JPH09213797A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH09213797A
JPH09213797A JP2085796A JP2085796A JPH09213797A JP H09213797 A JPH09213797 A JP H09213797A JP 2085796 A JP2085796 A JP 2085796A JP 2085796 A JP2085796 A JP 2085796A JP H09213797 A JPH09213797 A JP H09213797A
Authority
JP
Japan
Prior art keywords
film
coating
forming
semiconductor device
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2085796A
Other languages
Japanese (ja)
Inventor
Takeshi Sugawara
岳 菅原
Nobuo Aoi
信雄 青井
Shuichi Mayumi
周一 真弓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2085796A priority Critical patent/JPH09213797A/en
Publication of JPH09213797A publication Critical patent/JPH09213797A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacture of a semiconductor device having an interlayer dielectric film of a low dielectric constant. SOLUTION: A wiring 2 and a silicon oxide film 3 covering the wiring 2 are formed on a substrate 1. Thereafter, a wet gel film 7 is formed on the substrate 1 where the wiring 2 and the silicon oxide film 3 are formed. Further, the wet gel film 7 is dried in accordance with a supercritical drying method to form a porous film, and an insulating film is formed in accordance with the CVD method on the porous film, and a second wiring 6 is formed on the insulating film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置及び半
導体装置の製造方法に関し、特に低誘電率の層間絶縁膜
の形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method for manufacturing the semiconductor device, and more particularly to a method for forming an interlayer insulating film having a low dielectric constant.

【0002】[0002]

【従来の技術】近年、半導体集積回路の集積度の向上に
したがって、半導体装置の配線の多層化が進んでいる。
配線の多層化に伴って、配線の信頼性向上のため配線パ
ターン形成により生じる段差を平坦化する技術が必要で
ある。この平坦化技術のなかで広く用いられている方法
の一つにSOG法がある。
2. Description of the Related Art In recent years, as the degree of integration of semiconductor integrated circuits has improved, the number of wiring layers of semiconductor devices has increased.
Along with the multi-layered wiring, there is a need for a technique for flattening a step caused by forming a wiring pattern in order to improve the reliability of the wiring. One of the widely used flattening techniques is the SOG method.

【0003】上記のSOGという技術はシリコンアルコ
キシドを加水分解して生成するシリコンヒドロキシドを
脱水縮合することにより得られるゾル溶液を、段差のあ
る基板上に回転塗布した後、常圧下で450℃程度の熱
処理を加えて焼成し、平坦化絶縁膜を形成する方法であ
る。
The technique of SOG described above is such that a sol solution obtained by dehydrating and condensing silicon hydroxide produced by hydrolyzing a silicon alkoxide is spin-coated on a stepped substrate and then heated to about 450 ° C. under normal pressure. Is a method of forming a planarization insulating film by performing heat treatment and baking.

【0004】そこで以下では、上記のSOG法を用いた
従来技術による層間絶縁膜の形成方法を図3を参照しな
がら説明する。
Therefore, a conventional method of forming an interlayer insulating film using the SOG method will be described below with reference to FIG.

【0005】まず図3(A)において、基板1上に配線
パターン2を形成した後、プラズマCVD法によりシリ
コン酸化膜3を形成する。次に、図3(B)に示すよう
に、上記シリコン酸化膜3上にシリコンアルコキシドを
加水分解したシリコンヒドロキシドを脱水縮合して得ら
れるゾル溶液を回転塗布した後、450℃で30分間の
熱処理を施し、塗布膜4を形成する。その後、図3
(C)に示すように、塗布膜4の上にプラズマCVD法
によりシリコン酸化膜5を形成し、引き続き、シリコン
酸化膜5にスルーホール(図には示さない)を形成した
後、第2の配線パターン6を形成する。
First, in FIG. 3A, after forming a wiring pattern 2 on a substrate 1, a silicon oxide film 3 is formed by a plasma CVD method. Next, as shown in FIG. 3 (B), a sol solution obtained by dehydration condensation of silicon hydroxide obtained by hydrolyzing silicon alkoxide is spin-coated on the silicon oxide film 3 and then at 450 ° C. for 30 minutes. Heat treatment is performed to form the coating film 4. Then, FIG.
As shown in (C), a silicon oxide film 5 is formed on the coating film 4 by a plasma CVD method, and subsequently a through hole (not shown in the figure) is formed in the silicon oxide film 5, and then a second film is formed. The wiring pattern 6 is formed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
SOG法で形成される塗布膜の場合、無機SOG膜では
比誘電率が4.0〜5.0、有機SOG膜でも比誘電率
3.0〜4.0であるため、層間絶縁膜に用いた場合の
配線間容量が大きく、半導体装置の動作速度の高速化を
進める上で問題となる。従って、従来のSOG法では比
誘電率3.0以下の低誘電率の絶縁膜を形成することは
困難であった。
However, in the case of the coating film formed by the conventional SOG method, the relative dielectric constant of the inorganic SOG film is 4.0 to 5.0, and the relative dielectric constant of the organic SOG film is 3.0. Since it is up to 4.0, the inter-wiring capacitance is large when it is used for the interlayer insulating film, which is a problem in increasing the operating speed of the semiconductor device. Therefore, it has been difficult to form an insulating film having a low dielectric constant with a relative dielectric constant of 3.0 or less by the conventional SOG method.

【0007】そこで本発明は上記問題点に鑑み、比誘電
率が低い絶縁膜を形成することにより、配線間容量の小
さい半導体装置の製造方法を提供することを目的とする
ものである。
In view of the above problems, it is an object of the present invention to provide a method for manufacturing a semiconductor device having a small inter-wiring capacitance by forming an insulating film having a low relative dielectric constant.

【0008】[0008]

【課題を解決するための手段】上記目的を達するための
本発明の基本構成は湿潤ゲル膜を形成する工程と、この
湿潤ゲル膜を超臨界乾燥法を用いて乾燥させ、多孔質膜
を形成する工程と、上記多孔質膜の上にCVD法により
絶縁膜を形成する工程とを有する。
Means for Solving the Problems The basic constitution of the present invention for achieving the above object is a step of forming a wet gel film, and the wet gel film is dried using a supercritical drying method to form a porous film. And a step of forming an insulating film on the porous film by a CVD method.

【0009】SOG法などを用いて基板上に形成した膜
は、ゾルが網目状に結合して形成された湿潤ゲルであ
り、網目構造のすき間に溶媒が分散している。この湿潤
ゲル膜を、溶媒の臨界点以上の高温・高圧下に置き、溶
媒分子を気体と液体の区別のない超臨界状態にする。こ
の状態で溶媒を取り除くと、湿潤ゲルの網目構造に毛管
力による応力が加わらないため膜がほとんど収縮せず、
極めて空孔率の高く、誘電率の低い多孔質膜を得ること
が可能となる。
The film formed on the substrate by using the SOG method or the like is a wet gel which is formed by binding sol in a mesh shape, and the solvent is dispersed in the gaps of the mesh structure. This wet gel film is placed under high temperature and high pressure above the critical point of the solvent to bring the solvent molecules into a supercritical state in which there is no distinction between gas and liquid. If the solvent is removed in this state, the stress due to the capillary force is not applied to the network structure of the wet gel, so the film hardly shrinks,
It is possible to obtain a porous film having an extremely high porosity and a low dielectric constant.

【0010】さらに、多孔質膜を保護するため、上記多
孔質膜の上にCVD法を用いて絶縁膜を形成する。
Further, in order to protect the porous film, an insulating film is formed on the porous film by the CVD method.

【0011】本発明では超臨界乾燥法を用いて形成した
上記多孔質膜を層間絶縁膜として用いることで、配線間
容量を低減することができる。さらに、上記多孔質膜上
に保護膜としてCVD法を用いて絶縁膜を形成すること
で、多孔質膜の吸湿による劣化を防ぐことができる。
In the present invention, the inter-wiring capacitance can be reduced by using the above-mentioned porous film formed by the supercritical drying method as an interlayer insulating film. Furthermore, by forming an insulating film on the porous film as a protective film by using the CVD method, deterioration of the porous film due to moisture absorption can be prevented.

【0012】また本発明は、合成樹脂壁またはガラス壁
で被覆され、内部が中空あるいは発泡剤であるカプセル
構造の微粒子が分散している塗布薬液を回転塗布する工
程と、形成した塗布膜に熱処理を施す工程とを有する。
Further, according to the present invention, there is provided a step of spin-coating a coating chemical solution coated with a synthetic resin wall or a glass wall, in which fine particles having a hollow structure or a capsule structure having a foaming agent dispersed, and heat treating the formed coating film. And a step of applying.

【0013】合成樹脂壁またはガラス壁を持つ中空の微
粒子が分散した塗布薬液を基板上に回転塗布することに
より塗布膜を形成する。こうして形成した塗布膜は、膜
中に中空の微粒子が分散しているため、多孔質膜であ
る。上記のような多孔質膜は合成樹脂壁またはガラス壁
に被覆された発泡剤が分散した塗布薬液を基板上に回転
塗布することで塗布膜を形成し、上記塗布膜に熱処理を
施し、発泡剤を気化させることによっても得られる。発
泡剤は合成樹脂壁またはガラス壁で被覆されたカプセル
構造体であるため、熱処理により発泡剤が分解すると、
塗布膜中のカプセル構造体は中空になり、多孔質膜とな
る。
A coating film is formed by spin-coating a coating solution in which hollow fine particles having a synthetic resin wall or a glass wall are dispersed on a substrate. The coating film thus formed is a porous film because hollow fine particles are dispersed in the film. The porous film as described above is formed by spin-coating a coating solution in which a foaming agent coated on a synthetic resin wall or a glass wall is dispersed on a substrate, and heat-treating the coating film to form a foaming agent. It can also be obtained by vaporizing. Since the foaming agent is a capsule structure covered with a synthetic resin wall or a glass wall, when the foaming agent decomposes by heat treatment,
The capsule structure in the coating film becomes hollow and becomes a porous film.

【0014】上記方法で得られる多孔質膜の誘電率は膜
中の空孔率の増加に伴い減少し、したがって、塗布液中
に分散させる中空微粒子あるいは発泡剤の量を増やすこ
とで、配線間容量の小さい低誘電率の層間絶縁膜を得る
ことができる。また、上記方法で得られる多孔質膜中の
各空孔は合成樹脂壁またはガラス壁で囲まれた独立空孔
である。したがって、例えばエアロゲルのように空孔が
連続している多孔質材料においてしばしば見られる吸湿
性に起因する膜質の劣化を最小限に押さえることができ
る。
The dielectric constant of the porous film obtained by the above method decreases with an increase in the porosity in the film. Therefore, by increasing the amount of the hollow fine particles or the foaming agent dispersed in the coating solution, the inter-wiring space can be increased. It is possible to obtain an interlayer insulating film having a low capacitance and a low dielectric constant. Further, each hole in the porous film obtained by the above method is an independent hole surrounded by a synthetic resin wall or a glass wall. Therefore, it is possible to minimize the deterioration of the film quality due to the hygroscopicity that is often found in a porous material having continuous pores such as airgel.

【0015】[0015]

【発明の実施の形態】以下本発明の実施の形態における
半導体装置の製造方法について、図面を参照しながら説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing a semiconductor device according to an embodiment of the present invention will be described below with reference to the drawings.

【0016】(実施の形態1)図1は本発明における半
導体装置の製造方法を工程順に示した断面図である。
(Embodiment 1) FIG. 1 is a sectional view showing a method of manufacturing a semiconductor device according to the present invention in the order of steps.

【0017】まず図1(A)に示すように、半導体装置
を形成すべき基板1上に第1の配線層2を形成し、その
上にプラズマCVD法を用いて酸化膜3を形成する。こ
の酸化膜3はこの後に形成する塗布膜と基板との被着性
を良くするためのものであり、他の膜種でもよいし、あ
るいは被着性が問題にならない場合にはなくてもよい。
但し、望ましくは絶縁性を有する薄膜(例えば数100
Å程度)がよく、その例としては上記のシリコン酸化膜
以外にシリコン窒化膜等が挙げられる。
First, as shown in FIG. 1A, a first wiring layer 2 is formed on a substrate 1 on which a semiconductor device is to be formed, and an oxide film 3 is formed thereon by plasma CVD. This oxide film 3 is for improving the adherence between the coating film formed later and the substrate, and may be another film type, or may be omitted if the adherence does not matter. .
However, a thin film having an insulating property (for example, several hundreds) is desirable.
Å), and examples thereof include a silicon nitride film in addition to the above silicon oxide film.

【0018】次に図1(B)に示すように、シリコン酸
化膜3上に例えば、テトラエトキシシラン25gとエタ
ノール35gと水24gと塩酸0.3gを混合し調整し
た溶液をスピンコート法により回転塗布し、湿潤ゲル膜
4を形成する。この湿潤ゲル膜4は、ゲル化した結果シ
リカが網目状に結合したもので、網目構造のすき間には
溶媒であるエタノールが分散されている。なお、上記の
湿潤ゲルとは、シリカの骨格中に溶媒としてのエタノー
ルが分散されて残存した状態のものを言う。
Next, as shown in FIG. 1B, a solution prepared by mixing 25 g of tetraethoxysilane, 35 g of ethanol, 24 g of water and 0.3 g of hydrochloric acid on the silicon oxide film 3 is spin-coated by spin coating. The wet gel film 4 is formed by coating. As a result of gelation, the wet gel film 4 is formed by binding silica in a mesh shape, and ethanol as a solvent is dispersed in the gaps of the mesh structure. In addition, the above-mentioned wet gel refers to a state in which ethanol as a solvent is dispersed and remains in the skeleton of silica.

【0019】また、上記の湿潤ゲルとしては、金属アル
コキシドを加水分解して生成したメタルヒドロキシドを
脱水縮合することにより得られるゾル溶液や、有機高分
子を含む溶液等が挙げられる。
Examples of the wet gel include a sol solution obtained by dehydrating and condensing a metal hydroxide produced by hydrolyzing a metal alkoxide, a solution containing an organic polymer, and the like.

【0020】続いて図1(C)に示すように、配線層2
シリコン酸化膜3及び湿潤ゲル膜4が形成された基板1
をオートクレーブに入れ、超臨界乾燥法を用いて湿潤ゲ
ル膜4中のエタノールを取り除く。超臨界乾燥法とは、
溶媒の臨界点以上の高温・高圧条件下で湿潤ゲルを乾燥
させる方法である。上記の臨界点以上の高温・高圧条件
下では、溶媒は気体と液体の区別のない超臨界状態とな
る。この状態で湿潤ゲル中の溶媒を取り除くと、ゲル中
に気液界面が生じないため、毛管力による応力がゲルの
骨格に加わらず、湿潤ゲルをほとんど収縮させずに乾燥
することができる。こうして得られる乾燥ゲルは、湿潤
ゲルの網目構造がそのまま残っているため、極めて空孔
率の高い多孔質の物質であり、比誘電率も極めて低くな
る。
Subsequently, as shown in FIG. 1C, the wiring layer 2
Substrate 1 on which silicon oxide film 3 and wet gel film 4 are formed
Is put into an autoclave, and ethanol in the wet gel film 4 is removed by using a supercritical drying method. What is the supercritical drying method?
In this method, the wet gel is dried under conditions of high temperature and high pressure above the critical point of the solvent. Under the conditions of high temperature and high pressure above the critical point, the solvent is in a supercritical state in which gas and liquid are indistinguishable. If the solvent in the wet gel is removed in this state, a gas-liquid interface does not occur in the gel, so that stress due to capillary force is not applied to the skeleton of the gel, and the wet gel can be dried with almost no shrinkage. The thus-obtained dry gel is a porous substance having a very high porosity because the network structure of the wet gel remains as it is, and the relative dielectric constant is also extremely low.

【0021】本実施の形態では、エタノールが溶媒であ
るため、エタノールが超臨界状態となる高温・高圧条
件、例えば260℃、8MPaで1時間保持する。そし
て温度を260℃に保ちながら1気圧まで減圧した後、
温度を室温まで下げる。エタノールが気液界面のない状
態で膜中から除去されるため、表面張力によるゲルの収
縮がおこらず、湿潤ゲルの網目構造が収縮することな
く、気孔率50%以上の多孔質な膜となる。さらに40
0℃で30分間の熱処理を加え、多孔質膜5を得る。こ
うして形成した多孔質膜5の比誘電率は測定の結果、
1.8〜2.2であった。
In the present embodiment, since ethanol is the solvent, it is held for 1 hour at high temperature and high pressure conditions at which ethanol becomes a supercritical state, for example, 260 ° C. and 8 MPa. After reducing the pressure to 1 atm while maintaining the temperature at 260 ° C,
Reduce the temperature to room temperature. Since ethanol is removed from the film without a gas-liquid interface, gel contraction due to surface tension does not occur, and the wet gel network structure does not contract, resulting in a porous film with a porosity of 50% or more. . Further 40
Heat treatment is performed for 30 minutes at 0 ° C. to obtain the porous film 5. The relative permittivity of the porous film 5 thus formed was measured,
It was 1.8 to 2.2.

【0022】最後に図1(D)に示すように、多孔質膜
5の上にCVD法を用いて、例えばシリコン酸化膜6を
形成する。このシリコン酸化膜6は、吸湿性の高い多孔
質膜5を保護する役割を果たす。この後、必要に応じて
図には示さないが、ヴィアホールの形成、ヴィアホール
の金属による埋め込みを行ない、第2の配線層7を形成
する。
Finally, as shown in FIG. 1D, a silicon oxide film 6, for example, is formed on the porous film 5 by the CVD method. The silicon oxide film 6 plays a role of protecting the porous film 5 having high hygroscopicity. Thereafter, although not shown in the drawing, if necessary, a via hole is formed and the via hole is filled with metal to form the second wiring layer 7.

【0023】なお、湿潤ゲル膜として、本実施の形態で
は、テトラエトキシシランとエタノールと水と塩酸を出
発物質とするゾル溶液をスピンコート法を用いて塗布し
たSOGを用いたが、塗布溶液は他の金属アルコキシド
を加水分解して生成するメタルヒドロキシドを脱水縮合
して得られるゾル溶液、あるいは有機高分子を含む溶液
を塗布してもよい。また、湿潤ゲル膜の形成方法はSO
G法に限るものではなく、ディップコーティング法やC
VD法で形成したものでもよい。
In this embodiment, as the wet gel film, SOG is used which is obtained by applying a sol solution containing tetraethoxysilane, ethanol, water, and hydrochloric acid as starting materials by a spin coating method. A sol solution obtained by dehydration condensation of a metal hydroxide produced by hydrolyzing another metal alkoxide, or a solution containing an organic polymer may be applied. The method of forming the wet gel film is SO
Not limited to the G method, the dip coating method or the C method
It may be formed by the VD method.

【0024】(実施の形態2)次に以下では、本発明実
施の形態2における半導体装置の製造方法について図面
を参照しながら説明する。図2は本実施の形態における
半導体装置の製造方法の工程断面図を示したものであ
る。
(Second Embodiment) Next, a method of manufacturing a semiconductor device according to a second embodiment of the present invention will be described with reference to the drawings. 2A to 2C are process sectional views of the method for manufacturing a semiconductor device according to the present embodiment.

【0025】まず図2(A)に示すように、半導体装置
を形成すべき基板1上に第1の配線層2を形成し、さら
にその上にプラズマCVD法を用いて酸化膜3を形成す
る。この酸化膜3はこの後に形成する塗布膜と基板との
被着性を良くするためのものであり、他の膜種でもよい
し、あるいは被着性が問題にならない場合にはなくても
よい。
First, as shown in FIG. 2A, a first wiring layer 2 is formed on a substrate 1 on which a semiconductor device is to be formed, and an oxide film 3 is further formed thereon by using a plasma CVD method. . This oxide film 3 is for improving the adherence between the coating film formed later and the substrate, and may be another film type, or may be omitted if the adherence does not matter. .

【0026】次に図2(B)に示すように、例えば、ア
ゾジカルボンアミド等の発泡剤をシロキサンポリマー壁
で被覆したカプセル構造体をSOG薬液中に分散させて
塗布薬液とし、これを酸化膜3上にスピンコート法を用
いて塗布し、塗布膜4を形成する。この時、上記の発泡
剤としては、塗布した時には発泡せずに100〜200
℃の温度で発泡するものが望ましく、さらには、発泡し
た際に窒素や二酸化炭素等のデバイスそのものに悪影響
を及ぼさないものが望ましい。
Next, as shown in FIG. 2B, for example, a capsule structure in which a foaming agent such as azodicarbonamide is coated with a siloxane polymer wall is dispersed in a SOG chemical liquid to form a coating chemical liquid, which is an oxide film. A coating film 4 is formed by applying the coating film 3 on the surface 3 by a spin coating method. At this time, as the above-mentioned foaming agent, 100-200 without foaming when applied.
What foams at a temperature of ° C is desirable, and those which do not adversely affect the device itself such as nitrogen and carbon dioxide when foaming are desirable.

【0027】続いて図2(C)に示すように、基板1に
ホットプレートによる200℃〜205℃程度の熱処理
を加える。この熱処理により、上記のアゾジカルボンア
ミドは窒素や二酸化炭素等のガスを発生して分解し、塗
布膜中の上記カプセル構造体はシロキサンポリマー壁に
囲まれた空孔となり、塗布膜4は多孔質化する。ホット
プレートでの熱処理の後、さらに400℃で30分間の
熱処理で膜を硬化させ多孔質膜5を得る。
Subsequently, as shown in FIG. 2C, the substrate 1 is subjected to heat treatment at about 200 ° C. to 205 ° C. with a hot plate. By this heat treatment, the azodicarbonamide generates a gas such as nitrogen or carbon dioxide and decomposes, the capsule structure in the coating film becomes pores surrounded by siloxane polymer walls, and the coating film 4 is porous. Turn into. After the heat treatment on the hot plate, the film is further cured by heat treatment at 400 ° C. for 30 minutes to obtain the porous film 5.

【0028】最後に図2(D)に示すように、多孔質膜
5の上にCVD法を用いて、例えばシリコン酸化膜6を
形成する。この後、必要に応じて図には示さないが、ヴ
ィアホールの形成、ヴィアホールの金属による埋め込み
を行い、第2の配線層7を形成する。
Finally, as shown in FIG. 2D, a silicon oxide film 6, for example, is formed on the porous film 5 by the CVD method. Thereafter, although not shown in the figure, if necessary, a via hole is formed and the via hole is filled with metal to form a second wiring layer 7.

【0029】本実施の形態によれば、シロキサンポリマ
ー壁で被覆されたアゾジカルボンアミドが分散した塗布
膜4をスピンコート法により形成した後、熱処理により
塗布膜4中のアゾジカルボンアミドを気化させることで
塗布膜4を多孔質化し、多孔質膜5を得ることができ
る。塗布薬液中に混合する発泡剤の量を増すことによ
り、多孔質膜5の誘電率を低下することができ、誘電率
2.0〜2.5程度の多孔質膜が得られ、結果的には、
第1の配線層2と第2の配線層7の間の層間絶縁膜とし
て、低誘電率の多孔質膜5を用いることにより、配線間
容量の小さい半導体装置を製造することができる。
According to the present embodiment, after the coating film 4 in which the azodicarbonamide coated with the siloxane polymer wall is dispersed is formed by the spin coating method, the azodicarbonamide in the coating film 4 is vaporized by heat treatment. Thus, the coating film 4 can be made porous to obtain the porous film 5. By increasing the amount of the foaming agent mixed in the coating chemical, the dielectric constant of the porous film 5 can be lowered, and a porous film having a dielectric constant of about 2.0 to 2.5 can be obtained, resulting in Is
By using the porous film 5 having a low dielectric constant as the interlayer insulating film between the first wiring layer 2 and the second wiring layer 7, it is possible to manufacture a semiconductor device having a small wiring capacitance.

【0030】また、本実施の形態では、発泡剤であるア
ゾジカルボンアミドがシロキサンポリマーで被覆された
カプセル構造体であるため、熱処理によりアゾジカルボ
ンアミドが気化すると、膜中のカプセル構造体は中空カ
プセルとなるため、中空カプセルどうしは結合せず、本
実施の形態で得られる多孔質膜中の各空孔は互いに独立
しており、吸湿性が低く、吸湿に伴う膜質の劣化が少な
い多孔質膜が得られる。
Further, in the present embodiment, since the foaming agent azodicarbonamide is a capsule structure coated with a siloxane polymer, when the azodicarbonamide is vaporized by heat treatment, the capsule structure in the film becomes a hollow capsule. Therefore, the hollow capsules are not bonded to each other, the respective pores in the porous film obtained in the present embodiment are independent of each other, the hygroscopicity is low, and the deterioration of the film quality due to the moisture absorption is small. Is obtained.

【0031】なお、本実施例ではシロキサンポリマー壁
に被覆された発泡剤をSOG薬液に分散させた場合につ
いて述べたが、塗布薬液に分散させるカプセル構造体は
合成樹脂壁またはガラス壁をもつ中空の微粒子でも同様
の多孔質膜を得られる。
In this embodiment, the case where the foaming agent coated on the siloxane polymer wall is dispersed in the SOG chemical liquid has been described, but the capsule structure dispersed in the coating chemical liquid is a hollow structure having a synthetic resin wall or a glass wall. The same porous film can be obtained with fine particles.

【0032】[0032]

【発明の効果】以上のように本発明によれば、第1の配
線層2と第2の配線層7の間の層間絶縁膜として、超臨
界乾燥法により形成した多孔質膜5を用いることによ
り、配線間容量の小さい半導体装置を製造することがで
きる。さらに、多孔質膜5の上にCVD法を用いて絶縁
膜6を形成することで、吸湿性が高い多孔質膜5を水分
から保護し、経時劣化の少ない安定した層間絶縁膜を得
ることができる。
As described above, according to the present invention, the porous film 5 formed by the supercritical drying method is used as the interlayer insulating film between the first wiring layer 2 and the second wiring layer 7. As a result, a semiconductor device having a small wiring capacitance can be manufactured. Furthermore, by forming the insulating film 6 on the porous film 5 by using the CVD method, the porous film 5 having high hygroscopicity can be protected from moisture and a stable interlayer insulating film with little deterioration with time can be obtained. it can.

【0033】また本発明によれば、第1の配線層2と第
2の配線層7の間の層間絶縁膜として、多孔質膜5を用
いることにより、配線間容量の小さい半導体装置を製造
することができる。また、本発明で得られる多孔質膜5
中の空孔は互いに独立しているので、膜の吸湿が小さ
く、吸湿に伴う膜質の劣化が少ない。
Further, according to the present invention, by using the porous film 5 as an interlayer insulating film between the first wiring layer 2 and the second wiring layer 7, a semiconductor device having a small wiring capacitance is manufactured. be able to. Further, the porous film 5 obtained by the present invention
Since the pores inside are independent from each other, the moisture absorption of the film is small and the deterioration of the film quality due to the moisture absorption is small.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態における半導体装置
の製造工程断面図
FIG. 1 is a sectional view of a manufacturing process of a semiconductor device according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態における半導体装置
の製造工程断面図
FIG. 2 is a sectional view of a manufacturing process of a semiconductor device according to a second embodiment of the present invention.

【図3】従来のSOG法を用いた半導体装置の製造工程
断面図
FIG. 3 is a cross-sectional view of a manufacturing process of a semiconductor device using a conventional SOG method.

【符号の説明】[Explanation of symbols]

1 基板 2 配線層 3 シリコン酸化膜 4 塗布膜 5 シリコン酸化膜 6 配線層 7 湿潤ゲル膜 8 多孔質膜 1 substrate 2 wiring layer 3 silicon oxide film 4 coating film 5 silicon oxide film 6 wiring layer 7 wet gel film 8 porous film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】配線の形成された基板上に湿潤ゲル膜を形
成する工程と、前記湿潤ゲル膜を超臨界乾燥法により乾
燥して多孔質膜を形成する工程と、上記多孔質膜の上に
CVD法により絶縁膜を形成する工程を有する半導体装
置の製造方法。
1. A step of forming a wet gel film on a substrate on which wiring is formed, a step of drying the wet gel film by a supercritical drying method to form a porous film, and a step of forming the porous film on the porous film. A method of manufacturing a semiconductor device, which comprises a step of forming an insulating film by a CVD method.
【請求項2】湿潤ゲル膜を形成する工程において、金属
アルコキシドを加水分解して生成したメタルヒドロキシ
ドを脱水縮合することにより得られるゾル溶液または有
機高分子を含む溶液を塗布することを特徴とする請求項
1に記載の半導体装置の製造方法。
2. A sol solution obtained by hydrolyzing a metal alkoxide produced by hydrolyzing a metal alkoxide or a solution containing an organic polymer is applied in the step of forming a wet gel film. The method of manufacturing a semiconductor device according to claim 1.
【請求項3】配線の形成された基板上に合成樹脂壁また
はガラス壁で被覆された微粒子を含有するゾルを塗布す
ることにより塗布膜を形成する工程と、前記塗布膜に熱
処理を施して絶縁膜を形成する工程を有する半導体装置
の製造方法。
3. A step of forming a coating film by coating a sol containing fine particles coated with a synthetic resin wall or a glass wall on a substrate on which wiring is formed, and a heat treatment is applied to the coating film to perform insulation. A method for manufacturing a semiconductor device, comprising a step of forming a film.
【請求項4】配線の形成された基板上に合成樹脂壁また
はガラス壁で被覆された発泡剤を含有するゾルを塗布す
ることにより塗布膜を形成する工程と、前記塗布膜に熱
処理を施して絶縁膜を形成する工程を有する半導体装置
の製造方法。
4. A step of forming a coating film by coating a sol containing a foaming agent coated with a synthetic resin wall or a glass wall on a substrate on which wiring is formed, and heat treating the coating film. A method for manufacturing a semiconductor device, comprising the step of forming an insulating film.
JP2085796A 1996-02-07 1996-02-07 Manufacture of semiconductor device Pending JPH09213797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2085796A JPH09213797A (en) 1996-02-07 1996-02-07 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2085796A JPH09213797A (en) 1996-02-07 1996-02-07 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH09213797A true JPH09213797A (en) 1997-08-15

Family

ID=12038794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2085796A Pending JPH09213797A (en) 1996-02-07 1996-02-07 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH09213797A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269204A (en) * 1999-01-13 2000-09-29 Hitachi Chem Co Ltd Semiconductor device
WO2001075957A1 (en) * 2000-04-03 2001-10-11 Ulvac, Inc. Method for preparing porous sog film
JP2001351911A (en) * 2000-04-03 2001-12-21 Ulvac Japan Ltd Method of forming porous sog film
US6364953B1 (en) 1999-06-23 2002-04-02 Kabushiki Kaisha Kobe Seiko Sho. Method and apparatus for making aerogel film
JP2002252225A (en) * 2001-02-22 2002-09-06 Ulvac Japan Ltd Method for forming hydrophobic porous sog film
JP2002252223A (en) * 2001-02-22 2002-09-06 Ulvac Japan Ltd Method for forming multilayer film of porous sog films
EP1269259A1 (en) * 2000-01-12 2003-01-02 Semiconductor Research Corporation Solventless, resistless direct dielectric patterning
US6524429B1 (en) 1999-08-31 2003-02-25 Sony Corporation Method of forming buried wiring, and apparatus for processing substratum
JP2006100120A (en) * 2004-09-29 2006-04-13 Nitto Denko Corp Manufacturing method of porous membrane

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269204A (en) * 1999-01-13 2000-09-29 Hitachi Chem Co Ltd Semiconductor device
KR100372823B1 (en) * 1999-06-23 2003-02-19 가부시키가이샤 고베 세이코쇼 Method and apparatus for making aerogel film
US6364953B1 (en) 1999-06-23 2002-04-02 Kabushiki Kaisha Kobe Seiko Sho. Method and apparatus for making aerogel film
US6524429B1 (en) 1999-08-31 2003-02-25 Sony Corporation Method of forming buried wiring, and apparatus for processing substratum
US6777321B2 (en) 1999-08-31 2004-08-17 Sony Corporation Method of forming buried wiring
KR100635442B1 (en) * 1999-08-31 2006-10-17 소니 가부시끼 가이샤 Method of forming buried wiring, and apparatus for processing substratum
EP1269259A4 (en) * 2000-01-12 2006-07-12 Semiconductor Res Corp Solventless, resistless direct dielectric patterning
EP1269259A1 (en) * 2000-01-12 2003-01-02 Semiconductor Research Corporation Solventless, resistless direct dielectric patterning
JP2001351911A (en) * 2000-04-03 2001-12-21 Ulvac Japan Ltd Method of forming porous sog film
EP1189267A4 (en) * 2000-04-03 2005-04-20 Ulvac Inc Method for preparing porous sog film
EP1189267A1 (en) * 2000-04-03 2002-03-20 Ulvac, Inc. Method for preparing porous sog film
KR100816698B1 (en) * 2000-04-03 2008-03-27 가부시키가이샤 알박 Method for preparing porous sog film
WO2001075957A1 (en) * 2000-04-03 2001-10-11 Ulvac, Inc. Method for preparing porous sog film
US6919106B2 (en) 2000-04-03 2005-07-19 Ulvac Inc. Method for preparing porous SOG film
JP2002252223A (en) * 2001-02-22 2002-09-06 Ulvac Japan Ltd Method for forming multilayer film of porous sog films
JP2002252225A (en) * 2001-02-22 2002-09-06 Ulvac Japan Ltd Method for forming hydrophobic porous sog film
JP2006100120A (en) * 2004-09-29 2006-04-13 Nitto Denko Corp Manufacturing method of porous membrane
JP4646199B2 (en) * 2004-09-29 2011-03-09 日東電工株式会社 Method for producing porous membrane

Similar Documents

Publication Publication Date Title
US5807607A (en) Polyol-based method for forming thin film aerogels on semiconductor substrates
EP0684642B1 (en) Method of fabrication of a porous dielectric layer for a semiconductor device
JP4014234B2 (en) Method for fabricating interconnect lines with reduced line capacitance in semiconductor devices
US6759098B2 (en) Plasma curing of MSQ-based porous low-k film materials
US6057251A (en) Method for forming interlevel dielectric layer in semiconductor device using electron beams
US20140206203A1 (en) Methods of forming a poruous insulator, and related methods of forming semiconductor device structures
JPH0846047A (en) Porous dielectric material provided with porous surface characteristic
JPH09213797A (en) Manufacture of semiconductor device
US20030044532A1 (en) Process for preparing porous low dielectric constant material
US20020168872A1 (en) Insulators for high density circuits
JP3859540B2 (en) Low dielectric constant insulating film forming material
JPH1070121A (en) Method of low volatile solvent group for forming thin film of nano-porous aerogels on semiconductor substrate
JPH10261640A (en) Process for depositing and forming laminated dielectric composition for improving flatness of semiconductor electronic device
JPH1197532A (en) Semiconductor integrated circuit device and its manufacture
JP4022790B2 (en) Insulating film and method for forming the same
JP3210601B2 (en) Semiconductor device and manufacturing method thereof
JPH08250397A (en) Resist coating method
JP2003031566A (en) Composition for forming low-permittivity insulation film, insulation film forming method using the same, and electronic component having the insulation film obtained by the method
JPH09241518A (en) Resin composition and method for forming multilayer interconnection
JP3328545B2 (en) Method for manufacturing semiconductor device
KR20050004886A (en) Method for forming inorganic porous film
KR100218349B1 (en) Isolation layer of semiconductor device and manufacturing method thereof
JPH01206631A (en) Manufacture of semiconductor device
KR19990040433A (en) Contact forming method including outgassing process in insulating film
JPS63137433A (en) Manufacture of semiconductor device