JPH09206760A - Method for dephosphorylating waste water and device therefor - Google Patents

Method for dephosphorylating waste water and device therefor

Info

Publication number
JPH09206760A
JPH09206760A JP8021276A JP2127696A JPH09206760A JP H09206760 A JPH09206760 A JP H09206760A JP 8021276 A JP8021276 A JP 8021276A JP 2127696 A JP2127696 A JP 2127696A JP H09206760 A JPH09206760 A JP H09206760A
Authority
JP
Japan
Prior art keywords
magnesium
waste water
ions
phosphate
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8021276A
Other languages
Japanese (ja)
Other versions
JP3928187B2 (en
Inventor
Masaharu Yamashita
雅治 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP02127696A priority Critical patent/JP3928187B2/en
Publication of JPH09206760A publication Critical patent/JPH09206760A/en
Application granted granted Critical
Publication of JP3928187B2 publication Critical patent/JP3928187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To carry out an efficient dephosphorylating reaction by detecting a variation of a pH of a waste water in a reactor to control a pour of an alkali ion and also increasing and decreasing the pour of a magnesium ion in accordance with its pour. SOLUTION: The waste water containing an ammonium ion and a phosphate ion is flowed into a pH adjusting means 2 and its pH is measured with a pH indicating controller 13. Then an alkali soln. is supplied by actuating an injection pump 12a at an alkali injection line 12 so that an alkali component in the waste water flowed into a dephosphorylating reactor 1 may be almost constant. The waste water after adjusting the pH is sent to the dephosphorylating reactor 1 with a pump 6a and flowed into a tank body 1a by upward stream, and the alkali soln. and a magnesium soln. are continuously injected respectively from each injecting means 3 and 4 in a fixed injection ratio, and the phosphate ion and the ammonium ion are converted to magnesium ammonium phosphate and the phosphate is crystallized on a surface of MAP particles previously formed in the waste water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は廃水中から湖沼や閉
鎮性海域等の富栄養化を引き起こす原因物質であるリン
酸イオンや高濃度アンモニウムイオン等の有害物質を効
率的に除去するための脱リン方法及びその装置に関する
ものである。
TECHNICAL FIELD The present invention relates to efficient removal of harmful substances such as phosphate ions and high-concentration ammonium ions, which are the causative substances that cause eutrophication in lakes and closed sea areas, from wastewater. The present invention relates to a dephosphorization method and its apparatus.

【0002】[0002]

【従来の技術】従来、高濃度アンモニウムイオン(NH
4 + )、リン酸イオン(HPO4 2-)を含む廃水中か
ら、これらイオンを除去するには、特開平4−1412
93号公報、特願平7−57455号等に示すような脱
リン方法及びそれを具現化するための脱リン装置が提案
されている。
2. Description of the Related Art Conventionally, high concentration ammonium ion (NH
4 +), from the waste water containing the phosphate ions (HPO 4 2-), the removal of these ions, JP 4-1412
A dephosphorization method and a dephosphorization apparatus for embodying the method have been proposed as disclosed in Japanese Patent Application No. 93, Japanese Patent Application No. 7-57455 and the like.

【0003】例えば、特願平7−57455等に示すよ
うな脱リン装置は、反応容器aの底部の導入口bから上
記廃水を導入し、この反応容器a内に、その廃水中に不
足するマグネシウムイオン(Mg2+)を注入すると共
に、NaOH等のアルカリ液を注入してpH調整を行
い、これに空気を吹き込みながらMg2++NH4 + +H
PO4 2-+OH- +6H2 O→MgNH4 PO4 ・6H
2 O+H2 Oなる反応を起こさせて、その廃水中のNH
4 + 、HPO4 2-をMgNH4 PO4 ・6H2 O(リン
酸マグネシウムアンモニウム)として生成、不溶化させ
ることにより、脱リン処理を行うものである。そして、
この反応によって生成したMgNH4 PO4 は、先に生
成しているMgNH4 PO4 粒子の表面上に析出して造
粒されると共に、このMgNH4 PO4 が除去された処
理水はさらに容器a内を上昇して気体回収部c、沈降部
d、溢流堰eを介して流出ラインfから排出されること
になる。
For example, in the dephosphorization apparatus as shown in Japanese Patent Application No. 7-57455, the waste water is introduced from the inlet b at the bottom of the reaction vessel a, and the waste water in the reaction vessel a becomes insufficient. While injecting magnesium ions (Mg 2+ ), an alkaline solution such as NaOH is injected to adjust the pH, and while blowing air into it, Mg 2+ + NH 4 + + H
PO 4 2- + OH - + 6H 2 O → MgNH 4 PO 4 · 6H
The reaction of 2 O + H 2 O occurs, and NH in the wastewater
The dephosphorization treatment is carried out by producing and insolubilizing 4 + and HPO 4 2- as MgNH 4 PO 4 .6H 2 O (magnesium ammonium phosphate). And
The MgNH 4 PO 4 produced by this reaction is precipitated on the surface of the previously produced MgNH 4 PO 4 particles and granulated, and the treated water from which the MgNH 4 PO 4 has been removed is further treated in the container a. It goes up inside and is discharged from the outflow line f through the gas recovery section c, the sedimentation section d, and the overflow weir e.

【0004】[0004]

【発明が解決しようとする課題】ところで、このような
従来の脱リン装置では、マグネシウムイオン(Mg2+
を廃水中に注入するに際して、廃水中に含まれているリ
ン酸イオン(HPO4 2-)量の平均値を経験的にあるい
はサンプリングによって予測しておき、それと等モル量
のマグネシウムイオンを塩化マグネシウム(MgC
2 )溶液や水酸化マグネシウム(Mg( OH) 2 )溶
液の形態で定量注入している。
By the way, in such a conventional dephosphorization apparatus, magnesium ion (Mg 2+ )
When injecting water into wastewater, the average value of phosphate ion (HPO 4 2− ) contained in the wastewater is predicted empirically or by sampling, and an equimolar amount of magnesium ion to magnesium chloride (MgC
(1 2 ) solution or magnesium hydroxide (Mg (OH) 2 ) solution.

【0005】しかしながら、このようにマグネシウム溶
液を定量注入する方法では、流入廃水の水質が変動する
ことにより、廃水中のリン酸イオン濃度が増減した場
合、すなわち、流入廃水中のリン酸濃度がマグネシウム
溶液の注入量よりも上回った場合には、マグネシウム溶
液が不足して反応しきれなかったリン酸イオンが処理水
と共に流出して処理水の水質が悪化してしまい、反対に
流入廃水中のリン酸濃度がマグネシウム溶液の注入量を
下回った場合には、マグネシウム溶液が過剰となって無
駄が生じ、ランニングコストが高くなってしまうといっ
た不都合があった。
However, in the method of quantitatively injecting the magnesium solution in this way, when the phosphate ion concentration in the wastewater increases or decreases due to the change in the quality of the inflowing wastewater, that is, the phosphate concentration in the inflowing wastewater is magnesium. If it exceeds the injection amount of the solution, the phosphate ions that could not be reacted due to lack of magnesium solution flow out with the treated water and the quality of the treated water deteriorates. When the acid concentration is lower than the injection amount of the magnesium solution, the magnesium solution becomes excessive and wasted, resulting in a high running cost.

【0006】そこで、本発明はこのような課題を有効に
解決するために案出されたものであり、その目的は廃水
中のリン酸イオン濃度が増減しても常にその量に応じた
適量のマグネシウムイオンを注入して効率的な脱リン反
応を行うことができる新規な廃水中の脱リン方法及び脱
リン装置を提供するものである。
Therefore, the present invention has been devised to effectively solve such a problem, and its purpose is to maintain an appropriate amount according to the amount of phosphate ion in wastewater, even if the concentration of phosphate ion increases or decreases. It is intended to provide a novel dephosphorization method and a dephosphorization apparatus in wastewater, by which magnesium ions can be injected to perform an efficient dephosphorization reaction.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明は、リン酸イオン(HPO4 2-)とアンモニウ
ムイオン(NH4 + )を含む廃水を反応容器内に連続し
て流し込むと共に、この廃水中にマグネシウムイオン
(Mg2+)とアルカリイオン(OH- )とを連続して注
入しながら、上記リン酸イオンとアンモニウムイオンを
リン酸マグネシウムアンモニウム(MgNH4 PO4
6H2 O)として反応容器内に生成・不溶化させるよう
にした廃水中の脱リン方法において、上記反応容器内の
廃水のpHの変動を常時検出して、このpH値が常時所
定の範囲に維持されるように上記アルカリイオンの注入
量を増減すると共に、このアルカリイオンの注入量に応
じて上記マグネシウムイオンの注入量を増減するように
したものである。
In order to solve the above-mentioned problems, according to the present invention, waste water containing phosphate ions (HPO 4 2− ) and ammonium ions (NH 4 + ) is continuously poured into a reaction vessel. While continuously injecting magnesium ions (Mg 2+ ) and alkali ions (OH ) into the wastewater, the phosphate ions and ammonium ions are added to the magnesium ammonium phosphate (MgNH 4 PO 4 ·.
6H 2 O) in the dephosphorization method of waste water that is produced and insolubilized in the reaction vessel, the pH value of the waste water in the reaction vessel is constantly detected, and the pH value is always maintained within a predetermined range. As described above, the injection amount of the alkali ions is increased or decreased, and the injection amount of the magnesium ions is increased or decreased according to the injection amount of the alkali ions.

【0008】これによって、反応容器内に流れ込む廃水
中のリン酸イオンの濃度が変動しても、常に適量のマグ
ネシウムイオンが注入されることになり、反応しきれな
かったリン酸イオンが処理水と共に流出したり、マグネ
シウムイオンの注入過剰による無駄等を未然に防止する
ことができる。
[0008] As a result, even if the concentration of phosphate ions in the waste water flowing into the reaction vessel fluctuates, an appropriate amount of magnesium ions are always injected, and the phosphate ions that could not be completely reacted together with the treated water. It is possible to prevent waste and the like due to excessive outflow of magnesium ions.

【0009】すなわち、上述したように、反応容器内に
流れ込む廃水中のリン酸イオンの濃度が常に一定であれ
ば、反応容器内でリン酸マグネシウムアンモニウムが生
成する際に消費されるマグネシウムイオンも一定である
ことから、これと等モル量のマグネシウムイオンを反応
容器内に注入するように予め設定しておけば、効率的な
脱リン反応を行うことができるが、このリン酸イオンの
濃度が変動した場合、このように定量供給する方法では
マグネシウムイオンの注入量が過不足してしまう。その
ため、このリン酸イオン濃度に応じたマグネシウムイオ
ンを反応容器内に注入すれば良いが、このリン酸イオン
濃度を直接計測することは困難であり、また、多くの時
間と手間を要する。そこで、本発明者はこのリン酸イオ
ンの濃度に応じて廃水中のアルカリイオンの消費量が変
動して廃水のpH値が変動することに着目し、このpH
値を常に所定の値に維持すべくアルカリイオンの注入量
の増減に応じてマグネシウムイオンの注入量を増減する
ことで、効率的な反応を行うようにしたものである。
That is, as described above, if the concentration of phosphate ion in the waste water flowing into the reaction vessel is always constant, the magnesium ion consumed when magnesium ammonium phosphate is produced in the reaction vessel is also constant. Therefore, if a preset amount of magnesium ion is injected into the reaction vessel in an equimolar amount to this, an efficient dephosphorization reaction can be performed, but the concentration of this phosphate ion fluctuates. In such a case, the amount of magnesium ions to be implanted will be excessive or deficient with such a method of quantitative supply. Therefore, magnesium ions corresponding to the phosphate ion concentration may be injected into the reaction vessel, but it is difficult to directly measure the phosphate ion concentration, and much time and labor are required. Therefore, the present inventor has noticed that the pH value of the wastewater changes due to the change of the consumption amount of the alkali ions in the wastewater according to the concentration of the phosphate ion,
By increasing or decreasing the implantation amount of magnesium ions in accordance with the increase or decrease of the implantation amount of alkali ions so that the value is always maintained at a predetermined value, an efficient reaction is performed.

【0010】そして、この方法を具体的に実施する装置
としては、上記廃水中に任意量のアルカリ液を注入して
所定のpHに調整するpH調整手段と、このpH調整手
段で所定のpHに調整された廃水を連続して流し込むと
共に、その廃水中にアルカリイオンとマグネシウムイオ
ンを注入してリン酸イオンとアンモニウムイオンを廃水
中から除去する反応容器と、この反応容器内の廃液のp
Hを常時検出するpH検出計と、このpH検出計で検出
された廃液のpH値に応じて上記アルカリイオンの注入
量を増減するアルカリ剤注入手段と、このアルカリイオ
ンの注入量に応じて上記マグネシウムイオンの注入量を
増減するマグネシウム剤注入手段とを備えたものであ
る。
As a device for concretely implementing this method, a pH adjusting means for injecting an arbitrary amount of an alkaline solution into the waste water to adjust it to a predetermined pH, and a pH adjusting means for adjusting the pH to a predetermined pH. The prepared wastewater is continuously poured into the wastewater, and alkali ions and magnesium ions are injected into the wastewater to remove phosphate ions and ammonium ions from the wastewater.
A pH detector that constantly detects H, an alkaline agent injecting unit that increases or decreases the amount of the alkali ions injected according to the pH value of the waste liquid detected by the pH detector, and And a magnesium agent injection means for increasing or decreasing the amount of magnesium ion injection.

【0011】[0011]

【発明の実施の形態】次に、本発明の実施の好適一形態
を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, a preferred embodiment of the present invention will be described.

【0012】図1は本発明に係る廃水中の脱リン装置の
実施の一形態を示したものである。図示するように、こ
の脱リン装置は図中左側に示すpH調整手段2と、図中
略中央部に示す脱リン反応容器1と、図中右側に示すア
ルカリ剤注入手段3及びマグネシウム剤注入手段4とか
ら主に構成されている。
FIG. 1 shows an embodiment of the dephosphorization apparatus for wastewater according to the present invention. As shown in the figure, this dephosphorization apparatus comprises a pH adjusting means 2 shown on the left side of the figure, a dephosphorization reaction container 1 shown at the substantially central part of the figure, an alkaline agent injection means 3 and a magnesium agent injection means 4 shown on the right side of the figure. It is mainly composed of and.

【0013】先ず、このpH調整手段2は、アンモニウ
ムイオン(NH4 + )及びリン酸イオン(PO4 2-)を
含む廃水を導入するタンク2aに、ミキサーなどの攪拌
機5を備えると共に、供給ライン6を介して脱リン反応
容器1の底部導入口1b側に接続されたものであり、タ
ンク2a内に流れ込んだ廃水を攪拌機5で攪拌した後、
供給ライン6からポンプ6aによって脱リン反応容器1
内へ流すようになっている。
First, the pH adjusting means 2 is equipped with a stirrer 5 such as a mixer in a tank 2a for introducing waste water containing ammonium ions (NH 4 + ) and phosphate ions (PO 4 2- ), and a supply line. Is connected to the bottom introduction port 1b side of the dephosphorization reaction container 1 via 6, and the waste water flowing into the tank 2a is stirred by a stirrer 5,
Dephosphorization reaction vessel 1 from supply line 6 by pump 6a
It is designed to flow in.

【0014】次に、この脱リン反応容器1は、縦型をし
た槽体1a内に、気体回収部7と分離手段8と備えると
共に、その槽体1aの上部に、気液分離器9とエアート
ラップ10とを備えたものであり、供給ライン6から送
られる廃水を槽体1aの底部導入口1bから上向流で流
すと同時に、アルカリ剤注入手段3及びマグネシウム剤
注入手段4から送られてくる溶液によって、その廃水中
に含まれているリン酸イオンを粒子状のリン酸マグネシ
ウムアンモニウム(MgNH4 PO4 ・6H2 O、以下
これをMAP粒子と称す)として析出・分離して、処理
水をその上端部から排水するようになっている。
Next, the dephosphorization reaction container 1 is provided with a gas recovery section 7 and a separating means 8 in a vertical tank body 1a, and a gas-liquid separator 9 is provided above the tank body 1a. An air trap 10 is provided, and the wastewater sent from the supply line 6 is sent from the bottom introduction port 1b of the tank 1a in an upward flow and at the same time sent from the alkaline agent injection means 3 and the magnesium agent injection means 4. Depending on the solution that comes in, the phosphate ions contained in the wastewater are deposited and separated as particulate magnesium ammonium phosphate (MgNH 4 PO 4 .6H 2 O, hereinafter referred to as MAP particles), and treated. It is designed to drain water from its upper end.

【0015】また、アルカリ剤注入手段3は、水酸化ナ
トリウム(NaOH)等のアルカリ溶液を貯留したアル
カリタンク3aに2本のアルカリ剤注入ライン11,1
2を接続したものであり、一方のアルカリ剤注入ライン
11側に備えられた定量ポンプ11aによって、アルカ
リタンク3a内のアルカリ溶液を上記脱リン反応容器1
側に供給すると共に、他方のアルカリ剤注入ライン12
側に備えられた流量可変のポンプ12aによって、同じ
くアルカリタンク3a内の任意量のアルカリ溶液を上記
pH調整手段2のタンク2a内にそれぞれ供給できるよ
うになっている。これら定量ポンプ11a及び12a
は、図中点線で示すように、pH調整手段2及び脱リン
反応容器1内のpHを常時検出するpH指示調節計1
3,14にそれぞれ接続されており、それぞれのpH指
示調節計13,14で検出された廃水のpH値が所定値
に収まるようにアルカリ溶液を注入するようになってい
る。
The alkaline agent injecting means 3 has two alkaline agent injecting lines 11, 1 in an alkaline tank 3a which stores an alkaline solution such as sodium hydroxide (NaOH).
2 is connected, and the alkaline solution in the alkaline tank 3a is supplied to the dephosphorization reaction vessel 1 by a metering pump 11a provided on one alkaline agent injection line 11 side.
Side, and the other alkaline agent injection line 12
A variable flow rate pump 12a provided on the side can also supply an arbitrary amount of the alkaline solution in the alkaline tank 3a into the tank 2a of the pH adjusting means 2 respectively. These metering pumps 11a and 12a
Is a pH indicator controller 1 for constantly detecting the pH in the pH adjusting means 2 and the dephosphorization reaction container 1, as indicated by the dotted line in the figure.
3 and 14 are respectively connected to inject the alkaline solution so that the pH value of the wastewater detected by the pH indicator controllers 13 and 14 falls within a predetermined value.

【0016】一方、マグネシウム剤注入手段4は、マグ
ネシウムイオン(Mg2+)を含む塩化マグネシウム(M
gCl2 )や水酸化マグネシウム(Mg( OH) 2 )等
のマグネシウム溶液を貯留するマグネシウムタンク4a
に、一端が上記脱リン反応容器1の底部側に接続された
マグネシウム剤注入ライン15を接続したものであり、
このマグネシウム剤注入ライン15に備えられた流量可
変ポンプ15aによって、タンク4a内の任意量のマグ
ネシウム溶液を脱リン反応容器1内へその底部から供給
できるようになっている。
On the other hand, the magnesium agent injecting means 4 includes magnesium chloride (M 2) containing magnesium ions (Mg 2+ ).
A magnesium tank 4a for storing a magnesium solution such as gCl 2 ) or magnesium hydroxide (Mg (OH) 2 ).
Is connected to the magnesium agent injection line 15 having one end connected to the bottom side of the dephosphorization reaction vessel 1.
A variable flow rate pump 15a provided in the magnesium agent injection line 15 can supply an arbitrary amount of magnesium solution in the tank 4a into the dephosphorization reaction container 1 from the bottom thereof.

【0017】また、アルカリ剤注入ライン11のポンプ
11a及びマグネシウム剤注入ライン15のポンプ15
aの吐出側には、それぞれ流量指示積算流量計11b、
流量指示調節積算計15bが設けられており、それぞれ
のライン11,15を流れる溶液の流量を計測すると共
に、それぞれのポンプ11a,15aを制御してその単
位時間当たりの吐出量を調整できるようになっている。
Further, the pump 11a of the alkali agent injection line 11 and the pump 15 of the magnesium agent injection line 15
On the discharge side of a, the flow rate instruction integrating flow meter 11b,
A flow rate indicator adjusting integrator 15b is provided to measure the flow rate of the solution flowing through the lines 11 and 15 and to control the pumps 11a and 15a to adjust the discharge amount per unit time. Has become.

【0018】次に、このように構成された脱リン装置を
用いて本発明の脱リン方法の実施の一形態を説明する。
Next, an embodiment of the dephosphorization method of the present invention using the dephosphorization apparatus thus constructed will be described.

【0019】図示するように、先ず、アンモニウムイオ
ン(NH4 + )及びリン酸イオン(PO4 2-)を含む廃
水は、pH調整手段2のタンク2a内に流し込まれ、こ
こで攪拌機5で攪拌されながらpH指示調節計13でそ
のpHが測定される。この時、供給ライン6を通して脱
リン反応容器1の下部に流入する廃水のアルカリ成分が
ほぼ一定となる様、アルカリ剤注入ライン12の注入ポ
ンプ12aを作動させて、タンク3aからアルカリイオ
ンを含むアルカリ溶液(NaOH)を供給する。尚、こ
のpH調整手段2内の廃水中にはマグネシウムイオンが
不足していることから、このようなpH調整を行っても
上記リン酸イオンなどが析出するような反応は起こらな
い。
As shown in the figure, first, the waste water containing ammonium ions (NH 4 + ) and phosphate ions (PO 4 2− ) is poured into the tank 2a of the pH adjusting means 2, where it is stirred by the stirrer 5. While the temperature is being measured, the pH is measured by the pH indicator controller 13. At this time, the injection pump 12a of the alkaline agent injection line 12 is operated so that the alkaline component of the waste water flowing into the lower portion of the dephosphorization reaction vessel 1 through the supply line 6 becomes substantially constant, and the alkali ion-containing alkali from the tank 3a is discharged. Supply a solution (NaOH). Since the waste water in the pH adjusting means 2 lacks magnesium ions, such a pH adjustment does not cause a reaction such as precipitation of the phosphate ions.

【0020】次に、このようにして所定のpHに調整さ
れた廃水は、ポンプ6aによってライン6を通して脱リ
ン反応容器1の底部の導入口1bから槽体1a内に流
れ、この槽体1a内を上向流で流れる。この槽体1a内
には、アルカリ剤注入手段3及びマグネシウム剤注入手
段4からそれぞれアルカリ溶液及びマグネシウム溶液が
一定の注入量比で連続して注入されると同時に、ブロア
ーなどの空気供給手段16によりエアーが強制的に送ら
れているため、槽体1a内の廃水はこれによって攪拌さ
れ、流動化されて廃水中のリン酸イオン(HPO4 2-
及びアンモニウムイオン(NH4 + )が、マグネシウム
溶液中のマグネシウムイオン(Mg2+)とアルカリ溶液
中のアルカリイオン(OH- )と等モルずつ反応してリ
ン酸マグネシウムアンモニウム(MgNH4 PO4 ・6
2 O)となり、先に廃水中に生成しているMAP粒子
の表面に晶出してくる(Mg2++NH4 + +HPO4 2-
+OH- +6H2 O→MgNH4 PO4 ・6H2 O+H
2 O)。その後、空気供給手段16により送られたエア
ーは槽体1aの中央部に位置する固液分離手段7によっ
て回収され、上昇管17内をエアリフト効果によって廃
水をMAP粒子と共に、気液分離器9側に搬送した後、
ここで廃水中から分離され、エアートラップ10を通過
して脱臭設備等で処理された後大気中に放出される。一
方、この気液分離器9で分離された廃水とMAP粒子は
下降管18内を降下して再び槽体1a内に戻される。そ
して、固液分離手段7で分離された廃水はさらには槽体
1a内を上向流で流れた後、その上端部の溢流堰16か
ら溢流して処理水として排水され、固液分離手段7で分
離されたMAP粒子は再び槽体1a内に戻り流動して順
次生成されるリン酸マグネシウムアンモニウムの晶出に
寄与することになる。
Next, the waste water adjusted to a predetermined pH in this way flows through the line 6 by the pump 6a into the tank 1a from the inlet 1b at the bottom of the dephosphorization reaction vessel 1, and inside the tank 1a. Flows upward. An alkaline solution and a magnesium solution are continuously injected into the tank 1a from the alkaline agent injecting means 3 and the magnesium agent injecting means 4, respectively, at a constant injection amount ratio, and at the same time, by an air supply means 16 such as a blower. Since the air is forcibly sent, the waste water in the tank body 1a is stirred and fluidized by this, and phosphate ions (HPO 4 2− ) in the waste water are generated.
And ammonium ion (NH 4 +) is, magnesium ions of the magnesium solution (Mg 2+) and alkali ions in the alkali solution (OH -) and reacted with the magnesium ammonium phosphate equimolar (MgNH 4 PO 4 · 6
H 2 O) and crystallizes on the surface of the MAP particles that were previously generated in the wastewater (Mg 2+ + NH 4 + + HPO 4 2−
+ OH - + 6H 2 O → MgNH 4 PO 4 · 6H 2 O + H
2 O). After that, the air sent by the air supply means 16 is recovered by the solid-liquid separation means 7 located in the central portion of the tank body 1a, and the wastewater is collected in the rising pipe 17 by the air lift effect together with the MAP particles to the gas-liquid separator 9 side. After transporting to
Here, it is separated from the wastewater, passes through the air trap 10, is treated by a deodorizing facility, etc., and is then released into the atmosphere. On the other hand, the wastewater and the MAP particles separated by the gas-liquid separator 9 descend in the downcomer 18 and are returned to the tank 1a again. Then, the wastewater separated by the solid-liquid separation means 7 further flows in the tank body 1a in an upward flow, then overflows from the overflow weir 16 at the upper end thereof and is drained as treated water. The MAP particles separated in 7 return to the inside of the tank body 1a and flow again to contribute to the crystallization of magnesium ammonium phosphate that is sequentially generated.

【0021】ところで、この反応時において、槽体1a
内に流れ込む廃水中のリン酸イオン濃度が一定であれ
ば、マグネシウム溶液とアルカリ溶液の注入量比を一定
の範囲に維持することで常に良好な反応が行なわれるこ
とになるが、廃水の性状が変化し、リン酸イオンの濃度
が変動すると、これに連動してアルカリイオンの消費量
が変化し、これに伴って廃水のpH値が変化する。そし
て、このpH値が変動すると、槽体1aに設けられたp
H指示調節計14がこれを検出し、アルカリ剤注入ライ
ン11のポンプ11aを制御して注入されるアルカリ溶
液で、槽体1a内のpHが所定値に戻される。
By the way, during this reaction, the tank 1a
If the phosphate ion concentration in the waste water flowing into the inside is constant, maintaining a constant injection ratio between the magnesium solution and the alkaline solution will always lead to a good reaction. When the concentration of the phosphate ions changes and the concentration of the phosphate ions changes, the consumption amount of the alkali ions changes in association with this, and the pH value of the wastewater changes accordingly. When the pH value fluctuates, the p value provided in the tank 1a
The H indicator controller 14 detects this, and controls the pump 11a of the alkaline agent injection line 11 to inject the alkaline solution to return the pH in the tank 1a to a predetermined value.

【0022】通常、アルカリ溶液の単位時間当たりの注
入量はアルカリ剤注入ライン11に設けられた流量指示
積算流量計11bで、また、マグネシウム溶液の単位時
間当たりの注入量はマグネシウム剤注入ライン15に設
けられた流量指示調節積算計15bでそれぞれモニタリ
ングされて反応に最適な注入量比が算出されているが、
上記のようにアルカリ溶液とマグネシウム溶液の注入量
比が最適な注入量比の範囲から外れると、流量指示調節
積算計15bに付設されたポンプ制御計19によってマ
グネシウム剤注入ポンプ15aの吐出量を変動させてマ
グネシウム溶液の注入量を増減させて、その注入量比を
正常反応時の一定の注入量比の範囲に戻すことになる。
例えば、廃水中のリン酸イオン濃度が上昇し、槽体1a
内に注入されたマグネシウムイオンと同時にアルカリイ
オンも多量に消費されて不足すると、これに伴って槽体
1a内のpHが低下するため、そのpH値を所定の値に
戻すべくアルカリ溶液の注入量が増加する。すると、こ
のアルカリ溶液とマグネシウム溶液との注入量比が正常
な状態から変動するため、この注入量比を正常の注入量
比に戻すべくマグネシウム溶液の注入量を増加させるこ
とになる。反対に廃水中のリン酸イオン濃度が低下する
と、同様な作用によって両者の注入量比を正常に戻すべ
くマグネシウム溶液の注入量を減少させることになる。
Usually, the injection amount of the alkali solution per unit time is the flow rate instruction integrating flowmeter 11b provided in the alkali agent injection line 11, and the injection amount of the magnesium solution per unit time is the magnesium agent injection line 15. The injection rate ratio optimal for the reaction is calculated by monitoring the flow rate adjusting accumulators 15b provided, respectively.
As described above, when the injection amount ratio of the alkaline solution and the magnesium solution is out of the optimum injection amount ratio range, the discharge amount of the magnesium agent injection pump 15a is changed by the pump controller 19 attached to the flow rate instruction adjusting integrator 15b. Then, the injection amount of the magnesium solution is increased / decreased, and the injection amount ratio is returned to the range of the constant injection amount ratio in the normal reaction.
For example, if the phosphate ion concentration in the wastewater increases, the tank body 1a
When a large amount of alkali ions are consumed at the same time as magnesium ions injected into the inside of the tank 1a and become insufficient, the pH in the tank 1a is reduced accordingly. Therefore, the amount of alkali solution injected to restore the pH value to a predetermined value. Will increase. Then, since the injection amount ratio of the alkali solution and the magnesium solution changes from the normal state, the injection amount of the magnesium solution is increased to restore the injection amount ratio to the normal injection amount ratio. On the contrary, when the phosphate ion concentration in the waste water decreases, the injection amount of the magnesium solution is reduced in order to return the injection amount ratio of both to the normal level by the same action.

【0023】この制御方法をフローチャートで表すと図
2のようになる。すなわち、アルカリ溶液の単位時間当
たりの注入量は流量指示積算流量計11b、マグネシウ
ム溶液の単位時間当たりの注入量は流量指示調節積算計
15bでそれぞれ常時モニタリングされており、この流
量比が初期の設定範囲内にある場合には廃水中のリン酸
イオン濃度と注入されるマグネシウムイオンとの量が等
モルであり、適量のマグネシウムイオンが注入されてい
ると判断して、その流量比を維持すべくマグネシウム剤
注入ポンプ15aの流量制御を停止する。しかしなが
ら、この流量比が設定範囲を外れ、設定範囲を超えた場
合には、廃水中のリン酸マグネシウム濃度が上昇してマ
グネシウムイオンの注入量が不足したと判断してポンプ
15bからのマグネシウム剤の注入量を増加させる。一
方、この流量比が設定範囲を下回った場合には廃水中の
リン酸マグネシウム濃度が減少してマグネシウムイオン
の注入量が過多となったと判断してポンプ15bからの
マグネシウム剤の注入量を減少させる。そして、このよ
うなマグネシウム剤の流量制御を行ってその流量比が設
定の範囲に収まったなら制御を停止すると共に、その流
量比を常時モニタリングしておくことになる。
The flow chart of this control method is shown in FIG. That is, the injection amount of the alkali solution per unit time is constantly monitored by the flow rate indicating integration flow meter 11b, and the injection amount of the magnesium solution per unit time is constantly monitored by the flow rate instruction adjusting integrator 15b, and this flow rate ratio is initially set. If it is within the range, the phosphate ion concentration in the wastewater and the amount of magnesium ions to be injected are equimolar, and it is determined that an appropriate amount of magnesium ions has been injected, and the flow rate ratio should be maintained. The flow rate control of the magnesium agent injection pump 15a is stopped. However, when this flow rate ratio is out of the set range and exceeds the set range, it is determined that the magnesium phosphate concentration in the wastewater rises and the injection amount of magnesium ions is insufficient, so that the magnesium agent from the pump 15b is removed. Increase injection volume. On the other hand, when this flow rate ratio falls below the set range, it is determined that the magnesium phosphate concentration in the wastewater has decreased and the magnesium ion injection amount has become excessive, and the injection amount of the magnesium agent from the pump 15b is decreased. . Then, when the flow rate control of the magnesium agent is performed and the flow rate ratio falls within the set range, the control is stopped and the flow rate ratio is constantly monitored.

【0024】これによって、廃水中のリン酸イオン濃度
が変動しても、そのリン酸濃度に応じた最適な量のマグ
ネシウムイオンを常に廃水中に注入することが可能とな
り、従来のようなマグネシウムイオンの注入量の過不足
による不都合を未然に防止することができる。尚、本実
施の形態では、反応容器1の上流側の設けられたpH調
整手段2としてタンク2a及び攪拌手段5を備えた場合
で説明したが、このようなタンク2a及び攪拌手段5を
省略し、廃水供給ライン6に直接pH指示調節計6aを
備えると共に、アルカリ剤注入ライン12を接続するよ
うにその構成を簡略化しても良い。
As a result, even if the phosphate ion concentration in the wastewater changes, it becomes possible to constantly inject the optimum amount of magnesium ions in accordance with the phosphoric acid concentration into the wastewater. It is possible to prevent the inconvenience caused by the excess or deficiency of the injection amount of. In the present embodiment, the case where the tank 2a and the stirring means 5 are provided as the pH adjusting means 2 provided on the upstream side of the reaction container 1 has been described, but such a tank 2a and the stirring means 5 are omitted. The pH indicator controller 6a may be directly provided in the wastewater supply line 6 and the configuration may be simplified so that the alkaline agent injection line 12 is connected.

【0025】[0025]

【実施例】次に、本発明の具体的実施例を説明する。Next, specific examples of the present invention will be described.

【0026】図1に示すような構成をした脱リン装置を
用い、マグネシウム剤(MgCl2 ・6H2 O)の注入
量を一定にしておき、リン酸イオン濃度を表1のように
変化させて消費NaOH/マグネシウム溶液の注入量比
と、リン酸態リン除去率をモニタリングし、その結果を
表1に示す。尚、表1中、RUN 1は定常状態、RUN2は
リン酸イオン濃度上昇によるマグネシウム剤注入量不足
状態、RUN 3はマグネシウム剤注入量増加による最適運
転状態、RUN 4はリン酸イオン濃度再低下によるマグネ
シウム剤注入量過多状態、RUN 5はマグネシウム剤注入
量再減少による定常状態への復帰状態を示したものであ
る。
Using the dephosphorization apparatus configured as shown in FIG. 1, the injection amount of magnesium agent (MgCl 2 .6H 2 O) was kept constant and the phosphate ion concentration was changed as shown in Table 1. The injection amount ratio of the consumed NaOH / magnesium solution and the phosphate-phosphorus removal rate were monitored, and the results are shown in Table 1. In Table 1, RUN 1 is a steady state, RUN 2 is an insufficient amount of magnesium agent injection due to an increase in phosphate ion concentration, RUN 3 is an optimal operation state due to an increase in magnesium agent injection amount, and RUN 4 is due to a decrease in phosphate ion concentration again. Excessive magnesium injection amount, RUN 5 shows the return to the steady state by re-decrease of magnesium injection amount.

【0027】[0027]

【表1】 [Table 1]

【0028】この結果、表1からも明らかなように、流
入リン酸態リン濃度が異なる場合でも、マグネシウム剤
を適量注入したRUN 1,3,5では消費NaOH/マグ
ネシウム溶液の注入量比がいずれも一致しているのに対
し、マグネシウム剤の注入量が過不足しているRUN 2,
3では消費NaOH/マグネシウム溶液の注入量比が大
きく変動していることがわかる。従って、消費NaOH
量とマグネシウム溶液の注入量を単位時間で測定し、こ
れらの比をモニタリングし、この比が定常状態と異なる
場合、例えば、マグネシウム剤注入ポンプの吐出量を自
動的に増減させて上記比を設定値に合わせるだけで、常
に最適なマグネシウム剤の注入量が得られ、処理性能の
安定化とマグネシウム剤の消費量を抑えることができ
る。
As a result, as is clear from Table 1, in the RUN 1, 3, and 5 in which an appropriate amount of magnesium agent was injected, the ratio of the amount of consumed NaOH / magnesium solution injected was high, even when the inflowing phosphate concentration was different. However, the injection amount of magnesium agent is too short or RUN 2,
In No. 3, it can be seen that the injection amount ratio of the consumed NaOH / magnesium solution fluctuates greatly. Therefore, consumed NaOH
Amount and injection amount of magnesium solution are measured per unit time, and these ratios are monitored.If this ratio is different from the steady state, for example, the discharge amount of the magnesium agent injection pump is automatically increased or decreased to set the above ratio. Only by adjusting to the value, the optimum injection amount of the magnesium agent can always be obtained, and the processing performance can be stabilized and the consumption amount of the magnesium agent can be suppressed.

【0029】[0029]

【発明の効果】以上要するに本発明によれば、廃水中の
リン酸イオン濃度が増減に応じて、常に最適量のマグネ
シウムイオンを供給して効率の良い除去反応を行うこと
ができるため、リン酸イオンの流出による不都合を未然
に防止すると共に、ランニングコストの上昇を抑えるこ
とができる等といった優れた効果を発揮する。
In summary, according to the present invention, since the optimum amount of magnesium ions can be always supplied to efficiently perform the removal reaction according to the increase or decrease of the phosphate ion concentration in the waste water, the phosphoric acid It is possible to prevent inconvenience due to the outflow of ions and to suppress an increase in running cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態を示す構成図である。FIG. 1 is a configuration diagram showing one embodiment of the present invention.

【図2】マグネシウム剤の注入制御を示すフローチャー
トである。
FIG. 2 is a flowchart showing injection control of a magnesium agent.

【図3】従来の脱リン装置の一形態を示す説明図であ
る。
FIG. 3 is an explanatory diagram showing one form of a conventional dephosphorization apparatus.

【符号の説明】[Explanation of symbols]

1 反応容器 1a 槽体 2 pH調整手段 3 アルカリ剤注入手段 4 マグネシウム剤注入手段 6a,15a 流量可変ポンプ 11b 流量指示積算流量計 15b 流量指示調節積算計 13,14 pH指示調節計 DESCRIPTION OF SYMBOLS 1 Reaction container 1a Tank body 2 pH adjusting means 3 Alkaline agent injecting means 4 Magnesium agent injecting means 6a, 15a Flow rate variable pump 11b Flow rate instruction | integration flowmeter 15b Flow rate instruction adjustment integrator 13,14 pH instruction controller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リン酸イオン(HPO4 2-)とアンモニ
ウムイオン(NH4 + )を含む廃水を反応容器内に連続
して流し込むと共に、この廃水中にマグネシウムイオン
(Mg2+)とアルカリイオン(OH- )とを連続して注
入しながら、上記リン酸イオンとアンモニウムイオンを
リン酸マグネシウムアンモニウム(MgNH4 PO4
6H2 O)として反応容器内に生成・不溶化させるよう
にした廃水中の脱リン方法において、上記反応容器内の
廃水のpHの変動を常時検出して、このpH値が常時所
定の範囲に維持されるように上記アルカリイオンの注入
量を制御すると共に、このアルカリイオンの注入量に応
じて上記マグネシウムイオンの注入量を増減するように
したことを特徴とする廃水中の脱リン方法。
1. A waste water containing a phosphate ion (HPO 4 2− ) and an ammonium ion (NH 4 + ) is continuously poured into a reaction vessel, and a magnesium ion (Mg 2+ ) and an alkali ion are introduced into the waste water. While continuously injecting (OH ), the above-mentioned phosphate ions and ammonium ions are added to magnesium ammonium phosphate (MgNH 4 PO 4 ·.
6H 2 O) in the dephosphorization method of waste water that is produced and insolubilized in the reaction vessel, the pH value of the waste water in the reaction vessel is constantly detected, and the pH value is always maintained within a predetermined range. As described above, the method for dephosphorizing waste water is characterized in that the injection amount of the alkali ions is controlled and the injection amount of the magnesium ions is increased or decreased according to the injection amount of the alkali ions.
【請求項2】 リン酸イオン(HPO4 2-)とアンモニ
ウムイオン(NH4 + )を含む廃水中に任意量のアルカ
リ溶液を注入して所定のpHに調整するpH調整手段
と、このpH調整手段で所定のpHに調整された廃水を
連続して流し込むと共に、その廃水中にアルカリイオン
とマグネシウムイオンを注入してリン酸イオンとアンモ
ニウムイオンを廃水中から除去する反応容器と、この反
応容器内の廃液のpHを常時検出するpH指示調節計
と、このpH指示調節計で検出された廃液のpH値に応
じて上記アルカリイオンを注入するアルカリ剤注入手段
と、このアルカリイオンの注入量に応じて上記マグネシ
ウムイオンの注入量を増減するマグネシウム剤注入手段
とを備えたことを特徴とする廃水中の脱リン装置。
2. A pH adjusting means for injecting an arbitrary amount of an alkaline solution into waste water containing phosphate ions (HPO 4 2− ) and ammonium ions (NH 4 + ) to adjust it to a predetermined pH, and this pH adjustment. And a reaction container for continuously injecting waste water adjusted to a predetermined pH by means and for injecting alkali ions and magnesium ions into the waste water to remove phosphate ions and ammonium ions from the waste water, PH indicator controller for constantly detecting the pH of the waste liquid, alkaline agent injecting means for injecting the alkali ion according to the pH value of the waste liquid detected by the pH indicator controller, and the amount of the alkali ion injected And a magnesium agent injection means for increasing or decreasing the injection amount of the magnesium ions.
JP02127696A 1996-02-07 1996-02-07 Method and apparatus for dephosphorization in wastewater Expired - Lifetime JP3928187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02127696A JP3928187B2 (en) 1996-02-07 1996-02-07 Method and apparatus for dephosphorization in wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02127696A JP3928187B2 (en) 1996-02-07 1996-02-07 Method and apparatus for dephosphorization in wastewater

Publications (2)

Publication Number Publication Date
JPH09206760A true JPH09206760A (en) 1997-08-12
JP3928187B2 JP3928187B2 (en) 2007-06-13

Family

ID=12050612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02127696A Expired - Lifetime JP3928187B2 (en) 1996-02-07 1996-02-07 Method and apparatus for dephosphorization in wastewater

Country Status (1)

Country Link
JP (1) JP3928187B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334471A (en) * 1999-05-26 2000-12-05 Kurita Water Ind Ltd Dephosphorizing apparatus
JP2005329398A (en) * 2004-04-20 2005-12-02 Ishikawajima Harima Heavy Ind Co Ltd Dephosphorization apparatus
JP2006239648A (en) * 2005-03-07 2006-09-14 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for dephosphorization
JP2016002543A (en) * 2014-06-19 2016-01-12 水ing株式会社 Phosphorus recovery apparatus and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202788A (en) * 1984-03-22 1985-10-14 Kurita Water Ind Ltd Treating apparatus for waste water containing fluorine and phosphorus
JPS60225692A (en) * 1984-04-23 1985-11-09 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for controlling contact crystallization phosphorization process
JPS62262789A (en) * 1986-05-08 1987-11-14 Unitika Ltd Method for removing phosphorus
JPS63200888A (en) * 1987-02-16 1988-08-19 Unitika Ltd Removal of phosphorus contained in water
JPH038490A (en) * 1989-06-07 1991-01-16 Kurita Water Ind Ltd Treatment of phosphate-contatining waste water
JPH0824875A (en) * 1994-07-12 1996-01-30 Unitika Ltd Granulation dephosphorization device
JPH08168776A (en) * 1994-12-19 1996-07-02 Fukuokashi Dephosphorization device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202788A (en) * 1984-03-22 1985-10-14 Kurita Water Ind Ltd Treating apparatus for waste water containing fluorine and phosphorus
JPS60225692A (en) * 1984-04-23 1985-11-09 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for controlling contact crystallization phosphorization process
JPS62262789A (en) * 1986-05-08 1987-11-14 Unitika Ltd Method for removing phosphorus
JPS63200888A (en) * 1987-02-16 1988-08-19 Unitika Ltd Removal of phosphorus contained in water
JPH038490A (en) * 1989-06-07 1991-01-16 Kurita Water Ind Ltd Treatment of phosphate-contatining waste water
JPH0824875A (en) * 1994-07-12 1996-01-30 Unitika Ltd Granulation dephosphorization device
JPH08168776A (en) * 1994-12-19 1996-07-02 Fukuokashi Dephosphorization device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334471A (en) * 1999-05-26 2000-12-05 Kurita Water Ind Ltd Dephosphorizing apparatus
JP2005329398A (en) * 2004-04-20 2005-12-02 Ishikawajima Harima Heavy Ind Co Ltd Dephosphorization apparatus
JP4586582B2 (en) * 2004-04-20 2010-11-24 株式会社Ihi Dephosphorization device
JP2006239648A (en) * 2005-03-07 2006-09-14 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for dephosphorization
JP4586581B2 (en) * 2005-03-07 2010-11-24 株式会社Ihi Dephosphorization device
JP2016002543A (en) * 2014-06-19 2016-01-12 水ing株式会社 Phosphorus recovery apparatus and method

Also Published As

Publication number Publication date
JP3928187B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
US8617400B2 (en) Water treatment process and plant using ballasted flocculation and settling
JP4519485B2 (en) Phosphorus recovery method and apparatus
CN103979707B (en) A kind for the treatment of process of desulfurization wastewater
JP3928187B2 (en) Method and apparatus for dephosphorization in wastewater
JP2010094647A (en) Wastewater treatment system and wastewater treatment method using the same
JPS60202788A (en) Treating apparatus for waste water containing fluorine and phosphorus
JP2009011876A (en) Crystallization reactor and crystallization reaction method
JPH034394Y2 (en)
JP3915245B2 (en) Aluminum recovery equipment from aluminum-containing sludge
JP3195495B2 (en) Coagulation sedimentation method and equipment
JP4601644B2 (en) Crystallization reactor and crystallization reaction method
JP3921922B2 (en) Dephosphorization method
JP4186251B2 (en) Dephosphorization device
JP2001276881A (en) Anaerobic treatment device
JP2001314873A (en) Method and apparatus for treating sulfuric acid- containing wastewater
JP4219138B2 (en) Method and apparatus for adding heavy metal insolubilizer
CN220364443U (en) Desulfurization waste water removes fluorine system
JP3567506B2 (en) Treatment method for metal-containing wastewater
JPH0243515Y2 (en)
JP4457458B2 (en) Water treatment equipment
JPH11244871A (en) Treatment of manganese-containing water and device therefor
JPH08257572A (en) Neutralizing agent and neutralization treatment method
WO2013132981A1 (en) Device for recovering phosphorus from phosphorus-containing water
CN112573693A (en) Fluorine-containing wastewater treatment system for aluminum pop-top can
JPH08252584A (en) Dephosphorization device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term