JPH09213891A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH09213891A
JPH09213891A JP1690796A JP1690796A JPH09213891A JP H09213891 A JPH09213891 A JP H09213891A JP 1690796 A JP1690796 A JP 1690796A JP 1690796 A JP1690796 A JP 1690796A JP H09213891 A JPH09213891 A JP H09213891A
Authority
JP
Japan
Prior art keywords
region
diffusion region
type
conductive layer
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1690796A
Other languages
Japanese (ja)
Inventor
Hironori Yamazaki
裕基 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1690796A priority Critical patent/JPH09213891A/en
Publication of JPH09213891A publication Critical patent/JPH09213891A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To surely enable the operation of a lateral bipolar by making at least one part of the second conductivity type of second diffusion area exist between plural adjacent extended regions in the first diffusion area. SOLUTION: An element isolating area 203 being an insulating layer is made between n-type diffusion areas 201 and 202, and this isolates both electrically. At the time of application of high voltage such as static electricity, the lateral bipolar constituted of the three regions of an n-type diffusion are 201, a p-type well are, and an n-type diffusion area 202 operates by the breakdown of the diode between the n-type diffusion area 201 and the p-type well area. Therefore, an excessive current of static electricity application is discharged from an earth terminal to outside of the device. Moreover, between connection holes 211 and 213, by the load for the amount of resistance of the n-type diffusion area, voltage higher than the diode connected in parallel with the lateral bipolar in an inner circuit is applied to the diode between the n-type diffusion area 201 and the p-type well area, and the lateral bipolar operates.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置に関し、
特に装置外部からの静電気などの高電圧印加に対する内
部回路の保護に関する。
The present invention relates to a semiconductor device,
In particular, it relates to protection of internal circuits against high voltage application such as static electricity from the outside of the device.

【0002】[0002]

【従来の技術】従来の技術による半導体装置では、特開
昭57−115854に記載の入力保護回路によると、
図8に示す二つのN型の拡散領域801、802が、互
いに素子分離領域により電気的に分離されてP型ウェル
領域803上に形成され、N型の拡散領域801が、外
部接続端子に、N型の拡散領域802が、接地端子に、
P型ウェル領域803が、P型ウェル領域803よりは
濃度の高いP型のウェル電極形成領域804を介して接
地端子に、それぞれAl、Ti、W、多結晶Siなどの
導電層により接続されており、正の静電気が装置外部か
ら印加された場合、N型の拡散領域801、P型ウェル
領域803によって構成されるダイオード821のブレ
イクダウンをきっかけとして、P型ウェル領域803の
電位が上昇し、N型の拡散領域801、P型ウェル領域
803、N型の拡散領域802によって構成されるNP
N型ラテラルバイポーラ822が動作し、これによって
静電気印加に伴う過大電流をN型の拡散領域802より
導電層を介して接地端子812から装置外部に放出し、
内部回路を装置外部からの静電気印加より保護してい
た。
2. Description of the Related Art In a conventional semiconductor device, according to an input protection circuit disclosed in Japanese Patent Laid-Open No. 57-115854,
The two N type diffusion regions 801 and 802 shown in FIG. 8 are formed on the P type well region 803 by being electrically isolated from each other by the element isolation region, and the N type diffusion region 801 serves as an external connection terminal. The N type diffusion region 802 is connected to the ground terminal,
The P-type well region 803 is connected to the ground terminal via a P-type well electrode forming region 804 having a higher concentration than that of the P-type well region 803 by a conductive layer such as Al, Ti, W, or polycrystalline Si. Therefore, when positive static electricity is applied from the outside of the device, the potential of the P-type well region 803 increases due to the breakdown of the diode 821 formed by the N-type diffusion region 801 and the P-type well region 803. An NP composed of an N-type diffusion region 801, a P-type well region 803, and an N-type diffusion region 802.
The N-type lateral bipolar 822 operates, whereby an excessive current due to application of static electricity is discharged from the ground terminal 812 to the outside of the device through the conductive layer from the N-type diffusion region 802,
The internal circuit was protected against the application of static electricity from outside the device.

【0003】[0003]

【発明が解決しようとする課題】しかし、前記従来技術
による半導体装置では、図9に示すように、外部接続端
子901に導電層によって接続されるNPN型ラテラル
バイポーラ910の動作のきっかけとなるダイオード9
11のブレイクダウン電圧が、被保護回路である内部回
路920と接地端子902の間のダイオード912のブ
レイクダウン電圧と比較して、高いもしくは十分な差が
ない場合に、装置外部からの正の静電気印加に対して、
ダイオード911がブレイクダウンせずに、ダイオード
912がブレイクダウンし、内部回路920が破壊に至
る可能性があり、確実にダイオード911をブレイクダ
ウンさせ、NPN型ラテラルバイポーラ910を動作さ
せることにより、半導体装置の十分な静電気耐圧を確保
するためには、静電気保護領域の集積度を犠牲にして、
前記ラテラルバイポーラ910と内部回路920の間
に、別途に不純物拡散領域あるいは多結晶Siなどから
なる903を挿入する必要があった。
However, in the semiconductor device according to the prior art described above, as shown in FIG. 9, the diode 9 that triggers the operation of the NPN lateral bipolar 910 connected to the external connection terminal 901 by the conductive layer is used.
When the breakdown voltage of 11 is higher or does not have a sufficient difference as compared with the breakdown voltage of the diode 912 between the internal circuit 920 which is the protected circuit and the ground terminal 902, positive static electricity from the outside of the device For application,
There is a possibility that the diode 912 will break down and the internal circuit 920 will be destroyed without the diode 911 breaking down. Therefore, the diode 911 is surely broken down and the NPN lateral bipolar 910 is operated. In order to secure sufficient electrostatic withstand voltage of, sacrifice the integration degree of the electrostatic protection area,
Between the lateral bipolar 910 and the internal circuit 920, it is necessary to separately insert an impurity diffusion region or 903 made of polycrystalline Si or the like.

【0004】そこで、本発明はこの問題点を解決するた
めのもので、その目的は製造工程数の増加、製造工程の
複雑化を招くことなく、前記抵抗体と前記ラテラルバイ
ポーラの前記第一の拡散領域を同一の領域中に設けるこ
とによって、静電気保護領域の集積度を犠牲にして別途
に抵抗体を挿入する必要性をなくし、確実にラテラルバ
イポーラを動作させ、装置外部からの静電気などの高電
圧の印加に対する半導体装置の耐圧を向上させるところ
にある。
Therefore, the present invention is intended to solve this problem, and its purpose is to increase the number of manufacturing steps and to complicate the manufacturing steps without increasing the number of manufacturing steps. By providing the diffusion area in the same area, there is no need to insert a resistor separately at the expense of the integration degree of the electrostatic protection area, the lateral bipolar is operated reliably, and high static electricity from the outside of the device is eliminated. This is to improve the breakdown voltage of the semiconductor device against the application of voltage.

【0005】[0005]

【課題を解決するための手段】本発明における半導体装
置は、外部装置と入出力インターフェースする入出力回
路を具備し、前記入出力回路内の第一導電型ウェル領域
内に、第二導電型の第一の拡散領域と、前記第二導電型
の第一の拡散領域とは素子分離領域によって電気的に分
離された第二導電型の第二の拡散領域と、前記ウェル領
域に電位を供給するための前記第一導電型ウェル領域よ
りは濃度の高い第一導電型ウェル電極形成領域を有する
半導体装置において、前記第二導電型の第一の拡散領域
は、第一の方向に複数箇所が延長されており、前記複数
の延長された領域以外の領域内に前記第一の方向に直交
する第二の方向に配列される第一の接続孔から外部接続
端子に、前記複数の延長された領域内に配置される第二
の接続孔から内部回路に、それぞれ導電層により接続さ
れ、前記第二導電型の第二の拡散領域は、少なくともそ
の一部が、前記第一の拡散領域の互いに隣接する前記複
数の延長された領域の間に存在することを特徴とし、ま
た、前記第二導電型の第一の拡散領域は、第一の方向に
複数箇所が延長されており、前記複数の延長された領域
内に配列される第二の接続孔から外部接続端子に、前記
複数の延長された領域以外の領域内に前記第一の方向に
直交する第二の方向に配置される第一の接続孔から内部
回路に、それぞれ導電層により接続され、前記第二導電
型の第二の拡散領域は、少なくともその一部が、前記第
一の拡散領域の互いに隣接する前記複数の延長された領
域の間に存在することを特徴とし、また、前記第二導電
型の第二の拡散領域は、周囲に環状の前記第二導電型の
第一の拡散領域を有し、環状の前記第二導電型の第一の
拡散領域は、領域の一辺に沿って第一の方向に配列され
る第一の接続孔から外部接続端子に、前記第一の接続孔
と前記第二導電型の第二の拡散領域及び素子分離領域を
挟んで対向し、前記第一の方向に直交する第二の方向に
配置される第二の接続孔から内部回路に、それぞれ導電
層により接続されることを特徴とする。
A semiconductor device according to the present invention comprises an input / output circuit for input / output interface with an external device, and a second conductivity type well region is provided in a first conductivity type well region in the input / output circuit. A first diffusion region and a second diffusion region of the second conductivity type are electrically separated from each other by an element isolation region, and a potential is supplied to the well region. In the semiconductor device having the first-conductivity-type well electrode forming region having a higher concentration than the first-conductivity-type well region, the second-conductivity-type first diffusion region has a plurality of locations extending in the first direction. The plurality of extended regions from the first connection holes arranged in the second direction orthogonal to the first direction to the external connection terminal in the region other than the plurality of extended regions. Inside from the second connection hole located inside And a second diffusion region of the second conductivity type, at least a part of which is present between the plurality of extended regions adjacent to each other of the first diffusion region. In addition, the first diffusion region of the second conductivity type has a plurality of extending in the first direction, the second connection arranged in the plurality of extended regions. The holes are connected to the external connection terminals, and the first connection holes arranged in the second direction orthogonal to the first direction in regions other than the plurality of extended regions are connected to the internal circuits by conductive layers. The second diffusion region of the second conductivity type is characterized in that at least a part thereof is present between the plurality of extended regions adjacent to each other of the first diffusion region, and The second diffusion region of the second conductivity type has an annular shape around the periphery. Having a first diffusion region of the second conductivity type, the first diffusion region of the second conductivity type of the annular, from the first connection hole arranged in a first direction along one side of the region. An external connection terminal, which faces the first connection hole with the second diffusion region and the element isolation region of the second conductivity type interposed therebetween and is arranged in a second direction orthogonal to the first direction. The second connection hole is connected to the internal circuit by a conductive layer.

【0006】[0006]

【発明の実施の形態】以下、本発明による実施例を図
1、図2、図3、図4、図5、図6、図7を用いて説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIGS. 1, 2, 3, 4, 5, 6, and 7.

【0007】図1は本発明による半導体装置の全体図で
あり、本発明による半導体装置は、半導体基板101の
表面上の外周部の領域102に装置外部に接続する入出
力回路及び電源供給回路を、その内側の103の領域に
論理回路をそれぞれ有する。
FIG. 1 is an overall view of a semiconductor device according to the present invention. In the semiconductor device according to the present invention, an input / output circuit and a power supply circuit connected to the outside of the device are provided in a peripheral region 102 on the surface of a semiconductor substrate 101. , And has a logic circuit in a region 103 inside thereof.

【0008】図2は本発明による一つ目の実施例である
半導体装置における入出力回路内の静電気保護回路の平
面図であり、図2に示す範囲の全面にP型ウェル領域が
存在する。N型の拡散領域201は、二つの凸部を有
し、N型の拡散領域201の凸部以外の領域内の接続孔
211からAl、W、Ti、多結晶Siなどからなる最
下層の導電層221を介して外部接続端子に接続され、
N型の拡散領域201の凸部内に配置する接続孔213
から最下層の導電層223を介して内部回路へ接続され
る。N型の拡散領域202は、N型の拡散領域201の
凸部の間に少なくともその一部が存在するように形成さ
れ、基板と最下層の導電層とを接続する接続孔212及
び、最下層の導電層222及び、最下層の導電層と上部
の導電層とを接続する接続孔214及び、上部の導電層
224によって接地端子に接続される。絶縁層である素
子分離領域203は、N型の拡散領域201、202の
間に形成され、両者を電気的に分離する。このような構
成による保護回路によると、装置外部からの静電気のよ
うな高電圧の印加時には、N型の拡散領域201とP型
ウェル領域との間のダイオードのブレイクダウンをきっ
かけとして、N型の拡散領域201、P型ウェル領域、
N型の拡散領域202の三つの領域によって構成するラ
テラルバイポーラが動作し、接地端子より装置外部に、
静電気印加に伴う過大電流を放出する。また、接続孔2
11、213間にN型の拡散領域201の抵抗成分が負
荷されるため、N型の拡散領域201とP型ウェル領域
との間のダイオードには、内部回路内においてラテラル
バイポーラと並列に接続されるダイオードより高い電圧
が掛かり、ラテラルバイポーラは、確実に動作する。
FIG. 2 is a plan view of the electrostatic protection circuit in the input / output circuit of the semiconductor device according to the first embodiment of the present invention, in which the P-type well region is present on the entire surface shown in FIG. The N type diffusion region 201 has two convex portions, and the conductivity of the lowermost layer made of Al, W, Ti, polycrystalline Si, etc. from the connection hole 211 in the region other than the convex portion of the N type diffusion region 201. Connected to the external connection terminal through the layer 221;
Connection hole 213 arranged in the convex portion of N type diffusion region 201
To the internal circuit via the lowermost conductive layer 223. The N-type diffusion region 202 is formed so that at least a part thereof exists between the convex portions of the N-type diffusion region 201, and the connection hole 212 for connecting the substrate and the lowermost conductive layer and the lowermost layer. The conductive layer 222, the connection hole 214 for connecting the lowermost conductive layer and the upper conductive layer, and the upper conductive layer 224 are connected to the ground terminal. The element isolation region 203, which is an insulating layer, is formed between the N-type diffusion regions 201 and 202 and electrically isolates the two. According to the protection circuit having such a configuration, when a high voltage such as static electricity from the outside of the device is applied, the breakdown of the diode between the N-type diffusion region 201 and the P-type well region triggers the N-type diffusion region 201. Diffusion region 201, P-type well region,
The lateral bipolar configured by the three regions of the N-type diffusion region 202 operates, and from the ground terminal to the outside of the device,
It emits excessive current due to the application of static electricity. Also, the connection hole 2
Since the resistance component of the N-type diffusion region 201 is loaded between 11 and 213, the diode between the N-type diffusion region 201 and the P-type well region is connected in parallel with the lateral bipolar in the internal circuit. A higher voltage is applied than the diode, and the lateral bipolar operates reliably.

【0009】図3は本発明による二つ目の実施例である
半導体装置における入出力回路内の静電気保護回路の平
面図であり、図3に示す範囲の全面にP型ウェル領域が
存在する。図3に示す静電気保護回路は、図2に示した
一つ目の実施例である半導体装置における入出力回路内
の静電気保護回路を、N型の拡散領域201の凸部を共
通にし、複数個連結したものである。N型の拡散領域3
01は、複数の凸部を有し、N型の拡散領域301の凸
部以外の領域内の接続孔311からAl、W、Ti、多
結晶Siなどからなる最下層の導電層321を介して外
部接続端子に接続され、N型の拡散領域301の凸部内
に配置する接続孔313から最下層の導電層323を介
して内部回路へ接続される。N型の拡散領域302は、
N型の拡散領域301の互いに隣接する凸部の間に少な
くともその一部が存在するように形成され、基板と最下
層の導電層とを接続する接続孔312及び、最下層の導
電層322及び、最下層の導電層と上部の導電層とを接
続する接続孔314及び、上部の導電層324によって
接地端子に接続される。絶縁層である素子分離領域30
3は、N型の拡散領域301、302の間に形成され、
両者を電気的に分離する。このような構成による保護回
路によると、装置外部からの静電気のような高電圧の印
加時には、N型の拡散領域301とP型ウェル領域との
間のダイオードのブレイクダウンをきっかけとして、N
型の拡散領域301、P型ウェル領域、N型の拡散領域
302の三つの領域によって構成するラテラルバイポー
ラが動作し、接地端子より装置外部に、静電気印加に伴
う過大電流を放出する。また、接続孔311、313間
にN型の拡散領域301の抵抗成分が負荷されるため、
N型の拡散領域301とP型ウェル領域との間のダイオ
ードには、内部回路内においてラテラルバイポーラと並
列に接続されるダイオードより高い電圧が掛かり、ラテ
ラルバイポーラは、確実に動作する。
FIG. 3 is a plan view of an electrostatic protection circuit in an input / output circuit in a semiconductor device according to a second embodiment of the present invention, in which a P-type well region is present on the entire surface shown in FIG. The electrostatic protection circuit shown in FIG. 3 has a plurality of electrostatic protection circuits in the input / output circuit of the semiconductor device of the first embodiment shown in FIG. It is a connection. N type diffusion region 3
01 has a plurality of protrusions, and the connection hole 311 in the region other than the protrusions of the N-type diffusion region 301 is connected via the lowermost conductive layer 321 made of Al, W, Ti, polycrystalline Si or the like. It is connected to an external connection terminal and is connected to an internal circuit through a connection hole 313 arranged in the convex portion of the N type diffusion region 301 through the lowermost conductive layer 323. The N type diffusion region 302 is
At least a part of the N-type diffusion region 301 is formed between the adjacent convex portions, and the connection hole 312 connects the substrate and the lowermost conductive layer, and the lowermost conductive layer 322. , The lowermost conductive layer and the upper conductive layer are connected to each other, and the upper conductive layer 324 is connected to the ground terminal. Element isolation region 30 which is an insulating layer
3 is formed between the N type diffusion regions 301 and 302,
The two are electrically separated. According to the protection circuit having such a configuration, when a high voltage such as static electricity is applied from the outside of the device, the breakdown of the diode between the N-type diffusion region 301 and the P-type well region is used as a trigger.
The lateral bipolar configured by the three regions of the diffusion region 301 of the type, the P-type well region, and the diffusion region 302 of the N type operates, and an excessive current due to the application of static electricity is discharged from the ground terminal to the outside of the device. Further, since the resistance component of the N-type diffusion region 301 is loaded between the connection holes 311, 313,
The diode between the N type diffusion region 301 and the P type well region receives a higher voltage than the diode connected in parallel with the lateral bipolar in the internal circuit, and the lateral bipolar operates reliably.

【0010】図4は本発明による三つ目の実施例である
半導体装置における入出力回路内の静電気保護回路の平
面図であり、図4に示す範囲の全面にP型ウェル領域が
存在する。図4に示す静電気保護回路は、図2に示した
一つ目の実施例である半導体装置における入出力回路内
の静電気保護回路の配線を変更したものである。N型の
拡散領域401は、二つの凸部を有し、N型の拡散領域
401の凸部内に配置する接続孔411から最下層の導
電層421を介して外部接続端子に接続され、N型の拡
散領域401の凸部以外の領域内の接続孔413からA
l、W、Ti、多結晶Siなどからなる最下層の導電層
423を介して内部回路へ接続される。N型の拡散領域
402は、N型の拡散領域401の凸部の間に少なくと
もその一部が存在するように形成され、基板と最下層の
導電層とを接続する接続孔412及び、最下層の導電層
422及び、最下層の導電層と上部の導電層とを接続す
る接続孔414及び、上部の導電層424によって接地
端子に接続される。絶縁層である素子分離領域403
は、N型の拡散領域401、402の間に形成され、両
者を電気的に分離する。このような構成による保護回路
によると、装置外部からの静電気のような高電圧の印加
時には、N型の拡散領域401とP型ウェル領域との間
のダイオードのブレイクダウンをきっかけとして、N型
の拡散領域401、P型ウェル領域、N型の拡散領域4
02の三つの領域によって構成するラテラルバイポーラ
が動作し、接地端子より装置外部に、静電気印加に伴う
過大電流を放出する。また、接続孔411、413間に
N型の拡散領域401の抵抗成分が負荷されるため、N
型の拡散領域401とP型ウェル領域との間のダイオー
ドには、内部回路内においてラテラルバイポーラと並列
に接続されるダイオードより高い電圧が掛かり、ラテラ
ルバイポーラは、確実に動作する。
FIG. 4 is a plan view of the electrostatic protection circuit in the input / output circuit of the semiconductor device according to the third embodiment of the present invention, in which the P-type well region exists over the entire surface shown in FIG. The static electricity protection circuit shown in FIG. 4 is obtained by changing the wiring of the static electricity protection circuit in the input / output circuit of the semiconductor device according to the first embodiment shown in FIG. The N-type diffusion region 401 has two convex portions and is connected to an external connection terminal through the connection hole 411 arranged in the convex portion of the N-type diffusion region 401 via the lowermost conductive layer 421. From the connection hole 413 in the area other than the convex portion of the diffusion area 401 of
It is connected to the internal circuit through the lowermost conductive layer 423 made of l, W, Ti, polycrystalline Si or the like. The N-type diffusion region 402 is formed so that at least a part thereof exists between the convex portions of the N-type diffusion region 401, and the connection hole 412 for connecting the substrate and the lowermost conductive layer and the lowermost layer. The conductive layer 422, the connection hole 414 for connecting the lowermost conductive layer and the upper conductive layer, and the upper conductive layer 424 are connected to the ground terminal. Element isolation region 403 which is an insulating layer
Is formed between the N type diffusion regions 401 and 402, and electrically separates the two. According to the protection circuit having such a structure, when a high voltage such as static electricity is applied from the outside of the device, the breakdown of the diode between the N-type diffusion region 401 and the P-type well region is used as a trigger, and the N-type diffusion region 401 is triggered. Diffusion region 401, P-type well region, N-type diffusion region 4
The lateral bipolar configured by the three regions 02 operates and discharges an excessive current due to the application of static electricity from the ground terminal to the outside of the device. Further, since the resistance component of the N type diffusion region 401 is loaded between the connection holes 411 and 413, N
The diode between the diffusion region 401 of the mold and the P-type well region receives a higher voltage than the diode connected in parallel with the lateral bipolar in the internal circuit, and the lateral bipolar operates reliably.

【0011】図5は本発明による四つ目の実施例である
半導体装置における入出力回路内の静電気保護回路の平
面図であり、図5に示す範囲の全面にP型ウェル領域が
存在する。図5に示す静電気保護回路は、図3に示した
二つ目の実施例である半導体装置における入出力回路内
の静電気保護回路の、配線を変更したものである。N型
の拡散領域501は、複数の凸部を有し、N型の拡散領
域501の凸部内に配置する接続孔511からAl、
W、Ti、多結晶Siなどからなる最下層の導電層52
1を介して外部接続端子に接続され、N型の拡散領域5
01の凸部以外の領域内の接続孔513から最下層の導
電層523を介して内部回路へ接続される。N型の拡散
領域502は、N型の拡散領域501の互いに隣接する
凸部の間に少なくともその一部が存在するように形成さ
れ、基板と最下層の導電層とを接続する接続孔512及
び、最下層の導電層522及び、最下層の導電層と上部
の導電層とを接続する接続孔514及び、上部の導電層
524によって接地端子に接続される。絶縁層である素
子分離領域503は、N型の拡散領域501、502の
間に形成され、両者を電気的に分離する。このような構
成による保護回路によると、装置外部からの静電気のよ
うな高電圧の印加時には、N型の拡散領域501とP型
ウェル領域との間のダイオードのブレイクダウンをきっ
かけとして、N型の拡散領域501、P型ウェル領域、
N型の拡散領域502の三つの領域によって構成するラ
テラルバイポーラが動作し、接地端子より装置外部に、
静電気印加に伴う過大電流を放出する。また、接続孔5
11、513間にN型の拡散領域501の抵抗成分が負
荷されるため、N型の拡散領域501とP型ウェル領域
との間のダイオードには、内部回路内においてラテラル
バイポーラと並列に接続されるダイオードより高い電圧
が掛かり、ラテラルバイポーラは、確実に動作する。
FIG. 5 is a plan view of the electrostatic protection circuit in the input / output circuit of the semiconductor device according to the fourth embodiment of the present invention, in which the P-type well region exists on the entire surface shown in FIG. The electrostatic protection circuit shown in FIG. 5 is obtained by changing the wiring of the electrostatic protection circuit in the input / output circuit of the semiconductor device of the second embodiment shown in FIG. The N-type diffusion region 501 has a plurality of protrusions, and the Al from the connection hole 511 arranged in the protrusion of the N-type diffusion region 501 is Al,
The lowermost conductive layer 52 made of W, Ti, polycrystalline Si, or the like
N-type diffusion region 5 connected to the external connection terminal via 1
The connection hole 513 in the region other than the convex portion 01 is connected to the internal circuit through the lowermost conductive layer 523. The N-type diffusion region 502 is formed so that at least a part thereof exists between the adjacent convex portions of the N-type diffusion region 501, and the connection hole 512 for connecting the substrate and the lowermost conductive layer, and The lowermost conductive layer 522, the connection hole 514 connecting the lowermost conductive layer and the upper conductive layer, and the upper conductive layer 524 are connected to the ground terminal. The element isolation region 503, which is an insulating layer, is formed between the N type diffusion regions 501 and 502, and electrically isolates the two. According to the protection circuit having such a configuration, when a high voltage such as static electricity is applied from the outside of the device, the breakdown of the diode between the N-type diffusion region 501 and the P-type well region triggers an N-type diffusion region 501. Diffusion region 501, P-type well region,
The lateral bipolar configured by the three regions of the N-type diffusion region 502 operates, and from the ground terminal to the outside of the device,
It emits excessive current due to the application of static electricity. Also, the connection hole 5
Since the resistance component of the N-type diffusion region 501 is loaded between 11 and 513, the diode between the N-type diffusion region 501 and the P-type well region is connected in parallel with the lateral bipolar in the internal circuit. A higher voltage is applied than the diode, and the lateral bipolar operates reliably.

【0012】図6は本発明による五つ目の実施例である
半導体装置における入出力回路内の静電気保護回路の平
面図であり、図6に示す範囲の全面にP型ウェル領域が
存在する。環状のN型の拡散領域601は、接続孔61
1からAl、W、Ti、多結晶Siなどの最下層の導電
層621により外部接続端子に接続され、接続孔611
が存在する位置に対向する領域内に配置する接続孔61
3から最下層の導電層623により内部回路へ接続され
る。N型の拡散領域602は、環状のN型の拡散領域6
01によってその周囲を囲まれ、素子分離領域603に
よって環状のN型の拡散領域601とは電気的に分離さ
れ、接続孔612及び、最下層の導電層622及び、最
下層の導電層と上部の導電層とを接続する接続孔614
及び、上部の導電層624を介して接地端子に接続され
る。このような構成による保護回路によると、装置外部
からの静電気のような高電圧の印加時には、環状のN型
の拡散領域601とP型ウェル領域との間のダイオード
のブレイクダウンをきっかけとして、環状のN型の拡散
領域601、P型ウェル領域、N型の拡散領域602の
三つの領域によって構成するラテラルバイポーラが動作
し、接地端子より装置外部に、静電気印加に伴う過大電
流を放出する。また、接続孔611、613間にN型の
拡散領域601の抵抗成分が負荷されるため、N型の拡
散領域601とP型ウェル領域との間のダイオードに
は、内部回路内においてラテラルバイポーラと並列に接
続されるダイオードより高い電圧が掛かり、ラテラルバ
イポーラは、確実に動作する。
FIG. 6 is a plan view of an electrostatic protection circuit in an input / output circuit in a semiconductor device according to a fifth embodiment of the present invention, in which a P-type well region is present on the entire surface shown in FIG. The ring-shaped N-type diffusion region 601 has the connection hole 61.
1 to Al, W, Ti, polycrystalline Si, etc., which are connected to the external connection terminals by the lowermost conductive layer 621, and the connection hole 611.
Connection hole 61 arranged in a region facing the position where
3 to the lowermost conductive layer 623 to connect to the internal circuit. The N type diffusion region 602 is an annular N type diffusion region 6
It is surrounded by 01 and is electrically separated from the ring-shaped N-type diffusion region 601 by the element isolation region 603, and the connection hole 612, the lowermost conductive layer 622, and the lowermost conductive layer and the upper part. Connection hole 614 for connecting to the conductive layer
And is connected to the ground terminal via the conductive layer 624 on the upper side. According to the protection circuit having such a configuration, when a high voltage such as static electricity is applied from the outside of the device, the breakdown of the diode between the ring-shaped N-type diffusion region 601 and the P-type well region is used as a trigger. The lateral bipolar configured by the three regions of the N-type diffusion region 601, the P-type well region, and the N-type diffusion region 602 operates and discharges an excessive current due to the application of static electricity from the ground terminal to the outside of the device. Further, since the resistance component of the N-type diffusion region 601 is loaded between the connection holes 611 and 613, the diode between the N-type diffusion region 601 and the P-type well region has a lateral bipolar structure in the internal circuit. A higher voltage is applied than the diodes connected in parallel, and the lateral bipolar operates reliably.

【0013】図7は本発明による六つ目の実施例である
半導体装置における入出力回路内の静電気保護回路の平
面図であり、図7に示す範囲の全面にP型ウェル領域が
存在する。図7に示す保護回路は、図6に示した五つ目
の実施例である半導体装置における入出力回路内の静電
気保護回路を、N型の拡散領域601の接続孔の存在し
ない領域を共通にし、複数個連結したものである。N型
の拡散領域701は、接続孔711からAl、W、T
i、多結晶Siなどの最下層の導電層721により外部
接続端子に接続され、接続孔711が存在する位置に対
向する領域内に配置する接続孔713から最下層の導電
層723により内部回路へ接続される。複数のN型の拡
散領域702は、それぞれN型の拡散領域701によっ
てその周囲を囲まれ、素子分離領域703によってN型
の拡散領域701とは電気的に分離され、接続孔712
及び、最下層の導電層722及び、最下層の導電層と上
部の導電層とを接続する接続孔714及び、上部の導電
層724を介して接地端子に接続される。このような構
成による保護回路によると、装置外部からの静電気のよ
うな高電圧の印加時には、環状のN型の拡散領域701
とP型ウェル領域との間のダイオードのブレイクダウン
をきっかけとして、N型の拡散領域701、P型ウェル
領域、N型の拡散領域702の三つの領域によって構成
するラテラルバイポーラが動作し、接地端子より装置外
部に、静電気印加に伴う過大電流を放出する。また、接
続孔711、713間にN型の拡散領域701の抵抗成
分が負荷されるため、N型の拡散領域701とP型ウェ
ル領域との間のダイオードには、内部回路内においてラ
テラルバイポーラと並列に接続されるダイオードより高
い電圧が掛かり、ラテラルバイポーラは、確実に動作す
る。
FIG. 7 is a plan view of the electrostatic protection circuit in the input / output circuit of the semiconductor device according to the sixth embodiment of the present invention, in which the P-type well region exists on the entire surface shown in FIG. In the protection circuit shown in FIG. 7, the static electricity protection circuit in the input / output circuit of the semiconductor device of the fifth embodiment shown in FIG. 6 has a common area where the connection hole of the N type diffusion area 601 does not exist. , Which are connected in series. The N-type diffusion region 701 is formed from the connection hole 711 from Al, W, T
i, connected to the external connection terminal by the lowermost conductive layer 721 such as polycrystalline Si, and connected to the internal circuit by the lowermost conductive layer 723 from the connection hole 713 arranged in a region facing the position where the connection hole 711 exists. Connected. The plurality of N-type diffusion regions 702 are surrounded by N-type diffusion regions 701, respectively, and are electrically separated from the N-type diffusion regions 701 by the element isolation regions 703, so that the connection holes 712 are formed.
The lowermost conductive layer 722, the connection hole 714 for connecting the lowermost conductive layer and the upper conductive layer, and the upper conductive layer 724 are connected to the ground terminal. According to the protection circuit having such a configuration, when a high voltage such as static electricity is applied from the outside of the device, the ring-shaped N-type diffusion region 701 is formed.
The breakdown of the diode between the P-type well region and the P-type well region triggers the operation of the lateral bipolar formed by the three regions of the N-type diffusion region 701, the P-type well region and the N-type diffusion region 702, and the ground terminal. More excessive current is emitted to the outside of the device due to the application of static electricity. Further, since the resistance component of the N-type diffusion region 701 is loaded between the connection holes 711 and 713, the diode between the N-type diffusion region 701 and the P-type well region has a lateral bipolar structure in the internal circuit. A higher voltage is applied than the diodes connected in parallel, and the lateral bipolar operates reliably.

【0014】[0014]

【発明の効果】以上に示したような静電気保護回路の構
造によれば、別途に抵抗体を配置せずに、外部接続端子
に最も近接するラテラルバイポーラを確実に動作させる
ことが可能なために、同等の保護能力を持つ従来例によ
る半導体装置における入出力回路と比較して、集積度を
低下させることなく、静電気耐圧を向上させることが可
能である。また、この発明を採用することによる半導体
装置の工程数の増加、工程の複雑化はない。
According to the structure of the electrostatic protection circuit as described above, it is possible to reliably operate the lateral bipolar closest to the external connection terminal without disposing a resistor separately. As compared with the input / output circuit in the conventional semiconductor device having the same protection capability, the electrostatic breakdown voltage can be improved without lowering the degree of integration. Further, the number of steps of the semiconductor device is not increased and the steps are not complicated by adopting the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による半導体装置の全体図である。FIG. 1 is an overall view of a semiconductor device according to the present invention.

【図2】本発明による一つ目の実施例である半導体装置
における静電気保護回路の平面図である。
FIG. 2 is a plan view of an electrostatic protection circuit in a semiconductor device which is a first embodiment according to the present invention.

【図3】本発明による二つ目の実施例である半導体装置
における静電気保護回路の平面図である。
FIG. 3 is a plan view of an electrostatic protection circuit in a semiconductor device that is a second embodiment according to the present invention.

【図4】本発明による三つ目の実施例である半導体装置
における静電気保護回路の平面図である。
FIG. 4 is a plan view of an electrostatic protection circuit in a semiconductor device which is a third embodiment according to the present invention.

【図5】本発明による四つ目の実施例である半導体装置
における静電気保護回路の平面図である。
FIG. 5 is a plan view of an electrostatic protection circuit in a semiconductor device according to a fourth embodiment of the present invention.

【図6】本発明による五つ目の実施例である半導体装置
における静電気保護回路の平面図である。
FIG. 6 is a plan view of an electrostatic protection circuit in a semiconductor device which is a fifth embodiment of the present invention.

【図7】本発明による六つ目の実施例である半導体装置
における静電気保護回路の平面図である。
FIG. 7 is a plan view of an electrostatic protection circuit in a semiconductor device which is a sixth embodiment according to the present invention.

【図8】従来技術による半導体装置における静電気保護
回路の断面図である。
FIG. 8 is a cross-sectional view of an electrostatic protection circuit in a semiconductor device according to a conventional technique.

【図9】従来技術による半導体装置における静電気保護
回路周辺の回路図である。
FIG. 9 is a circuit diagram around an electrostatic protection circuit in a semiconductor device according to a conventional technique.

【符号の説明】[Explanation of symbols]

101:半導体基板 102:入出力回路領域 103:論理回路領域 201:N型の拡散領域 202:N型の拡散領域 203:素子分離領域 211:基板と最下層の導電層との接続孔 212:基板と最下層の導電層との接続孔 213:基板と最下層の導電層との接続孔 214:最下層の導電層と上部の導電層との接続孔 221:最下層の導電層 222:最下層の導電層 223:最下層の導電層 224:上部の導電層 301:N型の拡散領域 302:N型の拡散領域 303:素子分離領域 311:基板と最下層の導電層との接続孔 312:基板と最下層の導電層との接続孔 313:基板と最下層の導電層との接続孔 314:最下層の導電層と上部の導電層との接続孔 321:最下層の導電層 322:最下層の導電層 323:最下層の導電層 324:上部の導電層 401:N型の拡散領域 402:N型の拡散領域 403:素子分離領域 411:基板と最下層の導電層との接続孔 412:基板と最下層の導電層との接続孔 413:基板と最下層の導電層との接続孔 414:最下層の導電層と上部の導電層との接続孔 421:最下層の導電層 422:最下層の導電層 423:最下層の導電層 424:上部の導電層 501:N型の拡散領域 502:N型の拡散領域 503:素子分離領域 511:基板と最下層の導電層との接続孔 512:基板と最下層の導電層との接続孔 513:基板と最下層の導電層との接続孔 514:最下層の導電層と上部の導電層との接続孔 521:最下層の導電層 522:最下層の導電層 523:最下層の導電層 524:上部の導電層 601:N型の拡散領域 602:N型の拡散領域 603:素子分離領域 611:基板と最下層の導電層との接続孔 612:基板と最下層の導電層との接続孔 613:基板と最下層の導電層との接続孔 614:最下層の導電層と上部の導電層との接続孔 621:最下層の導電層 622:最下層の導電層 623:最下層の導電層 624:上部の導電層 701:N型の拡散領域 702:N型の拡散領域 703:素子分離領域 711:基板と最下層の導電層との接続孔 712:基板と最下層の導電層との接続孔 713:基板と最下層の導電層との接続孔 714:最下層の導電層と上部の導電層との接続孔 721:最下層の導電層 722:最下層の導電層 723:最下層の導電層 724:上部の導電層 801:N型の拡散領域 802:N型の拡散領域 803:P型のウェル領域 804:P型のウェル電極形成領域 811:外部接続端子 812:接地電源端子 813:接地電源端子 821:ダイオード 822:ラテラルバイポーラ 823:P型のウェル領域の抵抗成分 901:外部接続端子 902:接地電源端子 903:抵抗体の抵抗成分 904:P型のウェル領域の抵抗成分 905:P型のウェル領域の抵抗成分 910:ラテラルバイポーラ 911:ダイオード 912:ダイオード 920:内部回路 101: Semiconductor substrate 102: Input / output circuit area 103: Logic circuit area 201: N type diffusion area 202: N type diffusion area 203: Element isolation area 211: Connection hole between the substrate and the lowermost conductive layer 212: Substrate Hole between the substrate and the lowermost conductive layer 213: connection hole between the substrate and the lowermost conductive layer 214: connection hole between the lowermost conductive layer and the upper conductive layer 221: the lowermost conductive layer 222: the lowermost layer Conductive layer 223: bottom conductive layer 224: upper conductive layer 301: N type diffusion region 302: N type diffusion region 303: element isolation region 311: connection hole between substrate and bottom conductive layer 312: Connection hole between substrate and bottom conductive layer 313: Connection hole between substrate and bottom conductive layer 314: Connection hole between bottom conductive layer and top conductive layer 321: Bottom conductive layer 322: Max Lower conductive layer 323: bottom Conductive layer 324: upper conductive layer 401: N-type diffusion region 402: N-type diffusion region 403: element isolation region 411: connection hole between substrate and lowermost conductive layer 412: substrate and lowermost conductive layer Connection hole with 413: Connection hole between substrate and lowermost conductive layer 414: Connection hole with lowermost conductive layer and upper conductive layer 421: Lowermost conductive layer 422: Lowermost conductive layer 423: Lowest Lower conductive layer 424: Upper conductive layer 501: N-type diffusion region 502: N-type diffusion region 503: Element isolation region 511: Connection hole between substrate and lowermost conductive layer 512: Conductivity of substrate and lowermost layer Connection hole with layer 513: Connection hole between substrate and lowermost conductive layer 514: Connection hole between lowermost conductive layer and upper conductive layer 521: Lowermost conductive layer 522: Lowermost conductive layer 523: Lowermost conductive layer 524: Upper conductive layer 6 01: N-type diffusion region 602: N-type diffusion region 603: Element isolation region 611: Connection hole between substrate and lowermost conductive layer 612: Connection hole between substrate and lowermost conductive layer 613: Substrate and maximum Connection hole with lower conductive layer 614: Connection hole between lowermost conductive layer and upper conductive layer 621: Lower conductive layer 622: Lower conductive layer 623: Lower conductive layer 624: Upper conductive Layer 701: N-type diffusion region 702: N-type diffusion region 703: Element isolation region 711: Connection hole between substrate and lowermost conductive layer 712: Connection hole between substrate and lowermost conductive layer 713: Substrate and Connection hole with lowermost conductive layer 714: Connection hole between lowermost conductive layer and upper conductive layer 721: Lowermost conductive layer 722: Lowermost conductive layer 723: Lowermost conductive layer 724: Upper Conductive layer 801: N type diffusion region 802: N Diffusion region 803: P-type well region 804: P-type well electrode formation region 811: External connection terminal 812: Ground power supply terminal 813: Ground power supply terminal 821: Diode 822: Lateral bipolar 823: Resistance of P-type well region Component 901: External connection terminal 902: Ground power supply terminal 903: Resistance component of resistor 904: Resistance component of P-type well region 905: Resistance component of P-type well region 910: Lateral bipolar 911: Diode 912: Diode 920: Internal circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 外部装置と入出力インターフェースする
入出力回路を具備し、前記入出力回路内の第一導電型ウ
ェル領域内に、第二導電型の第一の拡散領域と、前記第
二導電型の第一の拡散領域とは素子分離領域によって電
気的に分離された第二導電型の第二の拡散領域と、前記
ウェル領域に電位を供給するための前記第一導電型ウェ
ル領域よりは濃度の高い第一導電型ウェル電極形成領域
を有する半導体装置において、前記第二導電型の第一の
拡散領域は、第一の方向に複数箇所が延長されており、
前記複数の延長された領域以外の領域内に前記第一の方
向に直交する第二の方向に配列される第一の接続孔から
外部接続端子に、前記複数の延長された領域内に配置さ
れる第二の接続孔から内部回路に、それぞれ導電層によ
り接続され、前記第二導電型の第二の拡散領域は、少な
くともその一部が、前記第一の拡散領域の互いに隣接す
る前記複数の延長された領域の間に存在することを特徴
とする半導体装置。
1. An input / output circuit for input / output interface with an external device, wherein a first conductivity type well region in the input / output circuit is provided with a second diffusion type first diffusion region and the second conductivity type. The second diffusion region of the second conductivity type electrically separated from the first diffusion region of the type by the element isolation region, and the first conductivity type well region for supplying a potential to the well region, In a semiconductor device having a high-concentration first-conductivity-type well electrode formation region, the second diffusion-type first diffusion region is extended at a plurality of locations in the first direction,
The first connection holes arranged in the second direction orthogonal to the first direction in regions other than the plurality of extended regions to the external connection terminals are arranged in the plurality of extended regions. The second diffusion region of the second conductivity type is connected to the internal circuit from the second connection hole by a conductive layer, and at least a part of the second diffusion region of the second conductivity type is adjacent to the plurality of the first diffusion regions. A semiconductor device characterized by being present between extended regions.
【請求項2】 外部装置と入出力インターフェースする
入出力回路を具備し、前記入出力回路内の第一導電型ウ
ェル領域内に、第二導電型の第一の拡散領域と、前記第
二導電型の第一の拡散領域とは素子分離領域によって電
気的に分離された第二導電型の第二の拡散領域と、前記
ウェル領域に電位を供給するための前記第一導電型ウェ
ル領域よりは濃度の高い第一導電型ウェル電極形成領域
を有する半導体装置において、前記第二導電型の第一の
拡散領域は、第一の方向に複数箇所が延長されており、
前記複数の延長された領域内に配列される第二の接続孔
から外部接続端子に、前記複数の延長された領域以外の
領域内に前記第一の方向に直交する第二の方向に配置さ
れる第一の接続孔から内部回路に、それぞれ導電層によ
り接続され、前記第二導電型の第二の拡散領域は、少な
くともその一部が、前記第一の拡散領域の互いに隣接す
る前記複数の延長された領域の間に存在することを特徴
とする半導体装置。
2. An input / output circuit for input / output interface with an external device is provided, wherein a first conductivity type well region in the input / output circuit has a second diffusion type first diffusion region and the second conductivity type. The second diffusion region of the second conductivity type electrically separated from the first diffusion region of the type by the element isolation region, and the first conductivity type well region for supplying a potential to the well region, In a semiconductor device having a high-concentration first-conductivity-type well electrode formation region, the second diffusion-type first diffusion region is extended at a plurality of locations in the first direction,
From the second connection holes arranged in the plurality of extended regions to the external connection terminals, the second connection holes are arranged in a region other than the plurality of extended regions in a second direction orthogonal to the first direction. Is connected to the internal circuit from the first connection hole by a conductive layer, respectively, the second diffusion region of the second conductivity type, at least a portion thereof, the plurality of adjacent first diffusion region of the plurality of A semiconductor device characterized by being present between extended regions.
【請求項3】 外部装置と入出力インターフェースする
入出力回路を具備し、前記入出力回路内の第一導電型ウ
ェル領域内に、第二導電型の第一の拡散領域と、前記第
二導電型の第一の拡散領域とは素子分離領域によって電
気的に分離された第二導電型の第二の拡散領域と、前記
ウェル領域に電位を供給するための前記第一導電型ウェ
ル領域よりは濃度の高い第一導電型ウェル電極形成領域
を有する半導体装置において、前記第二導電型の第二の
拡散領域は、周囲に環状の前記第二導電型の第一の拡散
領域を有し、環状の前記第二導電型の第一の拡散領域
は、領域の一辺に沿って第一の方向に配列される第一の
接続孔から外部接続端子に、前記第一の接続孔と前記第
二導電型の第二の拡散領域及び素子分離領域を挟んで対
向する前期第二導電型の第一の拡散領域内に配置される
第二の接続孔から内部回路に、それぞれ導電層により接
続されることを特徴とする半導体装置。
3. An input / output circuit for input / output interfacing with an external device, wherein a first conductivity type well region in the input / output circuit is provided with a second diffusion type first diffusion region and the second conductivity type. The second diffusion region of the second conductivity type electrically separated from the first diffusion region of the type by the element isolation region, and the first conductivity type well region for supplying a potential to the well region, In a semiconductor device having a high-concentration first conductivity type well electrode formation region, the second conductivity type second diffusion region has a ring-shaped second conductivity type first diffusion region in the periphery thereof, The second diffusion region of the first diffusion region of the first connection hole from the first connection hole arranged in the first direction along one side of the region to the external connection terminal, the first connection hole and the second conductivity type. Type second conductivity type opposed to each other with the second diffusion region and the element isolation region of the mold sandwiched therebetween. A semiconductor device, each of which is connected to an internal circuit from a second connection hole arranged in the first diffusion region of the semiconductor device by a conductive layer.
JP1690796A 1996-02-01 1996-02-01 Semiconductor device Pending JPH09213891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1690796A JPH09213891A (en) 1996-02-01 1996-02-01 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1690796A JPH09213891A (en) 1996-02-01 1996-02-01 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH09213891A true JPH09213891A (en) 1997-08-15

Family

ID=11929218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1690796A Pending JPH09213891A (en) 1996-02-01 1996-02-01 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH09213891A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7294542B2 (en) 2000-05-15 2007-11-13 Nec Electronics Corporation Method of fabricating a semiconductor device having CMOS transistors and a bipolar transistor
US7629210B2 (en) 2000-05-15 2009-12-08 Nec Corporation Method for fabricating an ESD protection apparatus for discharging electric charge in a depth direction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7294542B2 (en) 2000-05-15 2007-11-13 Nec Electronics Corporation Method of fabricating a semiconductor device having CMOS transistors and a bipolar transistor
US7629210B2 (en) 2000-05-15 2009-12-08 Nec Corporation Method for fabricating an ESD protection apparatus for discharging electric charge in a depth direction

Similar Documents

Publication Publication Date Title
US7238991B2 (en) Semiconductor device with improved protection from electrostatic discharge
JP4209432B2 (en) ESD protection device
JP5041749B2 (en) Semiconductor device
JP4278721B2 (en) Zener diode with high reverse breakdown voltage
JPH0669501A (en) Diode structure for protection of pad against static discharge in integrated circuit
KR20040081055A (en) Semiconductor device
JP4209433B2 (en) ESD protection device
US20020153564A1 (en) Semiconductor device
US5898193A (en) Electrostatic discharge protecting circuit formed in a minimized area
KR100684676B1 (en) Semiconductor integrated circuit device
JPH09213891A (en) Semiconductor device
US10325905B2 (en) Semiconductor device and semiconductor circuit device
JP5156331B2 (en) Semiconductor device
JP4423466B2 (en) Semiconductor device
JP2000022080A (en) Semiconductor device
JP2004207702A (en) Power transistor and semiconductor integrated circuit using it
JP2611639B2 (en) Semiconductor device
KR20010023585A (en) Protective circuit
US20040120085A1 (en) Semiconductor device with surge protection circuit
JPH11126874A (en) Integrated circuit
KR100976322B1 (en) Semiconductor integrated circuit
JP4103631B2 (en) Semiconductor device having overvoltage protection function
JPH11111937A (en) Semiconductor device
KR0152155B1 (en) Semiconductor integrated circuit
JPS61174672A (en) Vmos transistor