JPH09213987A - Field-effect type photoelectric energy converter - Google Patents

Field-effect type photoelectric energy converter

Info

Publication number
JPH09213987A
JPH09213987A JP8016623A JP1662396A JPH09213987A JP H09213987 A JPH09213987 A JP H09213987A JP 8016623 A JP8016623 A JP 8016623A JP 1662396 A JP1662396 A JP 1662396A JP H09213987 A JPH09213987 A JP H09213987A
Authority
JP
Japan
Prior art keywords
layer
amorphous silicon
hydrogenated amorphous
conversion device
energy conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8016623A
Other languages
Japanese (ja)
Other versions
JP3585621B2 (en
Inventor
Hideomi Koinuma
秀臣 鯉沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagaku Gijutsu Shinko Jigyodan
Original Assignee
Kagaku Gijutsu Shinko Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagaku Gijutsu Shinko Jigyodan filed Critical Kagaku Gijutsu Shinko Jigyodan
Priority to JP01662396A priority Critical patent/JP3585621B2/en
Publication of JPH09213987A publication Critical patent/JPH09213987A/en
Application granted granted Critical
Publication of JP3585621B2 publication Critical patent/JP3585621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase an electric field in a semiconductor in the vicinity of a ferroelectric, and to inhibit the recombination of an electron-hole pair generated by light by forming a comb-shaped electrode and a ferroelectric layer on a hydrogenated amorphous silicon layer. SOLUTION: A lower electrode 32 is formed onto a substrate 31, a p-type hydrogenated amorphous silicon layer 33, an i-type hydrogenated amorphous silicon layer 34 and an n-type hydrogenated amorphous silicon layer 35 are growm successively on the lower electrode 32. The hydrogenated amorphous silicon layers may also have n-i-p structure, and the hydrogenated amorphous silicon layers excepting the uppermost layer 35 may also have only i-p structure and i-n structure. Comb-shaped electrodes 36 are formed onto the n-type hydrogenated amorphous layers 35, and a ferroelectric layer 37 is grown on the electrodes 36. A transparent conductive film 38 as an upper electrode is formed onto a surface. According to such constitition, an electric field is induced to the hydrogenated amorphous silicon layer by the spontaneous polarization effect of the ferroelectric layer. Consequently, the recombination of electrons and holes is inhibited by the increase of the electric field induced by the spontaneous polarization effect of a ferroelectric.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光エネルギーを電
気エネルギーに変換する光電エネルギー変換装置、特
に、太陽電池、半導体光センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric energy conversion device for converting light energy into electric energy, and more particularly to a solar cell and a semiconductor photosensor.

【0002】[0002]

【従来の技術】光エネルギーを電気エネルギーに変換す
る半導体素子には、水素化非晶質珪素等の非晶質を利用
したものと、珪素やガリウム砒素等の結晶材料を利用し
たものの二種類がある。水素化非晶質珪素を用いた太陽
電池および光センサは、図9に示すように、基板1上に
上部透明電極2を形成し、その上部透明電極2上にp型
水素化非晶質珪素3、i型(不純物を添加していないも
の)水素化非晶質珪素4、及びn型水素化非晶質珪素5
を連続的に形成し、さらに下部電極6を形成する。そこ
で、p型水素化非晶質珪素3、i型水素化非晶質珪素
4、n型水素化非晶質珪素5によるpin接合によって
発生した電場を利用して、電子−正孔対を分離するよう
にしていた。 しかしながら、水素化非晶質珪素におい
ては、多量の結晶欠陥のために価電子制御が効率よく行
えず、大きな電場が得られないという問題があった。
2. Description of the Related Art There are two types of semiconductor elements that convert light energy into electric energy, one that uses an amorphous material such as hydrogenated amorphous silicon and one that uses a crystalline material such as silicon or gallium arsenide. is there. As shown in FIG. 9, a solar cell and an optical sensor using hydrogenated amorphous silicon have an upper transparent electrode 2 formed on a substrate 1 and a p-type hydrogenated amorphous silicon formed on the upper transparent electrode 2. 3, i-type (without adding impurities) hydrogenated amorphous silicon 4, and n-type hydrogenated amorphous silicon 5
Are continuously formed, and the lower electrode 6 is further formed. Therefore, the electric field generated by the pin junction of the p-type hydrogenated amorphous silicon 3, the i-type hydrogenated amorphous silicon 4, and the n-type hydrogenated amorphous silicon 5 is used to separate electron-hole pairs. I was trying to do it. However, hydrogenated amorphous silicon has a problem that valence electrons cannot be efficiently controlled due to a large number of crystal defects and a large electric field cannot be obtained.

