JPH09236771A - Optical scanning device - Google Patents

Optical scanning device

Info

Publication number
JPH09236771A
JPH09236771A JP7140796A JP7140796A JPH09236771A JP H09236771 A JPH09236771 A JP H09236771A JP 7140796 A JP7140796 A JP 7140796A JP 7140796 A JP7140796 A JP 7140796A JP H09236771 A JPH09236771 A JP H09236771A
Authority
JP
Japan
Prior art keywords
optical element
housing
reflective optical
deflector
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7140796A
Other languages
Japanese (ja)
Inventor
Yoshinori Miyazaki
善範 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP7140796A priority Critical patent/JPH09236771A/en
Publication of JPH09236771A publication Critical patent/JPH09236771A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To remove the adverse effect out of designing calculation to the optical characteristic by continuing to pressurize a reflection optical element on a reference mounting surface without disturbing the isotropic change in shape of the reflection optical element even when the reflection optical element is deformed due to temp. fluctuation and to prevent the deviation of the reflection optical element from a prescribed mounting position even when force with large acceleration such as the impact is exerted on an optical scanning device. SOLUTION: This device comprises a light source transmitting a light beam, a deflector deflecting/scanning the light beam from the light source, an optical element group forming the image of a reflected light beam from the deflector on the surface of a photosensitive body and houses the light source, the deflector and the optical element group in a housing 1 and a reflection optical element 5 having an image forming characteristic is used as one of the optical element group. In this case, impact absorbent materials having impact resistance are arranged on the upper surface of the reflection optical element arranged along the reference mounting surface in the housing 1 and in a clearance between the reflection optical element and the housing 1, the upper surface of the impact absorbent material is pressurized by a pressing plate 11 and the pressing plate is fixed to the housing 1 in the compressed state of the material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電子写真式複写機、
レーザプリンタ、レーザファクシミリ等の画像形成装置
に用いられる光走査装置に関し、特に結像特性を有する
反射光学素子の支持構造の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic copying machine,
The present invention relates to an optical scanning device used in an image forming apparatus such as a laser printer or a laser facsimile, and more particularly to improvement of a support structure of a reflective optical element having an image forming characteristic.

【0002】[0002]

【従来の技術】電子写真式複写機、レーザプリンタ、レ
ーザファクシミリ等の画像形成装置においては、光走査
装置から出射されたレーザビームを、予め一様に帯電さ
れた感光体上に照射して静電潜像を形成し、この静電潜
像に現像装置からトナーを供給することによって得たト
ナー像を転写紙上に転写、定着することで、画像形成を
行っている。凹面鏡としてのfθミラー等の結像特性を
有した反射光学素子は、fθレンズ等の透過光学素子と
比べて素子内部の歪み、異物等の影響を受けず鏡面の精
度のみで光学特性を達成することが出来るのでビ−ム
径、倍率誤差(リニアリティ)、光利用効率という観点
から有利であり、近年要望が高まっている高密度光走査
に適している。しかし、逆に鏡面の精度のみで光学特性
を達成しているので、鏡面のわずかな形状変化が光学特
性に及ぼす影響が大きくなる。例えば、機器の設置環境
の温度変動により反射光学素子が形状変化したり、ユニ
ット内の温度分布差により反射光学素子の鏡面が部分的
に形状変化したり、或は光学特性(ビ−ム径、倍率誤差
等)に悪影響を与えるという問題がある。特に、反射光
学素子の素材が樹脂である場合この傾向が大きい。
2. Description of the Related Art In an image forming apparatus such as an electrophotographic copying machine, a laser printer, a laser facsimile, etc., a laser beam emitted from an optical scanning device is radiated onto a photosensitive member which is uniformly charged in advance to be statically charged. An image is formed by forming an electrostatic latent image and transferring and fixing a toner image obtained by supplying toner to the electrostatic latent image from a developing device onto a transfer paper. The reflective optical element having an image forming characteristic such as an fθ mirror as a concave mirror achieves the optical characteristic only by the precision of the mirror surface, without being affected by the internal distortion of the element, foreign matter, etc., as compared with the transmissive optical element such as the fθ lens. Therefore, it is advantageous from the viewpoint of beam diameter, magnification error (linearity), and light utilization efficiency, and is suitable for high-density optical scanning, which has been increasingly demanded in recent years. However, on the contrary, since the optical characteristics are achieved only by the accuracy of the mirror surface, a slight change in the shape of the mirror surface has a great influence on the optical characteristics. For example, the reflective optical element may change its shape due to the temperature fluctuation of the installation environment of the device, the mirror surface of the reflective optical element may partially change due to the temperature distribution difference in the unit, or the optical characteristics (beam diameter, There is a problem that it adversely affects the magnification error). This tendency is particularly large when the material of the reflective optical element is resin.

【0003】ところで、光学特性の設計計算は、環境温
度の変動による反射光学素子の形状変化が等方的である
という仮説に基づいているため、反射光学素子の特定部
を板バネ、又はコイルバネなどで押圧する固定方法にお
いては、温度による形状変形の際に被押圧部が支点とな
って反射光学素子が計算外の形状変形(例えば温度が上
昇した場合に、等方的変形であれば反射光学素子の鏡面
の半径Rが大きくなるが、両端が支点となった時は逆に
Rが小さくなる)を起こし、光学特性に悪影響を与える
ことがある。また、光学素子をハウジングに接着剤で固
定する場合は、反射光学素子とハウジングの素材が異な
ることによる線膨張係数の違いを考慮して反射光学素子
の中央部を接着固定することとなるが、長尺の反射光学
素子を水平方向に対して傾きなくハウジングに固定する
ことが困難である。
By the way, since the design calculation of the optical characteristics is based on the hypothesis that the shape change of the reflective optical element due to the fluctuation of the environmental temperature is isotropic, a specific portion of the reflective optical element is a leaf spring or a coil spring. In the fixing method of pressing with, the reflection optical element becomes unsupported when the shape is deformed by temperature and the pressed portion serves as a fulcrum (for example, when the temperature rises, the reflection The radius R of the mirror surface of the element increases, but when both ends serve as fulcrums, R decreases, which may adversely affect the optical characteristics. Further, when the optical element is fixed to the housing with an adhesive, the central portion of the reflective optical element is adhesively fixed in consideration of the difference in linear expansion coefficient due to the difference in the materials of the reflective optical element and the housing. It is difficult to fix the long reflective optical element to the housing without tilting with respect to the horizontal direction.

【0004】[0004]

【発明が解決しようとする課題】特開平3−19451
1号公報には、光学素子の長手方向両端をコイルバネで
押圧する技術が開示されているが、上記に述べた環境温
度変化時の光学素子の形状変形が光学特性に悪影響を及
ぼすことが懸念される。特開平4−265919には光
学素子の中央部を接着固定する技術が開示されている
が、長尺の光学素子の場合はハウジングに水平に傾きな
く光学素子を取り付けることが困難である。本発明は上
記に鑑みてなされたものであり、温度変動により反射光
学素子が形状変形(収縮、膨張)するときにおいても、
反射光学素子の等方的な形状変化を妨げずに反射光学素
子を基準取付面に押圧し続けて、光学特性に設計計算外
の悪影響を与えることがなく、また、光走査装置に衝撃
など加速度の大きい力が作用したときにも反射光学素子
が所定の取付位置から外れることがない光走査装置を提
供することを目的としている。
[Problems to be Solved by the Invention]
Japanese Unexamined Patent Publication No. 1 discloses a technique of pressing both longitudinal ends of an optical element with a coil spring. However, there is a concern that the above-mentioned shape deformation of the optical element when the environmental temperature changes may adversely affect the optical characteristics. It Japanese Unexamined Patent Application Publication No. 4-265919 discloses a technique for bonding and fixing the central portion of an optical element, but in the case of a long optical element, it is difficult to mount the optical element on the housing without tilting horizontally. The present invention has been made in view of the above, and even when the reflective optical element undergoes shape deformation (contraction, expansion) due to temperature fluctuation,
The reflective optical element is continuously pressed against the reference mounting surface without disturbing the isotropic shape change of the reflective optical element, and the optical characteristics are not adversely affected outside the design calculation. It is an object of the present invention to provide an optical scanning device in which a reflective optical element does not move out of a predetermined mounting position even when a large force is applied.

【0005】[0005]

【課題を解決する為の手段】上記目的を達成する為、請
求項1の発明は、光ビ−ムを出射する光源と、該光源か
らの光ビームを偏向走査する偏向器と、偏向器からの反
射光束を感光体面上に結像させる光学素子群と、該光源
と該偏向器と該光学素子群をハウジングに収納した光走
査装置であって、光学素子群の一つとして結像特性をも
つ反射光学素子を使用したものにおいて、上記ハウジン
グ内の取付け基準面に沿って配置された該反射光学素子
の上面と、該反射光学素子とハウジングとの間隙に夫々
反発弾性を持った衝撃吸収材を配置するとともに、該衝
撃吸収材の上面を押え平板により加圧して圧縮させた状
態で該押え平板をハウジングに固定したことを特徴とす
る。請求項2の発明は、光ビ−ムを出射する光源と、該
光源からの光ビームを偏向走査する偏向器と、偏向器か
らの反射光束を感光体面上に結像させる光学素子群と、
該光源と該偏向器と該光学素子群をハウジングに収納し
た光走査装置であって、光学素子群の一つとして結像特
性をもつ反射光学素子を使用し、該ハウジングの上部開
口をカバーにより閉止する様にしたものにおいて、上記
カバ−と反射光学素子上面との隙間、及び上記ハウジン
グと反射光学素子との隙間に、反発弾性を持った衝撃吸
収材を配置して、該カバ−をハウジングに固定した時に
該衝撃吸収材をカバーにより圧縮しつつ該反射光学素子
をハウジング内の取付基準面に固定することを特徴とす
る。請求項3の発明は、上記結像特性を持つ反射光学素
子の特定の部分に、上記反発弾性を持った該衝撃吸収材
を予め一体化したことを特徴とする。
In order to achieve the above object, the invention of claim 1 comprises a light source for emitting an optical beam, a deflector for deflecting and scanning a light beam from the light source, and a deflector. An optical scanning device in which an optical element group for forming an image of the reflected light flux on the photoconductor surface, the light source, the deflector, and the optical element group are housed in a housing. A shock absorbing material having repulsive elasticity in the upper surface of the reflective optical element arranged along the mounting reference plane in the housing and in the gap between the reflective optical element and the housing. And the upper surface of the shock absorber is fixed to the housing while the upper surface of the shock absorber is pressed and compressed by the pressing flat plate. According to a second aspect of the present invention, a light source that emits a light beam, a deflector that deflects and scans a light beam from the light source, and an optical element group that forms an image of a reflected light beam from the deflector on a photosensitive member surface are provided.
An optical scanning device in which the light source, the deflector, and the optical element group are housed in a housing, wherein a reflective optical element having an image forming characteristic is used as one of the optical element groups, and an upper opening of the housing is covered by a cover. In the closed structure, a shock absorbing material having impact resilience is arranged in the gap between the cover and the upper surface of the reflective optical element and the gap between the housing and the reflective optical element, and the cover is attached to the housing. The reflective optical element is fixed to the mounting reference surface in the housing while the impact absorbing material is compressed by the cover when it is fixed. According to a third aspect of the present invention, the shock absorbing material having the repulsive elasticity is previously integrated with a specific portion of the reflective optical element having the image forming characteristic.

【0006】[0006]

【発明の実施の形態】以下、本発明を図面に示した形態
例により詳細に説明する。図1(a) (b) に一般的な反射
光学素子を用いた光走査装置を示す。この光走査装置に
於ては、光源部3からの出射光束が偏向器4(回転多面
鏡)に入射して所定の角度範囲に偏向され、結像特性を
持つ反射光学素子5(fθミラー)、第1折り返しミラ
−6、長尺シリンドリカルレンズ7、第2折り返しミラ
−8を経て感光体9上に結像する。これらの光学素子
は、ハウジング1と防塵カバー2の内部に収納されてい
る。図2、図3(a) (b) 、図4(a) (b) に請求項1に対
応する光走査装置の形態例の構成を示す。図3に示す様
に、本発明では、反射光学素子5をハウジング1の底面
の取付基準面12、13に置いたときに、反射光学素子
5とハウジング1との間に隙間を形成するとともに、反
射光学素子5の長手方向両端部の上面、側端面、及び背
面にかけて反発弾性を持った材料から成る衝撃吸収材1
0を配置する。反射光学素子5の上面に対しては、反射
光学素子5の上から合成を有した押え平板11を添設固
定し、衝撃吸収材10を所定の力で押圧して圧縮変形さ
せる(図4(b) )。押え平板11による押圧力は、反射
光学素子5が環境温度低下により収縮した場合であって
も、衝撃吸収材10がその収縮分だけ膨張することによ
り、押え平板11と反射光学素子5の上面との間の隙間
や、反射光学素子とハウジングとの間の間隙が拡大する
ことがないように設定する。なお、12は光学ハウジン
グ1上における反射光学素子のZ方向取付基準面であ
り、13は光学ハウジング1上における反射光学素子の
X方向取付基準面である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments shown in the drawings. 1 (a) and 1 (b) show an optical scanning device using a general reflective optical element. In this optical scanning device, a light beam emitted from the light source unit 3 enters a deflector 4 (rotary polygonal mirror) and is deflected within a predetermined angle range, and a reflection optical element 5 (fθ mirror) having an image forming characteristic is formed. , The first folding mirror 6, the long cylindrical lens 7, and the second folding mirror 8 to form an image on the photoconductor 9. These optical elements are housed inside the housing 1 and the dustproof cover 2. 2, 3 (a) and (b) and FIGS. 4 (a) and (b) show the configuration of the embodiment of the optical scanning device corresponding to the first aspect. As shown in FIG. 3, in the present invention, when the reflective optical element 5 is placed on the mounting reference surfaces 12 and 13 on the bottom surface of the housing 1, a gap is formed between the reflective optical element 5 and the housing 1, and A shock absorber 1 made of a material having repulsive elasticity extending from the upper surface, the side end surface, and the back surface of both ends of the reflective optical element 5 in the longitudinal direction.
0 is placed. On the upper surface of the reflective optical element 5, a holding plate 11 having a composition is additionally attached and fixed from above the reflective optical element 5, and the shock absorbing material 10 is pressed and deformed by a predetermined force (see FIG. b)). Even if the reflective optical element 5 contracts due to a decrease in environmental temperature, the pressing force applied by the pressing plate 11 causes the pressing plate 11 and the upper surface of the reflective optical element 5 to expand by the contraction of the shock absorbing material 10. The gap between the reflective optical element and the housing is set so as not to expand. Reference numeral 12 is a Z-direction mounting reference surface of the reflective optical element on the optical housing 1, and 13 is an X-direction mounting reference surface of the reflective optical element on the optical housing 1.

【0007】図4(b) のメッシュで示した部分は衝撃吸
収材10が押え平板11によって加圧されて収縮する前
の範囲を示しており、このように予め収縮した状態で衝
撃吸収材を配置しておくことにより、上記のごとく、反
射光学素子が収縮したとしてもこれを確実に押えること
ができる。なお、図4(b) ではハウジング1の底部の肉
厚が均一でないように示されているが、均一の肉厚のハ
ウジングにも本発明を適用できることは明らかである。
なお、反発弾性を有した衝撃吸収材とは、加速度の大き
い力では変形せず、緩やかな力が加わると変形する素材
のことである。押え平板11を衝撃吸収材10上に押し
付けた状態で固定する方法としては、基準面13の上端
面に固定したり、防塵カバー2により押えつけた状態で
固定したり、他の固定具により固定することが考えられ
る。
The portion shown by the mesh in FIG. 4 (b) shows the range before the shock absorbing material 10 is compressed by the pressing flat plate 11 and shrinks. By arranging them, as described above, even if the reflective optical element contracts, it can be surely pressed. Although FIG. 4 (b) shows that the thickness of the bottom of the housing 1 is not uniform, it is clear that the present invention can be applied to a housing having a uniform thickness.
The impact absorbing material having impact resilience is a material that is not deformed by a large acceleration force but is deformed by a gentle force. As a method of fixing the pressing plate 11 while pressing it onto the shock absorbing material 10, the pressing plate 11 may be fixed to the upper end surface of the reference surface 13, fixed while being pressed by the dustproof cover 2, or fixed by another fixing tool. It is possible to do it.

【0008】このように、この形態例の光走査装置にお
いては、結像特性を持つ反射光学素子5を反発弾性を持
った衝撃吸収材10で上から押圧してハウジング1の内
底面に固定しているので、環境の温度変動により反射光
学素子5が形状変形(収縮、膨張)を起こしたとして
も、衝撃吸収材10自体がその変形に追随して形状変形
するため、反射光学素子の等方的な形状変化を妨げず
に、反射光学素子を基準取付面に押圧し続けることがで
き、光学特性に設計計算外の悪影響を与えることがな
い。例えば、温度低下により反射光学素子5が収縮した
としても、その分衝撃吸収材10の体積が拡張するの
で、反射光学素子5とハウジング1との間にガタが形成
されることがなくなり、また、温度上昇により反射光学
素子の体積が膨張した場合であっても、衝撃吸収材が体
積変化を無理なく吸収することができる。また、光走査
装置に衝撃など加速度の大きい力が作用したときは衝撃
吸収材は反発弾性により変形しないので、反射光学素子
が所定の取付位置から外れることもない。なお、図4
(b) にメッシュで示す様に、衝撃吸収材10が圧縮され
るのは、押え平板11と接する上面ばかりでなく、ハウ
ジングの基準面13と接する側面も圧縮される。また、
上記形態例では、衝撃吸収材10を反射光学素子の長手
方向両端部のみに配置したが、これは一例であり、長手
方向両端部を含む素子の上面全体に添設してもよい。こ
の点は、以下の全ての形態例にも同様に言えることであ
る。
As described above, in the optical scanning device of this embodiment, the reflection optical element 5 having the image forming characteristic is pressed from above by the impact absorbing material 10 having repulsion elasticity and fixed to the inner bottom surface of the housing 1. Therefore, even if the reflective optical element 5 undergoes shape deformation (contraction or expansion) due to environmental temperature fluctuations, the shock absorbing material 10 itself deforms in shape, so that the reflective optical element isotropic. The reflective optical element can be continuously pressed against the reference mounting surface without disturbing the physical shape change, and the optical characteristics are not adversely affected outside the design calculation. For example, even if the reflective optical element 5 contracts due to a decrease in temperature, the volume of the shock absorbing material 10 expands by that amount, so that there is no backlash formed between the reflective optical element 5 and the housing 1. Even if the volume of the reflective optical element expands due to the temperature rise, the shock absorbing material can absorb the volume change reasonably. Further, when a large acceleration force such as a shock is applied to the optical scanning device, the shock absorbing material is not deformed by the repulsive elasticity, so that the reflective optical element does not come off from the predetermined mounting position. FIG.
As shown by the mesh in (b), the shock absorber 10 is compressed not only on the upper surface in contact with the pressing plate 11, but also on the side surface in contact with the reference surface 13 of the housing. Also,
In the above embodiment, the impact absorbing material 10 is arranged only at both ends in the longitudinal direction of the reflective optical element, but this is an example, and it may be attached to the entire upper surface of the element including both ends in the longitudinal direction. This point can be similarly applied to all the following embodiments.

【0009】次に、図5、図6(a) (b) に請求項2に対
応する光走査装置の構成を示す。この形態例は、押え平
板11を省き、押え平板11による衝撃吸収材10の押
え機能を防塵カバー2により果たす様にした点が特徴的
である。この形態例によれば、防塵カバー2により衝撃
吸収材10を押さえるので部品点数を削減することがで
き、組立工数の減少、コストダウンを実現できる。図6
(b) のメッシュ部分は、衝撃吸収材が防塵カバー2によ
り加圧されることにより収縮した分を示している。
Next, FIG. 5 and FIGS. 6A and 6B show the structure of the optical scanning device according to the second aspect. This form example is characterized in that the holding flat plate 11 is omitted and the dust absorbing cover 2 performs the holding function of the shock absorbing material 10 by the holding flat plate 11. According to this embodiment, since the shock absorbing material 10 is pressed by the dustproof cover 2, the number of parts can be reduced, the number of assembly steps can be reduced, and the cost can be reduced. FIG.
The mesh part in (b) shows the amount of contraction caused by the impact absorbing material being pressed by the dustproof cover 2.

【0010】次に、図7は請求項3に対応する反射光学
素子の構成図である。この形態例は、反射光学素子5の
長手方向両端部の適所、即ちこの例では、基準面12、
13近傍のハウジング1との隙間を埋める箇所、及び基
準面に対向する反射光学素子の上面に衝撃吸収材10を
予め一体化した点が特徴的である。固定方法は、接着等
による。この形態例では、結像特性を持つ反射光学素子
自体に反発弾性を持った衝撃吸収材10を固定している
ので組み立て工程において簡略化が図れ、コストダウン
にも繋がる。次に、反射光学素子を衝撃吸収材と一体化
したものにおいて、衝撃吸収材10を圧縮状態にするた
めの手段として、押え平板11を用いてもよい。この形
態例は、請求項3に対応する上記形態例の効果に加え
て、請求項1に対応する上記形態例と同様の効果を奏す
る。また、反射光学素子を衝撃吸収材と一体化したもの
において、衝撃吸収材10を圧縮状態にするための手段
として、防塵カバー2を用いてもよい。この形態例は、
請求項3に対応する上記形態例の効果に加えて、請求項
2に対応する上記形態例と同様の効果を奏する。
Next, FIG. 7 is a configuration diagram of a reflective optical element corresponding to claim 3. In this embodiment, the reflective optical element 5 is provided at appropriate positions at both ends in the longitudinal direction, that is, in this example, the reference surface 12,
It is characterized in that the shock absorbing material 10 is previously integrated on a portion of the reflective optical element facing the reference surface and a portion of the housing 1 where the gap with the housing 1 is filled. The fixing method is adhesion or the like. In this embodiment, since the shock absorbing material 10 having repulsion elasticity is fixed to the reflective optical element itself having the image forming characteristic, the assembly process can be simplified and the cost can be reduced. Next, in the one in which the reflective optical element is integrated with the shock absorbing material, the pressing flat plate 11 may be used as a means for bringing the shock absorbing material 10 into a compressed state. This form example has the same effect as the form example corresponding to claim 1 in addition to the effect of the form example corresponding to claim 3. Further, in the case where the reflective optical element is integrated with the shock absorbing material, the dustproof cover 2 may be used as a means for bringing the shock absorbing material 10 into a compressed state. This form example
In addition to the effect of the form example corresponding to claim 3, the same effect as the form example corresponding to claim 2 is achieved.

【0011】[0011]

【発明の効果】以上のように、請求項1に記載の光走査
装置においては、結像特性を持つ反射光学素子を反発弾
性を持った衝撃吸収材で押圧してハウジングに固定して
いるので、温度変動により反射光学素子が形状変形(収
縮、膨張)するときは衝撃吸収材自体がその変形に応じ
て形状変形して、反射光学素子の等方的な形状変化を妨
げずに反射光学素子を基準取付面に押圧し続けるので、
光学特性に設計計算外の悪影響を与えることがない。ま
た、光走査装置に衝撃など加速度の大きい力が作用した
ときも、衝撃吸収材は反発弾性により変形しないので、
反射光学素子が所定の取付位置から外れることもない。
請求項2に記載の光走査装置においては、カバ−で衝撃
吸収材を押さえるので部品点数を削減することができる
ので、組立工数の減少、コストダウンが出来る。請求項
3においては、結像特性を持つ反射光学素子自体に反発
弾性を持った衝撃吸収材を付けているので組み立て工程
において簡略化が図れ、コストダウンにも繋がる。
As described above, in the optical scanning device according to the first aspect, the reflective optical element having the image forming characteristic is fixed to the housing by being pressed by the impact absorbing material having the impact resilience. When the shape of the reflective optical element is deformed (contracted or expanded) due to temperature change, the shape of the shock absorbing material itself is deformed according to the deformation, and the reflective optical element is not hindered from changing the isotropic shape of the reflective optical element. Keep pressing on the reference mounting surface,
The optical characteristics are not adversely affected outside the design calculation. Further, even when a high acceleration force such as a shock is applied to the optical scanning device, the shock absorber does not deform due to the impact resilience.
The reflective optical element does not come off from the predetermined mounting position.
In the optical scanning device according to the second aspect, since the impact absorbing material is pressed by the cover, the number of parts can be reduced, so that the number of assembling steps can be reduced and the cost can be reduced. In the third aspect, since the shock absorbing material having repulsive elasticity is attached to the reflective optical element itself having the image forming characteristic, the assembly process can be simplified and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a) 及び(b) は一般的な光走査装置の斜視図、
及び断面図。
1A and 1B are perspective views of a general optical scanning device,
And a cross-sectional view.

【図2】本発明の光走査装置の一例の分解斜視図。FIG. 2 is an exploded perspective view of an example of an optical scanning device of the present invention.

【図3】(a) 及び(b) は図2の光走査装置の要部の分解
斜視図。
3A and 3B are exploded perspective views of a main part of the optical scanning device of FIG.

【図4】(a) 及び(b) は図2の光走査装置の要部の取付
け状態説明図及び断面図。
4 (a) and 4 (b) are an explanatory view and a sectional view of a mounting state of a main part of the optical scanning device of FIG.

【図5】本発明の他の形態例の分解斜視図。FIG. 5 is an exploded perspective view of another example of the present invention.

【図6】(a) 及び(b) は図5の形態例の組立手順説明
図。
6 (a) and 6 (b) are explanatory views of the assembling procedure of the embodiment example of FIG.

【図7】本発明の他の形態例の要部構成説明図。FIG. 7 is an explanatory diagram of a main part configuration of another example of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・光学ハウジング、2・・・・光学ハウジング
の防塵用カバ−、3・・・・光源部、4・・・・偏向
器、5・・・・結像特性を持つ反射光学素子、6・・・
・第1折り返しミラ−、7・・・・シリンドリカルレン
ズ、8・・・・第2折り返しミラ−、9・・・・感光
体、10・・・反発弾性をもった衝撃吸収材、11・・
・衝撃吸収材を押圧して固定するための板、12・・・
光学ハウジング上における反射光学素子のZ方向取付基
準面、13・・・光学ハウジング上における反射光学素
子のX方向取付基準面
DESCRIPTION OF SYMBOLS 1 ... Optical housing, 2 ... Dust-proof cover of optical housing, 3 ... Light source section, 4 Deflector, 5 ... Reflective optical element having imaging characteristics , 6 ...
・ First folding mirror, 7 ... Cylindrical lens, 8 ... Second folding mirror, 9 ... Photoconductor, 10 ... Impact absorbing material having impact resilience, 11 ...
.A plate for pressing and fixing the shock absorbing material, 12 ...
Z-direction mounting reference surface of the reflective optical element on the optical housing, 13 ... X-direction mounting reference surface of the reflective optical element on the optical housing

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光ビ−ムを出射する光源と、該光源から
の光ビームを偏向走査する偏向器と、偏向器からの反射
光束を感光体面上に結像させる光学素子群と、該光源と
該偏向器と該光学素子群をハウジングに収納した光走査
装置であって、光学素子群の一つとして結像特性をもつ
反射光学素子を使用したものにおいて、 上記ハウジング内の取付け基準面に沿って配置された該
反射光学素子の上面と、該反射光学素子とハウジングと
の間隙に夫々反発弾性を持った衝撃吸収材を配置すると
ともに、該衝撃吸収材の上面を押え平板により加圧して
圧縮させた状態で該押え平板をハウジングに固定したこ
とを特徴とする光走査装置。
1. A light source that emits a light beam, a deflector that deflects and scans a light beam from the light source, an optical element group that forms an image of a reflected light beam from the deflector on a photoconductor surface, and the light source. An optical scanning device in which the deflector and the optical element group are housed in a housing, in which a reflective optical element having an image forming characteristic is used as one of the optical element groups, the mounting reference surface in the housing is A shock absorbing material having repulsive elasticity is arranged in the upper surface of the reflective optical element and the gap between the reflective optical element and the housing, and the upper surface of the shock absorbing material is pressed by a flat plate. An optical scanning device characterized in that the pressing plate is fixed to a housing in a compressed state.
【請求項2】 光ビ−ムを出射する光源と、該光源から
の光ビームを偏向走査する偏向器と、偏向器からの反射
光束を感光体面上に結像させる光学素子群と、該光源と
該偏向器と該光学素子群をハウジングに収納した光走査
装置であって、光学素子群の一つとして結像特性をもつ
反射光学素子を使用し、該ハウジングの上部開口をカバ
ーにより閉止する様にしたものにおいて、 上記カバ−と反射光学素子上面との隙間、及び上記ハウ
ジングと反射光学素子との隙間に、反発弾性を持った衝
撃吸収材を配置して、該カバ−をハウジングに固定した
時に該衝撃吸収材をカバーにより圧縮しつつ該反射光学
素子をハウジング内の取付基準面に固定することを特徴
とする光走査装置。
2. A light source that emits a light beam, a deflector that deflects and scans a light beam from the light source, an optical element group that forms an image of a reflected light beam from the deflector on a photosensitive member surface, and the light source. An optical scanning device in which the deflector and the optical element group are housed in a housing, wherein a reflective optical element having an image forming characteristic is used as one of the optical element groups, and an upper opening of the housing is closed by a cover. In such a structure, a shock absorbing material having repulsive elasticity is arranged in the gap between the cover and the upper surface of the reflective optical element and the gap between the housing and the reflective optical element to fix the cover to the housing. The optical scanning device is characterized in that, when doing so, the shock absorbing material is compressed by a cover and the reflective optical element is fixed to a mounting reference surface in the housing.
【請求項3】 上記結像特性を持つ反射光学素子の特定
の部分に、上記反発弾性を持った該衝撃吸収材を予め一
体化したことを特徴とする請求項1又は2記載の光走査
装置。
3. The optical scanning device according to claim 1, wherein the shock absorbing material having the repulsive elasticity is previously integrated with a specific portion of the reflective optical element having the image forming characteristic. .
JP7140796A 1996-02-29 1996-02-29 Optical scanning device Pending JPH09236771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7140796A JPH09236771A (en) 1996-02-29 1996-02-29 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7140796A JPH09236771A (en) 1996-02-29 1996-02-29 Optical scanning device

Publications (1)

Publication Number Publication Date
JPH09236771A true JPH09236771A (en) 1997-09-09

Family

ID=13459640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7140796A Pending JPH09236771A (en) 1996-02-29 1996-02-29 Optical scanning device

Country Status (1)

Country Link
JP (1) JPH09236771A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159529A (en) * 2011-01-28 2012-08-23 Kyocera Document Solutions Inc Optical scanning device and image forming device including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159529A (en) * 2011-01-28 2012-08-23 Kyocera Document Solutions Inc Optical scanning device and image forming device including the same

Similar Documents

Publication Publication Date Title
JP2951842B2 (en) Optical scanning device
JP4654074B2 (en) Optical unit and image forming apparatus
US5864739A (en) Light source package incorporating thermal expansion compensating device and image forming apparatus using the same
JP5075616B2 (en) Image forming apparatus
US7719561B2 (en) Optical member coupling device and optical scanning apparatus
JP5153586B2 (en) Optical scanning device
EP0658789B1 (en) Structure for attaching scanning optical system
JPH09236771A (en) Optical scanning device
JP3489151B2 (en) Optical scanning device
US10802417B2 (en) Optical scanning apparatus and image forming apparatus
JP3470670B2 (en) Optical scanning device
JP2827596B2 (en) Optical components
JP4340558B2 (en) Optical scanning apparatus and image forming apparatus
JPH09120039A (en) Deflection scanning device
JP2004054019A (en) Scanning optical device and image forming apparatus
JP5868268B2 (en) Optical scanning device and image forming apparatus having the same
JP4298828B2 (en) Optical device
JP4968932B2 (en) Optical deflection apparatus and optical scanning apparatus
JP3085397B2 (en) Mirror holding device
JP2007003726A (en) Scanning optical apparatus and image forming apparatus
JP2001250989A (en) Light emitting element array substrate holding mechanism, optical writer, and image forming device
JPH10282399A (en) Light reflecting mirror
JP2005107064A (en) Laser scanner
JPH07199100A (en) Supporting device for plastic optical element
JP2015129949A (en) Mirror curve adjustment mechanism, optical writing device, and image forming apparatus