JP2002238147A - Temperature calculation type overload protective relay - Google Patents

Temperature calculation type overload protective relay

Info

Publication number
JP2002238147A
JP2002238147A JP2001034253A JP2001034253A JP2002238147A JP 2002238147 A JP2002238147 A JP 2002238147A JP 2001034253 A JP2001034253 A JP 2001034253A JP 2001034253 A JP2001034253 A JP 2001034253A JP 2002238147 A JP2002238147 A JP 2002238147A
Authority
JP
Japan
Prior art keywords
temperature
overload
weather condition
monitoring line
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001034253A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yamamoto
康弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2001034253A priority Critical patent/JP2002238147A/en
Publication of JP2002238147A publication Critical patent/JP2002238147A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize a temperature calculation type overload protective relay 3, which can eliminate unnecessary cut-offs of a load, even if the load has much fluctuations such as flicker load, and which enables stable operation. SOLUTION: Currents, flowing through monitor lines 1L and 2L, are detected and weather conditions (the temperature, wind velocity, and sunshine) around the monitor lines 1L and 2L are detected. The wire temperatures of the monitor lines 1L and 2L are estimated, according to the detected current values and weather conditions and are compared with a set value to decide the overload conditions of the monitor lines 1L and 2L. With such a constitution, since the overload conditions are decided according to the wire temperature estimated taking the weather conditions into account, the frequency of unnecessary cut-offs of a load is reduced, and hence more stable power supply can be realized, in comparison with a case using a conventional overload protective relay which decides overload states, according to a current value only and controls the conditions according to the total time of overload periods, and hence more stable power supply can be realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、架空送電線路等の
線路の異常加熱に応動することのできる温度演算形過負
荷保護リレーに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature calculation type overload protection relay capable of responding to abnormal heating of a line such as an overhead transmission line.

【0002】[0002]

【従来の技術】過負荷保護リレーは、線種によって定ま
る許容電流の上限値を設定し、負荷電流がこの設定値を
超えたことを検出すると負荷しゃ断をする装置である。
この動作によって、電線の温度上昇を防止し、電線の溶
断を防止することができる。ところで、負荷電流の振舞
いは負荷の種類によって異なり、例えばアーク炉などの
フリッカ負荷では、大きな負荷電流が断続的に流れる。
このため過負荷保護リレーは、一般に、図1に示すよう
に、一定時間T以内で、負荷電流が設定値I 0 を超えた
時間T1 ,T2 ,T3 の合計(T1 +T2 +T3 )がタ
イマ整定値を超えたことに基づいて動作するようになっ
ている(K51リレー)。
2. Description of the Related Art Overload protection relays are determined by the type of wire.
The upper limit of the allowable current is set, and the load current
This is a device that cuts off the load when it detects that the load has been exceeded.
This action prevents the temperature of the wire from rising and melts the wire.
Disconnection can be prevented. By the way, the behavior of the load current
Or the type of load.
In a flicker load, a large load current flows intermittently.
For this reason, overload protection relays are generally used as shown in FIG.
In addition, within a certain time T, the load current becomes equal to the set value I. 0 Exceeded
Time T1 , TTwo , TThree Sum of (T1 + TTwo + TThree ) Is
Operates based on exceeding the Ima setting value
(K51 relay).

【0003】[0003]

【発明が解決しようとする課題】過負荷保護リレーは、
前述のように負荷電流が設定値I0 を超えた時間の合計
で管理している。いいかえれば、負荷電流が設定値I0
をどの程度の割合で超えたのかということは、管理の対
象になっていない。負荷電流が設定値I0 を超えた割合
を「過負荷率(%)」と称することにすると、前記の過
負荷保護リレーでは、過負荷率が多くても少なくても、
負荷電流が設定値I0 を超えた時間の合計に基づいて動
作するため、必要以上に負荷しゃ断を行うことがあっ
た。
The overload protection relay is
Load current is controlled by the amount of time that exceeds the set value I 0 as described above. In other words, the load current is equal to the set value I 0
Is not subject to management. When the rate at which the load current exceeds the set value I 0 is referred to as “overload rate (%)”, in the overload protection relay, whether the overload rate is large or small,
The load current is operated on the basis of the total time exceeds the set value I 0, there is possible to perform load shedding than necessary.

【0004】例えば図2(a),(b) に、過負荷率と電線温
度の時間推移のグラフを示す。同図に示すように、過負
荷になった時間の合計が同じでも、図2(a) の場合は過
負荷率が160%であり、図2(b) の場合は過負荷率が
120%である。この過負荷率の相違のため、電線の温
度上昇率が違ってくる。図2(a) の場合では電線温度が
危険温度(100°C)に達したところでしゃ断されて
も、図2(b) の場合では電線温度が危険温度に達しない
ところでしゃ断されてしまう。
For example, FIGS. 2 (a) and 2 (b) show graphs of the transition of the overload ratio and the wire temperature with time. As shown in the figure, even if the total time of overload is the same, the overload ratio is 160% in the case of FIG. 2A and the overload ratio is 120% in the case of FIG. It is. Due to the difference in the overload rate, the temperature rise rate of the electric wire differs. In the case of FIG. 2A, the wire is cut off when the temperature of the wire reaches the dangerous temperature (100 ° C.), but in the case of FIG. 2B, the wire is cut off when the temperature of the wire does not reach the dangerous temperature.

【0005】そこで、本発明は、フリッカ負荷など変動
の多い負荷に対しても、無用なしゃ断をすることのな
い、安定した動作をする温度演算形過負荷保護リレーを
実現することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a temperature calculation type overload protection relay which operates stably without useless interruption even with a load having a large fluctuation such as a flicker load. .

【0006】[0006]

【課題を解決するための手段】(1) 本発明の温度演算形
過負荷保護リレーは、監視線路を流れる電流を検出する
電流検出手段と、監視線路の周辺の気象条件を検出する
気象条件検出手段と、前記電流検出手段によって検出さ
れた電流値及び前記気象条件検出手段によって検出され
た気象条件に基づいて監視線路の電線温度を予測演算を
する予測演算手段と、前記予測演算手段によって求めら
れた電線温度を整定値と比較することによって、監視線
路の過負荷条件を判定する判定手段とを有するものであ
る(請求項1)。
Means for Solving the Problems (1) A temperature operation type overload protection relay according to the present invention comprises a current detection means for detecting a current flowing through a monitoring line, and a weather condition detection for detecting a weather condition around the monitoring line. Means, a predictive calculating means for predicting and calculating the electric wire temperature of the monitoring line based on the current value detected by the current detecting means and the weather condition detected by the weather condition detecting means, Determining means for judging an overload condition of the monitoring line by comparing the electric wire temperature with the set value (claim 1).

【0007】前記の構成によれば、電流値のみに基づい
て過負荷か否かを判定し、過負荷になった時間の合計で
管理する従来の過負荷保護リレーと比べて、予測演算手
段によって気象条件に基づいた電線温度を予測し、この
予測値に基づいた判定を行うことができるため、不必要
な負荷しゃ断をするケースが減り、より安定した電力の
供給を行うことができる。 (2) 以下、予測演算手段による電線温度の予測方法を、
気象条件が気温、日射強度、風速の中から選ばれたもの
である場合を例にとって説明する(請求項2)。 この
予測方法は、本件出願人と同一の出願人の先願に係る特
許出願(特願平7−67090号、特開平8−2425
33号公報)の明細書及び図面に説明されているもので
ある。
[0007] According to the above configuration, it is determined whether or not an overload is present based on only the current value, and compared with a conventional overload protection relay that manages the total overload time, the prediction operation means is used. Since the electric wire temperature based on the weather condition can be predicted and the judgment based on the predicted value can be performed, the number of unnecessary load cutoff cases is reduced, and more stable power supply can be performed. (2) Hereinafter, the prediction method of the wire temperature by the prediction calculation means
An example in which the weather condition is selected from among temperature, solar radiation intensity, and wind speed will be described (claim 2). This prediction method is described in the patent application (Japanese Patent Application No. Hei 7-67090, Japanese Patent Application Laid-Open No. Hei 8-2425) based on the earlier application of the same applicant as the present applicant.
No. 33) and the drawings.

【0008】この予測方法は、監視線路の電流検出値か
ら監視線路の電線内部の発生熱量に基づく電線内部温度
の予測値を演算して求め、また、気温、日射強度、風速
等の各気象条件の検出値から監視線路の電線表面の発生
熱量に基づく電線表面温度の予測値を演算して求める。
さらに、電線内部温度の予測値と電線表面温度の予測値
との差から電線内部と電線表面との温度差を求め、監視
線路の電線表面温度の気温に応じた設定値に前記温度差
を加算して監視線路の温度を求める。
In this prediction method, a predicted value of the temperature inside the electric wire based on the amount of heat generated inside the electric wire of the monitored line is calculated and calculated from the detected current value of the monitored line, and each weather condition such as temperature, solar radiation intensity, wind speed, etc. From the detected values of the above, a predicted value of the wire surface temperature based on the amount of heat generated on the wire surface of the monitoring line is calculated and obtained.
Further, a temperature difference between the inside of the wire and the wire surface is determined from a difference between the predicted value of the wire inside temperature and the predicted value of the wire surface temperature, and the temperature difference is added to a set value of the wire surface temperature of the monitoring line according to the temperature. To obtain the temperature of the monitoring line.

【0009】前記の通電電流から予測される監視線路の
電線内部の発生熱量に基づく電線内部温度の風速を考慮
した予測温度θi は、次の式により求められる。 θin=θin-1+(Δθin−θin-1){1− exp(−Δt/Tin)} (1) Δθin=Δθimax(In /Imax )k f(Rt )fi1(Wn ) (2) Tin={Ti /f(Rt )}fi2(Wn ) (3) 式中の符号の意味は次のとおりである。
The predicted temperature θi in consideration of the wind speed of the temperature inside the electric wire based on the amount of heat generated inside the electric wire of the monitoring line, which is predicted from the above-mentioned current, is obtained by the following equation. θin = θin-1 + (Δθin -θin-1) {1- exp (-Δt / Tin)} (1) Δθin = Δθimax (In / Imax) k f (Rt) fi1 (Wn) (2) Tin = {Ti / F (Rt)} fi2 (Wn) (3) The meanings of the symbols in the expression are as follows.

