for each determination required while outputting the feeder cutoff command. The current cut-off rate is set according to the estimated temperature, and the current cut-off rate based on the judgment required for the second and subsequent times is fixed to a predetermined minimum rate, and each feeder that is energized in the electric line is selectively set at the set current cut-off rate. Shut off the wire It limits in accordance with the load temperature of the electric line.

【0012】したがって、負荷制限の要,不要が少なく
とも電線路の気象条件を考慮した現在の推定温度及び一
定時間後の予測温度の変化傾向から事前に予測して判定
され、従来のような判定の遅れが生じない。
[0012] Therefore, whether or not the load limitation is necessary is determined by predicting in advance from the change tendency of the current estimated temperature and the predicted temperature after a fixed time at least considering the weather conditions of the electric line. There is no delay.

【0013】そして、負荷制限が必要になると、最初の
フィーダ遮断指令に対しては、そのときの推定温度が高
くなる程遮断率を大きくして各フィーダが選択的に遮断
され、迅速に負荷制限が行われる。
When load limitation becomes necessary, with respect to the first feeder cutoff command, as the estimated temperature at that time becomes higher, the cutoff rate is increased and each feeder is selectively cut off, so that the load can be quickly reduced. Is done.

【0014】さらに、2回目以降のフィーダ遮断指令が
引続き出力されるときは、これらの指令に対する電流遮
断率を所定の最小率に固定して残りのフィーダが選択的
に遮断され、行過ぎた遮断を防止して電線路の通電電流
がさらに低減される。そのため、迅速にかつ過不足を極
力防止して理想的な負荷制限が行われる。
Further, when the second and subsequent feeder cutoff commands are continuously output, the current cutoff rate for these commands is fixed to a predetermined minimum rate, and the remaining feeders are selectively cutoff, and the cutoffs that have occurred too far. Is prevented, and the current flowing through the electric line is further reduced. Therefore, ideal load limitation is performed quickly and with the excess and deficiency prevented as much as possible.

【0015】[0015]

【発明の実施の形態】本発明の実施の1形態について、
図1ないし図10を参照して説明する。まず、通電電流
及び気象条件を考慮した電線路の温度(電線温度)の推
定及び予測について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Regarding one embodiment of the present invention,
This will be described with reference to FIGS. 1 to 10. First, the estimation and prediction of the temperature of the electric line (electric wire temperature) in consideration of the energizing current and the weather conditions will be described.

【0016】この電線温度の推定及び予測は、現在の電
線温度をつぎに説明するように推定し、さらに、現在の
事象(電流,日射,気温等)が一定時間J1経過するま
で継続するとして予測するものである。
The estimation and prediction of the electric wire temperature is performed by estimating the present electric wire temperature as described below, and further presuming that the present event (current, solar radiation, temperature, etc.) continues until a predetermined time J1 elapses. To do.

【0017】 現在温度の推定 一般に、単位時間dtに物体内に発生する熱量(発生熱
量)は、物体温度を単位温度dθだけ上昇させる熱量と
外部に放出される熱量との和になり、物体の温度の時間
変化は、単位時間内に物体内で発生する熱量(発生熱
量)Q[KW],物体の熱容量C[KW秒/℃]及び熱
放散係数H[KW/℃]をパラメータとし、温度をθ
[℃],経過時間をt[秒]とすれば、つぎの数1の熱
移動式〈1〉で示される。
Estimation of Current Temperature In general, the amount of heat generated in an object in a unit time dt (generated heat amount) is the sum of the amount of heat that raises the object temperature by the unit temperature dθ and the amount of heat released to the outside, and The time change of the temperature is performed by using the heat quantity (heat quantity) Q [KW] generated in the object within a unit time, the heat capacity C [KW second / ° C] of the object and the heat dissipation coefficient H [KW / ° C] as parameters. Θ
Assuming that [° C.] and the elapsed time are t [seconds], the following heat transfer equation <1> is obtained.

【0018】[0018]

【数1】 Q・dt=C・dθ+H・θ・dt …〈1〉[Equation 1] Q · dt = C · dθ + H · θ · dt (1)

【0019】そして、この熱移動式〈1〉は、Q/H=
θmax とすれば、その一般解θがつぎの数2の式〈2〉
で示される。
This heat transfer formula <1> is Q / H =
If θmax is given, the general solution θ is expressed by the following equation 2 <2>
Indicated by.

【0020】[0020]

【数2】 θ=θmax ・{1−exp(−t/T)} …〈2〉## EQU00002 ## .theta. =. Theta.max .multidot. {1-exp (-t / T)} ... <2>

【0021】この式〈2〉からも明らかなように、物体
の温度θはその上昇飽和温度θmax(=Q/H),時定
数T(=C/H)を定数とする関数式にしたがい時間t
に対して指数関数的に変化する。
As is clear from the equation <2>, the temperature θ of the object is measured in accordance with a functional equation in which the rising saturation temperature θmax (= Q / H) and the time constant T (= C / H) are constants. t
Changes exponentially with respect to.

【0022】そして、より線構造の電線路の電線温度も
その熱量変化により、式〈2〉の指数関数特性にしたが
って一定の時定数で変化し、その電線温度は式〈2〉の
温度θについての簡単な指数関数式の温度演算から推定
することができる。
The electric wire temperature of the stranded wire electric line also changes with a constant time constant in accordance with the exponential function characteristic of the expression <2> due to the change in the amount of heat, and the electric wire temperature with respect to the temperature θ of the expression <2>. It can be estimated from the temperature calculation of the simple exponential function of.

【0023】この場合、通電電流に基づく電線温度の変
化と気象条件に基づく電線温度の変化とを個別に予測し
て加算合成すれば、通電電流及び気象条件を考慮した電
線温度の推定が行える。
In this case, if the change in the wire temperature based on the applied current and the change in the wire temperature based on the weather condition are individually predicted and added together, the wire temperature can be estimated in consideration of the applied current and the weather condition.

【0024】そして、通電電流に基づく現在の電線温度
θinは、つぎの数3の指数関数式〈3〉の演算により推
定することができる。
Then, the current electric wire temperature θin based on the energized current can be estimated by the calculation of the following exponential function expression <3>.

【0025】[0025]

【数3】 θin={Δθimax(In/Imax)k−θin-1}・[1−exp{−(tn−tn-1 )/Ti}]+θin-1=(Δθi−θin-1)・{1−exp(−Δt/Ti)}+ θin-1 …〈3〉 式中のtn,tn-1,…はつぎの各値である。Equation 3] θin = {Δθimax (In / Imax ) k -θi n-1} · [1-exp {- (t n -t n-1) / Ti}] + θi n-1 = (Δθi-θi n −1 ) · {1-exp (−Δt / Ti)} + θin −1 ... <3> In the equation, t n , t n−1 , ... Are the following respective values.

【0026】tn,tn-1:n回目(今回),n-1回目
(前回)の演算時刻[分] Δt:演算(サンプリング・制御)の時間間隔(=tn
−tn-1),例えば0.5分 θin,θin-1:時刻tn,tn-1の推定温度[℃] In:時刻tnの電流センサの検出値(計測線路電流値)
[A] Imax :通電電流の基準値(公称許容電流値)[A] Δθimax:Imaxにおける飽和温度上昇値[℃] Ti:通電電流変化による温度変化時定数 k:電流換算指数
T n , t n-1 : nth time (current time), n- 1th time (previous time) calculation time [minutes] Δt: time interval of calculation (sampling / control) (= t n
-T n-1), for example 0.5 minutes θi n, θi n-1: the time t n, t n-1 of the estimated temperature [° C.] an In: Detection value of the current sensor at time t n (measured line current value )
[A] Imax: Reference value of energizing current (nominal allowable current value) [A] Δθimax: Saturation temperature increase value at Imax [° C] Ti: Temperature change time constant due to energizing current change k: Current conversion index

【0027】なお、式中の(In/Imax )のべき指数
kは電流換算指数であり、電線路の場合ほぼ2である。
The exponent k of (In / Imax) in the equation is a current conversion index, which is approximately 2 in the case of an electric line.

【0028】また、前記既出願においてはΔθmax ,θ
inを熱量として電線温度を求めているが、温度と熱量と
が比例関係にあるため、この熱量の演算式は実質的には
指数関数式〈3〉と同じである。
Further, in the above-mentioned application, Δθmax, θ
Although the electric wire temperature is obtained with in as the amount of heat, since the temperature and the amount of heat are in a proportional relationship, the calculation formula for this amount of heat is substantially the same as the exponential function formula <3>.

【0029】つぎに、気象条件として気温と日射強度と
を考慮する場合、気温,日射強度に基づく現在の電線温
度θan,θsnは指数関数式〈3〉と同様のつぎの数4,
数5の指数関数式〈4〉,〈5〉の演算により推定する
ことができる。
Next, when the temperature and the insolation intensity are considered as meteorological conditions, the current wire temperatures θan and θsn based on the air temperature and the insolation intensity are expressed by the following equation 4 similar to the exponential function formula <3>.
It can be estimated by the calculation of the exponential function equations <4> and <5> of Equation 5.

【0030】[0030]

【数4】 θan=(An−θan-1)・{1−exp(−Δt/Ta)}+θan-1 …〈4〉## EQU00004 ## .theta.an = (An-.theta.an -1 ) .multidot. {1-exp (-. DELTA.t / Ta)} +. Theta.an -1 ... <4>

【数5】 θsn=(Δθsmax・Sn−θsn-1)・[1−exp{−(tn−tn-1)/Ts } ]+θsn-1=(Δθs−θsn-1)・{1−exp(−Δt/Ts)}+θsn-1 …〈5〉 両指数関数式〈4〉,〈5〉のθan-1,θsn-1,…はつ
ぎの各値である。
Equation 5] θsn = (Δθsmax · Sn-θs n-1) · [1-exp {- (t n -t n-1) / Ts}] + θs n-1 = (Δθs-θs n-1) · {1-exp (-Δt / Ts)} + θs n-1 <5> Both exponential equations <4> and <5> have θa n−1 , θs n−1 , ...

【0031】θan,θan-1:時刻tn,tn-1の気温に基
づく推定温度[℃] θsn,θsn-1:時刻tn,tn-1の日射に基づく推定温度
[℃] An :時刻tnの計測温度[℃] Sn :時刻tnの計測日射強度[KW/m2] Δθsmax:日射強度飽和温度上昇値 Ta :気温変化による温度変化時定数 Ts :日射強度変化による温度変化時定数
Θan, θa n-1 : Estimated temperature [° C.] based on air temperature at times t n and t n-1 θsn, θs n-1 : Estimated temperature based on solar radiation at times t n and t n-1 [° C. ] An: Measured temperature at time t n [° C] Sn: Measured solar radiation intensity at time t n [KW / m 2 ] Δθsmax: Solar radiation intensity saturation temperature rise value Ta: Temperature change time constant due to temperature change Ts: Due to solar radiation intensity change Temperature change time constant

【0032】そして、つぎの数6の推定演算式〈6〉に
したがって各電線温度θin,θan,θsnを加算すること
により、通電電流及び気象条件を考慮した時刻tn(現
在)の電線温度(推定温度)θnが求まる。
Then, the electric wire temperatures θin, θan, and θsn are added in accordance with the following equation (6) of the estimation calculation formula <6> to calculate the electric wire temperature (time) at time t n (current) in consideration of the energizing current and the weather condition. Estimated temperature) θ n is obtained.

【0033】[0033]

【数6】θn=θin+θan+θsn …〈6〉[Equation 6] θn = θin + θan + θsn… <6>

【0034】一定時間後の温度予測 現在(時刻tn)から例えば1〜数分程度の一定時間J
1後の時刻tn+J1 の通電電流,気温,日射強度それぞ
れに基づく電線温度(予測温度)θi(n+J1),θa
(n+J1),θs(n+J1)は、指数関数式〈3〉のパラメータ
Δθimax,(In/Imax )2 ,Ti及び指数関数式
〈4〉,〈5〉のパラメータAn,Ta,ΔSmax ・S
n,Tsを現在の値に固定し、式中のtnをtn+J1
tn-1をtn-1+ J1 として予測することができる。
Prediction of temperature after a certain time From the present time (time tn), for example, a certain time J of about 1 to several minutes
Wire temperature (predicted temperature) θi (n + J1) , θa based on the energizing current, temperature, and solar radiation intensity at time tn + J1 after 1
(n + J1) , θs (n + J1) are parameters Δθimax, (In / Imax) 2 , Ti of the exponential function formula <3> and parameters An, Ta, ΔSmax of the exponential function formulas <4>, <5>.・ S
Fixing n and Ts to the current values, tn in the formula is tn + J1 ,
We can predict tn- 1 as tn -1 + J1 .

【0035】さらに、予測温度θi(n+J1),θ
(n+J1),θs(n+J1)を推定演算式〈6〉のθin,θa
n,θsnに代入すれば、通電電流及び気象条件を考慮し
た一定時間J1後の予測温度θn+J1 が求まる。
Further, the predicted temperatures θi (n + J1) , θ
a (n + J1) and θs (n + J1) are estimated θin and θa of the calculation formula <6>
By substituting for n and θsn, the predicted temperature θn + J1 after a certain time J1 in consideration of the energizing current and the meteorological condition can be obtained.

【0036】そして、設定された時間間隔(例えば0.
5分)で式〈3〉〜〈6〉の演算をくり返すことによ
り、時々刻々の現在の推定温度及びそれから一定時間後
の予測温度が求まる。
Then, the set time interval (for example, 0.
By repeating the calculations of the equations <3> to <6> in 5 minutes), the current estimated temperature at every moment and the predicted temperature after a fixed time from that are obtained.

【0037】つぎに、推定,予測された電線温度に基づ
く負荷制限の要,不要の判定について説明する。
Next, a description will be given of whether load limitation is necessary or unnecessary based on the estimated and predicted wire temperature.

【0038】この実施形態においては、高精度の判定を
行うため、負荷制限の判定レベルとして第1段判定レベ
ル,第2段判定レベルを設定し、つぎに説明する2段判
定により負荷制限の要,不要を判定する。
In this embodiment, in order to make a highly accurate determination, the first stage determination level and the second stage determination level are set as the load limit determination levels, and the load limit is determined by the two-stage determination described below. , Determine unnecessary.

【0039】そして、電線路が送電線路の場合、第1段
判定レベルは送電線路の最高許容温度(短時間使用レベ
ル)θL (例えば硬銅より線では100℃)に設定し、
第2段判定レベルは第1段判定レベルより高温(例えば
硬銅より線では120℃)の危険温度θH に設定する。
When the power line is a power transmission line, the first stage determination level is set to the maximum allowable temperature (short-time use level) θ L of the power transmission line (for example, 100 ° C. for hard copper strands),
The second-stage determination level is set to a dangerous temperature θ H that is higher than the first-stage determination level (for example, 120 ° C. for a hard copper strand).

【0040】さらに、負荷制限の要判定の条件として、
つぎに説明する第1,第2,第3の主条件及び副条件を
設定する。
Furthermore, as a condition for determining whether load limitation is required,
The first, second, and third main conditions and subconditions described below are set.

【0041】第2段判定レベル(危険温度θH )を判
定基準とする即遮断用の第1,第2の主条件 (i)第1の主条件(事象1の判定条件) この条件は、例えば0.5分間隔の時刻tn-2,tn-1
tnの連続3回の推定温度をθn-2,θn-1,θnとし、
それぞれの一定時間J1後の予測温度をθn-2+ J1 ,θn
-1+J1 ,θn+J1 とすると、この連続した3回の予測温
度θn-2+J1 ,θn-1+J1 ,θn+J1 が図3に示すよう
に、上昇傾向(θn-2+J1 <θn-1+J1 <θn+ J1 )を示
し、かつ、いずれも第2段判定レベル(危険温度θH
以上になることである。
First and second main conditions for immediate shutoff using the second stage judgment level (dangerous temperature θ H ) as a judgment criterion (i) First main condition (judgment condition for event 1) This condition is For example, time tn -2 , tn -1 , at 0.5 minute intervals,
Let θn -2 , θn -1 , and θn be the estimated temperatures of tn three times in succession,
The predicted temperature after each constant time J1 is θn -2+ J1 , θn
Assuming that −1 + J1 and θn + J1 , the predicted temperatures θn −2 + J1 , θn −1 + J1 and θn + J1 for three consecutive times are increasing (θn −2 + J1 <Θn -1 + J1 <θn + J1 ) and both are the 2nd stage judgment level (hazardous temperature θ H ).
That is all.

【0042】(ii)第2の主条件(事象1の判定条件を
バックアップする条件) この条件は、図4に示すように例えば時刻txに推定温
度が第2段判定レベルに上昇し、その後も推定温度が第
2段判定レベル以上に保たれ、時刻txから例えば1〜
数分程度の一定時間J2が経過した後の時刻tn-2(T
1n-2時間後),tn-1(T1n-1時間後),tn(T1n
時間後)の連続3回の推定温度θn-2 ,θn-1,θnがい
ずれも第2段判定レベル以上になることであり、換言す
ると、第2段判定レベル(危険温度θH )以上の状態が
第1の所定時間,すなわち一定時間J2以上継続するこ
とである。
(Ii) Second main condition (condition for backing up the judgment condition of event 1) As shown in FIG. 4, this condition is such that the estimated temperature rises to the second-step judgment level at time tx, for example, and thereafter. The estimated temperature is maintained at or above the second-stage determination level, and from time tx, for example, 1 to
Time tn -2 (T after the lapse of a certain time J2 of several minutes)
1n -2 hours later), tn -1 (T1n -1 hour later), tn (T1n
After 3 hours, the estimated temperatures θn −2, θn −1 , and θn are all above the second-stage determination level, that is, above the second-stage determination level (hazardous temperature θ H ). That is, the state continues for a first predetermined time, that is, a predetermined time J2 or more.

【0043】なお、この場合はその間の推定温度が上昇
傾向を示すことは条件でなく、図4のように途中で下降
傾向を示しても危険温度θH 以上であれば条件に該当す
る。
Incidentally, in this case is not a condition is that the estimated temperature of between which tends to increase, corresponding to the condition as long as the way also shows a downward trend critical temperature theta H above FIG.

【0044】 第1段判定レベル(最高許容温度
θL )を判定基準とする第3の主条件(事象2の判定条
件) この条件は、第1,第2の主条件の場合より余裕がある
状態での制限条件であり、図5に示すように例えば時刻
tyに推定温度が第1段判定レベル(最高許容温度
θL )に上昇し、その後推定温度が第1段判定レベル以
上に保たれ、時刻tyから前記一定時間J2より長い第
2の所定時間としての一定時間J3が経過した後の時刻
tn-2(T2n-2時間後),tn-1(T2n-1時間後),t
n(T2n時間後)の連続3回の推定温度θn-2,θ
n-1,θnがいずれも第1段判定レベル以上になること
であり、換言すると、第1段判定レベル(最高許容温度
θL )以上の状態が一定時間J3以上継続することであ
る。
Third Main Condition Using Judgment Level of 1st Stage (Maximum Allowable Temperature θ L ) (Judgment Condition of Event 2) This condition has a margin more than the case of the first and second main conditions. As shown in FIG. 5, the estimated temperature rises to the first stage determination level (maximum allowable temperature θ L ) and then the estimated temperature is maintained at or above the first stage determination level, as shown in FIG. , Time tn -2 (T2n -2 hours later), tn -1 (T2n -1 hour later), t after a lapse of a predetermined time J3 as a second predetermined time longer than the predetermined time J2 from the time ty.
n (after T2n time) three consecutive estimated temperatures θ n -2 , θ
Both n −1 and θn are equal to or higher than the first-stage determination level, in other words, the state of the first-stage determination level (maximum allowable temperature θ L ) or higher continues for a certain time J3 or longer.

【0045】 過大な通電電流を判定基準とする副条
件(電流非常値の判定条件) この条件は、電線路の時刻tn(現在)の通電電流In
が非常値Im・βmax以上になることである。
Sub-Condition Based on Excessive Energizing Current (Evaluation Condition for Current Emergency Value) This condition is the energizing current In at the time tn (current) of the electric line.
Is an emergency value Im · βmax or more.

【0046】なお、Imは電線種別基準電流値であり、
βmax は電線路の電流最低保証係数βmin より大きい電
線非常値係数であり、いずれも電線路に固有の定数値で
ある。
Im is a reference current value for each wire,
βmax is a wire emergency value coefficient larger than the minimum current guarantee coefficient βmin of the electric line, and both are constant values specific to the electric line.

【0047】また、この副条件は、冬季等の気温が低く
日射強度も弱い状況下では前記の電線路の一定時間J1
後の予測温度が低くなり、予測温度,推定温度のみから
判定すると、電線路の許容電流をはるかに超える過大な
電流が流れるようになっても負荷制限が行われない事態
が生じるおそれがあるため、この事態を回避すべく設け
られたものである。
Further, this sub-condition is that the above-mentioned fixed time J1 of the electric line is set under the condition that the temperature is low and the solar radiation intensity is weak such as in winter.
The predicted temperature afterwards becomes low, and if the judgment is made only from the predicted temperature and the estimated temperature, there is a possibility that the load may not be limited even if an excessive current far exceeding the allowable current of the electric line flows. , It is provided to avoid this situation.

【0048】そして、これらの判定条件のいずれかに該
当するか否かが一定の時間間隔ΔTでくり返し判定さ
れ、熱的限界に基づく電線路の負荷制限の要,不要が周
期的に判定される。
Then, whether or not any of these judgment conditions is met is repeatedly judged at a constant time interval ΔT, and it is judged periodically whether or not the load limitation of the electric line based on the thermal limit is necessary. .

【0049】つぎに、負荷制限の要,不要の判定結果に
基づく負荷制限の実行について説明する。まず、負荷制
限が必要であると判定されたときは、この判定に基づく
フィーダ遮断指令の出力とその他の実行条件の成立とに
より、負荷側のフィーダの遮断実行条件が成立する。
Next, the execution of load limitation based on the determination result of whether or not load limitation is necessary will be described. First, when it is determined that the load limitation is necessary, the output of the feeder cutoff command based on this determination and the establishment of other execution conditions satisfy the load cutoff execution condition of the feeder.

【0050】なお、前記のその他の実行条件とは、例え
ば、つぎの(a)〜(i)の条件である。
The other execution conditions are, for example, the following conditions (a) to (i).

【0051】(a)初期整定が完了していること (b)温度監視の開始設定が完了していること (c)初期の監視除外時間が経過していること (d)制御対象の電線路(監視線路)が決定済みである
こと (e)監視・制御の装置異常が無いこと (f)順位遮断の遮断対象の遮断器が閉(オン)状態で
あること (g)前段(1つ前の順位)の遮断器が開(オフ)状態
であること (h)現在の推定温度θnが第1段判定レベル(最高許
容温度)θL に対してθn>θL の関係にあること (i)保護リレーが動作していないこと
(A) Initial settling is completed (b) Temperature monitoring start setting is completed (c) Initial monitoring exclusion time has elapsed (d) Electric line to be controlled (Surveillance line) has been decided (e) There is no abnormality in the monitoring / control device (f) The circuit breaker to be shut down for priority shutdown is in the closed (ON) state (g) Previous stage (one before) rank) breaker open (off) to be a state (h) that the current estimated temperature .theta.n have the relationship of .theta.n> theta L with respect to the first-stage determination level (maximum allowable temperature) theta L (i ) The protection relay is not working

【0052】そして、遮断実行条件が成立すれば、電線
路の負荷側のフィーダをつぎの手法で遮断する。
When the cutoff execution condition is satisfied, the feeder on the load side of the electric line is cut off by the following method.

【0053】すなわち、電線路が図6に示すように母線
1及びその負荷側の複数のフィーダ(負荷回線)2a,
2b,2c,…,2zからなる場合、従来と同様の順位
遮断を行うのであれば、初期設定等により各フィーダ2
a〜2zの遮断順序(順位)が予め定められる。
That is, as shown in FIG. 6, the electric line is a bus bar 1 and a plurality of feeders (load lines) 2a on the load side,
2b, 2c, ..., 2z, if the same order cutoff as in the conventional case is to be performed, each feeder 2 is set by initial setting or the like.
The interruption order (rank) of a to 2z is predetermined.

【0054】そして、前記の遮断実行条件が成立し、1
回目(実行開始時)のフィーダ遮断指令が出力される
と、現在の推定温度θnに応じて電線路の電流遮断率を
決定する。
Then, the above-mentioned cutoff execution condition is satisfied, and 1
When the feeder cutoff command for the second time (at the start of execution) is output, the current cutoff rate of the electric line is determined according to the current estimated temperature θn.

【0055】この電流遮断率は、電線路の負荷制限後の
電流量を定めるつぎの数7の係数算出式〈7〉の電流係
数Fcutnを求め、この係数Fcutnが設定した上限係数F
b(既定値)以下か否かにより、電流係数Fcutn又は上
限係数Fbを基準にして決定する。
This current cut-off rate is obtained by obtaining the current coefficient Fcutn of the coefficient calculation formula <7> of the following equation 7 which determines the current amount after the load of the electric line is limited, and the upper limit coefficient Fcutn set by this coefficient Fcutn is obtained.
Depending on whether it is less than or equal to b (default value), the current coefficient Fcutn or the upper limit coefficient Fb is used as a reference.

【0056】[0056]

【数7】 Fcutn=1−(θn−θL )/100 …〈7〉[Equation 7] Fcutn = 1- (θn-θ L ) / 100 ... <7>

【0057】すなわち、電流係数Fcutnが上限係数Fb
以下(Fcutn≦Fb)になって必要な遮断量が大きいと
判断したときは、迅速な負荷制限を行うため、電流遮断
率を(1−Fcutn)・100(%)に決定し、電流係数
Fcutnが上限係数Fbより大(Fcutn>Fb)になって
必要な遮断量が少ないと判断したときは、遮断制御のハ
ンチングを防止するため、電流遮断率を(1−Fb)・
100(%)に決定する。
That is, the current coefficient Fcutn is the upper limit coefficient Fb.
When it becomes below (Fcutn ≦ Fb) and it is judged that the required cutoff amount is large, the current cutoff rate is determined to be (1-Fcutn) · 100 (%) and the current coefficient Fcutn is set in order to perform quick load limitation. Is larger than the upper limit coefficient Fb (Fcutn> Fb), and it is determined that the required interruption amount is small, the current interruption rate is set to (1-Fb).
Determine to 100 (%).

【0058】具体的には、電線路が硬銅より線HDCC
の場合、第1段判定レベルθL が100℃でtn時の推
定温度θnが110℃(θn>θL )になったとする
と、1回目の判定に基づく電流遮断率は、電流Fcutnが
0.9≦Fbになるため、10(%)(=110−10
0)に決定する。なお、最小率Fbは例えば0.95前
後に設定する。
Specifically, the electric line is a hard copper stranded wire HDCC.
In this case, assuming that the first stage determination level θ L is 100 ° C. and the estimated temperature θn at tn is 110 ° C. (θn> θ L ), the current cutoff rate based on the first determination is that the current Fcutn is 0. Since 9 ≦ Fb, 10 (%) (= 110-10
0). The minimum rate Fb is set to about 0.95, for example.

【0059】そして、図7に示すようにつぎ(2回目)
の判定が行われるまでの時間ΔT(演算制御時間間隔)
内に、母線1の通電電流が決定した電流遮断率以下の電
流になるように、各フィーダ2a〜2zを整定時間間隔
Tpで順位遮断する。
Then, as shown in FIG. 7, the following (second time)
Until the determination of ΔT (calculation control time interval)
The feeders 2a to 2z are interrupted in order at the settling time interval Tp so that the energization current of the bus bar 1 becomes a current equal to or less than the determined current interruption ratio.

【0060】さらに、遮断量の不足により2回目以降の
判定で引続きフィーダ遮断指令が出力されるときは、フ
ィーダ遮断指令が出力される毎に、行過ぎた遮断を防止
すべく電流遮断率を上限係数Fbに対応する最小率(1
−Fb)・100(%)に固定し、つぎの判定までの期
間ΔT内に残りのフィーダ2a〜2zの順位遮断をくり
返す。
Further, when the feeder cutoff command is continuously output in the second and subsequent determinations due to the shortage of the cutoff amount, each time the feeder cutoff command is output, the current cutoff rate is set to the upper limit in order to prevent the excessive cutoff. The minimum rate (1 corresponding to the coefficient Fb
-Fb) · Fixed to 100 (%), and the order cutoff of the remaining feeders 2a to 2z is repeated within the period ΔT until the next determination.

【0061】なお、フィーダ遮断指令が出力されなくな
ると、負荷制限を終了し、つぎに期間ΔTより長い適当
な期間が経過してからフィーダ遮断指令が出力される
と、この指令を1回目の遮断指令として残りのフィーダ
2a〜2zを順位遮断する。
When the feeder cutoff command is no longer output, the load limitation is terminated, and when a feeder cutoff command is output after an appropriate period longer than the period ΔT, this command is cut off for the first time. As a command, the order of the remaining feeders 2a to 2z is cut off.

【0062】そして、前記の判定及び負荷制限を行う監
視・制御装置は、例えば図1に示すように構成される。
The monitoring / controlling device for making the above-mentioned judgment and load limitation is constructed, for example, as shown in FIG.

【0063】図1において、3は判定装置であり、判定
部4及び指令出力部5からなる。6は負荷制限装置であ
り、遮断率決定部7及び遮断実行部8からなる。
In FIG. 1, reference numeral 3 is a determination device, which comprises a determination unit 4 and a command output unit 5. Reference numeral 6 denotes a load limiting device, which includes a cutoff rate determination unit 7 and a cutoff execution unit 8.

【0064】さらに、判定部4は図2に示すようにアン
ドゲート9,10,11を有する主条件判定部12,副
条件判定部13及び判定出力部14からなり、この判定
出力部14はオアゲート15,16及び信号保持部1
7,18,19からなる。
Further, as shown in FIG. 2, the judging section 4 comprises a main condition judging section 12 having AND gates 9, 10, 11 and a sub condition judging section 13 and a judging output section 14, and this judging output section 14 is an OR gate. 15, 16 and signal holding unit 1
It consists of 7, 18, and 19.

【0065】そして、判定部4は例えば0.5分の時間
間隔ΔTで動作し、そのアンドゲート9,10,11は
第1,第2,第3の主条件に一致したときに負荷制限指
令用の論理1(以下“1”という)の要判定信号を判定
出力部14に出力する。
The determining unit 4 operates at a time interval ΔT of 0.5 minutes, for example, and when the AND gates 9, 10, 11 meet the first, second, and third main conditions, a load limit command is issued. A determination signal of the logic 1 (hereinafter referred to as “1”) for use is output to the determination output unit 14.

【0066】このとき、第2段判定レベルを基準とする
第1,第2の主条件の要判定信号はオアゲート15を介
して信号保持部17にラッチされ、第1段判定レベルを
基準とする第3の主条件の要判定信号は単独で信号保持
部18にラッチされる。
At this time, the required judgment signals of the first and second main conditions, which are based on the second stage judgment level, are latched in the signal holding section 17 via the OR gate 15 and based on the first stage judgment level. The determination-requiring signal of the third main condition is independently latched in the signal holding unit 18.

【0067】そして、両信号保持部17,18にラッチ
された“1”の要判定信号は、オアゲート16を介して
次段の指令出力部5に供給される。
The "1" required determination signal latched by both signal holding units 17 and 18 is supplied to the instruction output unit 5 of the next stage via the OR gate 16.

【0068】また、判定部4の第1のリセット条件は、
一度は推定温度が第2段判定レベル(危険温度θH )に
上昇しても、その後の予測温度すなわち時刻tnにおけ
る一定時間J1後の予測温度θn+J1が第2段判定レベル
より低くなることである。
The first reset condition of the judging section 4 is
Even if the estimated temperature once rises to the second-stage determination level (dangerous temperature θ H ), the predicted temperature thereafter, that is, the predicted temperature θn + J1 after a certain time J1 at time tn becomes lower than the second-stage determination level. Is.

【0069】そして、このリセット条件を満足すれば、
このままの負荷状態で現在(tn)から一定時間J1経
過したときの電線温度が確実に危険温度θH より低くな
ると予測されるため、信号保持部17をリセットして第
1,第2の主条件の要判定信号をオフし、無駄な負荷制
限を防止する。
If this reset condition is satisfied,
Since it is predicted that the electric wire temperature when the predetermined time J1 has elapsed from the present (tn) under the current load state is certainly lower than the dangerous temperature θ H , the signal holding unit 17 is reset and the first and second main conditions are set. The determination-requiring signal of is turned off to prevent unnecessary load limitation.

【0070】さらに、判定部4の第2のリセット条件
は、一度は推定温度が第1段判定レベル(最高許容温度
θL )に上昇しても、その後の予測温度,すなわち時刻
tnにおける一定時間J1後の予測温度θn+J1が第1段
判定レベルより低くなることである。
Further, the second reset condition of the judging section 4 is that even if the estimated temperature once rises to the first step judgment level (maximum allowable temperature θ L ), the predicted temperature thereafter, that is, the fixed time at the time tn. That is, the predicted temperature θn + J1 after J1 becomes lower than the first-stage determination level.

【0071】そして、このリセット条件を満足すれば、
現在(tn)から一定時間J1経過したときの電線温度
が確実に最高許容温度θL より低くなると予測されるた
め、信号保持部18をリセットして第3の主条件の要判
定信号をオフし、無駄な負荷制限を防止する。
If this reset condition is satisfied,
Since it is predicted that the electric wire temperature after the lapse of a certain time J1 from the present (tn) will surely become lower than the maximum allowable temperature θ L , the signal holding unit 18 is reset to turn off the determination signal of the third main condition. To prevent unnecessary load limitation.

【0072】また、副条件判定部13は前記の副条件に
基づく要判定及びそのリセットを行う。
Further, the sub-condition judging unit 13 makes a judgment on the basis of the above-mentioned sub-condition and resets it.

【0073】このリセットは、副条件に基づく負荷制限
をリセットするものであり、その条件は、通電電流In
の1.1倍(In・1.1)がIm・βmax より小さくな
り、通電電流Inが非常値より十分に小さくなることで
ある。
This reset is to reset the load limit based on the sub-condition, and the condition is that the conduction current In
Is 1.1 times (In · 1.1) smaller than Im · βmax, and the conduction current In is sufficiently smaller than the emergency value.

【0074】そして、通電電流が副条件を満足するよう
な過大な電流になれば、電線温度によらず、副条件判定
部13から信号保持部19に“1”の要判定信号を出力
し、この要判定信号を信号保持部19からオアゲート1
6を介して指令出力部5に供給する。
If the energizing current becomes an excessive current that satisfies the subcondition, the subcondition judging unit 13 outputs a judgment signal of "1" to the signal holding unit 19 regardless of the wire temperature. The determination signal is sent from the signal holding unit 19 to the OR gate 1
It is supplied to the command output unit 5 via 6.

【0075】また、副条件を満足しなくなると、副条件
判定部13のリセット出力により信号保持部19をリセ
ットし、その要判定信号をオフする。
When the sub-condition is no longer satisfied, the signal holding unit 19 is reset by the reset output of the sub-condition judging unit 13 and the required judgment signal is turned off.

【0076】したがって、判定部4は、各主条件又は副
条件のいずれかを満足し、負荷制限の必要があると予測
されるときに、リセット信号で解除されるまで“1”の
要判定信号を出力する。
Therefore, when the judgment section 4 satisfies either of the main conditions or the sub-conditions and it is predicted that the load limitation is required, the judgment unit 4 outputs the judgment signal of "1" required until it is canceled by the reset signal. Is output.

【0077】つぎに、指令出力部5は図1に示すように
縦列接続状態のアンドゲート20,21を有し、前段の
アンドゲート20はオアゲート16を介した要判定信号
と,端子22の受電中等の前記他の実行条件のθn>θ
L を除く各条件の成立により“1”になる信号とが供給
され、この“1”の信号の供給中の要判定信号を後段の
アンドゲート21に供給する。
Next, the command output unit 5 has AND gates 20 and 21 in a cascade connection as shown in FIG. 1, and the AND gate 20 in the preceding stage receives the determination signal via the OR gate 16 and the reception of power from the terminal 22. Θn> θ for other execution conditions such as middle
A signal that becomes “1” when each condition except L is satisfied is supplied, and the determination-required signal during the supply of this “1” signal is supplied to the AND gate 21 in the subsequent stage.

【0078】さらに、アンドゲート21はアンドゲート
20の“1”の出力信号と,端子23のθn>θL のと
きに“1”になる信号とが供給され、θn>θL の条件
下でアンドゲート20の出力信号が“1”になり、確実
に負荷制限が必要になるときに“1”のフィーダ遮断指
令を次段の負荷制限装置6の遮断率決定部7に供給す
る。
Further, the AND gate 21 is supplied with the output signal of "1" of the AND gate 20 and the signal of "1" when θn> θ L of the terminal 23, and under the condition of θn> θ L. When the output signal of the AND gate 20 becomes "1" and the load must be surely limited, the feeder cutoff command of "1" is supplied to the cutoff rate determining unit 7 of the load limiting device 6 at the next stage.

【0079】そして、遮断率決定部7はフィーダ遮断指
令が供給されると、直ちに係数算出式〈7〉の演算を行
って電流係数Fcutnを求め、1回目の電流遮断率とし
て、Fcutn≦Fbであれば電流係数Fcutnのデータを遮
断実行部8に出力し、Fcutn>Fbであれば電流係数F
bを遮断実行部8に出力する。
When the feeder cutoff command is supplied, the cutoff rate determining unit 7 immediately calculates the current coefficient Fcutn by calculating the coefficient calculation formula <7>, and Fcutn≤Fb as the first current cutoff rate. If present, the data of the current coefficient Fcutn is output to the cutoff execution unit 8, and if Fcutn> Fb, the current coefficient Fcutn
b is output to the cutoff execution unit 8.

【0080】さらに、遮断実行部8は供給された電流係
数Fcutnと母線1の現在の通電電流Inとに基づき、
0.5分後のつぎ(2回目)の判定タイミングまでの間
に、母線1の通電電流がIn・Fcutn以下になるまで各
フィーダ2a〜2zの遮断器を所定の整定時間間隔Tp
で順位遮断する。
Further, the interruption executing section 8 determines, based on the supplied current coefficient Fcutn and the current flowing current In of the bus bar 1,
After 0.5 minutes, until the next (second) determination timing, the circuit breakers of the feeders 2a to 2z are set to a predetermined settling time interval Tp until the energization current of the bus bar 1 becomes In · Fcutn or less.
To cut off the ranking.

【0081】そして、2回目の判定タイミングになって
も判定部4から要判定信号が出力されていれば、遮断率
決定部7は2回目以降の電流遮断率として、最小率に相
当する電流係数Fb(固定値)を遮断実行部8に出力
し、遮断実行部8はつぎ(3回目)の判定タイミングま
での間に、母線1の通電電流がIn・Fb以下に低減さ
れるまで残りの各フィーダ2a〜2zの遮断器を順位遮
断する。
If the determination signal is output from the determination section 4 even at the second determination timing, the cutoff rate determination section 7 determines the current coefficient corresponding to the minimum rate as the current cutoff rate for the second and subsequent times. Fb (fixed value) is output to the cutoff execution unit 8, and the cutoff execution unit 8 waits until the next (third) determination timing until the energizing current of the bus bar 1 is reduced to In · Fb or less. The circuit breakers 2a to 2z are cut off in sequence.

【0082】以降、判定部4の要判定信号がオフするま
で、判定タイミング毎に、遮断率決定部7が電流遮断率
として電流係数Fbを遮断実行部8に出力し、遮断実行
部8がつぎの判定タイミングまでの間に、残りの各フィ
ーダ2a〜2zの遮断器を順位遮断し、母線1の通電電
流を電流係数Fbに相当する量ずつ低減する。
After that, until the determination signal of the determination unit 4 turns off, the interruption rate determination unit 7 outputs the current coefficient Fb as the current interruption rate to the interruption execution unit 8 at each determination timing, and the interruption execution unit 8 next. By the timing of the determination, the circuit breakers of the remaining feeders 2a to 2z are cut off in order, and the energizing current of the bus bar 1 is reduced by an amount corresponding to the current coefficient Fb.

【0083】したがって、熱的限界の面から電線路の負
荷制限の要,不要が気象条件をも加味した実際温度に即
した電線温度の予測から判定される。
Therefore, from the viewpoint of thermal limit, it is determined whether load limitation of the electric line is necessary or not by predicting the wire temperature in accordance with the actual temperature in consideration of weather conditions.

【0084】さらに、この判定に基づき、つぎの判定が
行われるまでに、最初は推定された現在の温度θnが高
い程大きな電流遮断率で母線1の通電電流が低減される
ように各フィーダ2a〜2zが遮断され、迅速に負荷制
限が行われる。
Further, based on this judgment, each feeder 2a is so arranged that the energizing current of the bus bar 1 is reduced at a larger current cutoff rate as the estimated current temperature θn is higher until the next judgment is made. ~ 2z is cut off, and the load is quickly limited.

【0085】しかも、1回目の負荷制限が不足し、2回
目以降の判定結果が引続き負荷制限の要判定になるとき
は、残りの各フィーダ2a〜2zが所定の最小率の電流
遮断で徐々に遮断され、負荷制限の行過ぎが防止され
る。
Moreover, when the load limitation of the first time is insufficient and the determination results of the second and subsequent times continue to indicate that the load limitation is required, the remaining feeders 2a to 2z are gradually cut off by the current cutoff at a predetermined minimum rate. It is cut off and overloading is prevented.

【0086】そのため、電線温度の予測に基づき、迅速
にしかも過不足なく適切な負荷制限が行われる。
Therefore, based on the prediction of the wire temperature, appropriate load limitation can be promptly performed without excess or deficiency.

