JPH09211361A - Light beam scanning device - Google Patents

Light beam scanning device

Info

Publication number
JPH09211361A
JPH09211361A JP4210796A JP4210796A JPH09211361A JP H09211361 A JPH09211361 A JP H09211361A JP 4210796 A JP4210796 A JP 4210796A JP 4210796 A JP4210796 A JP 4210796A JP H09211361 A JPH09211361 A JP H09211361A
Authority
JP
Japan
Prior art keywords
optical element
light beam
scanning device
beam scanning
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4210796A
Other languages
Japanese (ja)
Inventor
Takanobu Fujioka
尚亘 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP4210796A priority Critical patent/JPH09211361A/en
Publication of JPH09211361A publication Critical patent/JPH09211361A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the light beam scanning device which makes it possible to minimize a lengthwise frictional force while precision is held at the time of expansion due to temperature and humidity as to the both-end support system of a long-sized optical element, stably hold even an optical element of small rigidity, and precisely form a synthetic-resin lens with excellent performance against variation in temperature and humidity by using minimum materials. SOLUTION: The light beam scanning device which uses the long-size optical element has a holding part 29 which holds an optical element 20, etc., and a pressing means 26 which applies a pressing force to the long-sized optical element 20, and a roll 32 in a plane provided to a holding member 29 is arranged in a rolling-enabled state by being attracted by applying a magnetic force, so that the long-size optical element 20 is pressed and fixed through the roll member 32.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はレーザビームによっ
て感光体上に静電潜像を形成する画像形成装置に関し、
特に画像形成装置に用いられる光ビーム走査装置の構成
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image forming apparatus for forming an electrostatic latent image on a photoconductor by a laser beam,
In particular, it relates to the configuration of a light beam scanning device used in an image forming apparatus.

【0002】[0002]

【従来の技術】レーザビームを用いたビーム走査光学系
はレーザプリンタ、デジタル複写機、普通紙FAX等の
光学系として利用されているが、近年のレーザビーム光
学系の特徴として、長尺の光学素子が多用されている。
このように長尺の光学素子が多用されるのは、レンズの
樹脂化によるコストダウンが背景にあり、また、屈折力
の小さい樹脂材料を使うこと及び短冊状の形成が比較的
容易なことにあり、従来用いられていたガラスレンズよ
り主走査方向に長尺化する傾向がある。図3は従来用い
られていた光学系の一例を示す図であり、レーザユニッ
ト(LDユニット)1で発生したレーザビーム9はシリ
ンドリカルレンズ2に入射し、回転多面鏡3上に結像す
る。該回転多面鏡3は一定方向に等角速度で回転し、レ
ーザビームは主走査方向に偏向し、結像レンズ4及び結
像レンズ5により(特に結像レンズ4)感光ドラム6上
の走査線上で等速走査となるようfθ特性をもたせると
共に、所定のビームスポット径となるように結像させ
る。ミラー7は走査線の一部を反射し、同期検知センサ
8に導くもので、同期検知センサ8は走査ビームが所定
位置に到来したことを検知し、画像の書き出し位置の同
期信号を生成する。
2. Description of the Related Art A beam scanning optical system using a laser beam is used as an optical system for a laser printer, a digital copying machine, a plain paper FAX or the like. The element is heavily used.
The reason why such a long optical element is frequently used is that the cost is reduced by using a resin for the lens, and that a resin material having a small refractive power is used and the strip shape is relatively easy to form. There is a tendency that the glass lens becomes longer in the main scanning direction than the glass lens used conventionally. FIG. 3 is a diagram showing an example of a conventionally used optical system. A laser beam 9 generated by a laser unit (LD unit) 1 enters a cylindrical lens 2 and forms an image on a rotary polygon mirror 3. The rotary polygon mirror 3 rotates in a constant direction at a constant angular velocity, the laser beam is deflected in the main scanning direction, and the imaging lens 4 and the imaging lens 5 (in particular, the imaging lens 4) on the scanning line on the photosensitive drum 6. The fθ characteristic is provided so that the scanning is performed at a constant speed, and an image is formed so as to have a predetermined beam spot diameter. The mirror 7 reflects a part of the scanning line and guides it to the synchronization detection sensor 8. The synchronization detection sensor 8 detects that the scanning beam has reached a predetermined position, and generates a synchronization signal of an image writing start position.

【0003】これらの光学素子のいくつかは通常、所望
の位置精度を安定して保つため、光学ハウジングと呼ば
れる光学素子の位置決め部、取付面を有する一体形成の
保持部材に固定されるのが普通である。このような保持
部材は、従来、高強度の合成樹脂、例えば、ガラス繊維
入りのPC樹脂・PPE樹脂・不飽和ポリエステル樹脂
や、アルミ・亜鉛ダイカストで作られることが多い。結
像レンズ4は、透明な合成樹脂製で、例えばPC、PM
MAから構成し、該合成樹脂の屈折力がガラスに比べて
小さいことから、同じ性能をもつガラスレンズより大き
なものとなっている。一方、結像レンズ5は、副走査方
向に屈折力を有するアナモフィックな非球面を有す長尺
レンズであり、加工上、ガラスで制作することが困難で
あり、上記結像レンズ4と同様に透明な合成樹脂製で、
例えばPC、PMMAにより構成している。したがっ
て、結像レンズ4及び5は熱膨張と合成樹脂の吸湿によ
る部品の変形を考慮して下記のように固定されるのが一
般的である。
[0003] Some of these optical elements are usually fixed to an integrally formed holding member having an optical element positioning portion and a mounting surface, which is called an optical housing, in order to stably maintain a desired positional accuracy. Is. Conventionally, such a holding member is often made of high-strength synthetic resin, for example, PC resin / PPE resin / unsaturated polyester resin containing glass fiber, or aluminum / zinc die casting. The imaging lens 4 is made of a transparent synthetic resin, for example, PC or PM.
Since it is made of MA and the refractive power of the synthetic resin is smaller than that of glass, it is larger than the glass lens having the same performance. On the other hand, the imaging lens 5 is a long lens having an anamorphic aspherical surface having a refractive power in the sub-scanning direction, and it is difficult to manufacture it from glass in terms of processing, and like the imaging lens 4 described above. Made of transparent synthetic resin,
For example, it is composed of PC and PMMA. Therefore, the imaging lenses 4 and 5 are generally fixed as described below in consideration of thermal expansion and deformation of parts due to moisture absorption of synthetic resin.

【0004】図4及び5は結像レンズ4の固定を説明す
るための図であり、同図に示すように結像レンズ4は保
持部材10の一部に設けられたz方向の受け基準面10
aに接着されている。x方向の受け基準は保持部材10
からの突起として設けられることもあるが、ロボットを
用いた接着工程では接着時の位置を保持しながら接着す
ることもできるので、x方向の受け基準となる突起はな
くてもよい。また長手方向であるy方向には位置規制部
は存在しない。このため熱膨張が生じた場合には、光軸
に対して対称な変形となり、変形後の状態(形状)を予
期できるので、所定の温度変化に対して熱膨張の変形を
考慮した設計が可能になる。これに対し、結像レンズ5
は、結像レンズ4と同様の固定方法を用いれば熱膨張に
よる変形を回避することが可能であるが、保持部材10
の基準面10aが結像レンズ5の長さの割に短く、光軸
周りの配置精度が劣り、外部振動に対して不利となると
いう問題点が発生する。そのため、図6及び7に示すよ
うに光軸の中心の位置において、保持部材の一部に設け
られた位置決め突起13と結像レンズ5に設けられた突
起5aを嵌合せしめ、固定は両端の基準面5bを位置決
め部12に押し当てた状態で、板バネ14によりx方
向、z方向に押圧力を与えることにより行っている。ま
たこの板バネ14は板バネ固定部11にネジ16により
固定されている。この板バネ14の押圧力が適当であれ
ば、結像レンズ5は光軸、すなわち、位置決め突起13
に嵌合した結像レンズ5の突起5aを中心に長手方向
(y方向)に自然に膨張するが、板バネ14の押圧力が
大きいと両端の膨張が拘束され、レンズは変形し、予期
できない曲率変化を起こす。したがって、結像レンズ5
にはレンズ部分以外の部位に強度補強用のリブを設け、
例えば、外部振動により基準面からの浮きが生じない程
度の比較的大きな押圧力が働いても熱膨張による部材の
伸び力が押圧力によるy方向の摩擦効力を上回るように
していた。このような長尺レンズの固定方法を用いた例
としては特開昭62−75671号公報や特開平6−3
00952号公報に記載されたものがある。
FIGS. 4 and 5 are views for explaining the fixation of the imaging lens 4. As shown in FIG. 4, the imaging lens 4 is a receiving reference plane in the z direction provided on a part of the holding member 10. 10
a. The receiving reference in the x direction is the holding member 10.
However, since it is possible to perform the bonding while holding the position at the time of bonding in the bonding process using the robot, there is no need to provide the protrusion serving as the receiving reference in the x direction. Further, there is no position regulating portion in the y direction which is the longitudinal direction. Therefore, when thermal expansion occurs, the deformation will be symmetrical with respect to the optical axis, and the state (shape) after deformation can be expected, so it is possible to design considering the deformation of thermal expansion with respect to a given temperature change. become. On the other hand, the imaging lens 5
Can be prevented from being deformed by thermal expansion if the same fixing method as that of the imaging lens 4 is used.
The reference surface 10a is short in comparison with the length of the imaging lens 5, the arrangement accuracy around the optical axis is poor, and it is disadvantageous to external vibration. Therefore, as shown in FIGS. 6 and 7, at the center position of the optical axis, the positioning projection 13 provided on a part of the holding member and the projection 5a provided on the imaging lens 5 are fitted to each other and fixed at both ends. This is performed by applying a pressing force in the x direction and the z direction by the leaf spring 14 while the reference surface 5b is pressed against the positioning portion 12. The leaf spring 14 is fixed to the leaf spring fixing portion 11 with a screw 16. If the pressing force of the leaf spring 14 is appropriate, the imaging lens 5 has an optical axis, that is, the positioning protrusion 13
Although it expands naturally in the longitudinal direction (y direction) around the projection 5a of the imaging lens 5 fitted to the lens, if the pressing force of the leaf spring 14 is large, the expansion at both ends is restricted and the lens deforms, which is unexpected. Causes a change in curvature. Therefore, the imaging lens 5
Is provided with ribs for strength reinforcement in parts other than the lens part,
For example, the elongation force of the member due to thermal expansion exceeds the frictional effect in the y direction due to the pressing force even if a relatively large pressing force that does not cause floating from the reference surface due to external vibration acts. Examples of using such a method of fixing a long lens are disclosed in JP-A-62-75671 and JP-A-6-3.
There is one described in Japanese Patent Publication No. 000952.

【0005】[0005]

【発明が解決しようとする課題】上述したように剛性が
低い合成樹脂製の長尺レンズを光ビーム走査装置に用い
る場合は、結像レンズ4及び5を固定する方法として2
種類の固定方法が採用されてきたが、この方法はいずれ
も長さに応じた部材強度が要求され、したがって、本来
の光学特性を満足するための形状以外に補強を考慮した
リブなどの形状を追加する必要があり、より多くの樹脂
材料を必要とし、fθレンズを安価に構成することが困
難であるという問題点があった。また、このようなレン
ズは非常に高精度の面精度や形状誤差が要求されるの
で、強度上必要な補強構造を成形すると製造時に発生す
る不均一な樹脂の流れや冷却のアンバランスが発生し、
所望の形成品精度が得られないという問題があった。ま
た上述した特開平6−300952号公報によって開示
された技術には、長尺レンズの両端のすべり方向に長穴
が形成され、この長穴により変形方向をガイドするとい
う機能を有するが、摺動を低減する効果を有さず、上述
したような長さに応じた部材強度が要求されるという問
題点があった。
As described above, when a long lens made of synthetic resin having low rigidity is used in the light beam scanning device, there are two methods for fixing the imaging lenses 4 and 5.
Although various types of fixing methods have been adopted, all of these methods require member strength depending on the length, and therefore, in addition to the shape that satisfies the original optical characteristics, shapes such as ribs that take reinforcement into consideration are used. There is a problem in that it is necessary to add more, more resin material is required, and it is difficult to configure the fθ lens at low cost. In addition, since such a lens requires extremely high surface accuracy and shape error, when a reinforcing structure required for strength is molded, uneven resin flow and cooling imbalance that occur during manufacturing occur. ,
There is a problem that the desired precision of the formed product cannot be obtained. Further, in the technique disclosed in Japanese Patent Laid-Open No. 6-300952 described above, elongated holes are formed in the sliding direction at both ends of the elongated lens, and the elongated holes have a function of guiding the deformation direction, but sliding There is a problem in that the member strength corresponding to the length as described above is required without the effect of reducing the above.

【0006】さらに、図8に示すような凹面を用いた反
射ミラー型の光学系では、上述したような長尺レンズの
固定方法がより一層問題となってくる。すなわち、同図
に示した反射ミラー型の光学系ではfθ特性と結像特性
は反射ミラー15が受け持つため、この曲面は非球面と
なり、そのため反射ミラー15を合成樹脂で成形し、反
射面にアルミ蒸着皮膜を形成するのが一般的である。し
かし、長手方向の力により座屈が生じるために反射面の
曲率の維持が大変難しいと共に、反射ミラー15の中央
部で肉薄となるため、中央部で支持することは、透過型
の光学系に比べて一層、熱膨張による変形を考慮しつつ
外部振動に影響を与えられにくい固定を行うのは困難で
ある。なお、上述した従来例の結像レンズと同様に、レ
ンズの部位以外に箱形のリブを設けることにより剛性の
強化を図ることも可能であるが、成形後の蒸着膜をムラ
なく形成するためにはリブがじゃまとなるため、一般に
は採用されていない。そこで本願発明は、長尺の光学素
子の両端支持方式において、温湿度による膨張時に、精
度を保った状態で長手方向における摩擦力を可能な限り
小さく抑え、光学素子自身の剛性を小さい光学素子で
も、安定して保持でき、温湿度の変化に対して良好な性
能の合成樹脂製のレンズを最小限の材料で精度よく作る
ことができる光ビーム走査装置を提供することを目的と
する。
Further, in the reflection mirror type optical system using the concave surface as shown in FIG. 8, the method of fixing the long lens as described above becomes more problematic. That is, in the reflection mirror type optical system shown in the figure, since the reflection mirror 15 takes charge of the fθ characteristic and the image forming characteristic, this curved surface becomes an aspherical surface. Therefore, the reflection mirror 15 is made of synthetic resin, and the reflection surface is made of aluminum. It is common to form a vapor deposition film. However, since it is very difficult to maintain the curvature of the reflecting surface because buckling occurs due to the force in the longitudinal direction, and the central portion of the reflecting mirror 15 becomes thin, supporting it in the central portion is a transmission type optical system. In comparison, it is more difficult to perform fixing that is less likely to be affected by external vibration while considering deformation due to thermal expansion. Similar to the conventional imaging lens described above, it is possible to strengthen the rigidity by providing a box-shaped rib other than the lens portion, but in order to form a vapor deposition film after molding evenly. It is not commonly used because the ribs interfere with it. Therefore, the present invention, in the method of supporting both ends of a long optical element, suppresses the frictional force in the longitudinal direction as much as possible while maintaining accuracy during expansion due to temperature and humidity, and even if the optical element itself has a small rigidity. SUMMARY OF THE INVENTION An object of the present invention is to provide a light beam scanning device capable of stably holding a lens made of a synthetic resin having good performance against changes in temperature and humidity with a minimum amount of material and with high precision.

【0007】[0007]

【課題を解決するための手段】この課題を解決するため
に、本発明に係る光ビーム走査装置の請求項1記載の発
明は、長尺の光学素子を用いた光ビーム走査装置におい
て、光学素子等を保持する保持部と、長尺の光学素子に
押圧力を付勢する加圧手段とを有し、保持部材に設けら
れた平面内のコロ部材を磁力をかけて吸引することによ
り、該コロ部材を転動可能に配置し、長尺の光学素子が
コロ部材を介して押圧固定されていることを特徴とす
る。本発明にかかる光ビーム走査装置の請求項2記載の
発明は、長尺の光学素子を用いた光ビーム走査装置にお
いて、光学素子等を保持する保持部と、上記長尺の光学
素子に押圧力を付勢する加圧手段とを有し、上記長尺の
光学素子が上記保持部材に設けられた平面内に配置した
コロ部材を介して押圧固定されていることを特徴とす
る。
In order to solve this problem, the invention according to claim 1 of a light beam scanning device according to the present invention is a light beam scanning device using a long optical element. And the like, and a pressing means for urging a pressing force to the long optical element, and by applying a magnetic force to the roller member in the plane provided in the holding member to attract the roller member, The roller member is rotatably arranged, and the long optical element is pressed and fixed via the roller member. The invention according to claim 2 of the light beam scanning device according to the present invention is, in a light beam scanning device using a long optical element, a holding portion for holding an optical element and the like, and a pressing force applied to the long optical element. And a pressing means for urging the optical element, and the long optical element is pressed and fixed via a roller member arranged in a plane provided in the holding member.

【0008】[0008]

【発明の実施の形態】以下、図面に示した実施の形態例
に基づいて、本発明を詳細に説明する。図1は本発明に
かかる光ビーム走査装置の実施の形態例を示した図であ
り、特に凹面を用いた反射ミラー型の光学系に用いた例
を示す。同図において、20は反射ミラー、20aは反
射ミラー20の光軸の中心に設けられた突起、20bは
反射ミラーの両端に設けられた基準面(但し、図におい
ては一方の端に設けられた基準面のみが示されてい
る。)、22は保持部材の一部に設けられた位置決め突
起、24は位置決め部、26は加圧手段である板バネ、
28は板バネ固定部、29は光学素子の保持部、30は
該保持部29上に設けられたz軸方向の基準面、32は
該z軸方向基準面30上に設けられたコロ部材である。
上記反射ミラー20の固定は、反射ミラー20の光軸中
心に設けられた突起20aを位置決め突起22間に嵌合
せしめると共に、反射ミラー20の基準面20bを位置
決め部のz軸方向に延びる面24aに当接せしめ、さら
に板バネ固定部28にネジ34にて固定した板バネ26
のx軸方向押圧部26aにより上記基準面20aと対向
する面20cを押圧することにより行われる。また、上
記板バネ26のz軸方向押圧部26bにより反射ミラー
20の上面20dをz軸方向に押圧している。したがっ
て、長尺レンズである反射ミラー20は、板バネ26に
よりx及びz方向に押圧され、該板バネ26は反射ミラ
ー20のy方向の両端に設けられているので、計4カ所
にて板バネによる摩擦力を受けている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on an embodiment shown in the drawings. FIG. 1 is a diagram showing an example of an embodiment of a light beam scanning device according to the present invention, particularly an example used in a reflection mirror type optical system using a concave surface. In the figure, 20 is a reflection mirror, 20a is a protrusion provided at the center of the optical axis of the reflection mirror 20, and 20b is a reference plane provided at both ends of the reflection mirror (however, provided at one end in the figure). Only the reference surface is shown.), 22 is a positioning protrusion provided on a part of the holding member, 24 is a positioning portion, 26 is a leaf spring as a pressing means,
Reference numeral 28 is a leaf spring fixing portion, 29 is a holding portion of an optical element, 30 is a z-axis reference surface provided on the holding portion 29, and 32 is a roller member provided on the z-axis reference surface 30. is there.
The reflection mirror 20 is fixed by fitting a protrusion 20a provided at the center of the optical axis of the reflection mirror 20 between the positioning protrusions 22 and a reference surface 20b of the reflection mirror 20 extending in the z-axis direction of the positioning portion 24a. The leaf spring 26 fixed to the leaf spring fixing portion 28 with a screw 34.
This is performed by pressing the surface 20c facing the reference surface 20a by the x-axis direction pressing portion 26a. Moreover, the upper surface 20d of the reflection mirror 20 is pressed in the z-axis direction by the z-axis pressing portion 26b of the leaf spring 26. Therefore, the reflection mirror 20 which is a long lens is pressed in the x and z directions by the leaf springs 26, and the leaf springs 26 are provided at both ends of the reflection mirror 20 in the y direction. It is receiving the frictional force of the spring.

【0009】また、z軸方向の基準面30上にはその転
がり軸が反射ミラー20の長手方向、すなわち、y方向
と直交するように配置されたコロ部材32が設けられ、
反射ミラー20は該コロ部材32上に配置されている。
この形態例ではコロ部材32は2本用いた例を示してい
るが、原理的には1つのコロ部材でもよい。しかし、板
バネ26による押圧力を安定して受けるためには、2本
以上のコロ部材を使用するのが望ましい。このようにコ
ロ部材32を用いてz軸方向の基準面30上に反射ミラ
ー20を配置すると共に、板バネ26による押圧力で反
射ミラー20を位置決め固定しているため、温湿度の変
化が生じた場合であっても、反射ミラー20の底面はコ
ロ部材32と線接触の状態であり、コロ部材32と反射
ミラー20との摩擦係数が低いため、反射ミラー20は
光軸を中心として自然に膨張、伸縮を行うことができ
る。 上記コロ部材32はスムーズな転がりを可能とす
るために、転がり方向に対して自由に転動可能であるこ
とが必要である。また、反射ミラー20を所望の精度で
保持するために、コロ部材32の直径が所定の精度に仕
上げられている必要がある。すなわち、コロ部材32が
スムーズな転がりを行わない場合、コロ部材32と反射
ミラー20との摩擦係数が増大し、反射ミラー20が光
軸を中心として非対称に変形する可能性が生じる。ま
た、コロ部材32の直径が所定の精度に仕上げられてい
ないと、前述したようなコロ部材32のスムーズな転が
りを損ね、結果的に反射ミラー20に不必要な応力が発
生する。
A roller member 32 is provided on the reference surface 30 in the z-axis direction so that its rolling axis is orthogonal to the longitudinal direction of the reflecting mirror 20, that is, the y-direction.
The reflection mirror 20 is arranged on the roller member 32.
In this embodiment, two roller members 32 are used, but in principle one roller member may be used. However, in order to stably receive the pressing force of the leaf spring 26, it is desirable to use two or more roller members. As described above, since the reflecting mirror 20 is arranged on the reference surface 30 in the z-axis direction by using the roller member 32 and the reflecting mirror 20 is positioned and fixed by the pressing force of the leaf spring 26, the temperature and humidity change. Even in such a case, the bottom surface of the reflection mirror 20 is in line contact with the roller member 32, and the friction coefficient between the roller member 32 and the reflection mirror 20 is low. Therefore, the reflection mirror 20 naturally moves around the optical axis. It can be expanded and contracted. The roller member 32 is required to be freely rollable in the rolling direction in order to enable smooth rolling. Further, in order to hold the reflection mirror 20 with a desired accuracy, the diameter of the roller member 32 needs to be finished to a predetermined accuracy. That is, when the roller member 32 does not roll smoothly, the friction coefficient between the roller member 32 and the reflection mirror 20 increases, and the reflection mirror 20 may be asymmetrically deformed about the optical axis. Further, if the diameter of the roller member 32 is not finished to a predetermined accuracy, smooth rolling of the roller member 32 as described above is impaired, and as a result, unnecessary stress is generated in the reflection mirror 20.

【0010】もし、上述した光光ビーム走査装置をセッ
トした後、コロ部材32と反射ミラー20との位置関係
がずれたり、或いはコロ部材32と基準面30を構成す
る保持部材にすべりが生じ、振動などにより経時的にす
べりが進行するならば、やがてはコロ部材32の位置と
板バネ26との作用点がずれてしまい、図1に示したよ
うにコロ部材32を所望の凹面内に配置する場合、コロ
部材の位置がずれて段差のある際に達し、自由な転動が
妨げられる可能性がある。このようにコロ部材の位置ズ
レは、転がり摩擦がすべり摩擦に比べて著しく小さいこ
とを考慮すれば、何らかのショックや振動により板バネ
の押圧力が一時的に低下し、コロ部材32と反射ミラー
20との間に隙間が生じ、すべり摩擦が殆ど消失する瞬
間にコロ部材に慣性力が作用して発生するものと考えら
れる。したがって、このようなコロ部材32の位置ズレ
を防止するために、以下のような手段を講ずることが考
えられる。
If the above-mentioned light beam scanning device is set, the positional relationship between the roller member 32 and the reflection mirror 20 may shift, or the holding member forming the roller member 32 and the reference surface 30 may slip. If slippage progresses over time due to vibration, the position of the roller member 32 and the point of action of the leaf spring 26 will eventually shift, and as shown in FIG. 1, the roller member 32 will be placed in the desired concave surface. In this case, there is a possibility that the position of the roller member may be displaced and there is a step, and free rolling may be hindered. Considering that the rolling friction of the roller member is significantly smaller than the sliding friction, the pressing force of the leaf spring is temporarily reduced by some shock or vibration, and the roller member 32 and the reflection mirror 20 are deviated. It is considered that an inertial force acts on the roller member at the moment when the sliding friction almost disappears due to a gap between the roller and the roller. Therefore, in order to prevent such positional displacement of the roller member 32, the following measures may be taken.

【0011】図2は本発明にかかる他の実施の形態例を
示す図であり、上記図1のA−A断面の一部を示したも
のである。なお、上記図1と同一の部分には同一の符号
を付す。図に示すように、コロ部材32が配置された保
持部材29の凹部直下にマグネット36を配置し、磁力
を用いてコロ部材を所定の範囲内に捕捉せんとしたもの
である。この場合、コロ部材32は精度よく加工され且
つ防錆メッキされた軟鋼棒を用いることが考えられる。
あるいは、焼結マグネットを棒状に精度よく形成しても
よい。このような構成とすれば、何らかのショックや振
動により板バネ26の押圧力が解除され、コロ部材に慣
性力が働こうとしても、適切に設計された磁力の復元力
が働くので、所定位置からはずれず、常に反射ミラー2
0の支持を低摩擦、すなわち、転がり摩擦の状態で維持
することができる。特に、2本のコロ部材32を用い、
且つ裏面にマグネと36を配置すると、マグネットの磁
力線はマグネット36の隅に遍在することになり、2本
のコロ部材32が互いに接触することが回避でき、コロ
部材32同士の線接触によるすべり摩擦が生じることが
なく、理想的な転がり摩擦となり効果的である。しか
し、コロ部材32同士の線接触が生じた場合であって
も、そのすべり摩擦は一般的に非常に小さいため、必ず
しもコロ部材32同士が接触しないような構成に限定は
されない。
FIG. 2 is a view showing another embodiment of the present invention, and shows a part of the AA cross section of FIG. The same parts as those in FIG. 1 are designated by the same reference numerals. As shown in the figure, a magnet 36 is arranged immediately below the concave portion of the holding member 29 in which the roller member 32 is arranged, and the roller member is not captured within a predetermined range by using magnetic force. In this case, it is conceivable that the roller member 32 is made of a mild steel rod which is processed with high precision and plated with rust.
Alternatively, the sintered magnet may be accurately formed into a rod shape. With such a configuration, even if the pressing force of the leaf spring 26 is released due to some shock or vibration and the inertial force acts on the roller member, the properly designed restoring force of the magnetic force is exerted, so that from the predetermined position. It does not come off, and it is always the reflection mirror 2
Zero support can be maintained with low friction, i.e. rolling friction. In particular, using two roller members 32,
Further, when the magnets and 36 are arranged on the back surface, the magnetic lines of force of the magnet are omnipresent in the corners of the magnet 36, so that the two roller members 32 can be prevented from contacting each other, and the slip due to the line contact between the roller members 32. It is effective because it causes ideal friction without causing friction. However, even if the roller members 32 come into line contact with each other, the sliding friction is generally very small, and therefore the configuration is not necessarily limited to the configuration in which the roller members 32 do not contact each other.

【0012】[0012]

【発明の効果】以上のように本発明にかかる光ビーム走
査装置は光学素子、例えば、反射ミラーや結像レンズを
安定しかつ低摩擦にて保持することができるので、特に
長尺の光学素子の両端支持方式において、温湿度の変化
による光学素子の膨張・収縮が発生しても該収縮を拘束
することなく、したがって、予期せぬ光学素子の変形に
よる光学性能の劣化を防ぐ上で著しい効果を発揮する。
また、光学素子を押圧固定するコロ部材をマグネットを
用いて磁力によって吸引することにより、常にコロ部材
を所望の位置に配置し、予期せぬ光学素子の変形による
光学性能の劣化を招くことなく、良好に光学素子を保持
する上で効果を有する。
As described above, since the optical beam scanning device according to the present invention can hold an optical element, for example, a reflecting mirror or an imaging lens stably and with low friction, it is a particularly long optical element. In the both-ends support method, even if the optical element expands or contracts due to changes in temperature and humidity, it does not restrain the contraction, and therefore, it is a significant effect in preventing deterioration of optical performance due to unexpected deformation of the optical element. Exert.
Further, by attracting the roller member for pressing and fixing the optical element by a magnetic force using a magnet, the roller member is always arranged at a desired position, without causing deterioration of optical performance due to unexpected deformation of the optical element, It has an effect in favorably holding the optical element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる光ビーム走査装置の実施の形態
例を示した図。
FIG. 1 is a diagram showing an embodiment of a light beam scanning device according to the present invention.

【図2】本発明にかかる光ビーム走査装置の他の実施の
形態例を示す図。
FIG. 2 is a diagram showing another embodiment of the light beam scanning device according to the present invention.

【図3】従来用いられていた光学系の一例を示す図。FIG. 3 is a diagram showing an example of an optical system that has been conventionally used.

【図4】従来用いられていた光ビーム走査装置における
結像レンズの固定を説明するための図。
FIG. 4 is a diagram for explaining fixation of an imaging lens in a light beam scanning device which has been conventionally used.

【図5】従来用いられていた光ビーム走査装置における
結像レンズの固定を説明するための図。
FIG. 5 is a diagram for explaining fixation of an imaging lens in a light beam scanning device which has been conventionally used.

【図6】従来用いられていた光ビーム走査装置における
結像レンズの固定を説明するための図。
FIG. 6 is a diagram for explaining fixation of an imaging lens in a conventionally used light beam scanning device.

【図7】従来用いられていた光ビーム走査装置における
結像レンズの固定を説明するための図。
FIG. 7 is a view for explaining fixing of an imaging lens in a light beam scanning device which has been conventionally used.

【図8】従来用いられていた光ビーム走査装置における
結像レンズの固定を説明するための図。
FIG. 8 is a view for explaining fixing of an imaging lens in a conventionally used light beam scanning device.

【符号の説明】[Explanation of symbols]

20・・・反射レンズ(光学素子)、 26・・・板
バネ(加圧手段)、29・・・保持部、 32・・・
コロ部材、36・・・マグネット。
20 ... Reflective lens (optical element), 26 ... Leaf spring (pressurizing means), 29 ... Holding portion, 32 ...
Roller member, 36 ... Magnet.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 長尺の光学素子を用いた光ビーム走査装
置において、光学素子等を保持する保持部と、上記長尺
の光学素子に押圧力を付勢する加圧手段とを有し、上記
保持部材に設けられた平面内のコロ部材を磁力をかけて
吸引することにより、上記コロ部材を転動可能に配置
し、上記長尺の光学素子が上記コロ部材を介して押圧固
定されていることを特徴とする光ビーム走査装置。
1. A light beam scanning device using a long optical element, comprising: a holding portion for holding the optical element and the like; and a pressurizing means for applying a pressing force to the long optical element, By attracting a roller member in a plane provided in the holding member by applying a magnetic force, the roller member is rotatably arranged, and the long optical element is pressed and fixed through the roller member. A light beam scanning device characterized in that
【請求項2】 長尺の光学素子を用いた光ビーム走査装
置において、光学素子等を保持する保持部と、上記長尺
の光学素子に押圧力を付勢する加圧手段とを有し、上記
長尺の光学素子が上記保持部材に設けられた平面内に配
置したコロ部材を介して押圧固定されていることを特徴
とする光ビーム走査装置。
2. A light beam scanning device using a long optical element, comprising: a holding portion for holding the optical element and the like; and a pressurizing unit for applying a pressing force to the long optical element, The light beam scanning device, wherein the elongated optical element is pressed and fixed via a roller member arranged in a plane provided in the holding member.
JP4210796A 1996-02-05 1996-02-05 Light beam scanning device Pending JPH09211361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4210796A JPH09211361A (en) 1996-02-05 1996-02-05 Light beam scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4210796A JPH09211361A (en) 1996-02-05 1996-02-05 Light beam scanning device

Publications (1)

Publication Number Publication Date
JPH09211361A true JPH09211361A (en) 1997-08-15

Family

ID=12626747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4210796A Pending JPH09211361A (en) 1996-02-05 1996-02-05 Light beam scanning device

Country Status (1)

Country Link
JP (1) JPH09211361A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127793A (en) * 2005-11-02 2007-05-24 Konica Minolta Business Technologies Inc Laser scanning optical apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127793A (en) * 2005-11-02 2007-05-24 Konica Minolta Business Technologies Inc Laser scanning optical apparatus

Similar Documents

Publication Publication Date Title
JP3209451B2 (en) Image forming device
EP1566956B1 (en) Optical scanning apparatus and image forming apparatus
JP5831513B2 (en) Structural assembly
EP1564577A2 (en) Optical scanning apparatus and image forming apparatus
JPH09211361A (en) Light beam scanning device
JPH03233423A (en) Lens supporting structure for scanning optical system
EP0658789B1 (en) Structure for attaching scanning optical system
US6665103B2 (en) Optical scanning apparatus and image forming apparatus using the same
JPH09211362A (en) Light beam scanning device
US7937983B2 (en) Curved surface forming apparatus, optical scanning apparatus, and image forming apparatus
JPH04265919A (en) Positioning and fixing device for lens
JP2007003726A (en) Scanning optical apparatus and image forming apparatus
JPH10282399A (en) Light reflecting mirror
JP4677145B2 (en) Image reading apparatus and image forming apparatus
JP2015129949A (en) Mirror curve adjustment mechanism, optical writing device, and image forming apparatus
JP2583154B2 (en) Optical system mirror holding device
JP5020551B2 (en) Optical scanning device
JPH09236771A (en) Optical scanning device
JP2005107064A (en) Laser scanner
JP4968932B2 (en) Optical deflection apparatus and optical scanning apparatus
JP4617979B2 (en) Optical unit, image forming apparatus and holder manufacturing method
JPH10282445A (en) Optical element
JP5219400B2 (en) Optical scanning device
JP5285518B2 (en) Manufacturing method of scanning optical system of image forming apparatus
JPH0756080A (en) Optical image recorder