【0010】tn ,tn-1 :n回目(今回)、n−1回
目(前回)の演算時刻[分] Δt:演算(サンプリング・制御)の時間間隔(例えば
30秒;Δt=tn −tn-1 ) θin,θin-1:それぞれ時刻tn ,tn-1 の予測温度
(温度予測値)[°C] In :時刻tn の監視線路の電流検出値[A] Imax :公称許容電流値[A] Δθimax:Imax における飽和温度上昇値[°C] Ti :通電電流変化による温度変化時定数 k:電流比による内部発生熱量飽和値補正指数(およそ
2前後の値をとる) Rt :温度上昇による抵抗値変化係数 Wn :風速[m/s] f(Rt ):20°Cを基準にした温度の補正関数式 fi1(Wn ),fi2(Wn ):風速の補正関数式 ここに、f(Rt ),fi1(Wn ),fi2(Wn )はそ
れぞれ、 f(Rt )=1+1/{Rt /(θn-1 −20)+1} (4) fi1(Wn )={α1 /(Wn +β1 )}+γ1 (5) fi2(Wn )={α2 /(Wn +β2 )}+γ2 (6) で表される。α1,α2,β1,β2,γ1,γ2 はそれぞれ定数
であり、電線の種類によって異なり、実験等によって得
られている数値である。
Tn, tn-1: n-th (current) and n-1-th (previous) calculation time [minutes] Δt: time interval of calculation (sampling / control) (for example, 30 seconds; Δt = tn−tn− 1) θin, θin-1: predicted temperatures (temperature predicted values) at times tn and tn-1 [° C] In: detected current values of monitoring lines at time tn [A] Imax: nominal allowable current values [A] Δθimax: Saturation temperature rise value at Imax [° C.] Ti: Temperature change time constant due to change in conduction current k: Internally generated calorific value saturation value correction index due to current ratio (takes a value around 2) Rt: Resistance value due to temperature rise Coefficient of change Wn: wind speed [m / s] f (Rt): temperature correction function formula fi1 (Wn), fi2 (Wn): wind speed correction function formula based on 20 ° C. where f (Rt), fi1 (Wn) and fi2 (Wn) are respectively f (Rt) = 1 + 1 / {Rt / (θn-1 − 0) +1} is expressed by (4) fi1 (Wn) = {α1 / (Wn + β1)} + γ1 (5) fi2 (Wn) = {α2 / (Wn + β2)} + γ2 (6). α1, α2, β1, β2, γ1, and γ2 are constants, differ depending on the type of electric wire, and are numerical values obtained by experiments and the like.

【0011】一方、気温による風速を考慮した予測温度
θa は、次のようにして求められる。 θan=θan-1+(An −θan-1)[1− exp{−Δt/(Ta fa ( Wn)} ] (7) 式中の符号の意味は次のとおりである。 θan,θan-1:それぞれ時刻tn ,tn-1 の気温に基づ
く予測温度[°C] An :時刻tn の計測温度[°C] Imax :公称許容電流値[A] Ta :気温変化による温度変化時定数 fa ( Wn):風速の補正関数式 ここに、fa ( Wn)は、 fa ( Wn)={α3 /(Wn +β3 )}+γ3 (8) で表される。α3,β3,γ3 はそれぞれ定数であり、電線
の種類によって異なり、実験等によって得られている数
値である。
On the other hand, the predicted temperature θa in consideration of the wind speed due to the air temperature is obtained as follows. θan = θan−1 + (An−θan−1) [1−exp {−Δt / (Tafa (Wn)}] (7) The meanings of the symbols in the equation are as follows: θan, θan−1: Predicted temperature [° C] based on air temperature at time tn, tn-1 An: Measured temperature at time tn [° C] Imax: Nominal allowable current value [A] Ta: Temperature change time constant due to temperature change fa (Wn) Here, fa (Wn) is represented by fa (Wn) = {α3 / (Wn + β3)} + γ3 (8), where α3, β3, and γ3 are constants, and It depends on the type, and is a numerical value obtained by experiments and the like.

【0012】最後に、日射強度による風速を考慮した予
測温度θs は、次のようにして求められる。 θsn=θsn-1+{Sn Δθs fs1(Wn)−θsn-1} ×[1− exp{−Δt/(Ts fs2( Wn)}] (9) 式中の符号の意味は次のとおりである。 θsn,θsn-1:それぞれ時刻tn ,tn-1 の日射強度に
基づく予測温度[°C] Sn :時刻tn の計測日射強度[kW/m2 ] Δθs :日射による温度上昇係数 Ts :日射による温度変化時定数 fs1( Wn),fs2( Wn):風速の補正関数式 ここに、fs1( Wn),fs2( Wn)はそれぞれ fs1( Wn)={α4 /(Wn +β4 )}+γ4 (10) fs2( Wn)={α5 /(Wn +β5 )}+γ5 (11) で表される。α4,α5,β4,β5,γ4,γ5 はそれぞれ定数
であり、電線の種類によって異なり、実験等によって得
られている数値である。
Finally, the predicted temperature θs taking into account the wind speed based on the solar radiation intensity is obtained as follows. θsn = θsn−1 + {SnΔθsfs1 (Wn) −θsn−1} × [1−exp} −Δt / (Tsfs2 (Wn)}] (9) The meanings of the symbols in the equation are as follows. θsn, θsn-1: Predicted temperature [° C] based on insolation intensity at times tn, tn-1, respectively Sn: Measured insolation intensity at time tn [kW / m 2 ] Δθs: Temperature rise coefficient due to insolation Ts: Temperature due to insolation Change time constant fs1 (Wn), fs2 (Wn): wind speed correction function expression where fs1 (Wn) and fs2 (Wn) are respectively fs1 (Wn) = {α4 / (Wn + β4)} + γ4 (10) fs2 (Wn) = {α5 / (Wn + β5)} + γ5 (11) where α4, α5, β4, β5, γ4, and γ5 are constants, which vary depending on the type of electric wire, and are obtained by experiments and the like. Is a numerical value.

【0013】予測演算手段によって、最終的に求められ
る監視線路のn時点の電線温度θは、前述の電流から算
出したn時点の予測温度θin、気温から算出したn時点
の予測温度θan、日射から算出したn時点の予測温度θ
snを加算したものとなる。 θn =θin+θan+θsn+α (12) ここにαは、安全係数から算出した温度(マージン)で
ある。このようにして、通電電流に基づく温度上昇分に
対して、気象条件による補正を施すことができる。
The electric wire temperature θ at the time point n of the monitoring line finally obtained by the predicting operation means is calculated from the predicted temperature θin at the time point n calculated from the current, the predicted temperature θan at the time point n calculated from the air temperature, and the solar radiation. The calculated predicted temperature θ at the time point n
sn is added. θn = θin + θan + θsn + α (12) Here, α is the temperature (margin) calculated from the safety coefficient. In this way, it is possible to make a correction based on weather conditions for the temperature rise based on the energizing current.

【0014】電線温度θが演算されると、この電線温度
θを整定値と比較することによって、監視線路の過負荷
条件を判定することができる。 (3) 前記請求項1又は請求項2記載の温度演算形過負荷
保護リレーは、「監視線路の周辺の気象条件を検出する
気象条件検出手段」を備えていたが、これに代えて、
「監視線路の周辺の統計的な気象条件を記憶する気象条
件記憶手段」を備えていてもよい(請求項3)。
When the wire temperature θ is calculated, the overload condition of the monitoring line can be determined by comparing the wire temperature θ with a set value. (3) The temperature calculation type overload protection relay according to claim 1 or 2 is provided with "weather condition detecting means for detecting weather conditions around the monitoring line", but instead of this,
A "meteorological condition storage means for storing statistical weather conditions around the monitoring track" may be provided (claim 3).

【0015】過去の統計的な気象条件は、例えば季節、
月、時間帯ごとに記憶されていてもよい。この場合は、
過去の統計的な気象条件に基づき、監視線路の電線温度
を予測演算することになるので、その日の天候等によっ
て、多少の誤差が出ることはやむを得ないが、それで
も、気象条件データを全く考慮しない従来の技術と比べ
て監視精度の向上を図ることができる。
The past statistical weather conditions include, for example, the season,
It may be stored for each month and time zone. in this case,
Based on the past statistical weather conditions, the temperature of the electric wire on the monitoring line is estimated and calculated, so some errors will inevitably occur depending on the weather on that day, but nonetheless, the weather condition data will not be considered at all. Monitoring accuracy can be improved as compared with the conventional technology.

【0016】(4) 前記気象条件記憶手段によって記憶さ
れた気象条件は、気温、日射強度、風速の中から選ばれ
たものであってもよいのは、請求項2の温度演算形過負
荷保護リレーと同様である(請求項4)。 (5) 以上の構成において、監視線路がフリッカ負荷送電
線である場合は(請求項5)、大きな負荷電流が断続的
に流れるので、線路の異常加熱に応動する本願発明の温
度演算形過負荷保護リレーを好適に用いることができ
る。
(4) The temperature calculation type overload protection according to claim 2, wherein the weather condition stored by the weather condition storage means may be selected from among temperature, solar radiation intensity, and wind speed. This is the same as a relay (claim 4). (5) In the above configuration, if the monitoring line is a flicker load transmission line (Claim 5), a large load current flows intermittently, so the temperature calculation type overload of the present invention responding to abnormal heating of the line. A protection relay can be suitably used.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を、添
付図面を参照しながら詳細に説明する。図3は、変電所
に本発明の温度演算形過負荷保護リレーを設置した場合
の、接続状態の概要を示した図である。同図において、
1L,2Lは平行2回線送電線を示す。変電所2におい
てこれらの2系統の電力を受電し、1又は複数の負荷側
配電系統に送り出している(図面には1本のみ描いてい
る)。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 3 is a diagram showing an outline of a connection state when the temperature calculation type overload protection relay of the present invention is installed in a substation. In the figure,
1L and 2L indicate parallel two-circuit transmission lines. The substation 2 receives the power of these two systems and sends it to one or more load-side power distribution systems (only one is shown in the drawing).

【0018】前記送電線1L,2Lには、電流を検出す
る変流器CT1 ,CT2 が設けられ、変流器CT1 ,C
2 の検出電流のデータは、温度演算形過負荷保護リレ
ー3に入力されている。また各種の気象条件センサの検
出データが温度演算形過負荷保護リレー3に入力されて
いる。この実施形態では、気象条件センサとして気温セ
ンサ、風速センサ、日射センサの3つのセンサを例示し
ている。
[0018] The transmission line 1L, the 2L, current transformer CT 1, CT 2 for detecting a current is provided, the current transformer CT 1, C
Data of the detected current of T 2 are are inputted to the temperature calculating overload protection relay 3. Also, detection data of various weather condition sensors are input to the temperature calculation type overload protection relay 3. In this embodiment, three sensors of a temperature sensor, a wind speed sensor, and a solar radiation sensor are illustrated as weather condition sensors.

【0019】負荷側配電系統の1つは、フリッカ負荷が
接続されたものであり、この配電系統の開閉器CBを動
かすしゃ断出力が、温度演算形過負荷保護リレー3から
出ている。図4は、温度演算形過負荷保護リレー3の内
部回路構成を示すブロック図である。前記変流器CT
1 ,CT2 により検出された電流データ及び気温セン
サ、風速センサ、日射センサの検出データは、それぞれ
信号入力部4に供給される。信号入力部4は、絶縁アン
プやノイズ除去用のローパスフィルタを備えたものであ
る。信号入力部4の出力は、マルチプレクサ5を通して
直列信号に変換され、さらにA/D変換器6を通してデ
ィジタル信号に変換される。
One of the load-side power distribution systems is connected to a flicker load, and a cut-off output for operating a switch CB of the power distribution system is output from a temperature calculation type overload protection relay 3. FIG. 4 is a block diagram showing an internal circuit configuration of the temperature calculation type overload protection relay 3. The current transformer CT
The current data detected by 1 and CT 2 and the detection data of the temperature sensor, the wind speed sensor, and the solar radiation sensor are supplied to the signal input unit 4, respectively. The signal input unit 4 includes an insulating amplifier and a low-pass filter for removing noise. The output of the signal input unit 4 is converted into a serial signal through a multiplexer 5 and further converted into a digital signal through an A / D converter 6.

【0020】A/D変換器6の出力は、CPU7に与え
られる。8は、CPU7に接続された操作・設定パネル
であり、テンキー等の各種のキーを有する。9は、CP
U7に接続された負荷制御接点出力部であり、送電線1
L,2Lの異常加熱時に開閉器CBを開放トリップし
て、負荷側配電系統への送電を停止する。なお、このト
リップは、慣用されているようにタイマー要素を介して
行うようにしてもよい。
The output of the A / D converter 6 is given to a CPU 7. Reference numeral 8 denotes an operation / setting panel connected to the CPU 7 and has various keys such as numeric keys. 9 is CP
A load control contact output unit connected to U7,
The switch CB is opened and tripped at the time of abnormal heating of L and 2L, and power transmission to the load side distribution system is stopped. This trip may be performed via a timer element as is commonly used.

【0021】10はCPU7に接続された状態表示部、
11は記録プリンタである。さらに13は、伝送制御装
置12を介してCPU7に接続された監視結果の処理装
置であり、CPU7の監視、制御、各種データの保存加
工を行う。前記CPU7は、電線温度の演算処理を行
う。まず、電流から算出したn時点の予測温度θin、気
温から算出したn時点の予測温度θan、日射から算出し
たn時点の予測温度θsnの初期値θi0,θa0,θs0を、
それぞれ所定の値におく。
10 is a status display unit connected to the CPU 7,
Reference numeral 11 denotes a recording printer. Reference numeral 13 denotes a monitoring result processing device connected to the CPU 7 via the transmission control device 12, and monitors and controls the CPU 7, and stores and processes various data. The CPU 7 performs an electric wire temperature calculation process. First, the initial values θi0, θa0, θs0 of the predicted temperature θin at the time n calculated from the current, the predicted temperature θan at the time n calculated from the temperature, and the predicted temperature θsn at the time n calculated from the solar radiation,
Each is set to a predetermined value.

【0022】それから、nを1ずつ繰り上げていって、
次の演算を行う。なお、初期値θi0,θa0,θs0は不揃
いになりやすいので、初期のうちは、正確な予測温度θ
が得られないおそれがある。そこで、初期のいくつかの
サンプリングは、監視線路の過負荷条件の判定のための
予測温度θとしてはこれを無効とすることが望ましいこ
とを予め断っておく。CPU7は、n時点の風速デー
タ、気温データ等を前述した(4),(5),(6) 式に当てはめ
て、補正関数値を求める。さらにこれらの補正関数値と
電流データInとを前記(1) 式に当てはめて、電流から
算出したn時点の予測温度θinを求める。
Then, n is incremented by one,
The following operation is performed. Since the initial values θi0, θa0, and θs0 tend to be irregular, the initial predicted temperature θ
May not be obtained. Therefore, it is previously refused that it is desirable to invalidate some of the initial samplings as the predicted temperature θ for determining the overload condition of the monitoring line. The CPU 7 obtains a correction function value by applying the wind speed data, temperature data, and the like at the time point n to the above-described equations (4), (5), and (6). Further, by applying these correction function values and the current data In to the above equation (1), a predicted temperature θin at the time point n calculated from the current is obtained.

【0023】次に、n時点の風速データを前述した(8)
式に当てはめて補正関数値を求め、この補正関数値と気
温データAn とを前記(7) 式に当てはめて、気温から算
出したn時点の予測温度θanを求める。次に、n時点の
風速データを前述した(10)(11)式に当てはめて補正関数
値を求め、この補正関数値と日射強度データSn とを前
記(9) 式に当てはめて、日射強度によるn時点の予測温
度θsnを求める。
Next, the wind speed data at the time point n is described in (8) above.
A correction function value is obtained by applying the equation, and the correction function value and the temperature data An are applied to the equation (7) to obtain a predicted temperature θan at the time point n calculated from the temperature. Next, the wind speed data at the time point n is applied to the above-mentioned equations (10) and (11) to obtain a correction function value, and the correction function value and the solar irradiance data Sn are applied to the above-mentioned equation (9) to obtain the correction value. The predicted temperature θsn at the time point n is obtained.

【0024】さらに、これらの予測温度θin、気温から
算出したn時点の予測温度θan、日射から算出したn時
点の予測温度θsnを合計して、(12)式に基づいて監視線
路の予測温度θn を求める。このとき、(12)式にあるよ
うに、マージンαを加味しているので、安全面からの余
裕度を所望の大きさに設定することができる。このよう
にして求めた予測温度θn を、整定値と比較することに
よって、監視線路の過負荷条件を判定することができ
る。
Further, the predicted temperature θin, the predicted temperature θan at the time n calculated from the air temperature, and the predicted temperature θsn at the time n calculated from the solar radiation are summed up, and the predicted temperature θn of the monitoring line is calculated based on the equation (12). Ask for. At this time, as shown in Expression (12), since the margin α is taken into consideration, the safety margin can be set to a desired size. By comparing the predicted temperature θn thus obtained with the set value, the overload condition of the monitoring line can be determined.

【0025】過負荷条件であると判定すれば、CPU7
は、負荷制御接点出力部9を通して開閉器CBを開放ト
リップして、変電所2から負荷側配電系統への送電を停
止する。これとともに、状態表示部10、記録プリンタ
11、監視結果の処理装置13に対して監視結果の出力
を行う。以上のような処理をすることによって、監視線
路である送電線1L,2Lの異常加熱の発生を、気象条
件を考慮して正確に予測することができる。この結果、
送電電流量が安全に送電できる最大電流量に達するまで
送電を維持することができ、送電効率が大幅に上昇す
る。
If it is determined that the condition is an overload condition, the CPU 7
Open-trips the switch CB through the load control contact output unit 9 to stop power transmission from the substation 2 to the load-side distribution system. At the same time, the monitoring result is output to the status display unit 10, the recording printer 11, and the monitoring result processing device 13. By performing the above processing, the occurrence of abnormal heating of the transmission lines 1L and 2L, which are monitoring lines, can be accurately predicted in consideration of weather conditions. As a result,
Transmission can be maintained until the transmission current reaches the maximum amount of power that can be safely transmitted, and the transmission efficiency is greatly increased.

【0026】なお、本発明の実施形態は、前記のものに
限られることはない。前記の実施形態は、気温、風速、
日射等の気象条件データをセンサから直接取得してい
た。しかし、過去の統計的な情報に基づいて、これらの
気象条件データを予め一定の値にして記憶させておくこ
ともできる。例えば、季節、月、時間帯ごとに過去の気
温データ、日射データ、風速データを算出して分類して
おけば、同じ場所、同じ季節、月、時間帯に該当するデ
ータを使うことができる。もちろんその日の天候によっ
て、多少の誤差が出ることはやむを得ないが、それで
も、気象条件データを全く考慮しない従来の技術と比べ
て格段の精度の向上を図ることができる。
The embodiment of the present invention is not limited to the above. In the above embodiment, the temperature, wind speed,
Weather condition data such as solar radiation was directly obtained from sensors. However, it is also possible to store these weather condition data in a fixed value in advance based on past statistical information. For example, if past temperature data, solar radiation data, and wind speed data are calculated and classified for each season, month, and time zone, data corresponding to the same location, the same season, month, and time zone can be used. Of course, some errors are unavoidable depending on the weather of the day, but even so, the accuracy can be significantly improved as compared with the conventional technology that does not consider the weather condition data at all.

【0027】なお、分類の仕方はいろいろ考えられる
が、例えば気温データや日射データは、変動の傾向が予
想できるので、季節、時間帯ごとに比較的詳細に分類
し、風速データはその日の気象によって大幅に異なるの
で、明確に定めることはできず固定値を用いるというこ
とも考えられる。また、統計的なデータと実測データを
混合して使うこともできる。例えば、気温センサのみ備
えている場合ならば、気温データは、実測データを用
い、日射データ、風速データは過去の統計データを用い
るようにすることもできる。
Although various classification methods are conceivable, for example, temperature data and solar radiation data can be expected to fluctuate, so that they are classified relatively in detail by season and time zone, and wind speed data is determined according to the weather of the day. Since they are so different, they cannot be clearly defined and a fixed value may be used. Also, statistical data and actual measurement data can be used in combination. For example, when only a temperature sensor is provided, actual temperature data may be used as temperature data, and past statistical data may be used as solar radiation data and wind speed data.

【0028】[0028]

【発明の効果】以上のように請求項1記載の本発明の温
度演算形過負荷保護リレーによれば、監視線路の通電電
流から予測された電線内部の温度と、気象条件から予測
された電線表面の温度との温度差が加算され、この加算
により当該気象条件下の電線の正確な温度を、直接測定
することなく高い精度で予測することができる。したが
って、実際の気象条件に即した送電可能な最大電流量の
送電が可能になり、送電効率を著しく向上させることが
できる。
As described above, according to the temperature calculation type overload protection relay according to the first aspect of the present invention, the temperature inside the electric wire predicted from the current flowing through the monitoring line and the electric wire predicted from the weather condition. The temperature difference from the surface temperature is added, and by this addition, the accurate temperature of the electric wire under the weather condition can be predicted with high accuracy without directly measuring. Therefore, it is possible to transmit the maximum amount of current that can be transmitted according to actual weather conditions, and it is possible to significantly improve the power transmission efficiency.

【0029】特に、請求項3記載のように、監視線路の
周辺の統計的な気象条件を記憶させそれを用いた場合に
は、気象条件検出手段を設置する必要がなくなり、電線
路の温度を一層簡便に監視することができる。また、請
求項5記載のように、監視線路がフリッカ負荷送電線で
ある場合には、大きな負荷電流が断続的に流れるので、
線路の異常加熱を正確に予測することのできる本願発明
を好適に用いることができる。
In particular, when the statistical weather conditions around the monitoring line are stored and used as described in claim 3, there is no need to install a weather condition detecting means, and the temperature of the electric line is reduced. Monitoring can be performed more easily. When the monitoring line is a flicker load transmission line, a large load current flows intermittently.
The present invention that can accurately predict abnormal heating of a line can be suitably used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】大きな負荷電流が断続的に流れるフリッカ負荷
において、負荷電流が整定値を超えた時間合計に基づい
てリレーが動作する原理を説明する図である。
FIG. 1 is a diagram illustrating the principle that a relay operates based on the total time during which a load current exceeds a set value in a flicker load in which a large load current flows intermittently.

【図2】過負荷率と電線温度の時間推移を示すグラフで
あり、(a) は過負荷率が高い場合、(b) は過負荷率が低
い場合を示す。
FIGS. 2A and 2B are graphs showing the transition of the overload rate and the wire temperature with time, wherein FIG. 2A shows the case where the overload rate is high, and FIG.

【図3】変電所に本発明の温度演算形過負荷保護リレー
を設置した場合の、接続状態の概要を示す図である。
FIG. 3 is a diagram showing an outline of a connection state when the temperature calculation type overload protection relay of the present invention is installed in a substation.

【図4】温度演算形過負荷保護リレーの内部回路構成を
示すブロック図である。
FIG. 4 is a block diagram showing an internal circuit configuration of a temperature calculation type overload protection relay.

【符号の説明】[Explanation of symbols]

1L,2L 平行2回線送電線 CT1 ,CT2 変流器 CB 開閉器 2 変電所 3 温度演算形過負荷保護リレー 4 信号入力部 5 マルチプレクサ 6 A/D変換器 7 CPU 8 操作・設定パネル 9 負荷制御接点出力部 10 状態表示部 11 記録プリンタ 12 伝送制御装置 13 監視結果の処理装置1L, 2L parallel two-circuit transmission line CT 1, CT 2 current transformer CB switch 2 substation 3 temperature calculating overload protection relay 4 signal input section 5 the multiplexer 6 A / D converter 7 CPU 8 setting and operation panel 9 Load control contact output unit 10 Status display unit 11 Recording printer 12 Transmission control unit 13 Monitoring result processing unit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】監視線路の過負荷条件を検出するリレー装
置であって、 監視線路を流れる電流を検出する電流検出手段と、 監視線路の周辺の気象条件を検出する気象条件検出手段
と、 前記電流検出手段によって検出された電流値及び前記気
象条件検出手段によって検出された気象条件に基づいて
監視線路の電線温度を予測演算をする予測演算手段と、 前記予測演算手段によって求められた電線温度を整定値
と比較することによって、監視線路の過負荷条件を判定
する判定手段とを有することを特徴とする温度演算形過
負荷保護リレー。
1. A relay device for detecting an overload condition of a monitoring line, a current detecting unit for detecting a current flowing through the monitoring line, a weather condition detecting unit for detecting a weather condition around the monitoring line, A prediction operation means for predicting and calculating the electric wire temperature of the monitoring line based on the current value detected by the current detection means and the weather condition detected by the weather condition detection means; and an electric wire temperature obtained by the prediction operation means. A temperature calculation type overload protection relay, comprising: determination means for determining an overload condition of a monitoring line by comparing the set value with a set value.
【請求項2】前記気象条件検出手段によって検出される
気象条件は、気温、日射強度、風速の中から選ばれたも
のである請求項1記載の温度演算形過負荷保護リレー。
2. A temperature calculation type overload protection relay according to claim 1, wherein the weather condition detected by said weather condition detecting means is selected from among temperature, solar radiation intensity, and wind speed.
【請求項3】監視線路の過負荷条件を検出するリレー装
置であって、 監視線路を流れる電流を検出する電流検出手段と、 監視線路の周辺の統計的な気象条件を記憶する気象条件
記憶手段と、 前記電流検出手段によって検出された電流値及び前記気
象条件記憶手段によって記憶された気象条件に基づいて
監視線路の電線温度を予測演算をする予測演算手段と、 前記予測演算手段によって求められた電線温度を整定値
と比較することによって、監視線路の過負荷条件を判定
する判定手段とを有することを特徴とする温度演算形過
負荷保護リレー。
3. A relay device for detecting an overload condition of a monitoring line, a current detecting means for detecting a current flowing through the monitoring line, and a weather condition storing means for storing a statistical weather condition around the monitoring line. And a prediction calculation means for performing a prediction calculation of the electric wire temperature of the monitoring line based on the current value detected by the current detection means and the weather condition stored by the weather condition storage means; A temperature calculation type overload protection relay, comprising: determination means for determining an overload condition of the monitoring line by comparing the wire temperature with a set value.
【請求項4】前記気象条件記憶手段によって記憶された
気象条件は、気温、日射強度、風速の中から選ばれたも
のである請求項3記載の温度演算形過負荷保護リレー。
4. The overload protection relay according to claim 3, wherein the weather condition stored by said weather condition storage means is selected from the group consisting of air temperature, solar radiation intensity, and wind speed.
【請求項5】前記監視線路がフリッカ負荷を有する送電
線である請求項1又は3記載の温度演算形過負荷保護リ
レー。
5. The overload protection relay according to claim 1, wherein said monitoring line is a transmission line having a flicker load.
JP2001034253A 2001-02-09 2001-02-09 Temperature calculation type overload protective relay Pending JP2002238147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001034253A JP2002238147A (en) 2001-02-09 2001-02-09 Temperature calculation type overload protective relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001034253A JP2002238147A (en) 2001-02-09 2001-02-09 Temperature calculation type overload protective relay

Publications (1)

Publication Number Publication Date
JP2002238147A true JP2002238147A (en) 2002-08-23

Family

ID=18897890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001034253A Pending JP2002238147A (en) 2001-02-09 2001-02-09 Temperature calculation type overload protective relay

Country Status (1)

Country Link
JP (1) JP2002238147A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130944A (en) * 2007-11-19 2009-06-11 Autonetworks Technologies Ltd Electric wire protection method and electric wire protection device
JP2009232610A (en) * 2008-03-24 2009-10-08 Yazaki Corp Device for protecting load circuit
JP2009247047A (en) * 2008-03-28 2009-10-22 Yazaki Corp Device for protecting load circuits
US20140226240A1 (en) * 2013-02-14 2014-08-14 Deere & Company Overload prevention system to improve intermittent load capacity of electric drive applications
JP2014533484A (en) * 2011-11-04 2014-12-11 エルテウ、レゾ、ド、トランスポール、デレクトリスィテRte Reseau De Transport D’Electricite Method and apparatus for monitoring high voltage current transmission lines
CN109217240A (en) * 2017-07-07 2019-01-15 许继电气股份有限公司 A kind of overload protection method and system
CN110031092A (en) * 2018-01-09 2019-07-19 博世株式会社 Measurement device
WO2023238348A1 (en) * 2022-06-09 2023-12-14 中国電力株式会社 Power line operation assistance device, method for controlling power line operation assistance device, and program

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746348B (en) * 2007-11-19 2017-06-20 株式会社自动网络技术研究所 Electric wire protection method and conductive wire protection apparatus
CN101861689A (en) * 2007-11-19 2010-10-13 株式会社自动网络技术研究所 Electric wire protection method and electric wire protection device
JP4624400B2 (en) * 2007-11-19 2011-02-02 株式会社オートネットワーク技術研究所 Electric wire protection method and electric wire protection device for vehicle
US8405946B2 (en) 2007-11-19 2013-03-26 Autonetworks Technologies, Ltd. Wire protection method and wire protection device
CN103746348A (en) * 2007-11-19 2014-04-23 株式会社自动网络技术研究所 Electric wire protection method and electric wire protection device
US8767367B2 (en) 2007-11-19 2014-07-01 Autonetworks Technologies, Ltd. Wire protection method and wire protection device
JP2009130944A (en) * 2007-11-19 2009-06-11 Autonetworks Technologies Ltd Electric wire protection method and electric wire protection device
JP2009232610A (en) * 2008-03-24 2009-10-08 Yazaki Corp Device for protecting load circuit
JP2009247047A (en) * 2008-03-28 2009-10-22 Yazaki Corp Device for protecting load circuits
JP2014533484A (en) * 2011-11-04 2014-12-11 エルテウ、レゾ、ド、トランスポール、デレクトリスィテRte Reseau De Transport D’Electricite Method and apparatus for monitoring high voltage current transmission lines
US20140226240A1 (en) * 2013-02-14 2014-08-14 Deere & Company Overload prevention system to improve intermittent load capacity of electric drive applications
US9130368B2 (en) * 2013-02-14 2015-09-08 Deere & Company Overload prevention system to improve intermittent load capacity of electric drive applications
CN109217240A (en) * 2017-07-07 2019-01-15 许继电气股份有限公司 A kind of overload protection method and system
CN109217240B (en) * 2017-07-07 2021-03-26 许继电气股份有限公司 Overload protection method and system
CN110031092A (en) * 2018-01-09 2019-07-19 博世株式会社 Measurement device
JP2019120606A (en) * 2018-01-09 2019-07-22 ボッシュ株式会社 measuring device
WO2023238348A1 (en) * 2022-06-09 2023-12-14 中国電力株式会社 Power line operation assistance device, method for controlling power line operation assistance device, and program

Similar Documents

Publication Publication Date Title
JP4762044B2 (en) Load circuit protection device
US6361205B2 (en) Method of determining contact wear in a trip unit
GB2315172A (en) Protecting semiconductor devices
EP2843791B1 (en) Protection device for electricity supply circuit
JP2002238147A (en) Temperature calculation type overload protective relay
JP3127768B2 (en) Monitoring method of electric wire temperature
JP2990834B2 (en) Transmission line overload control device
KR102114709B1 (en) Energy-saving smart freeze protection system
JP5684871B2 (en) Load circuit protection device
CN113206545B (en) Power plant station inspection method and device
JP5166204B2 (en) Gas insulated circuit breaker system and gas insulated circuit breaker monitoring method
JPH0836433A (en) System control method
JP3129181B2 (en) How to determine load limit of electric line
JPH081859B2 (en) Tap switching device under load
JPH0530637A (en) Overheat detecting and notifying method at conductive part
JP3127767B2 (en) Monitoring method of electric wire temperature
CN117037454B (en) Early warning protection system, control method and device of electrical cabinet, medium and electrical cabinet
JP3129182B2 (en) Electric line monitoring and control method
CN114202875B (en) Fire disaster early warning method based on logarithmic inverse time limit principle
KR100743879B1 (en) Transformer turbo driving device and method thereof
JP2991107B2 (en) Method of determining temperature and solar radiation intensity for weather monitoring
JP2004527196A (en) Overcurrent trip device including detection of current waveform to be monitored
JPH09200949A (en) Temperature estimating method of electric line
JP2002140974A (en) Circuit breaker and circuit breaking system
KR102368705B1 (en) Determination system of the superconducting fault current limiter operation