【0003】十分な電場が得られなければ、光エネルギ
ーによって生成した電子−正孔対は電極に到達するまで
に再結合し熱エネルギーに変換されるため、電気的なエ
ネルギーとしては取り出せない。さらに再結合に伴って
特性が劣化する(ステブラー・ロンスキー効果)ことも
大きな問題である。一方、結晶半導体を利用した太陽電
池及び光センサの場合、従来の典型的な素子は、図10
に示すような構造を有している。つまり、p(または
n)型珪素基板12の下部に電極11を形成し、その上
部にn(またはp)型拡散層13を形成し、そのn(ま
たはp)型拡散層13上に上部電極としての櫛型電極1
4を配置するようにしている。そこで、p型半導体とn
型半導体を接合することによって、接合界面に電場を形
成し、光エネルギーによって生成された電子−正孔対
を、この電場によって分離し、電気エネルギーとして取
り出していた。
If a sufficient electric field is not obtained, electron-hole pairs generated by light energy are recombined by the time they reach the electrode and converted into thermal energy, so that they cannot be taken out as electrical energy. Further, the deterioration of the characteristics with the recombination (Stebler-Ronski effect) is also a big problem. On the other hand, in the case of a solar cell and an optical sensor using a crystalline semiconductor, the conventional typical element is shown in FIG.
It has a structure as shown in. That is, the electrode 11 is formed below the p (or n) type silicon substrate 12, the n (or p) type diffusion layer 13 is formed above it, and the upper electrode is formed on the n (or p) type diffusion layer 13. Electrode 1 as
4 are arranged. Therefore, p-type semiconductor and n
An electric field is formed at the junction interface by joining the type semiconductors, and the electron-hole pairs generated by the light energy are separated by this electric field and taken out as electric energy.

【0004】しかしながら、pn接合を形成するために
多量の不純物(この図ではドナー)を表面から拡散する
必要があり、このため少数キャリア寿命が縮まり、再結
合によってエネルギー変換効率が低下するという問題が
あった。この問題を解決するために、P.Van Ha
lenらは不純物拡散層を不要とする素子を開発した。
〔P.Van Halen et al.,IEEET
ransactions on Electron D
evices,ED−25,507(1978).〕。
However, in order to form a pn junction, it is necessary to diffuse a large amount of impurities (in this figure, donors) from the surface, which shortens the minority carrier lifetime and reduces the energy conversion efficiency due to recombination. there were. In order to solve this problem, P. Van Ha
Len et al. developed an element that does not require an impurity diffusion layer.
[P. Van Halen et al. , IEEE
transactions on Electron D
devices, ED-25, 507 (1978). ].

【0005】この素子の断面を図11に示す。すなわ
ち、下部電極21の上にp型珪素基板22を形成し、そ
の表面に極薄(20〜30Å)の酸化(SiO2 )層
(図示なし)を形成し、さらに仕事関数の低いAlなど
の金属グリッド(櫛型電極)を形成して、SiO2 に接
するSi界面にn型反転層23を形成する。その表面に
珪素酸化膜(SiO2 膜)またはチタン酸化(Ti
2 )膜25を形成してもよい。この素子においては、
不純物を拡散させて接合を形成する代わりに、金属の仕
事関数とp−Siのフェルミエネルギー準位の差に基づ
くショットキー効果によって、半導体表面を反対導電型
に反転させ電場を形成する。
A cross section of this device is shown in FIG. That is, a p-type silicon substrate 22 is formed on the lower electrode 21, and an ultrathin (20 to 30 Å) oxide (SiO 2 ) layer (not shown) is formed on the surface of the p-type silicon substrate 22. A metal grid (comb-shaped electrode) is formed, and the n-type inversion layer 23 is formed at the Si interface in contact with SiO 2 . A silicon oxide film (SiO 2 film) or titanium oxide (Ti
The O 2 ) film 25 may be formed. In this device,
Instead of diffusing impurities to form a junction, the Schottky effect based on the difference between the work function of the metal and the Fermi energy level of p-Si causes the semiconductor surface to be inverted to the opposite conductivity type to form an electric field.

【0006】しかしながら、この素子構造も、半導体表
面を十分に反転させるほどの電場の形成が困難で、実用
に至っていない。また、絶縁膜の表面に、珪素と異なる
仕事関数を持った金属を全面に成長させるMIS構造に
よっても同様の効果を奏することができるが、入射光量
が金属での反射や吸収によって低下するので、この方法
はあまり好ましくない。
However, this element structure is also not in practical use because it is difficult to form an electric field sufficient to invert the semiconductor surface. The same effect can be achieved by an MIS structure in which a metal having a work function different from that of silicon is entirely grown on the surface of the insulating film, but the amount of incident light is reduced by reflection and absorption by the metal. This method is less preferred.

【0007】[0007]

【発明が解決しようとする課題】上記したように、従来
の太陽電池(光センサ)においては、技術的に満足でき
るものではなかった。本発明は、上記の状況に鑑みて、
強誘電体の自発分極効果によって、強誘電体近傍の半導
体内の電場を増大せしめ、光によって発生した電子−正
孔対の再結合を抑制し、その結果、光エネルギーの電気
エネルギーへの変換効率を向上させることができる電界
効果型光電エネルギー変換装置を提供することを目的と
する。
As described above, the conventional solar cell (optical sensor) is not technically satisfactory. The present invention, in view of the above situation,
Due to the spontaneous polarization effect of the ferroelectric substance, the electric field in the semiconductor near the ferroelectric substance is increased, and the recombination of electron-hole pairs generated by light is suppressed, and as a result, the conversion efficiency of light energy into electric energy is increased. It is an object of the present invention to provide a field effect photoelectric energy conversion device capable of improving the above.

【0008】[0008]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 (A)光エネルギーを電気エネルギーに変換する光電エ
ネルギー変換装置において、下部電極上に形成されるp
−i−n又はn−i−p接合、あるいはp−i又はn−
i接合を有する水素化非晶質珪素層と、この水素化非晶
質珪素層上に形成される櫛型電極および強誘電体層と、
上部電極とを備え、前記強誘電体層の自発分極効果によ
って前記水素化非晶質珪素層に電場を誘起するようにし
たものである。
In order to achieve the above object, the present invention provides (A) a photoelectric energy conversion device for converting light energy into electric energy, which is formed on the lower electrode.
-I-n or n-ip junction, or p-i or n-
a hydrogenated amorphous silicon layer having an i-junction, a comb-shaped electrode and a ferroelectric layer formed on the hydrogenated amorphous silicon layer,
An upper electrode is provided, and an electric field is induced in the hydrogenated amorphous silicon layer by the spontaneous polarization effect of the ferroelectric layer.

【0009】(B)光エネルギーを電気エネルギーに変
換する光電エネルギー変換装置において、下部電極上に
形成されるp(又はn)型珪素基板と、このp(又は
n)型珪素基板上に形成されるn(又はp)型反転層
と、このn(又はp)型反転層上に形成される櫛型電極
および強誘電体層と、上部電極とを備え、前記強誘電体
層の自発分極効果によって前記pn接合を有する半導体
層に電場を誘起するようにしたものである。
(B) In a photoelectric energy conversion device for converting light energy into electric energy, a p (or n) type silicon substrate formed on a lower electrode and a p (or n) type silicon substrate are formed. An n (or p) type inversion layer, a comb-shaped electrode and a ferroelectric layer formed on the n (or p) type inversion layer, and an upper electrode, the spontaneous polarization effect of the ferroelectric layer. Is to induce an electric field in the semiconductor layer having the pn junction.

【0010】(C)上記(1)又は(2)記載の電界効
果型光電エネルギー変換装置において、前記強誘電体層
とその下層間に酸化珪素、窒化珪素、酸化セリウム等の
絶縁体を挿入するようにしたものである。 (D)上記(1)又は(2)記載の電界効果型光電エネ
ルギー変換装置において、出力された信号をCCD(C
harge Coupled Device)で転送す
るようにしたものである。
(C) In the field effect photoelectric energy conversion device according to (1) or (2), an insulator such as silicon oxide, silicon nitride or cerium oxide is inserted between the ferroelectric layer and the lower layer. It was done like this. (D) In the field effect photoelectric energy conversion device according to (1) or (2) above, the output signal is transferred to a CCD (C
The transfer is performed by the charge coupled device).

【0011】上記のように構成したので、太陽電池とし
て使用した場合、変換効率が向上するために、同一面積
の電池からより多くの出力が得られる。また、光センサ
として使用した場合、変換効率が向上するために、光検
出の感度が向上し、この感度向上によって素子の面積を
縮小でき、また、集積度を向上させることができる。
With the above structure, when used as a solar cell, the conversion efficiency is improved, so that more output can be obtained from the cells having the same area. Further, when used as an optical sensor, the conversion efficiency is improved, so that the sensitivity of light detection is improved, and the area of the device can be reduced by the improvement of the sensitivity, and the integration degree can be improved.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照しながら詳細に説明する。図1は本発明の
第1実施例を示す水素化非晶質珪素を用いた電界効果型
太陽電池の断面図、図1(a)はそのp−i−n接合の
場合を示す図、図1(b)はそのp−i又はn−i接合
で基板に金属を用いた場合を示す図である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view of a field effect solar cell using hydrogenated amorphous silicon showing a first embodiment of the present invention, and FIG. 1 (a) is a diagram showing the case of its pin junction. FIG. 1 (b) is a diagram showing a case where a metal is used for the substrate in the p-i or n-i junction.

【0013】この図に示すように、ガラスやプラスチッ
ク等の基板31の上に下部電極32を形成し、この上に
p型水素化非晶質珪素層33、i型水素化非晶質珪素層
34、n型水素化非晶質珪素層35を順次プラズマCV
D法によって成長させる。もし、基板31がガラスで、
下部電極32も透明ならば、当然光は下面から導入して
もよい。基板31として金属を用いた場合は、下部電極
32と共有できる。
As shown in this figure, a lower electrode 32 is formed on a substrate 31 such as glass or plastic, and a p-type hydrogenated amorphous silicon layer 33 and an i-type hydrogenated amorphous silicon layer are formed on the lower electrode 32. 34 and the n-type hydrogenated amorphous silicon layer 35 are sequentially subjected to plasma CV.
Grow by method D. If the substrate 31 is glass,
If the lower electrode 32 is also transparent, light may naturally be introduced from the lower surface. When a metal is used as the substrate 31, it can be shared with the lower electrode 32.

【0014】図1(a)に示すように、水素化非晶質珪
素層にn−i−p構造を設けるようにしたが、当然p−
i−n構造でもよい。また、図1(b)に示すように、
最上層35を省略し、i−p構造やi−n構造だけでも
電界効果によって十分な電界が得られる。次に、n型水
素化非晶質珪素層35上に櫛型電極36を形成し、この
上に強誘電体層37を成長させる。強誘電体としてはチ
タン酸バリウム(BaTiO3 )やPZT(PbZrx
1 1-X 3 )等多くの材料が知られており、スパッタ
リング法、真空蒸着法、パルスレーザー堆積法などによ
って容易に形成できる。さらに、表面に上部電極として
の透明導電膜38(金属膜)を形成する。
As shown in FIG. 1A, the hydrogenated amorphous silicon layer is provided with an nip structure.
It may have an in structure. In addition, as shown in FIG.
A sufficient electric field can be obtained by the field effect even if the uppermost layer 35 is omitted and only the ip structure or the in structure is used. Next, a comb-shaped electrode 36 is formed on the n-type hydrogenated amorphous silicon layer 35, and a ferroelectric layer 37 is grown on this. Ferroelectric materials include barium titanate (BaTiO 3 ) and PZT (PbZrx).
Many materials such as T 1 1-X O 3 ) are known and can be easily formed by a sputtering method, a vacuum evaporation method, a pulse laser deposition method, or the like. Further, a transparent conductive film 38 (metal film) as an upper electrode is formed on the surface.

【0015】このようにして得られた水素化非晶質珪素
を用いた太陽電池をデバイスシミュレーター“MEDI
CI”を使用して、強誘電体を用いた場合と用いない場
合についてその特性を計算した。計算の条件を表1にま
とめる。
The solar cell using the hydrogenated amorphous silicon thus obtained was tested by the device simulator "MEDI".
The characteristics were calculated using CI ”with and without the use of a ferroelectric. The conditions for the calculation are summarized in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】すなわち、(1)移動度は、電子の場合は
2cm2 /V・sec、ホールの場合は1cm2 /V・
sec、(2)寿命は、電子の場合は7nsec、ホー
ルの場合は7nsec、(3)移動度ギャップは、1.
5eV、(4)光強度は、4×1017photons/
sec・cm2 、(5)吸収長は、0.2micro
n、(6)使用ソフトは、2次元デバイスシミュレータ
ーMEDICI、(7)櫛型電極間隔は、30μm、
(8)非晶質珪素膜厚は、2μm、(9)n型不純物濃
度は、5×1016cm-3、(10)p型不純物濃度は、
5×1016cm-3である。
[0017] In other words, (1) mobility, in the case of electronic 2cm 2 / V · sec, in the case of Hall 1cm 2 / V ·
sec, (2) life is 7 nsec for electrons, 7 nsec for holes, and (3) mobility gap is 1.
5eV, (4) light intensity is 4 × 10 17 photons /
sec · cm 2 , (5) absorption length is 0.2 micro
n, (6) Software used is two-dimensional device simulator MEDCI, (7) Comb-shaped electrode spacing is 30 μm,
(8) The amorphous silicon film thickness is 2 μm, (9) n-type impurity concentration is 5 × 10 16 cm −3 , and (10) p-type impurity concentration is
It is 5 × 10 16 cm −3 .

【0018】図2に従来の強誘電体層なしの場合の太陽
電池内での電子と正孔の再結合速度を、図3に本発明の
強誘電体層を有する場合の太陽電池内での電子と正孔の
再結合速度をそれぞれ示している。すなわち、図2及び
図3において、X軸は太陽電池の縦断面方向、Y軸は太
陽電池の横断面方向、Z軸はその部位のlog電子・正
孔再結合速度〔絶対値〕(cm-3・sec-1)を示して
いる。
FIG. 2 shows the recombination rate of electrons and holes in the solar cell without the conventional ferroelectric layer, and FIG. 3 shows the recombination rate in the solar cell with the ferroelectric layer of the present invention. The recombination rates of electrons and holes are shown respectively. That is, in FIGS. 2 and 3, the X-axis is the vertical cross-sectional direction of the solar cell, the Y-axis is the horizontal cross-sectional direction of the solar cell, and the Z-axis is the log electron-hole recombination velocity [absolute value] (cm − 3 · sec −1 ) is shown.

【0019】図4は従来の太陽電池と本発明の太陽電池
の電流−電圧特性図であり、縦軸は電流(10-9A/μ
m)、横軸は電圧(V)を示している。この図におい
て、曲線aは従来の強誘電体層なしの場合の太陽電池、
曲線bは本発明の強誘電体層を有する場合の太陽電池の
それぞれの電流−電圧特性を示している。
FIG. 4 is a current-voltage characteristic diagram of the conventional solar cell and the solar cell of the present invention, where the vertical axis represents the current (10 −9 A / μm).
m), the horizontal axis represents voltage (V). In this figure, the curve a is the solar cell without the conventional ferroelectric layer,
Curve b shows the respective current-voltage characteristics of the solar cell having the ferroelectric layer of the present invention.

【0020】図5は従来の太陽電池と本発明の太陽電池
の出力−負荷特性図であり、縦軸はパワー(10-3W/
cm2 )、横軸は負荷(Ω−cm2 )を示している。こ
の図において、曲線aは従来の強誘電体層なしの場合の
太陽電池、曲線bは本発明の強誘電体層を有する場合の
太陽電池のそれぞれの電流−電圧特性を示している。
FIG. 5 is an output-load characteristic diagram of the conventional solar cell and the solar cell of the present invention, where the vertical axis represents power (10 −3 W /
cm 2 ), and the horizontal axis represents the load (Ω-cm 2 ). In this figure, the curve a shows the current-voltage characteristics of the solar cell without the conventional ferroelectric layer, and the curve b shows the current-voltage characteristics of the solar cell with the ferroelectric layer of the present invention.

【0021】これらの計算結果から明らかなように、強
誘電体の自発分極効果によって誘起された電場の増大に
よって、電子と正孔の再結合速度が抑制され、電気的エ
ネルギーの出力が向上していることがわかる。この実施
例の計算例は太陽電池を仮定したが、太陽電池と光セン
サは基本構造が同一である。したがって、この技術を光
センサとして使用しても、同様の改善がみられることは
言うまでもない。
As is clear from these calculation results, the recombination rate of electrons and holes is suppressed by the increase of the electric field induced by the spontaneous polarization effect of the ferroelectric substance, and the output of electrical energy is improved. You can see that Although the solar cell is assumed in the calculation example of this embodiment, the solar cell and the photosensor have the same basic structure. Therefore, it goes without saying that a similar improvement can be seen when this technique is used as an optical sensor.

【0022】図6は本発明の第2実施例を示す結晶珪素
を用いた電界効果型太陽電池の断面図である。この図に
示すように、下部に電極41を付けたp型珪素基板42
上に、ドナー注入により形成したn型部43と金属を組
合わせた櫛型電極43,44を配置する。それ以外の表
面に強誘電体層45を形成するようにしている。さら
に、その上に上部電極38を形成する。この電極は強誘
電体層を分極後、エッチングにより除去する。但し、透
明電極の場合は、そのまま残しておいてもよく、反射防
止効果も期待できる。つまり、この実施例は、第1実施
例に示した水素化非晶質珪素のかわりにバルク結晶を使
用すること以外は水素化非晶質珪素の構造とほぼ同一で
ある。
FIG. 6 is a sectional view of a field effect solar cell using crystalline silicon according to the second embodiment of the present invention. As shown in this figure, a p-type silicon substrate 42 having an electrode 41 attached to the bottom thereof
Comb-shaped electrodes 43 and 44 formed by combining a metal with the n-type portion 43 formed by donor implantation are arranged on the top. The ferroelectric layer 45 is formed on the other surface. Further, the upper electrode 38 is formed thereon. This electrode is removed by etching after polarization of the ferroelectric layer. However, in the case of a transparent electrode, it may be left as it is, and an antireflection effect can be expected. That is, this example has almost the same structure as hydrogenated amorphous silicon except that a bulk crystal is used instead of the hydrogenated amorphous silicon shown in the first example.

【0023】図7は本発明の第3実施例を示す水素化非
晶質(a)又は結晶珪素(b)を用いた電界効果型太陽
電池の断面図である。なお、第1実施例〔水素化非晶質
太陽電池(図1)〕と同じ部分については、同じ符号を
付してそれらについての説明は省略する。この実施例で
は、強誘電体層37とn型水素化非晶質珪素層35の間
に、酸化珪素、窒化珪素、酸化セリウム等の絶縁体層3
9を挿入する点が、第1実施例のものと相違し、その他
の点は同じである。
FIG. 7 is a sectional view of a field effect solar cell using hydrogenated amorphous (a) or crystalline silicon (b) showing a third embodiment of the present invention. The same parts as those in the first embodiment [hydrogenated amorphous solar cell (FIG. 1)] are designated by the same reference numerals, and the description thereof will be omitted. In this embodiment, an insulating layer 3 made of silicon oxide, silicon nitride, cerium oxide or the like is provided between the ferroelectric layer 37 and the n-type hydrogenated amorphous silicon layer 35.
9 is different from that of the first embodiment, and the other points are the same.

【0024】このように構成することにより、第1実施
例とほぼ同様な効果が得られ、半導体表面における再結
合を抑制する効果がある。強誘電体材料を分極させるた
めの電極は、強誘電体材料を分極させた後、エッチング
によって取り除かれるが、ITO(Indium Ti
n Oxide)等の透明な電極を使用した場合はエッ
チングせず、強誘電体層37の上に残しておいてもよ
い。
With this structure, almost the same effect as in the first embodiment can be obtained, and the recombination on the semiconductor surface can be suppressed. The electrode for polarizing the ferroelectric material is removed by etching after polarizing the ferroelectric material, but ITO (Indium Ti) is used.
When a transparent electrode such as n oxide) is used, it may be left on the ferroelectric layer 37 without etching.

【0025】図8は本発明の第4実施例を示す水素化非
晶質珪素太陽電池をCCD上に積層した2次元イメージ
センサの断面図である。この図に示すように、p型珪素
基板51にn型拡散層からなる蓄積ダイオード52とC
CD53を形成し、これらに対応した転送ゲート電極5
4とCCDゲート55を形成する。絶縁層56を形成
し、蓄積ダイオード52にコンタクトをとった下部電極
57を形成する。この下部電極57上にn型水素化非晶
質珪素層58、i型水素化非晶質珪素層59、p型水素
化非晶質珪素層60を順次プラズマCVD法によって成
長させる。p型水素化非晶質珪素層60上には強誘電体
層61を形成する。
FIG. 8 is a sectional view of a two-dimensional image sensor in which a hydrogenated amorphous silicon solar cell according to a fourth embodiment of the present invention is laminated on a CCD. As shown in this figure, a p-type silicon substrate 51 has a storage diode 52 and a C
CD53 is formed and the transfer gate electrode 5 corresponding to these is formed.
4 and the CCD gate 55 are formed. An insulating layer 56 is formed, and a lower electrode 57 that contacts the storage diode 52 is formed. An n-type hydrogenated amorphous silicon layer 58, an i-type hydrogenated amorphous silicon layer 59, and a p-type hydrogenated amorphous silicon layer 60 are sequentially grown on the lower electrode 57 by the plasma CVD method. A ferroelectric layer 61 is formed on the p-type hydrogenated amorphous silicon layer 60.

【0026】このように構成したので、上層の光センサ
で効率よく集められた信号(電子)は、下層のp型珪素
基板51内に作られた蓄積ダイオード52に溜められ、
転送ゲート電極54に正電圧が加わったときに、CCD
ゲート55により、CCD53に転送される。この信号
はCCD53中を伝わって増幅器(図示なし)まで転送
される。
With this configuration, the signals (electrons) efficiently collected by the upper photosensor are stored in the storage diode 52 formed in the lower p-type silicon substrate 51,
When a positive voltage is applied to the transfer gate electrode 54, the CCD
It is transferred to the CCD 53 by the gate 55. This signal is transmitted through the CCD 53 to an amplifier (not shown).

【0027】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
It should be noted that the present invention is not limited to the above embodiment, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

【0028】[0028]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下のような効果を奏することができる。 (1)太陽電池として使用した場合、変換効率が向上す
るために、同一面積の電池から、より多くの出力が得ら
れる。
As described above, according to the present invention, the following effects can be obtained. (1) When used as a solar cell, since the conversion efficiency is improved, more output can be obtained from cells having the same area.

【0029】(2)光生成キャリアの再結合が抑制され
るため、水素化非晶質太陽電池の光劣化が低減され、信
頼性が向上する。 (3)光センサとして使用した場合、変換効率が向上す
るために、光検出の感度が向上する。 (4)光センサとして使用した場合においては、この感
度向上によって素子の面積を縮小でき、また、集積度を
向上させることができる。
(2) Since recombination of photogenerated carriers is suppressed, photodegradation of the hydrogenated amorphous solar cell is reduced and reliability is improved. (3) When used as an optical sensor, the conversion efficiency is improved, and thus the sensitivity of light detection is improved. (4) When used as an optical sensor, the area of the device can be reduced and the degree of integration can be improved due to the improvement in sensitivity.

【0030】(5)また、強誘電体層の成長は安価にで
きるため、製造価格の増加はほとんどない。
(5) Further, since the ferroelectric layer can be grown at a low cost, the manufacturing cost hardly increases.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す水素化非晶質珪素を
用いた電界効果型太陽電池の断面図である。
FIG. 1 is a sectional view of a field effect solar cell using hydrogenated amorphous silicon showing a first embodiment of the present invention.

【図2】従来の強誘電体層なしの場合の太陽電池内での
電子と正孔の再結合速度を示す図である。
FIG. 2 is a diagram showing a recombination rate of electrons and holes in a solar cell without a conventional ferroelectric layer.

【図3】本発明の強誘電体層を有する場合の太陽電池内
での電子と正孔の再結合速度を示す図である。
FIG. 3 is a diagram showing a recombination rate of electrons and holes in a solar cell having a ferroelectric layer of the present invention.

【図4】従来の太陽電池と本発明の太陽電池の電流−電
圧特性を示す図である。
FIG. 4 is a diagram showing current-voltage characteristics of a conventional solar cell and the solar cell of the present invention.

【図5】従来の太陽電池と本発明の太陽電池の出力−負
荷特性を示す図である。
FIG. 5 is a diagram showing output-load characteristics of a conventional solar cell and a solar cell of the present invention.

【図6】本発明の第2実施例を示す結晶珪素を用いた電
界効果型太陽電池の断面図である。
FIG. 6 is a sectional view of a field effect solar cell using crystalline silicon according to a second embodiment of the present invention.

【図7】本発明の第3実施例を示す水素化非晶質(a)
または結晶珪素(b)を用いた電界効果型太陽電池の断
面図である。
FIG. 7 is a hydrogenated amorphous material (a) showing a third embodiment of the present invention.
Alternatively, it is a cross-sectional view of a field effect solar cell using crystalline silicon (b).

【図8】本発明の第4実施例を示す水素化非晶質珪素を
用いた電界効果型太陽電池をCCD上に積層した2次元
イメージセンサの断面図である。
FIG. 8 is a sectional view of a two-dimensional image sensor in which a field effect solar cell using hydrogenated amorphous silicon according to a fourth embodiment of the present invention is laminated on a CCD.

【図9】従来の水素非晶質珪素を用いた太陽電池の断面
図である。
FIG. 9 is a cross-sectional view of a conventional solar cell using hydrogen amorphous silicon.

【図10】従来の結晶半導体を利用した太陽電池の断面
図である。
FIG. 10 is a cross-sectional view of a conventional solar cell using a crystalline semiconductor.

【図11】従来の不純物拡散層を不要とした太陽電池の
断面図である。
FIG. 11 is a cross-sectional view of a solar cell in which a conventional impurity diffusion layer is unnecessary.

【符号の説明】[Explanation of symbols]

31 基板 32,41,57 下部電極 33,60 p型水素化非晶質珪素層 34,59 i型水素化非晶質珪素層 35,58 n型水素化非晶質珪素層 36,44 櫛型電極 37,45,61 強誘電体層 38 上部電極 39 絶縁体層 42,51 p型珪素基板 43 n型珪素層 52 蓄積ダイオード 53 CCD 54 転送ゲート電極 55 CCDゲート 56 絶縁層 31 substrate 32, 41, 57 lower electrode 33, 60 p-type hydrogenated amorphous silicon layer 34, 59 i-type hydrogenated amorphous silicon layer 35, 58 n-type hydrogenated amorphous silicon layer 36, 44 comb type Electrodes 37, 45, 61 Ferroelectric layer 38 Upper electrode 39 Insulator layer 42, 51 p-type silicon substrate 43 n-type silicon layer 52 Storage diode 53 CCD 54 Transfer gate electrode 55 CCD gate 56 Insulation layer

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 光エネルギーを電気エネルギーに変換す
る光電エネルギー変換装置において、(a)下部電極上
に形成される水素化非晶質珪素層と、(b)該水素化非
晶質珪素層上に形成される櫛型電極および強誘電体層
と、(c)上部電極とを備え、(d)前記強誘電体層の
自発分極効果によって前記水素化非晶質珪素層に電場を
誘起する電界効果型光電エネルギー変換装置。
1. A photoelectric energy conversion device for converting light energy into electric energy, comprising: (a) a hydrogenated amorphous silicon layer formed on a lower electrode; and (b) on the hydrogenated amorphous silicon layer. An electric field that induces an electric field in the hydrogenated amorphous silicon layer by the spontaneous polarization effect of the ferroelectric layer, and (c) an upper electrode. Effect type photoelectric energy converter.
【請求項2】 光エネルギーを電気エネルギーに変換す
る光電エネルギー変換装置において、(a)背面に下部
電極を形成したp(またはn)型珪素基板と、(b)該
珪素基板上に形成されるn(またはp)型注入層と金属
を積層した櫛型電極と、(c)前記珪素基板と櫛型電極
の上面に形成される強誘電体層と、(d)上部電極とを
備え、(e)前記強誘電体層の自発分極効果によって珪
素基板上部(界面近傍)に反転層を誘起してpn接合を
形成する電界効果型光電エネルギー変換装置。
2. A photoelectric energy conversion device for converting light energy into electric energy, comprising: (a) a p (or n) type silicon substrate having a lower electrode formed on the back surface; and (b) formed on the silicon substrate. an n (or p) type injecting layer and a metal-layered comb-shaped electrode; (c) a ferroelectric layer formed on the upper surface of the silicon substrate and the comb-shaped electrode; and (d) an upper electrode. e) A field-effect photoelectric energy conversion device in which an inversion layer is induced above the silicon substrate (in the vicinity of the interface) by the spontaneous polarization effect of the ferroelectric layer to form a pn junction.
【請求項3】 請求項1又は2記載の電界効果型光電エ
ネルギー変換装置において、前記強誘電体層とその下層
間に酸化珪素、窒化珪素、酸化セリウム等の絶縁体を挿
入する電界効果型光電エネルギー変換装置。
3. The field effect photoelectric energy conversion device according to claim 1, wherein an insulator such as silicon oxide, silicon nitride, or cerium oxide is inserted between the ferroelectric layer and an underlying layer. Energy conversion device.
【請求項4】 請求項1又は2記載の電界効果型光電エ
ネルギー変換装置において、出力された信号をCCDで
転送する電界効果型光電エネルギー変換装置。
4. The field effect photoelectric energy conversion device according to claim 1, wherein the output signal is transferred by a CCD.
【請求項5】 請求項1又は2記載の電界効果型光電エ
ネルギー変換装置において、上部電極として酸化物透明
導電膜を用いる電界効果型光電エネルギー変換装置。
5. The field effect photoelectric energy conversion device according to claim 1, wherein the oxide transparent conductive film is used as the upper electrode.
【請求項6】 請求項1又は2記載の電界効果型光電エ
ネルギー変換装置において、上下の電極に電界を印加し
て誘電体を分極させた後、上部電極をエッチングにより
取り除いた電界効果型光電エネルギー変換装置。
6. The field effect photoelectric energy conversion device according to claim 1, wherein an electric field is applied to the upper and lower electrodes to polarize the dielectric, and then the upper electrode is removed by etching. Converter.
【請求項7】 請求項1、3、5又は6記載の電界効果
型光電エネルギー変換装置において、前記水素化非晶質
珪素層に、通常の非晶質珪素太陽電池と同様のp−i−
n又はn−i−p接合構造を有する電界効果型光電エネ
ルギー変換装置。
7. The field effect photoelectric energy conversion device according to claim 1, 3, 5 or 6, wherein the hydrogenated amorphous silicon layer has the same p-i-type as a normal amorphous silicon solar cell.
A field effect photoelectric energy conversion device having an n or n-i-p junction structure.
【請求項8】 請求項1、3、5又は6記載の電界効果
型光電エネルギー変換装置において、強誘電体を分極さ
せない状態では、水素化非晶質珪素層にp−i又はn−
i接合構造を有する電界効果型光電エネルギー変換装
置。
8. The field-effect photoelectric energy conversion device according to claim 1, 3, 5 or 6, wherein the hydrogenated amorphous silicon layer has pi or n- in a state where the ferroelectric substance is not polarized.
A field effect photoelectric energy conversion device having an i-junction structure.
JP01662396A 1996-02-01 1996-02-01 Field effect type photoelectric energy converter Expired - Fee Related JP3585621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01662396A JP3585621B2 (en) 1996-02-01 1996-02-01 Field effect type photoelectric energy converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01662396A JP3585621B2 (en) 1996-02-01 1996-02-01 Field effect type photoelectric energy converter

Publications (2)

Publication Number Publication Date
JPH09213987A true JPH09213987A (en) 1997-08-15
JP3585621B2 JP3585621B2 (en) 2004-11-04

Family

ID=11921480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01662396A Expired - Fee Related JP3585621B2 (en) 1996-02-01 1996-02-01 Field effect type photoelectric energy converter

Country Status (1)

Country Link
JP (1) JP3585621B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246617A (en) * 2001-02-16 2002-08-30 Honda Motor Co Ltd Field-effect solar cell
KR100786855B1 (en) * 2001-08-24 2007-12-20 삼성에스디아이 주식회사 Solar cell using ferroelectric material
WO2014065284A1 (en) * 2012-10-23 2014-05-01 株式会社Bsr Potential-difference generation method and device
KR101418687B1 (en) * 2013-08-14 2014-07-11 서울시립대학교 산학협력단 Solar cell
JP2014192415A (en) * 2013-03-28 2014-10-06 Seiko Epson Corp Photoelectric conversion element and solar cell
JP2015070003A (en) * 2013-09-26 2015-04-13 セイコーエプソン株式会社 Photoelectric conversion element and manufacturing method of the same
KR20150108289A (en) * 2014-03-17 2015-09-25 전영권 Solar cells and manufacturing method for the same
JP2015191967A (en) * 2014-03-27 2015-11-02 三菱電機株式会社 Solar battery cell and method of manufacturing the same
JP2016521016A (en) * 2013-06-17 2016-07-14 ジョン,ヨン−クォン Solar cell and manufacturing method thereof
JP2016528737A (en) * 2013-08-14 2016-09-15 サンパワー コーポレイション Solar cell module having high electrical susceptibility layer
CN110379873A (en) * 2019-07-30 2019-10-25 纳晶科技股份有限公司 A kind of quantum point detector
WO2024066940A1 (en) * 2022-09-30 2024-04-04 隆基绿能科技股份有限公司 Solar cell with spontaneous polarization structure

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246617A (en) * 2001-02-16 2002-08-30 Honda Motor Co Ltd Field-effect solar cell
KR100786855B1 (en) * 2001-08-24 2007-12-20 삼성에스디아이 주식회사 Solar cell using ferroelectric material
WO2014065284A1 (en) * 2012-10-23 2014-05-01 株式会社Bsr Potential-difference generation method and device
JPWO2014065284A1 (en) * 2012-10-23 2016-09-08 株式会社Bsr Potential difference generation method and apparatus
JP2014192415A (en) * 2013-03-28 2014-10-06 Seiko Epson Corp Photoelectric conversion element and solar cell
JP2016521016A (en) * 2013-06-17 2016-07-14 ジョン,ヨン−クォン Solar cell and manufacturing method thereof
EP3012875A4 (en) * 2013-06-17 2017-01-25 Jun, Young-kwon Solar cell and manufacturing method therefor
JP2016528737A (en) * 2013-08-14 2016-09-15 サンパワー コーポレイション Solar cell module having high electrical susceptibility layer
WO2015023096A3 (en) * 2013-08-14 2015-04-09 서울시립대학교산학협력단 Solar cell
WO2015023096A2 (en) * 2013-08-14 2015-02-19 서울시립대학교산학협력단 Solar cell
KR101418687B1 (en) * 2013-08-14 2014-07-11 서울시립대학교 산학협력단 Solar cell
US11177398B2 (en) 2013-08-14 2021-11-16 University Of Seoul Industry Cooperation Foundation Solar cell
JP2015070003A (en) * 2013-09-26 2015-04-13 セイコーエプソン株式会社 Photoelectric conversion element and manufacturing method of the same
KR20150108289A (en) * 2014-03-17 2015-09-25 전영권 Solar cells and manufacturing method for the same
JP2015191967A (en) * 2014-03-27 2015-11-02 三菱電機株式会社 Solar battery cell and method of manufacturing the same
CN110379873A (en) * 2019-07-30 2019-10-25 纳晶科技股份有限公司 A kind of quantum point detector
WO2024066940A1 (en) * 2022-09-30 2024-04-04 隆基绿能科技股份有限公司 Solar cell with spontaneous polarization structure

Also Published As

Publication number Publication date
JP3585621B2 (en) 2004-11-04

Similar Documents

Publication Publication Date Title
US7297927B2 (en) Fabrication of low leakage-current backside illuminated photodiodes
US4616247A (en) P-I-N and avalanche photodiodes
Jensen et al. Optimization and characterization of amorphous/crystalline silicon heterojunction solar cells
JP3585621B2 (en) Field effect type photoelectric energy converter
JPH0795603B2 (en) Photovoltaic device
US20150303345A1 (en) Amplified detector formed by low temperature direct wafer bonding
JPH0217992B2 (en)
JP4243046B2 (en) Photovoltaic element
JP2002076397A (en) Manufacturing method of photovoltaic device
KR20180097222A (en) Solar Cell
Chu et al. High‐performance backside‐illuminated Hg0. 78Cd0. 22Te/CdTe (λCO= 10 μm) planar diodes
JP2001135851A (en) Photoelectric conversion element and solid-state imaging device
Appel et al. Effect of junction interface modification of silicon heterojunction solar cells
JPH11261047A (en) Image sensor
JPS61222275A (en) Photovoltaic device
JP2003158275A (en) Photoelectric conversion element and its manufacturing method
JP2673021B2 (en) Solar cell
JP2721769B2 (en) Photovoltaic element
JPH0595124A (en) Photoelectric conversion element
Lin et al. Effect of in-grain porous silicon structure on photovoltaic device
JP2004079789A (en) Solar cell
Vygranenko et al. Carrier transport and photogeneration in amorphous silicon/crystalline silicon heterojunctions with i/n and p/n interfaces
Khalvati et al. Quantum Efficiency Modeling of Amorphous/Crystalline Silicon Heterojunction Photovoltaic Devices
JPH04199750A (en) Photovoltaic device
Agha-Mirbaha Germanium-based metal-semiconductor-metal photodetectors for 1.550 μm optical communication wavelength

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees