JPH09213572A - Solid state electrolytic capacitor - Google Patents

Solid state electrolytic capacitor

Info

Publication number
JPH09213572A
JPH09213572A JP3752096A JP3752096A JPH09213572A JP H09213572 A JPH09213572 A JP H09213572A JP 3752096 A JP3752096 A JP 3752096A JP 3752096 A JP3752096 A JP 3752096A JP H09213572 A JPH09213572 A JP H09213572A
Authority
JP
Japan
Prior art keywords
sintered body
lead wire
recess
anode lead
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3752096A
Other languages
Japanese (ja)
Inventor
Takeshi Sato
健 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP3752096A priority Critical patent/JPH09213572A/en
Publication of JPH09213572A publication Critical patent/JPH09213572A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease a leakage current and reduce short-circuit failure, by forming a recess in a sintered body in the root of an anode lead wire, and filling the recess with insulating resin. SOLUTION: Fine powder of tantalum or the like is used as the powder of valve action metal. A tantalum wire or the like is used as an anode lead wire. One end of the anode lead wire 1 is buried in the valve action metal powder, and the other end is led out and forms a sintered body 2. The sintered body 2 is formed as a rectangular parallelopiped or a cylinder as a whole. In particular, a recess 4 is formed in the sintered body 2 of a root part 3 of the anode lead wire 1. The recess 4 is polygonal or cylindrical, and the volume is preferable to be about 2-10% of the whole volume of the sintered body 2. The recess 4 is filled with insulating resin 5 such as fluororesin, silicone resin and epoxy resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は固体電解コンデンサ
に関する。
TECHNICAL FIELD The present invention relates to a solid electrolytic capacitor.

【0002】[0002]

【従来の技術】タンタル固体電解コンデンサ等のコンデ
ンサは、通常、タンタル等の微粉末を、タンタル線等の
陽極リード線を引き出した状態にして、円筒状や直方体
上に加圧成形し、さらに真空中において高温度で焼結し
て形成した焼結体を用いている。そして図2に示す通
り、この焼結体20に陽極酸化皮膜21、二酸化マンガ
ン層22、カーボン層及び銀層(又は銅層)からなる陰
極層23を順次設ける。また、陽極リード線24には根
本部分25にテフロン製のワッシャ26を挿入するとと
もに陽極端子27を接続し、陰極層23には陰極端子2
8を接続する。さらに、樹脂モールド法や樹脂ディップ
法等により樹脂外装29を設けている。
2. Description of the Related Art Capacitors such as tantalum solid electrolytic capacitors are usually manufactured by pressing fine powder of tantalum or the like into a cylindrical or rectangular parallelepiped with the anode lead wire of the tantalum wire or the like being pulled out, and then vacuum forming. A sintered body formed by sintering at a high temperature is used. Then, as shown in FIG. 2, a cathode layer 23 including an anodized film 21, a manganese dioxide layer 22, a carbon layer and a silver layer (or a copper layer) is sequentially provided on the sintered body 20. Further, a washer 26 made of Teflon is inserted into the root portion 25 of the anode lead wire 24, and an anode terminal 27 is connected to the cathode lead 23.
8 is connected. Further, the resin exterior 29 is provided by a resin molding method, a resin dipping method, or the like.

【0003】[0003]

【発明が解決しようとする課題】しかし、図2の従来の
固体電解コンデンサ30は、製造工程中において陽極リ
ード線24の根本部分25に機械的なストレスがかか
る。そのため、陽極リード線24の根本部分25の表面
に形成されている陽極酸化皮膜31に亀裂ができ易い。
この陽極酸化皮膜31の亀裂の部分は、正常な陽極酸化
皮膜21の部分に比較して抵抗が低く、電流が流れ易
い。従って、固体電解コンデンサ30に電圧を印加した
場合に、充電電流がこの陽極酸化皮膜31の亀裂を通
り、二酸化マンガン層22、陰極層23、陰極端子28
を通して流れ易くなる。その結果、固体電解コンデンサ
30の漏れ電流が増加し、短絡不良を生じ易い欠点があ
る。
However, in the conventional solid electrolytic capacitor 30 of FIG. 2, mechanical stress is applied to the root portion 25 of the anode lead wire 24 during the manufacturing process. Therefore, the anodic oxide film 31 formed on the surface of the root portion 25 of the anode lead wire 24 is easily cracked.
The cracked portion of the anodic oxide film 31 has a lower resistance than that of the normal anodic oxide film 21, and a current easily flows. Therefore, when a voltage is applied to the solid electrolytic capacitor 30, the charging current passes through the cracks in the anodic oxide film 31, and the manganese dioxide layer 22, the cathode layer 23, and the cathode terminal 28.
It becomes easier to flow through. As a result, the leakage current of the solid electrolytic capacitor 30 increases, and there is a drawback that a short circuit defect is likely to occur.

【0004】本発明は、以上の欠点を改良し、漏れ電流
を低下でき、短絡不良を減少できる固体電解コンデンサ
を提供することを課題とするものである。
An object of the present invention is to provide a solid electrolytic capacitor which is capable of improving the above-mentioned drawbacks, reducing leakage current, and reducing short circuit defects.

【0005】[0005]

【課題を解決するための手段】本発明は、陽極リード線
を引き出した、弁作用金属の粉末からなる焼結体に、陽
極酸化皮膜、半導体層、陰極層を順次設けた固体電解コ
ンデンサにおいて、陽極リード線の根本部分の焼結体に
凹部を設け、この凹部に絶縁性樹脂を充填することを特
徴とする固体電解コンデンサである。
The present invention provides a solid electrolytic capacitor in which an anodized film, a semiconductor layer, and a cathode layer are sequentially provided on a sintered body made of a powder of valve metal, from which an anode lead wire is drawn, The solid electrolytic capacitor is characterized in that a recess is provided in the sintered body at the base of the anode lead wire and the recess is filled with an insulating resin.

【0006】陽極リード線の根本部分の焼結体に凹部を
設けているため、陽極リード線の根本部分から陰極端子
までの焼結体の表面の距離が長くなり、その表面の抵抗
が大きくなる。
Since the sintered body at the root of the anode lead wire is provided with a recess, the distance between the root of the anode lead and the surface of the sintered body from the cathode terminal becomes long, and the resistance of the surface becomes large. .

【0007】また、凹部に樹脂を充填しているため、陽
極リード線の根本部分をより強固に固定できる。従っ
て、製造工程中において、陽極リード線に機械的なスト
レスがかかっても、陽極リード線の根本部分の陽極酸化
皮膜に亀裂が生じるのを防止できる。それ故、固体電解
コンデンサの漏れ電流特性を改良でき、短絡不良を減少
できる。
Further, since the recess is filled with the resin, the root portion of the anode lead wire can be more firmly fixed. Therefore, even if mechanical stress is applied to the anode lead wire during the manufacturing process, it is possible to prevent cracks from occurring in the anodized film at the root of the anode lead wire. Therefore, the leakage current characteristics of the solid electrolytic capacitor can be improved, and short circuit defects can be reduced.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。弁作用金属の粉末にはタンタル等
の微粉末を用いる。また陽極リード線にはタンタル線等
を用いる。そして、図1に示す通り、陽極リード線1の
一端を前記粉末中に埋め、他端を引き出して焼結体2を
形成する。この焼結体2は全体として直方体状や円筒状
に形成している。
Embodiments of the present invention will be described below with reference to the drawings. Fine powder of tantalum or the like is used as the powder of the valve metal. A tantalum wire or the like is used as the anode lead wire. Then, as shown in FIG. 1, one end of the anode lead wire 1 is embedded in the powder and the other end is pulled out to form a sintered body 2. The sintered body 2 is formed in a rectangular parallelepiped shape or a cylindrical shape as a whole.

【0009】そして特に、陽極リード線1の根本部分3
の焼結体2に凹部4を形成している。この凹部4は、多
角形状や円筒状等であり、焼結体2全体の体積の2〜1
0%程度の大きさが好ましい。すなわち、凹部4の大き
さが2%未満では漏れ電流を低下したり、短絡不良を減
少する効果が低く、10%より大きいと容量の減少が大
きく小形化し難くなる。
And, in particular, the root portion 3 of the anode lead wire 1
The recess 4 is formed in the sintered body 2. The concave portion 4 has a polygonal shape or a cylindrical shape, and has a volume of 2 to 1 of the total volume of the sintered body 2.
A size of about 0% is preferable. That is, if the size of the concave portion 4 is less than 2%, the effect of reducing the leakage current or the short circuit failure is low, and if it is more than 10%, the capacity is greatly reduced and it is difficult to reduce the size.

【0010】また、凹部4には、フッ素樹脂やシリコン
樹脂、エポキシ樹脂等の絶縁性樹脂5を充填している。
この絶縁性樹脂5は、凹部4の深さよりも高く、焼結体
2の表面からはみ出して充填する方が好ましい。これに
より、絶縁性を向上でき、かつ陽極リード線1の根本部
分3を固定でき、機械的ストレスが加わってもそれを緩
和できる。
The recess 4 is filled with an insulating resin 5 such as fluororesin, silicon resin, or epoxy resin.
It is preferable that the insulating resin 5 is higher than the depth of the recess 4 and protrudes from the surface of the sintered body 2 to be filled. As a result, the insulating property can be improved, the root portion 3 of the anode lead wire 1 can be fixed, and the mechanical stress can be alleviated.

【0011】また、焼結体2には、陽極酸化皮膜6、二
酸化マンガン等の半導体層7、カーボン層及び銀ペース
ト層(又は銅ペースト層)等からなる陰極層8を順次設
けている。
Further, the sintered body 2 is sequentially provided with an anodized film 6, a semiconductor layer 7 such as manganese dioxide, a cathode layer 8 including a carbon layer and a silver paste layer (or a copper paste layer).

【0012】そして、陽極リード線1に陽極端子9を溶
接するとともに、陰極層8に陰極端子10を導電性樹脂
11により接続する。
Then, the anode terminal 9 is welded to the anode lead wire 1, and the cathode terminal 10 is connected to the cathode layer 8 by the conductive resin 11.

【0013】焼結体2に陽極酸化皮膜6等を設けたコン
デンサ素子全体は、樹脂外装12を被覆している。ま
た、陽極端子9及び陰極端子10の先端はこの樹脂外装
12の表面に沿って下面の方に折り曲げている。
The entire capacitor element in which the anodic oxide film 6 and the like are provided on the sintered body 2 is covered with the resin exterior 12. Further, the tips of the anode terminal 9 and the cathode terminal 10 are bent toward the lower surface along the surface of the resin sheath 12.

【0014】次に、上記固体電解コンデンサ13の製造
方法について説明する。先ず、弁作用金属の粉末を、陽
極リード線1の一端を埋め他端を引き出してプレスで圧
縮成形し、10-4〜10-5Torr程度の真空中で20
00℃程度の温度で数10分間加熱し、焼結体2を形成
する。そして成形の際、陽極リード線1の根本部分3の
焼結体2に凹部4を形成する。
Next, a method of manufacturing the solid electrolytic capacitor 13 will be described. First, a powder of valve metal is filled in one end of the anode lead wire 1 and the other end is pulled out, and compression molding is performed by a press to form a powder in a vacuum of about 10 −4 to 10 −5 Torr.
The sintered body 2 is formed by heating at a temperature of about 00 ° C. for several tens of minutes. Then, at the time of molding, a recess 4 is formed in the sintered body 2 of the root portion 3 of the anode lead wire 1.

【0015】焼結体2を形成後、複数個の焼結体2を陽
極リード線1の先端の箇所でステンレス等の金属製バー
に溶接する。溶接後、焼結体2を硝酸やリン酸等の化成
液中で電圧を印加して化成し、陽極酸化皮膜6を形成す
る。陽極酸化皮膜6を形成後、凹部4に絶縁性樹脂5を
充填する。なお、絶縁性樹脂5の充填は、焼結体2を金
属製バーに溶接する前、または、金属製バーに溶接した
後で陽極酸化皮膜6を形成する前に行ってもよい。しか
し、陽極酸化皮膜8を形成後に行なう方が絶縁性が向上
する。
After forming the sintered body 2, a plurality of sintered bodies 2 are welded to a metal bar such as stainless steel at the tip of the anode lead wire 1. After welding, the sintered body 2 is subjected to chemical conversion by applying a voltage in a chemical conversion solution such as nitric acid or phosphoric acid to form an anodized film 6. After forming the anodized film 6, the recess 4 is filled with the insulating resin 5. The insulating resin 5 may be filled before the sintered body 2 is welded to the metal bar or after the anodic oxide film 6 is formed after the welding to the metal bar. However, the insulating property is improved by performing after the formation of the anodic oxide film 8.

【0016】絶縁性樹脂5を充填後、焼結体2を硝酸マ
ンガン溶液中に浸漬して、液を含浸する。含浸後、温度
200〜350℃の温度で焼成して熱分解し、二酸化マ
ンガン層等の半導体層7を形成する。熱分解後、再化成
して、焼成の際に損傷した陽極酸化皮膜6を修復する。
そしてこの浸漬、熱分解、再化成の工程を必要に応じて
数回〜数10回繰り返す。半導体層7を形成後、カーボ
ンを塗布してカーボン層を形成するとともに、銀ペース
ト(又は銅ペースト)を塗布して銀ペースト層(又は銅
ペースト層)を形成し、合せて陰極層8とする。陰極層
8を形成後、焼結体2をリードフレームに接続し、陽極
リード線1及び陰極層8に各々陽極端子9及び陰極端子
10を接続する。そして樹脂モールド法(又は樹脂ディ
ップ法)により樹脂外装11を形成する。
After the insulating resin 5 is filled, the sintered body 2 is dipped in a manganese nitrate solution to impregnate the solution. After the impregnation, the semiconductor layer 7 such as a manganese dioxide layer is formed by firing at a temperature of 200 to 350 ° C. for thermal decomposition. After thermal decomposition, re-formation is performed to repair the anodized film 6 damaged during firing.
Then, the steps of soaking, thermal decomposition and re-chemical conversion are repeated several times to several tens of times as necessary. After the semiconductor layer 7 is formed, carbon is applied to form a carbon layer, and silver paste (or copper paste) is applied to form a silver paste layer (or copper paste layer), which together form the cathode layer 8. . After forming the cathode layer 8, the sintered body 2 is connected to a lead frame, and the anode lead wire 1 and the cathode layer 8 are connected to the anode terminal 9 and the cathode terminal 10, respectively. Then, the resin exterior 11 is formed by a resin molding method (or a resin dipping method).

【0017】[0017]

【実施例】次に、本発明の実施例のタンタルチップ型固
体電解コンデンサについて、従来例及び比較例の同種の
コンデンサとともに、初期の漏れ電流及び耐圧不良率に
ついて測定した。
EXAMPLES Next, with respect to the tantalum chip type solid electrolytic capacitors of the examples of the present invention, the initial leakage current and the withstand voltage defective rate were measured together with the same type of capacitors of the conventional example and the comparative example.

【0018】なお、実施例は図1の構造とし、焼結体2
全体に対する凹部4の体積を種々に変えたものとする。
また、従来例は図2の構造のものとする。そして比較例
1は、図3に示す通りの構造であり、特に、陽極リード
線40の根本部分41の焼結体42に凹部を設けず、平
坦にしている。そして、根本部分41を絶縁性樹脂43
により被覆している。さらに、比較例2は、図4に示す
通りの構造であり、特に陽極リード線50の根本部分5
1の焼結体52に凹部53を設けるとともに、この凹部
53に、凹部53の深さよりも薄いテフロン製のワッシ
ャ54を挿入している。
The embodiment has the structure shown in FIG.
It is assumed that the volume of the recess 4 with respect to the whole is variously changed.
The conventional example has the structure shown in FIG. Comparative Example 1 has a structure as shown in FIG. 3, and in particular, the sintered body 42 of the root portion 41 of the anode lead wire 40 is flat without recesses. Then, the root portion 41 is connected to the insulating resin 43.
It is covered by. Further, Comparative Example 2 has a structure as shown in FIG. 4, and particularly the root portion 5 of the anode lead wire 50.
A recess 53 is provided in the first sintered body 52, and a washer 54 made of Teflon that is thinner than the depth of the recess 53 is inserted into the recess 53.

【0019】そして、実施例、従来例、比較例1及び比
較例2の各試料の定格は35V、10μmとする。ま
た、試料数は各々500ケとする。さらに、耐圧不良率
は、温度23℃の雰囲気中において電圧42Vを印加し
た場合の値とする。
The ratings of the samples of the example, the conventional example, the comparative example 1 and the comparative example 2 are 35 V and 10 μm. The number of samples is 500 each. Furthermore, the withstand voltage defect rate is a value when a voltage of 42 V is applied in an atmosphere at a temperature of 23 ° C.

【0020】測定結果は、漏れ電流については図5に示
し、耐圧不良率については表1に示した。
The measurement results are shown in FIG. 5 for the leakage current and in Table 1 for the breakdown voltage defective rate.

【0021】図5から明らかな通り、漏れ電流は実施例
1〜実施例5による方が、従来例、比較例1及び比較例
2よりも全体的に低くなっていることが明らかである。 以下余白。
As is apparent from FIG. 5, it is clear that the leakage currents of Examples 1 to 5 are lower than those of the conventional example, Comparative example 1 and Comparative example 2. Margin below.

【0022】[0022]

【表1】 [Table 1]

【0023】表1から明らかな通り、耐圧不良率は、実
施例1〜実施例5が2.0〜3.8%、従来例が8.8
%、比較例1〜比較例2が4.8〜5.2%となる。す
なわち、実施例1〜実施例5は従来例の約22.7〜4
3.2%、比較例1〜比較例2の約38.5〜79.2
%に減少している。
As is clear from Table 1, the breakdown voltage failure rates are 2.0 to 3.8% in Examples 1 to 5 and 8.8 in the conventional example.
%, And Comparative Examples 1 and 2 are 4.8 to 5.2%. That is, Examples 1 to 5 are about 22.7 to 4 of the conventional example.
3.2%, about 38.5 to 79.2 in Comparative Example 1 to Comparative Example 2
It has been reduced to%.

【0024】[0024]

【発明の効果】以上の通り、本発明によれば、陽極リー
ド線の根本部分の焼結体に凹部を設け、この凹部に絶縁
性樹脂を充填しているため、漏れ電流を低下でき、耐圧
不良を減少できる固体電解コンデンサが得られる。
As described above, according to the present invention, since the sintered body at the base of the anode lead wire is provided with the recess and the recess is filled with the insulating resin, the leakage current can be reduced and the withstand voltage can be reduced. A solid electrolytic capacitor capable of reducing defects can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の断面図を示す。FIG. 1 shows a sectional view of an embodiment of the present invention.

【図2】従来例の断面図を示す。FIG. 2 shows a cross-sectional view of a conventional example.

【図3】比較例の断面図を示す。FIG. 3 shows a cross-sectional view of a comparative example.

【図4】他の比較例の断面図を示す。FIG. 4 shows a cross-sectional view of another comparative example.

【図5】漏れ電流のグラフを示す。FIG. 5 shows a graph of leakage current.

【符号の説明】[Explanation of symbols]

1…陽極リード線、 2…焼結体、 3…根本部分、
4…凹部、5…絶縁性樹脂、 6…陽極酸化皮膜、 7
…半導体層、 8…陰極層、12…樹脂外装、 13…
固体電解コンデンサ。
1 ... Anode lead wire, 2 ... Sintered body, 3 ... Root part,
4 ... Recessed portion, 5 ... Insulating resin, 6 ... Anodized film, 7
... Semiconductor layer, 8 ... Cathode layer, 12 ... Resin coating, 13 ...
Solid electrolytic capacitor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 陽極リード線を引き出した、弁作用金属
の粉末からなる焼結体に、陽極酸化皮膜、半導体層、陰
極層を順次設けた固体電解コンデンサにおいて、陽極リ
ード線の根本部分の焼結体に凹部を設け、この凹部に絶
縁性樹脂を充填することを特徴とする固体電解コンデン
サ。
1. A solid electrolytic capacitor in which a anodic oxide film, a semiconductor layer, and a cathode layer are sequentially provided on a sintered body made of a powder of valve action metal from which an anode lead wire is drawn out, and a base portion of the anode lead wire is baked. A solid electrolytic capacitor, characterized in that a recess is provided in the united body, and the recess is filled with an insulating resin.
JP3752096A 1996-01-31 1996-01-31 Solid state electrolytic capacitor Pending JPH09213572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3752096A JPH09213572A (en) 1996-01-31 1996-01-31 Solid state electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3752096A JPH09213572A (en) 1996-01-31 1996-01-31 Solid state electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH09213572A true JPH09213572A (en) 1997-08-15

Family

ID=12499830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3752096A Pending JPH09213572A (en) 1996-01-31 1996-01-31 Solid state electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH09213572A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034429A (en) * 2006-07-26 2008-02-14 Nec Tokin Corp Solid electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034429A (en) * 2006-07-26 2008-02-14 Nec Tokin Corp Solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
US6529366B2 (en) Solid electrolytic capacitor and method of fabricating the same
KR101076312B1 (en) Solid electrolyte capacitor
US20100182735A1 (en) Diced Electrolytic Capacitor Assembly and Method of Production Yielding Improved Volumetric Efficiency
KR20110027631A (en) Electrolytic capacitor assembly and method with recessed leadframe channel
JP3965300B2 (en) Nb solid electrolytic capacitor and manufacturing method thereof
US3115596A (en) Electrical condenser
JPH09237743A (en) Solid electrolytic capacitor
JPH09213572A (en) Solid state electrolytic capacitor
JP4803741B2 (en) Manufacturing method of solid electrolytic capacitor
JP4748726B2 (en) Solid electrolytic capacitor
JP4398794B2 (en) Manufacturing method of solid electrolytic capacitor
JP2001126958A (en) Chip-type solid electrolytic capacitor
JP2006108192A (en) Solid electrolytic capacitor
KR19990039881A (en) Method for manufacturing tantalum solid electrolytic capacitor
US3222751A (en) Preanodization of tantalum electrodes
JP3080851B2 (en) Method for manufacturing solid electrolytic capacitor
JP3082463B2 (en) Solid electrolytic capacitors
JP2513369B2 (en) Method for manufacturing solid electrolytic capacitor
JPH09293646A (en) Tantalum solid electrolytic capacitor
JPH09237742A (en) Method for manufacturing solid electrolytic capacitor
JP4119167B2 (en) Manufacturing method of capacitor element used for solid electrolytic capacitor
JP4247974B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPS6041719Y2 (en) solid electrolytic capacitor
JPH03215924A (en) Manufacture of solid electrolytic capacitor
JPH07183167A (en) Manufacture of solid electrolytic capacitor