【0087】そして、例えば図6の電線路における母線
1の過負荷耐容量を200%(I20 0 )とし、その線材
を硬銅より線HDCC100mm2 とし、線路電流(負荷
制限前),風速,気温,日射強度が図8に示すように時
間変化して許容電流の2倍の電流通電状態で激しい風速
等の気象変化が発生する条件下において、演算制御時間
間隔ΔT=0.5分,電流係数Fb=0.96に設定し
て前記の負荷制限をシミュレーションしたところ、図
9,図10の結果が得られた。
[0087] Then, for example, 200% overload tolerable amount of bus 1 (I 20 0) in the electric line in FIG. 6, and the wire and line HDCC100mm 2 from hard copper, the line current (preload limit), wind speed, Under the condition that temperature and insolation intensity change with time as shown in FIG. 8 and current changes twice as much as permissible current, and severe weather changes such as wind speed occur, calculation control time interval ΔT = 0.5 minutes, current When the load limitation was simulated by setting the coefficient Fb = 0.96, the results shown in FIGS. 9 and 10 were obtained.

【0088】図9は負荷制限に伴う線路電流(通電電
流)の変化を示し、図10は実線イが現在(tn)から
J1分後の予測温度,実線ロが現在(tn)の推定温
度,実線ハが第1の主条件に基づく要判定信号(2値信
号)を示し、この要判定信号は121.5分〜125分
の間出力される。
FIG. 9 shows changes in the line current (current flowing) due to load limitation. In FIG. 10, the solid line B indicates the predicted temperature J1 minutes after the current (tn), and the solid line B indicates the estimated temperature at the current (tn). The solid line C indicates the determination required signal (binary signal) based on the first main condition, and this determination required signal is output during 121.5 minutes to 125 minutes.

【0089】そして、両図からも明らかなように、母線
1の線路電流は121.5分の1回目の要判定に基づく
最初の負荷制限で約840A(=I200 )から約630
Aに迅速に低減され、2回目以降の要判定に基づく12
5分までの負荷制限で次第に約480Aに低減され、し
かも、その間に負荷制限の過不足による制御のハンチン
グが生じることもなく、迅速にかつ過不足なく適切な負
荷制限が行えることが確かめられた。
As is apparent from both figures, the line current of the bus bar 1 is about 840 A (= I 200 ) to about 630 at the first load limitation based on the first required determination for 121.5 minutes.
It is quickly reduced to A, and it is based on the second and subsequent judgments required 12
It was confirmed that the load was gradually reduced to about 480 A by the load limitation for up to 5 minutes, and that control hunting did not occur due to the excess or deficiency of the load limitation during that period, and that appropriate load limitation could be performed quickly and without excess or deficiency. .

【0090】また、この実施形態の電線温度の推定によ
ると、第1,第2段判定レベルを基準とするいわゆる2
段判定により、従来は行われていなかった予測的な判定
も行って負荷制限の必要性の有無の判定が遅れなく正確
に行え、この判定に基づき過不足なく負荷フィーダを遮
断し、電線路の通電電流量を気象条件を考慮して許容さ
れる最大温度の電流量に制限することができる利点があ
る。
Further, according to the estimation of the electric wire temperature of this embodiment, the so-called 2 based on the first and second stage judgment levels is used.
With the step judgment, it is possible to accurately judge whether there is a need for load limitation without delay by making a predictive judgment that has not been performed in the past, and based on this judgment, the load feeder is cut off without excess or deficiency, and There is an advantage that the amount of energized current can be limited to the amount of current at the maximum temperature allowed in consideration of weather conditions.

【0091】しかも、通電電流量が異常に大きくなる
と、副条件の判定によっても負荷制限の必要性があると
判定されて負荷フィーダが遮断されるため、判定及び制
御の精度が一層向上する。
In addition, when the amount of energized current becomes abnormally large, the load feeder is cut off because it is determined that the load must be limited even by the determination of the sub-condition, so that the accuracy of determination and control is further improved.

【0092】なお、判定の簡略化等を図る場合は、即遮
断の条件である第2段判定レベル(危険温度θH )に基
づく第1,第2の主条件の判定のみを行って負荷制限の
要,不要を判定するようにしてもよい。
In order to simplify the determination, the load limitation is performed by making only the determination of the first and second main conditions based on the second-stage determination level (dangerous temperature θ H ) which is the condition of immediate cutoff. Whether or not is necessary may be determined.

【0093】また、電線温度を前記既出願と同様の手法
で推定してもよい。そして、気象条件として図8の様に
風の影響を〈数3〉,〈数4〉ならびに〈数5〉に加味
すれば、さらに精度の高い推定,判定が行えるのは勿論
である。
Further, the wire temperature may be estimated by the same method as in the above-mentioned application. Further, as a weather condition, if the influence of wind is added to <Equation 3>, <Equation 4> and <Equation 5> as shown in FIG. 8, more accurate estimation and determination can be performed.

【0094】つぎに、負荷制限の要判定に基づいて各フ
ィーダ2a〜2zを遮断する際、例えば各フィーダ2a
〜2zの通電電流が既知であれば、順位遮断をする代わ
りに、遮断量に相当するフィーダ2a〜2zを選択して
遮断するようにしてもよい。
Next, when shutting off each of the feeders 2a to 2z on the basis of the judgment of the load limitation, for example, each feeder 2a
If the energizing currents of 2 to 2z are known, feeders 2a to 2z corresponding to the interrupted amount may be selected and interrupted instead of the interrupted order.

【0095】そして、図1の各部の構成はどのようであ
ってもよく、各判定レベル,時間間隔ΔT等は電線路に
応じて設定すればよい。
The configuration of each unit in FIG. 1 may be any configuration, and each determination level, time interval ΔT, etc. may be set according to the electric line.

【0096】[0096]

【発明の効果】本発明は、以下に説明する効果を奏す
る。負荷制限の要,不要が少なくとも電線路の気象条件
を考慮した現在の推定温度及び一定時間後の予測温度の
変化傾向から事前に予測して判定され、従来のような判
定の遅れが生じることがない。
The present invention has the effects described below. Whether or not load limitation is necessary is predicted in advance from the tendency of change in the current estimated temperature and the predicted temperature after a certain period of time considering at least the weather conditions of the electric line, which may cause a delay in the conventional determination. Absent.

【0097】そして、負荷制限が必要になると、最初の
フィーダ遮断指令に対しては、そのときの推定温度が高
くなる程遮断率を大きくして各フィーダを選択的に遮断
することができ、迅速な負荷制限を行うことができる。
When the load restriction is required, the cutoff rate can be increased as the estimated temperature at that time becomes higher with respect to the first feeder cutoff command, and each feeder can be cut off selectively. It is possible to limit the load.

【0098】しかも、2回目以降のフィーダ遮断指令が
引続き出力されるときは、これらの指令に対する電流遮
断率を所定の最小率に固定して残りのフィーダを選択的
に遮断し、行過ぎた遮断を防止して電線路の通電電流を
さらに低減することができる。
Moreover, when the second and subsequent feeder cutoff commands are continuously output, the current cutoff rate corresponding to these commands is fixed to a predetermined minimum rate, and the remaining feeders are selectively cut off, and the excess cutoff is performed. Can be prevented, and the current flowing through the electric line can be further reduced.

【0099】したがって、迅速にかつ過不足を極力防止
して電線路の熱的制限に対する理想的な負荷制限を行う
ことができる。
Therefore, it is possible to quickly and ideally prevent the excess and deficiency as much as possible and perform the ideal load restriction against the thermal restriction of the electric line.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の1形態のブロック図である。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】図1の一部の詳細なブロック図である。2 is a detailed block diagram of a portion of FIG. 1. FIG.

【図3】図1の判定部の第1の主条件の判定説明用の電
線温度の時間変化の説明図である。
FIG. 3 is an explanatory diagram of the change over time of the electric wire temperature for explaining the determination of the first main condition of the determination unit of FIG. 1.

【図4】図1の判定部の第2の主条件の判定説明用の電
線温度の時間変化の説明図である。
FIG. 4 is an explanatory diagram of the change over time of the electric wire temperature for explaining the determination of the second main condition of the determination unit of FIG. 1.

【図5】図1の判定部の第3の主条件の判定説明用の電
線温度の時間変化の説明図である。
5 is an explanatory diagram of the change over time of the wire temperature for explaining the determination of the third main condition of the determination unit of FIG.

【図6】図1の負荷制限が施される電線路の系統図であ
る。
FIG. 6 is a system diagram of an electric line subjected to load limitation in FIG.

【図7】図6の各フィーダの遮断説明図である。FIG. 7 is an explanatory diagram for blocking each feeder of FIG.

【図8】図6の電線路の通電電流及び気象条件の1例の
説明図である。
FIG. 8 is an explanatory diagram of an example of a current flowing through the electric line of FIG. 6 and weather conditions.

【図9】図8の条件下での負荷制限による線路電流(通
電電流)の時間変化の演算結果図である。
9 is a calculation result diagram of a time change of a line current (carrying current) due to load limitation under the conditions of FIG.

【図10】図8の条件下での電線路の現在の推定温度,
一定時間後の予測温度,要判定信号の時間変化の演算結
果図である。
10 is a current estimated temperature of the electric line under the condition of FIG. 8;
It is a calculation result figure of predicted temperature after a fixed time, and time change of a judgment required signal.

【符号の説明】[Explanation of symbols]

1 母線 2a〜2z フィーダ θn,θn-1,θn-2 推定温度 θn+J1 ,θn-1+J1 ,θn-2+J1 予測温度1 Bus 2a ~ 2z Feeder θn, θn -1 , θn -2 Estimated temperature θn + J1 , θn -1 + J1 , θn -2 + J1 Predicted temperature

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 周期的な負荷制限の判定により、 電線路の現在の通電電流及び気象条件から前記電線路の
現在の温度を推定するとともに一定時間後の温度を予測
し、 少なくとも前記電線路の現在の推定温度,一定時間後の
予測温度の変化傾向から前記電線路の熱的限界に基づく
負荷制限の要,不要を事前予測して判定し、 負荷制限の要判定によりフィーダ遮断指令を不要判定に
なるまで出力し、 前記フィーダ遮断指令の出力中の要判定毎の負荷制限の
実行により、 最初の要判定に基づく電流遮断率は前記推定温度に応じ
て設定し、2回目以降の要判定に基づく電流遮断率は所
定の最小率に固定して前記電線路の通電中の各フィーダ
を設定された電流遮断率で選択的に遮断し、 前記電線路の負荷を前記電線路の温度に応じて制限する
ことを特徴とする電線路監視制御方法。
1. A cyclic load limitation is used to estimate the current temperature of the electric line from the current flowing current of the electric line and the meteorological conditions, and at the same time predict the temperature after a certain period of time. From the current estimated temperature and the trend of predicted temperature after a certain period of time, the necessity or non-necessity of load limitation based on the thermal limit of the electric line is predicted in advance and judged, and the need for load limitation is judged to be no need to cut the feeder command. The current cut-off rate based on the first judgment is set according to the estimated temperature by executing the load limitation for each judgment required during the output of the feeder cutoff command. The current cutoff rate based on is fixed to a predetermined minimum rate to selectively cut off each feeder during energization of the electric line at a set current cutoff rate, the load of the electric line depending on the temperature of the electric line. Special to limit Electric line monitoring and control method for collection.
JP08044202A 1996-02-05 1996-02-05 Electric line monitoring and control method Expired - Fee Related JP3129182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08044202A JP3129182B2 (en) 1996-02-05 1996-02-05 Electric line monitoring and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08044202A JP3129182B2 (en) 1996-02-05 1996-02-05 Electric line monitoring and control method

Publications (2)

Publication Number Publication Date
JPH09215180A true JPH09215180A (en) 1997-08-15
JP3129182B2 JP3129182B2 (en) 2001-01-29

Family

ID=12684987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08044202A Expired - Fee Related JP3129182B2 (en) 1996-02-05 1996-02-05 Electric line monitoring and control method

Country Status (1)

Country Link
JP (1) JP3129182B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066564A1 (en) * 2007-11-19 2009-05-28 Autonetworks Technologies, Ltd. Electric wire protection method and electric wire protection device
JP2012239092A (en) * 2011-05-13 2012-12-06 Fujitsu Ltd Communication device and heat generation suppressing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066564A1 (en) * 2007-11-19 2009-05-28 Autonetworks Technologies, Ltd. Electric wire protection method and electric wire protection device
US8405946B2 (en) 2007-11-19 2013-03-26 Autonetworks Technologies, Ltd. Wire protection method and wire protection device
US8767367B2 (en) 2007-11-19 2014-07-01 Autonetworks Technologies, Ltd. Wire protection method and wire protection device
JP2012239092A (en) * 2011-05-13 2012-12-06 Fujitsu Ltd Communication device and heat generation suppressing method

Also Published As

Publication number Publication date
JP3129182B2 (en) 2001-01-29

Similar Documents

Publication Publication Date Title
US10281338B2 (en) Oil-immersed transformer thermal monitoring and prediction system
JP7088096B2 (en) Vehicle battery control device
US20090299540A1 (en) Emergency frequency load shedding scheme
EP3033821B1 (en) Remote protection and switching device for electrical systems
JPH09215180A (en) Supervisory control method for line
CA2469522A1 (en) Configurable interrupter for circuit overcurrent conditions
JP2010158108A (en) Protector for load circuits
JP3129181B2 (en) How to determine load limit of electric line
JP2002238147A (en) Temperature calculation type overload protective relay
CN117037454B (en) Early warning protection system, control method and device of electrical cabinet, medium and electrical cabinet
US4825195A (en) Method of monitoring to anticipate the triggering of an alarm
US7123457B2 (en) System for transitioning to the trip threshold for the start condition thermal model for a motor protection relay
JP3127768B2 (en) Monitoring method of electric wire temperature
JP2990834B2 (en) Transmission line overload control device
CA2976299C (en) Improvements in or relating to digital output circuits
KR102114709B1 (en) Energy-saving smart freeze protection system
CN104247188A (en) Protection device for electricity supply circuit
JPH0836433A (en) System control method
RU127537U1 (en) DEVICE FOR AUTOMATIC RESTRICTION OF OVERLOADING OF A CABLE-AIR TRANSMISSION LINE
US5867482A (en) Traffic control method and system for ATM switching apparatus
JP3127767B2 (en) Monitoring method of electric wire temperature
RU2740396C1 (en) Method of conserving resource of power transformers of double-transformer substation
JPS59175393A (en) Protecting device of motor
JP3116882B2 (en) Micro overload current monitoring circuit
JPH06141460A (en) Protective relay device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees