JPH09213638A - Method for manufacturing semiconductor thin film - Google Patents

Method for manufacturing semiconductor thin film

Info

Publication number
JPH09213638A
JPH09213638A JP1606496A JP1606496A JPH09213638A JP H09213638 A JPH09213638 A JP H09213638A JP 1606496 A JP1606496 A JP 1606496A JP 1606496 A JP1606496 A JP 1606496A JP H09213638 A JPH09213638 A JP H09213638A
Authority
JP
Japan
Prior art keywords
flow rate
thin film
semiconductor thin
silane
gauge factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1606496A
Other languages
Japanese (ja)
Inventor
Takashi Hatai
崇 幡井
Atsushi Sakai
淳 阪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1606496A priority Critical patent/JPH09213638A/en
Publication of JPH09213638A publication Critical patent/JPH09213638A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing semiconductor film whose pressure at a high temperature and high-voltage can be measured and which exhibits a high gauge factor. SOLUTION: Though the gauge factor G becomes larger as the doping concentration becomes low, the conductivity σ tends to be low. When the doping concentration is 1% or more, the gauge factor G becomes small and there is no more merit as pressure-sensing resistive material. On the other hand, when the doping concentration is 0.01% or less, the conductivity σ becomes so low that the semiconductor thin film can hardly be used as a device. Therefore, phosphin flow rate: silane flow rate is in the range of 10<2> -10<4> . The semiconductor thin film needs to be crystallite and not amorphous to obtain a large gauge factor G. Silane flow rate: hydrogen flow rate is more than 1:80 to form crystallite silicon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体圧力センサ
等の感圧抵抗材料として用いられる半導体薄膜の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor thin film used as a pressure sensitive resistance material such as a semiconductor pressure sensor.

【0002】[0002]

【従来の技術】従来、半導体圧力センサは、単結晶シリ
コン基板表面にボロン(B)等の不純物をイオン注入,
熱拡散してピエゾ抵抗体を形成するとともに、基板の裏
面から水酸化カリウム(KOH)水溶液等のエッチャン
トにより異方性エッチングを行うことにより、中央部に
凹部を形成して支持部及びダイヤフラムを形成すること
により作製されていた。
2. Description of the Related Art Conventionally, a semiconductor pressure sensor has been used for ion implantation of impurities such as boron (B) into the surface of a single crystal silicon substrate.
Along with thermal diffusion to form a piezoresistor, anisotropic etching is performed from the back surface of the substrate with an etchant such as potassium hydroxide (KOH) aqueous solution to form a concave portion in the central portion to form a support portion and a diaphragm. It was produced by doing.

【0003】しかし、上述のような単結晶シリコン基板
を用いた半導体圧力センサでは、ピエゾ抵抗体と基板と
の絶縁分離をpn接合により行っているため、150℃
以上の高温における測定ができないことや、ダイヤフラ
ムとしてシリコンを使用しているため、高圧の測定がで
きない等の問題があった。
However, in the semiconductor pressure sensor using the single crystal silicon substrate as described above, since the piezoresistor and the substrate are insulated and separated from each other by the pn junction, 150 ° C.
There are problems that the measurement cannot be performed at the above high temperature and that high pressure cannot be measured because silicon is used as the diaphragm.

【0004】この問題を解決するため、シリコンや金属
等で形成されたダイヤフラム上に、SiO2等の絶縁膜
を解して半導体薄膜を成膜し、この半導体薄膜を加工し
てピエゾ抵抗体を作製するタイプの半導体圧力センサが
検討されている。このような半導体圧力センサにおける
絶縁膜上に形成される半導体薄膜として、シラン(Si
4)やジシラン(Si26)等を原料ガスとして用い
たプラズマCVD法によって成膜した、アモルファスシ
リコン薄膜や微結晶シリコン薄膜等が検討されている。
In order to solve this problem, a semiconductor thin film is formed by decomposing an insulating film such as SiO 2 on a diaphragm formed of silicon or metal, and the semiconductor thin film is processed to form a piezoresistor. Semiconductor pressure sensors of the type to be manufactured are being studied. As a semiconductor thin film formed on an insulating film in such a semiconductor pressure sensor, silane (Si
Amorphous silicon thin films and microcrystalline silicon thin films formed by plasma CVD using H 4 ) or disilane (Si 2 H 6 ) as a raw material gas have been studied.

【0005】[0005]

【発明が解決しようとする課題】ところが、一般に、ア
モルファスシリコン薄膜のゲージ率は10〜20程度で
あり、単結晶シリコンのゲージ率が100〜200程度
であるのと比べると1桁小さい。
However, the amorphous silicon thin film generally has a gauge factor of about 10 to 20, which is an order of magnitude smaller than that of single crystal silicon of about 100 to 200.

【0006】従って、アモルファスシリコン薄膜を半導
体圧力センサの感圧抵抗材料として用いた場合、センサ
感度が小さくなるという問題があった。
Therefore, when an amorphous silicon thin film is used as a pressure sensitive resistance material of a semiconductor pressure sensor, there is a problem that the sensor sensitivity becomes small.

【0007】また、アモルファス相中に微結晶相を含む
ことによりゲージ率の向上が期待できる微結晶シリコン
薄膜においても、ゲージ率は20〜30程度であり、単
結晶シリコンに比べると非常に小さい値である。
Further, even in a microcrystalline silicon thin film which can be expected to have an improved gauge ratio by including a microcrystalline phase in the amorphous phase, the gauge ratio is about 20 to 30, which is a very small value as compared with single crystal silicon. Is.

【0008】本発明は、上記の点に鑑みて成されたもの
であり、その目的とするところは、高温における圧力の
測定及び高圧の測定ができ、かつ、高いゲージ率を有す
る半導体薄膜の製造方法を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to manufacture a semiconductor thin film capable of measuring pressure at high temperature and high pressure and having a high gauge factor. To provide a method.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は、
原料ガスとしてシラン(SiH4),希釈ガスとして水
素(H2),ドーピング用ガスとしてフォスフィン(P
3)を用いたプラズマCVD法による半導体薄膜の製
造方法において、シラン流量:水素流量が1:80以
上,フォスフィン流量:シラン流量が1:102〜1:
104の範囲であることを特徴とするものである。
According to the first aspect of the present invention,
Silane (SiH 4 ) as a source gas, hydrogen (H 2 ) as a dilution gas, and phosphine (P as a doping gas)
In the method for producing a semiconductor thin film by the plasma CVD method using H 3 ), the flow rate of silane: the flow rate of hydrogen is 1:80 or more, the flow rate of phosphine: the flow rate of silane is 1:10 2 to 1:
It is characterized in that it is in the range of 10 4 .

【0010】[0010]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

=実施形態1= 以下、本発明の一実施形態について説明する。プラズマ
CVD法により単結晶シリコン基板上に、以下の条件で
シリコン薄膜の成膜を行った。 シラン(SiH4)流量:水素(H2)流量 1:80 フォスフィン(PH3)流量:シラン(SiH4)流量 1:1000 チャンバー内圧力 0.7Torr 基板温度 250℃ 放電パワー密度 0.11W/cm2 次に、上記の条件で成膜したシリコン薄膜のゲージ率を
求めるために、フォトリソグラフィ工程を用いてシリコ
ン薄膜を1mm×0.5mmの大きさに加工し、この両
端にクロム(Cr)電極を蒸着法により成膜し歪みゲー
ジを形成する。そして、この歪みゲージに4.4×10
-4の歪みを加えた時の抵抗値変化よりゲージ率Gを求め
ると、−51となる。
= Embodiment 1 = An embodiment of the present invention will be described below. A silicon thin film was formed on a single crystal silicon substrate by the plasma CVD method under the following conditions. Silane (SiH 4 ) flow rate: Hydrogen (H 2 ) flow rate 1:80 Phosphine (PH 3 ) flow rate: Silane (SiH 4 ) flow rate 1: 1000 Chamber pressure 0.7 Torr Substrate temperature 250 ° C. Discharge power density 0.11 W / cm 2 Next, in order to obtain the gauge factor of the silicon thin film formed under the above conditions, the silicon thin film was processed into a size of 1 mm x 0.5 mm using a photolithography process, and a chrome (Cr) electrode was formed on both ends of this. Is formed by a vapor deposition method to form a strain gauge. And 4.4 × 10 in this strain gauge
When the gauge factor G is calculated from the change in resistance value when a strain of -4 is applied, it becomes -51.

【0011】=実施形態2= プラズマCVD法により単結晶シリコン基板上に、実施
形態1よりもドーピング濃度が低い以下の条件でシリコ
ン薄膜の成膜を行った。 シラン(SiH4)流量:水素(H2)流量 1:80 フォスフィン(PH3)流量:シラン(SiH4)流量 1:10000 チャンバー内圧力 0.7Torr 基板温度 250℃ 放電パワー密度 0.11W/cm2 そして、実施形態1の場合と同様にして、上記の条件で
成膜したシリコン薄膜のゲージ率Gを求めると−67と
なる。
Second Embodiment A silicon thin film was formed on a single crystal silicon substrate by a plasma CVD method under the following conditions where the doping concentration was lower than that of the first embodiment. Silane (SiH 4 ) flow rate: Hydrogen (H 2 ) flow rate 1:80 Phosphine (PH 3 ) flow rate: Silane (SiH 4 ) flow rate 1: 10000 Chamber pressure 0.7 Torr Substrate temperature 250 ° C. Discharge power density 0.11 W / cm 2 Then, similarly to the case of the first embodiment, the gauge ratio G of the silicon thin film formed under the above conditions is −67.

【0012】ここで、図1は、実施形態1,実施形態2
及びドーピング濃度(フォスフィン流量:シラン流量)
を1%として成膜を行ったシリコン薄膜の、ドーピング
濃度とゲージ率G及び導電率σの関係を示す特性図であ
る。図1より、ドーピング濃度が小さくなるにしたが
い、ゲージ率Gは大きくなるが、電導率σは小さくなる
傾向にある。
Here, FIG. 1 shows the first embodiment and the second embodiment.
And doping concentration (phosphine flow rate: silane flow rate)
FIG. 3 is a characteristic diagram showing the relationship between the doping concentration, the gauge factor G, and the conductivity σ of a silicon thin film formed with 1% as 1%. From FIG. 1, as the doping concentration decreases, the gauge factor G increases, but the conductivity σ tends to decrease.

【0013】ここで、ドーピング濃度が1%以上ではゲ
ージ率Gが小さくなり、感圧抵抗材料としてのメリット
がなくなり、また、ドーピング濃度が0.01%以下で
は導電率σが小さくなりすぎてデバイスとしての使用が
困難になる。
Here, when the doping concentration is 1% or more, the gauge factor G becomes small, and the merit as a pressure-sensitive resistance material is lost, and when the doping concentration is 0.01% or less, the conductivity σ becomes too small and the device. Is difficult to use.

【0014】従って、フォスフィン(PH3)流量:シ
ラン(SiH4)流量は1:102〜1:104の範囲で
ある。
Therefore, the flow rate of phosphine (PH 3 ): silane (SiH 4 ) is in the range of 1:10 2 to 1:10 4 .

【0015】また、高いゲージ率Gを得るためには、半
導体薄膜はアモルファス状態ではなく、微結晶状態にす
る必要があり、微結晶シリコン形成のためには、シラン
(SiH4)流量:水素(H2)流量を1:80以上にす
る必要がある。
Further, in order to obtain a high gauge factor G, the semiconductor thin film needs to be in a microcrystalline state rather than an amorphous state. For the formation of microcrystalline silicon, the flow rate of silane (SiH 4 ): hydrogen ( The flow rate of H 2 ) must be 1:80 or more.

【0016】更に、微結晶シリコン形成のためには、一
定値以上の放電パワー密度が必要であるが、あまり放電
パワー密度が高すぎると反対にエッチング等の効果によ
り微結晶化が妨げられることがある。
Further, in order to form microcrystalline silicon, a discharge power density of a certain value or more is required, but if the discharge power density is too high, on the contrary, the effect of etching or the like may hinder microcrystallization. is there.

【0017】従って、放電パワー密度は0.1W/cm
2以上であることが望ましい。以上の実施形態1,2及
び図1より、シラン流量:水素流量が1:80以上,フ
ォスフィン流量:シラン流量が1:102〜1:104
範囲でプラズマCVD法により半導体薄膜を成膜するこ
とにより、半導体圧力センサ等の感圧抵抗材料として用
いた場合、センサの高感度化を図ることが可能な半導体
薄膜を得ることができる。
Therefore, the discharge power density is 0.1 W / cm.
It is desirable that it be 2 or more. From Embodiments 1 and 2 and FIG. 1 described above, a semiconductor thin film is formed by a plasma CVD method in the range of silane flow rate: hydrogen flow rate of 1:80 or more and phosphine flow rate: silane flow rate of 1:10 2 to 1:10 4. By doing so, when used as a pressure-sensitive resistance material for a semiconductor pressure sensor or the like, it is possible to obtain a semiconductor thin film capable of increasing the sensitivity of the sensor.

【0018】[0018]

【発明の効果】請求項1記載の発明は、原料ガスとして
シラン(SiH4),希釈ガスとして水素(H2),ドー
ピング用ガスとしてフォスフィン(PH3)を用いたプ
ラズマCVD法による半導体薄膜の製造方法において、
シラン流量:水素流量が1:80以上,フォスフィン流
量:シラン流量が1:102〜1:104の範囲でプラズ
マCVD法により半導体薄膜を成膜することにより、半
導体圧力センサ等の感圧抵抗材料として用いた場合、セ
ンサの高感度化を図ることが可能な半導体薄膜を得るこ
とができ、高温における圧力の測定及び高圧の測定がで
き、かつ、高いゲージ率を有する半導体薄膜の製造方法
を提供することができた。
According to the invention described in claim 1, a semiconductor thin film formed by a plasma CVD method using silane (SiH 4 ) as a source gas, hydrogen (H 2 ) as a diluent gas, and phosphine (PH 3 ) as a doping gas. In the manufacturing method,
Silane flow rate: Hydrogen flow rate is 1:80 or more, and phosphine flow rate: Silane flow rate is in the range of 1:10 2 to 1:10 4 by forming a semiconductor thin film by the plasma CVD method. When used as a material, it is possible to obtain a semiconductor thin film capable of achieving high sensitivity of a sensor, capable of measuring pressure at high temperature and high pressure, and a method for manufacturing a semiconductor thin film having a high gauge factor. Could be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態に係るプラズマCVD法に
より成膜したシリコン薄膜のドーピング濃度とゲージ率
及び導電率の関係を示す特性図である。
FIG. 1 is a characteristic diagram showing a relationship between a doping concentration and a gauge factor and a conductivity of a silicon thin film formed by a plasma CVD method according to an embodiment of the present invention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年3月29日[Submission date] March 29, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0004】この問題を解決するため、シリコンや金属
等で形成されたダイヤフラム上に、SiO2等の絶縁膜
して半導体薄膜を成膜し、この半導体薄膜を加工し
てピエゾ抵抗体を作製するタイプの半導体圧力センサが
検討されている。このような半導体圧力センサにおける
絶縁膜上に形成される半導体薄膜として、シラン(Si
4)やジシラン(Si26)等を原料ガスとして用い
たプラズマCVD法によって成膜した、アモルファスシ
リコン薄膜や微結晶シリコン薄膜等が検討されている。
[0004] To solve this problem, on the diaphragm is formed of silicon, metal or the like, the semiconductor thin film was formed by through the insulating film such as SiO 2, a piezo resistor to processing the semiconductor thin film Semiconductor pressure sensors of the type to be manufactured are being studied. As a semiconductor thin film formed on an insulating film in such a semiconductor pressure sensor, silane (Si
Amorphous silicon thin films and microcrystalline silicon thin films formed by plasma CVD using H 4 ) or disilane (Si 2 H 6 ) as a raw material gas have been studied.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原料ガスとしてシラン(SiH4),希
釈ガスとして水素(H2),ドーピング用ガスとしてフ
ォスフィン(PH3)を用いたプラズマCVD法による
半導体薄膜の製造方法において、シラン流量:水素流量
が1:80以上,フォスフィン流量:シラン流量が1:
102〜1:104の範囲であることを特徴とする半導体
薄膜の製造方法。
1. A method for producing a semiconductor thin film by a plasma CVD method using silane (SiH 4 ) as a source gas, hydrogen (H 2 ) as a diluent gas, and phosphine (PH 3 ) as a doping gas. Flow rate is 1:80 or more, phosphine flow rate: Silane flow rate is 1:
The method for producing a semiconductor thin film is in the range of 10 2 to 1:10 4 .
JP1606496A 1996-01-31 1996-01-31 Method for manufacturing semiconductor thin film Pending JPH09213638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1606496A JPH09213638A (en) 1996-01-31 1996-01-31 Method for manufacturing semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1606496A JPH09213638A (en) 1996-01-31 1996-01-31 Method for manufacturing semiconductor thin film

Publications (1)

Publication Number Publication Date
JPH09213638A true JPH09213638A (en) 1997-08-15

Family

ID=11906155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1606496A Pending JPH09213638A (en) 1996-01-31 1996-01-31 Method for manufacturing semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH09213638A (en)

Similar Documents

Publication Publication Date Title
JP5761536B2 (en) Force transducer
US7313965B2 (en) High-temperature pressure sensor
CN102683426A (en) Semiconductor device, strain gauge, pressure sensor, and method of forming semiconductor device
Wur et al. Polycrystalline diamond pressure sensor
JPS6170716A (en) Manufacture of silicon thin film piezo resistance element
Obermeier et al. Characteristics of polysilicon layers and their application in sensors
KR100432465B1 (en) Thin film piezoresistive sensor and method of making the same
EP1214744B1 (en) Silicon strain gage having a thin layer of highly conductive silicon
JPS6410109B2 (en)
JPH09213638A (en) Method for manufacturing semiconductor thin film
JPH08261853A (en) Mechanical-quantity sensor element
JP3546151B2 (en) Distortion detecting element and method for manufacturing distortion detecting element
JPH0584676B2 (en)
JP2014167475A (en) Semiconductor device, strain gauge, pressure sensor, and manufacturing method of semiconductor device
JPH05296864A (en) Pressure sensor and its manufacture
JPH07176765A (en) Semiconductor strain transducer
Wur et al. Piezoresistivity of polycrystalline diamond films
JPH09210748A (en) Thermal type flow rate sensor
JP2946351B2 (en) Infrared sensor and method of manufacturing the same
JPH04307977A (en) Manufacture of thermal type infrared sensor
JPH08125127A (en) Resistance element and temperature sensor
EP0504928A2 (en) Thermal type infrared sensor and method for production thereof
JPS6134402A (en) Strain sensor
JPH0462976A (en) Manufacture of acceleration sensor
CN117571169A (en) Pressure sensor chip and preparation method thereof