JPH09205911A - Method and device for hydroponic cultivation for grape - Google Patents

Method and device for hydroponic cultivation for grape

Info

Publication number
JPH09205911A
JPH09205911A JP8040694A JP4069496A JPH09205911A JP H09205911 A JPH09205911 A JP H09205911A JP 8040694 A JP8040694 A JP 8040694A JP 4069496 A JP4069496 A JP 4069496A JP H09205911 A JPH09205911 A JP H09205911A
Authority
JP
Japan
Prior art keywords
culture solution
cultivation
tank
root
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8040694A
Other languages
Japanese (ja)
Inventor
Kazunori Ishikura
一憲 石倉
Yuji Yasuda
雄治 安田
Mitsuo Furuyama
光夫 古山
Hitoshi Azusawa
斉 小豆沢
Masahiro Kozuka
雅弘 小塚
Akinaga Tamura
明長 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimane Prefecture
Original Assignee
Shimane Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimane Prefecture filed Critical Shimane Prefecture
Priority to JP8040694A priority Critical patent/JPH09205911A/en
Publication of JPH09205911A publication Critical patent/JPH09205911A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02P60/216

Landscapes

  • Hydroponics (AREA)

Abstract

PROBLEM TO BE SOLVED: To cultivate grapes regardlessly of geographical or weather conditions. SOLUTION: Concerning a method for hydroponic cultivation with which a culture solution 8 is sprinkled over a root 2 of a grape vine 1 inserted into a cultivation tank 3 while touching it with air, the root 2 is supported away from the bottom face of the cultivation tank 3 so that the root 2 cannot be immersed in the culture solution 8 stagnant on the bottom face of the cultivation tank 3. A waterproof supporting shelf 4 is formed on the bottom face of the cultivation tank 3. In this case, concerning the concentration of nitrogen in the culture solution 8, electric conductivity is from 0.5mS/cm to 1.2mS/am and the concentration ratio of nitrate nitrogen (NO3 -N) and ammonia nitrogen (NH4 -N) in a nitrogen source is from 2:1 to 3:1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、‘巨峰’、‘デラ
ウェア’(欧米雑種)、‘モルゲン・シェ−ン’、‘ネ
オマ−ト’(ヨ−ロッパ系)等のブドウ水気耕栽培の方
法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for hydroponic cultivation of grapes such as "Kyoho", "Delaware" (Western hybrids), "Morgen chain", "Neomart" (European system) and the like. And the device.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】永年性
作物であるブドウの従来における土耕栽培では、土壌管
理、肥培管理等に多大な労力を必要とするので、地下部
管理の容易な水気耕栽培の確立が求められている。しか
し、周年栽培をめざしたブドウの水気耕栽培の方法につ
いては、例がなく、一般にほとんど知られていない。
2. Description of the Related Art Conventional soil cultivation of grapes, which is a perennial crop, requires a great deal of labor for soil management, fertilization management, etc. Establishment of cultivation is required. However, there is no example about the method of hydroponics of grapes for the purpose of year-round cultivation, and generally, little is known.

【0003】そこで、本発明者らはブドウの周年水気耕
栽培の方法を確立するため、まず、根を順調に育てるこ
とのできる好適水分環境、さらに、培養液の好適窒素濃
度、EC及び窒素源の硝酸態窒素とアンモニア態窒素の
濃度比に着目した。ブドウの従来の技術については、
‘デラウェア’を供試した砂耕栽培における培養液の好
適窒素濃度が一般に知られており、80ppmであると
されている。また、柑橘類の湛液型水耕栽培(培養液を
容器に湛液し、エア−ポンプで通気する栽培)で、水耕
液のpH(水素イオン濃度)を検討した例が一般に知ら
れている。しかし、培養液のみで、人工培地(例えば、
パ−ライト、ロックウ−ル等)を一切用いないで、ブド
ウを何年間も周年的に栽培した例は全く知られていな
い。
Therefore, in order to establish a method of year-round hydroponics of grapes, the present inventors first of all, a suitable water environment in which roots can be smoothly grown, a suitable nitrogen concentration of a culture solution, an EC and a nitrogen source. Attention was paid to the concentration ratio of nitrate nitrogen and ammonia nitrogen. For the traditional technique of grapes,
It is generally known that the suitable nitrogen concentration of the culture solution in the sand culture using "Delaware" is 80 ppm. In addition, an example in which the pH (hydrogen ion concentration) of the hydroponic liquid is examined in the submerged hydroponics of citrus fruits (cultivation in which the culture liquid is submerged in a container and aerated with an air-pump) is generally known. . However, the artificial medium (for example,
There is no known example of cultivating grapes for many years without any use of pearlite, rock wool, etc.

【0004】これに対し、発明者らは、もし、ブドウを
培養液のみで周年的に育てる技術があるとすれば、その
技術は、既往の技術を利用するだけで成り立つのか、そ
れとも全く新しい技術を開発せざるを得ないのか、を知
ることが急務であると考え、手始めに柑橘類等で用いら
れ、一般に知られている湛液型水耕栽培(通気法)の方
法で、培養液の窒素濃度が20〜120ppmの範囲で
種々濃度レベルを異にし、‘巨峰’と‘デラウェア’を
育てた。ここで、培養液のECレベルについては、ブド
ウでは一般に知られていないが、野菜類等の養液栽培で
は、例えば園試処方標準培養液のECは2.4mS/c
mであることが知られている。そして、ブドウが永年性
作物であることを考慮し、ECは、園試処方標準培養液
の1/2以下の低濃度レベルで試験した。
On the other hand, if the inventors have a technology for growing grapes only with a culture solution throughout the year, can the technology be realized by using the existing technology, or is it a completely new technology. It is an urgent need to know whether it is necessary to develop, and as a starting point, it is used for citrus fruits, etc., and it is a generally known submerged hydroponics method (aeration method). "Kyoho" and "Delaware" were grown at various concentration levels in the range of 20 to 120 ppm. Here, the EC level of the culture solution is not generally known in grapes, but in the hydroponic cultivation of vegetables and the like, for example, the EC of the standard formulation for the garden trial is 2.4 mS / c.
m is known. Then, considering that grapes are perennial crops, EC was tested at a low concentration level of ½ or less of a standard culture solution in a garden trial.

【0005】その結果、‘巨峰’は根腐れを生じ、枯死
した。この原因については、主として窒素の高濃度障害
と酸素不足であると考えられた。‘デラウェア’では、
正常に生育する好適窒素濃度は、砂耕栽培の場合よりも
1/2以下の低いレベルにあることが分かった。また、
ECは‘巨峰’、‘デラウェア’ともかなり低いレベル
にあることが明らかとなった。ここでの一般に知られて
いる従来の湛液型水耕栽培(通気法)の方法は、かなり
の手間とコストを要し、また、ブドウの多くの品種に対
する汎用性のない栽培方法であることから、ブドウ全般
の周年栽培をめざした水耕栽培技術としては適当ではな
いと判断された。
As a result, "Kyoho" caused root rot and died. The cause was considered to be mainly high nitrogen concentration disturbance and oxygen deficiency. In'Delaware ',
It was found that the suitable nitrogen concentration for normal growth is at a level lower than 1/2 that in the case of sand cultivation. Also,
It became clear that EC is at a fairly low level for both "Kyoho" and "Delaware." The generally known conventional submerged hydroponics method (aeration method) requires considerable labor and cost, and is not a versatile cultivation method for many grape varieties. Therefore, it was judged that it is not suitable as a hydroponic cultivation technique aiming at year-round cultivation of grapes in general.

【0006】そこで、発明者らは、培養液のみで、ブド
ウが根腐れを生じないで順調に生育する新しい栽培の方
法を発明し、その方法を実際に生かすことのできる装
置、すなわち、網付きシャワ−型循環式水気耕栽培装置
を発案、試作した。さらに、この方法及び装置を用いた
ときの培養液の好適窒素濃度、EC、窒素源の硝酸態窒
素とアンモニア態窒素の濃度比を明らかにした。
[0006] Therefore, the inventors of the present invention invented a new cultivation method in which grapes grow smoothly without causing root rot with only a culture solution, and a device capable of actually utilizing the method, that is, with a net A shower-type circulating hydroponics device was devised and prototyped. Furthermore, the suitable nitrogen concentration of the culture solution, EC, and the concentration ratio of nitrate nitrogen and ammonia nitrogen of the nitrogen source were clarified when this method and apparatus were used.

【0007】なお、この水気耕栽培装置を用いた栽培方
法は、野菜類等の養液栽培で一般に用いられている人工
培地は使用していないので、その点、塩類集積の心配は
なく、また経済的であるので普及する可能性は高いと考
えられる。さらに、培養液は連続して循環させ、再利用
するようにしているため、環境に与える負荷の影響や廃
液公害の心配がない。
Since the cultivation method using the hydroponic cultivation apparatus does not use the artificial medium generally used in the hydroponics of vegetables and the like, there is no fear of salt accumulation, and Since it is economical, it is likely that it will spread. Furthermore, since the culture solution is continuously circulated and reused, there is no concern about the impact on the environment and the pollution of the waste solution.

【0008】以上の点に基づき、本発明は、周年栽培を
めざしたブドウの水気耕栽培を実現する栽培方法及びそ
の装置、培養液の好適窒素濃度とEC、窒素源の硝酸態
窒素とアンモニア態窒素の濃度比について提供すること
を目的とする。
Based on the above points, the present invention provides a cultivation method and apparatus for realizing hydroponic cultivation of grapes aiming at year-round cultivation, suitable nitrogen concentration and EC of culture solution, nitrate nitrogen and ammonia as nitrogen sources. The purpose is to provide the nitrogen concentration ratio.

【0009】即ち本発明においてはブドウを順調に生育
させ、一般の土耕栽培以上の高品質多収の得られる水気
耕栽培技術を確立するためには、まず、ブドウが根腐れ
を生じないで順調に生育する栽培の方法を提案し、この
方法を実際に生かすことのできる栽培用の装置を発案、
試作する必要がある。
That is, in the present invention, in order to grow a grape smoothly and to establish a hydroponic cultivation technique capable of obtaining higher quality and higher yield than general soil cultivation, first, the grape does not cause root rot. We proposed a cultivation method that grows smoothly, and devised a cultivation device that can actually utilize this method.
It is necessary to make a prototype.

【0010】さらには、培養液の養分濃度がブドウの生
育にとって好適な範囲にあることが不可欠である。この
養分濃度のうち、まず、ブドウの生育にとって重要な窒
素濃度、次いで多量要素や微量要素を含む培養液濃度の
指標としてのECレベル、培養液のpH上昇を抑制し、
生育を順調に推移させる窒素源の硝酸態窒素とアンモニ
ア態窒素の濃度比を明らかにする必要がある。
Further, it is indispensable that the nutrient concentration of the culture solution is in a range suitable for the growth of grapes. Of this nutrient concentration, first, the nitrogen concentration that is important for the growth of grapes, then the EC level as an index of the concentration of the culture solution containing macroelements and trace elements, and suppressing the increase in the pH of the culture solution,
It is necessary to clarify the concentration ratio of nitrate nitrogen and ammonia nitrogen that are the nitrogen sources that make the growth progress smoothly.

【0011】これらが本発明の解決しようとする課題で
あり、解決されれば、ブドウの周年水気耕栽培は実現
し、新技術として実用化されるものと考えられる。
These are the problems to be solved by the present invention. If they are solved, it is considered that the year-round hydroponics of grapes will be realized and put into practical use as a new technology.

【0012】[0012]

【課題を解決するための手段】以上の課題を解決するた
めの本発明の方法は、第1に栽培タンク3内に挿入され
たブドウ樹1の根2に対し、空気に触れさせながら培養
液8を散水する水気耕栽培の方法であって、栽培タンク
3の底面に滞留する培養液8に根2が浸漬しないように
上記根2を栽培タンク3の底面より離して支持したこ
と、第2に栽培タンク3の底面に耐水性の支持棚4を形
成したこと、第3に培養液8の窒素濃度が5〜40pp
mであること、第4に培養液8の電気電導度が0.5〜
1.2mS/cmであること、第5に培養液8中の窒素
源の硝酸態窒素(NO−N)とアンモニア態窒素(N
−N)の濃度比が2:1〜3:1であることをそれ
ぞれ特徴としている。
[Means for Solving the Problems] The method of the present invention for solving the above-mentioned problems is as follows. First, the root 2 of the vine 1 inserted in the cultivation tank 3 is exposed to the air while being exposed to the culture solution. A method for hydroponic cultivation in which water 8 is sprinkled, wherein roots 2 are supported apart from the bottom surface of cultivation tank 3 so that roots 2 are not submerged in culture solution 8 retained on the bottom surface of cultivation tank 3. The water resistant support shelf 4 is formed on the bottom surface of the cultivation tank 3, and thirdly, the nitrogen concentration of the culture solution 8 is 5 to 40 pp.
m, and fourthly, the electric conductivity of the culture solution 8 is 0.5 to
Fifth, it is 1.2 mS / cm, and fifth, nitrate nitrogen (NO 3 -N) and ammonia nitrogen (N 3 ) which are nitrogen sources in the culture solution 8.
The feature is that the concentration ratio of H 4 —N) is 2: 1 to 3: 1.

【0013】同様に本発明の装置は、第1にブドウ樹1
の根2を挿入する栽培タンク3内に、上記根2に向かっ
て散水するノズル6を収容配置するとともに、上記栽培
タンク3内に挿入された根2の下側となる位置には、挿
入された根2を載置支持する通水性を有する支持棚4を
設けたことを、第2に支持棚4が耐水性の網4であるこ
とをそれぞれ特徴としている。
Similarly, the device of the present invention comprises, firstly, a vine 1
In the cultivation tank 3 into which the root 2 is inserted, the nozzle 6 that sprinkles water toward the root 2 is housed and arranged, and at the position below the root 2 inserted into the cultivation tank 3, the nozzle 6 is inserted. The second feature is that a water-permeable support shelf 4 for mounting and supporting the roots 2 is provided, and secondly, the support shelf 4 is a water-resistant net 4.

【0014】[0014]

【発明の実施の形態】本発明の実施においては、ブドウ
が根腐れを生じない栽培の方法として、根を空気に触れ
させながら、連続して循環させた培養液を、シャワ−状
態又は噴霧状態で根の全体に対して、根が乾燥しないよ
うに、まばらに散水すれば、順調にブドウの根が生育す
ると考え、図1で示したシャワ−型循環式水気耕栽培装
置を発案、試作した。同時に試作した二、三の循環式水
耕栽培装置とで、どの栽培装置がブドウの栽培に適して
いるかを明らかにするため、それぞれの栽培装置による
‘デラウェア’(早生種)の生育収量でこれらの比較を
試みた。
BEST MODE FOR CARRYING OUT THE INVENTION In the practice of the present invention, as a cultivation method in which grapes do not cause root rot, a culture solution continuously circulated while exposing the roots to the air is used in a shower state or a spray state. Therefore, it is thought that if the water is sprinkled sparsely on the whole root so that the root is not dried, the root of the grape grows smoothly, and the shower-type circulating hydroponics device shown in FIG. 1 was devised and prototyped. . In order to clarify which cultivation equipment is suitable for cultivating grapes with two or three circulation type hydroponic cultivation equipment that were prototyped at the same time, the growth yield of'Delaware '(early variety) by each cultivation equipment was used. I tried to compare.

【0015】その結果、表1で示したようにシャワ−型
循環式水気耕栽培の方法及びその装置による生育収量
は、サイフォン型及び湛液型の循環式水耕栽培の方法の
場合よりも明らかに勝り、果実の品質もよく、一般の土
耕栽培以上の成果を得ることができた。なお、‘デラウ
ェア’では、図1の装置における底面にある樹脂性網
は、敷かなかったので、底面に停滞した若干量の培養液
に浸かった根は根腐れ傾向にあったが、根量の増大によ
って生育に与える影響は小さかった。しかし、根のほと
んどの部分が浸漬する湛液型循環式水耕栽培の方法では
全般に根腐れ傾向を示し、生育が最も劣ることが分かっ
た。
As a result, as shown in Table 1, the growth yield of the shower-type circulating hydroponic culture and the apparatus therefor is clearer than that of the siphon-type and submerged-type cyclic hydroponic culture. The quality of the fruits was excellent and the results were better than general soil cultivation. In the case of'Delaware ', the resin net on the bottom of the device of Fig. 1 was not laid, so the roots dipped in a small amount of the culture solution stagnating on the bottom tended to root rot, but The effect of growth on growth was small. However, it was found that the submerged circulation hydroponics method, in which most of the roots are immersed, showed root rot tendencies in general and the growth was the poorest.

【0016】さて、培養液の好適窒素濃度とEC、窒素
源の硝酸態窒素とアンモニア態窒素の濃度比について解
明するため、従来から知られている湛液型水耕栽培(通
気法)の方法及び新たに提案したシャワ−型循環式水気
耕栽培の方法及びその装置を用い、培養液の窒素濃度及
びECレベルを異にした試験を実施した。その結果、
‘デラウェア’の生育にとって良好な好適窒素濃度及び
ECレベルが得られた。また、培養液における窒素源の
硝酸態窒素(NO−N)とアンモニア態窒素(NO
−N)の濃度比について工夫したところ、培養液のpH
上昇が防止でき、ブドウの鉄欠乏症が回避でき、新梢が
順調に生育した。
Now, in order to elucidate the preferable nitrogen concentration and EC of the culture solution, and the concentration ratio of nitrate nitrogen and ammonia nitrogen of the nitrogen source, conventionally known methods of submerged hydroponics (aeration method). And, using the newly proposed method of shower-type circulating hydroponics and the apparatus thereof, tests were conducted with different nitrogen concentrations and EC levels of the culture solutions. as a result,
Good nitrogen concentrations and EC levels were obtained which were good for the growth of'Delaware '. Further, nitrate nitrogen (NO 3 -N) and ammonia nitrogen (NO 4 ) which are nitrogen sources in the culture solution.
-N) concentration ratio, the pH of the culture solution
The rise could be prevented, the iron deficiency in grapes could be avoided, and the shoots grew smoothly.

【0017】以上で示したように、‘デラウェア’で
は、未解決の課題が解決できた。しかし、ブドウでは品
種を異にすると果実の熟成度が違い、早熟タイプの‘デ
ラウェア’で得られた水気耕栽培の手段が他の品種にそ
のまま適応できる根拠はなく、水気耕栽培の方法をブド
ウで実用化させるためには、この未解決の課題について
も解決する必要があると考えた。
As described above, the'Delaware 'has solved the unsolved problem. However, in grapes, different varieties produce different degrees of fruit maturity, and there is no basis for applying the hydroponic cultivation method obtained with the early-ripening type'Delaware 'to other varieties as is. I thought that it was necessary to solve this unsolved problem in order to put it into practical use.

【0018】そこで、中熟タイプ(中生種)の‘巨峰’
を供試し、‘デラウェア’で提案した水気耕栽培の方法
で試験を実施した。栽培装置は、図1のシャワ−型循環
式水気耕栽培装置を用いたが、‘巨峰’の根は‘デラウ
ェア’よりも湿害の影響を受け易いことが観察されたの
で、ここでは栽培装置の底面より離して樹脂性網を敷い
て支持棚を形成し、根が培養液に浸かって根腐れを生じ
る危険性を排除した。以下、図1の栽培装置を網付きシ
ャワ−型循環式水気耕栽培装置と呼ぶことにする。
Then, the middle-ripe type (Mesozoic species) 'Kyoho'
, And the test was carried out by the method of hydroponics proposed in'Delaware '. As the cultivating device, the shower-type circulating hydroponics device of FIG. 1 was used, but it was observed that the roots of'Kyoho 'were more susceptible to the effects of moisture damage than'Delaware'. The support net was laid apart from the bottom surface of the to form a support shelf to eliminate the risk of root rot being soaked in the culture solution. Hereinafter, the cultivation device of FIG. 1 will be referred to as a net-type shower type circulating hydroponics device.

【0019】試験は、ブドウが根腐れを生じ、順調に生
育せず、完全な失敗である。この原因については、培養
液における窒素等の高濃度障害であると考えた。そこ
で、‘デラウェア’で用いた培養液の窒素濃度及びEC
レベルをそれぞれ1/2以下に低下させ、窒素源の硝酸
態窒素とアンモニア態の濃度比は2:1とし、再度、網
付きシャワ−型循環式水気耕栽培装置で‘巨峰’を栽培
すると順調に生育し、このように、根を順調に育てるこ
とのできる好適水分環境、培養液の好適窒素濃度、EC
及び窒素源の硝酸態窒素とアンモニア態窒素の濃度比に
着目して、本発明を完成させたものである。
The test is a complete failure, as the grapes develop root rot, do not grow well. The cause was considered to be a disorder of high concentration of nitrogen in the culture solution. Therefore, the nitrogen concentration and EC of the culture solution used in'Delaware '
The levels were reduced to 1/2 or less, the concentration ratio of nitrate nitrogen and ammonia in the nitrogen source was set to 2: 1, and the'Kyoho 'was cultivated again with a netted shower-type circulating hydroponics device. , A suitable water environment capable of smoothly growing roots, a suitable nitrogen concentration in the culture solution, and an EC
The present invention has been completed by focusing on the concentration ratio of nitrate nitrogen and ammonia nitrogen of the nitrogen source.

【0020】[0020]

【表1】 [Table 1]

【0021】‘巨峰’で完成させた本発明を、再度、
‘デラウェア’、さらには‘モルゲン・シェ−ン’、
‘ネオマ−ト’等を供試し、利用したところそれぞれの
ブドウは順調に生育し、本発明はブドウ全般に利用でき
ることが分かった。ブドウのうち、‘巨峰’やヨ−ロッ
パ系の品種については、順調に生育させるためには、培
養液のECはできる限り低くし、窒素濃度は高濃度障害
を生じない範囲で、可能な限り高めることがポイントで
ある。例えば、培養液のECは、0.5〜0.7mS/
cmに抑え、窒素濃度を5〜40ppmにすると表2で
示したように‘巨峰’は順調に生育する。
The present invention completed in "Kyoho" is
"Delaware", and even "Morgen Shane",
When "Neomat" and the like were tested and used, each of the grapes grew smoothly, and the present invention was found to be applicable to all grapes. Among the grapes, for'Kyoho 'and European varieties, in order to grow smoothly, the EC of the culture solution should be as low as possible, and the nitrogen concentration should be as high as possible within the range not causing high-concentration disorders. The point is to raise it. For example, the EC of the culture solution is 0.5 to 0.7 mS /
When the nitrogen concentration is controlled to 5 cm and the nitrogen concentration is controlled to 5 to 40 ppm, 'Kyoho' grows smoothly as shown in Table 2.

【0022】その点、‘デラウェア’は、これらの品種
よりも培養液のECが高く推移しても、ある程度の窒素
を与えれば、生育にとって大きなダメ−ジは生じないの
で、栽培は容易である。例えば、表3のように培養液の
窒素濃度が40ppmで、ECが 0.5〜1.2 m
S/cmの範囲であっても‘デラウェア’は順調に生育
する。
In this respect, 'Delaware' is easy to cultivate even if the EC of the culture broth is higher than those of these cultivars, as long as a certain amount of nitrogen is given, a large damage to the growth does not occur. . For example, as shown in Table 3, the nitrogen concentration of the culture solution is 40 ppm and the EC is 0.5 to 1.2 m.
Even in the S / cm range, 'Delaware' grows well.

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【実施例】永年性作物の一つであるブドウの水気耕栽培
を、周年栽培の観点からみると、樹齢を経るにつれ、樹
体の生長量は増大し、これに伴って養分吸収量は増加す
る。また、1年間をみてもブドウ樹の生育時期によって
生長量は異なるので、養分吸収量も生育時期によって違
ってくる。この点については、時期によって連続して循
環させる培養液の流量を異にする手段を工夫した。例え
ば、通年における4月から11月までの培養液の流量は
1分間当たり4.2リットル、12月から3月までは
1.2リットルとし、流量は後者の期間では前者の1/
3以下に低下させた。
[Example] From the viewpoint of year-round cultivation of hydroponics of grapes, which is one of the perennial crops, from the viewpoint of year-round cultivation, the growth amount of the tree body increases as the tree ages, and the nutrient uptake increases accordingly. To do. In addition, the amount of growth of nutrients varies depending on the growing season of the vines, even for one year, and thus the nutrient absorption also varies depending on the growing season. With respect to this point, a means for varying the flow rate of the culture solution continuously circulated depending on the time was devised. For example, the flow rate of the culture solution from April to November throughout the year is 4.2 liters per minute, from December to March it is 1.2 liters, and the flow rate is 1 / l of the former in the latter period.
It was lowered to 3 or less.

【0026】本発明を完成させる過程で、ブドウの根の
生育は温度の影響をかなり受けることがわかったので、
本発明では、栽培タンクの網付きシャワ−型循環式水気
耕栽培装置及び培養液の貯留液タンクは土中に埋設し
た。これは、なるべく低コストで培養液の温度をある程
度の温度に保つためである。
In the process of completing the present invention, it was found that the growth of grape roots was significantly affected by temperature.
In the present invention, the shower-type circulating hydroponics device with a net in the cultivation tank and the storage tank for the culture solution are buried in the soil. This is to keep the temperature of the culture solution at a certain temperature at a low cost.

【0027】以下、本発明の実施例を主として‘巨峰’
と‘デラウェア’を例にとって詳細に説明する。まず、
はじめに、ブドウを生育させるためには、培養液が循環
しない湛液状態がよいのか否かについて、当農業試験場
環境部土壌環境科のガラス室(104m)で、鉢育成
1年生樹の挿木苗の‘巨峰’及び‘デラウェア’を用い
て1992年(平成5年)5 月18日から同年12月
28日まで試験を行った。栽培の方法は、一般に知られ
ている湛液型水耕栽培(通気法)の方法を用いた。この
栽培の方法は培養液を循環させないで、湛液中でブドウ
を栽培する方法である。
Hereinafter, the examples of the present invention will be mainly described as "Kyoho".
And'Delaware 'as an example. First,
First of all, in order to grow grapes, whether or not the liquid state in which the culture solution does not circulate is good is examined in a glass room (104 m 2 ) of the soil environment department of the Agricultural Experiment Station, Environmental Department, and cutting seedlings of pot-grown first-year trees. The tests were conducted from May 18, 1992 (December 1993) to December 28, 1982 using "Kyoho" and "Delaware". As the cultivation method, a generally known method of submerged hydroponics (aeration method) was used. This cultivation method is a method of cultivating grapes in a submerged liquid without circulating the culture liquid.

【0028】培養液は15リットル容量のポリバケツに
13リットルとし、5月から9月の間は3〜7日おき
に、他の時期は1〜2週間おきに取り替え、減水分は水
道水で補った。ポリバケツの外面には、培養液の温度上
昇防止のため、アルミホイルを張り付けた。ブドウ樹の
保持は厚さ2cmの発砲スチロ−ル板を用いた。ブドウ
の根は約60%を培養液中に浸し、培養液の通気はエア
ポンプで行った。培養液の窒素濃度は20ppm、40
ppm、80ppm、120ppmとし、各試験区は3
連性とした。培養液のECレベルは各区とも0.8〜
1.2mS/cmとした。処理の開始は、5月18日か
ら10日間は水道水のみで栽培し、5月28日から培養
液処理を行った。
The culture solution is made up of 13 liters in a 15 liter capacity poly bucket and replaced every 3 to 7 days from May to September and every 1 to 2 weeks at other times, and the water content is reduced with tap water. It was An aluminum foil was attached to the outer surface of the poly bucket to prevent the temperature of the culture solution from rising. A styrene plate having a thickness of 2 cm was used to hold the vines. About 60% of the grape roots were immersed in the culture solution, and the culture solution was aerated by an air pump. Nitrogen concentration of culture solution is 20ppm, 40
ppm, 80 ppm, 120 ppm, 3 for each test section
Relatively. The EC level of the culture solution is 0.8-
It was set to 1.2 mS / cm. The treatment was started from May 18 to 10 days by culturing with tap water only, and from May 28, the culture solution treatment was performed.

【0029】その結果、‘巨峰’は根腐れを生じ、1〜
2カ月後には生育が止まり、やがては枯死した。この原
因については、主として窒素の高濃度障害と酸素不足で
あると考えられた。一方、‘デラウェア’は、図2で示
したように、7月以後、窒素40ppm区のみが順調に
生育し、落葉期には6.3mの新梢長を示し、一般に知
られている砂耕栽培レベルの生育量が得られたが、他の
試験区は4.1m以下で生育は劣った。この結果から、
‘巨峰’については、さらに検討する試験の余地があ
り、‘デラウェア’については、培養液の好適窒素濃度
は40ppm程度であることが確認された。
As a result, "Kyoho" causes root rot,
After two months, it stopped growing and eventually died. The cause was considered to be mainly high nitrogen concentration disturbance and oxygen deficiency. On the other hand, as shown in Fig. 2, 'Delaware', after July, grows well only in the 40 ppm nitrogen area and shows a shoot length of 6.3 m during the defoliation period. Although the amount of growth at the cultivation level was obtained, the other test plots were inferior in growth at 4.1 m or less. from this result,
It was confirmed that "Kyoho" could be tested further, and that "Delaware" had a suitable nitrogen concentration of about 40 ppm in the culture solution.

【0030】また、培養液中窒素源の硝酸態窒素とアン
モニア態窒素の濃度比については、1:0では、培養液
のpHが6.5以上を推移し、新梢に鉄欠乏症が生じ、
やがては生育不良のため伸びが止まった。ここでは、緑
色が薄くなったクロロシス症状の生育不良の葉に、0.
1%の硫酸第一鉄溶液を葉面散布したところ、緑色がつ
き始め、もとの緑色に回復しつつあり、培養液のpHを
毎日、朝昼夕の3回、5.5に調整したところ、それ以
後に伸び始めた新梢の展開葉はクロロシス症状が生じな
かったことから、培養液のpH上昇による鉄欠乏症であ
ることが、判断された。
Regarding the concentration ratio of nitrate nitrogen and ammonia nitrogen as the nitrogen source in the culture medium, when the concentration ratio was 1: 0, the pH of the culture medium changed to 6.5 or more, and iron deficiency occurred in the shoots.
Eventually, growth stopped and growth stopped. Here, the poor growth of leaves with chlorosis symptom in which the green color has become lighter than 0.
When a 1% ferrous sulfate solution was sprayed on the leaves, a green color began to appear, and the original green color was being restored. The pH of the culture solution was adjusted to 5.5 every day in the morning and afternoon. However, since the leaves of the new shoots that had started to grow after that did not show chlorosis symptoms, it was judged that the leaves were iron deficiency due to the increase in the pH of the culture solution.

【0031】次に、窒素源の濃度比が1:1でも、培養
液のpHは安定せず、5.5〜6.0に調整するのに、
日々手間がかかった。濃度比が2:1では、pH上昇は
防止でき、新梢の生育は順調であった。しかし、ここで
用いた一般に知られている湛液型水耕栽培(通気法)の
方法は、かなりの労力とコストを要し、また、‘巨峰’
では未解決の課題があることがわかった。これらのこと
から、培養液を循環させず、湛液中でブドウを栽培する
方法は、多くの品種を有するブドウ全般の周年栽培では
利用できない水耕栽培技術であると判断された。
Next, even if the concentration ratio of the nitrogen source was 1: 1, the pH of the culture solution was not stable, and the pH was adjusted to 5.5 to 6.0.
It took a lot of work every day. When the concentration ratio was 2: 1, a rise in pH could be prevented, and the growth of shoots was good. However, the generally known submerged hydroponics method (aeration method) used here requires considerable labor and cost, and the'Kyoho '
Then, it turned out that there was an unsolved problem. From these, it was judged that the method of cultivating grapes in a submerged liquid without circulating the culture liquid is a hydroponic cultivation technique that cannot be used in year-round cultivation of grapes having many varieties.

【0032】そこで、同年、ブドウが根腐れを生じるこ
となく生育できる低コストの栽培の方法として、根を空
気に触れさせ、連続して循環させた培養液を、シャワ−
状態で、根の全体を対象にまばらで散水すれば、順調に
ブドウの根が生育できると考え、図1で示したシャワ−
型循環式水気耕栽培装置を考案、試作し、同時に試作し
たサイフォン型循環式水耕栽培装置(液面が上下する装
置)及び湛液型循環式水耕栽培装置(液面が一定状態の
装置)とで‘デラウェア’(鉢育成1年生の挿木苗)を
供試し、試験を行った。
Therefore, in the same year, as a low-cost cultivation method in which grapes can grow without causing root rot, a culture solution in which roots are exposed to air and continuously circulated is used as a shower.
In this condition, if the whole root is sprinkled with water, it is thought that the grape roots can grow smoothly.
-Type circulating hydroponics device was devised, prototyped, and simultaneously prototyped siphon-type circulating hydroponics device (device whose liquid level rises and falls) and submerged-type circulating hydroponics device (device with constant liquid level) ) And "Delaware" (cutting seedlings of 1st year pot growing) were used as a trial and tested.

【0033】ここでは、同時に実施していた前述の湛液
型水耕栽培(通気法)で、培養液の更新を少しでも怠る
と、ブドウの根はすぐに根腐れ傾向を生じることが観察
されていたので、労力面からも、培養液を頻繁に更新し
なくてもよい栽培装置を試作することが急務であった。
そのため、図2の実線で示したように、‘デラウェア’
では培養液の好適窒素濃度が40ppm程度であること
が同年7月中旬時点でほぼ見当がついたので、循環式栽
培装置による試験は、同年7月14日から、同科のガラ
ス室で開始した。栽培容器は25リットルアクリル樹脂
容器とし、更新時の貯留液タンクにおける培養液の液量
は100リットルとし、同年9月までは1週間おきに、
それ以後は2週間おきに培養液の交換を行った。
Here, in the above-mentioned submerged hydroponic culture (aeration method) which was carried out at the same time, it was observed that if the culture solution was not renewed even a little, the roots of the grapes would immediately become root rot. Therefore, in terms of labor, it was an urgent task to make a prototype of a cultivation device that does not require frequent renewal of the culture solution.
Therefore, as shown by the solid line in Figure 2, 'Delaware'
Since it was almost guessed that the suitable nitrogen concentration of the culture solution was about 40 ppm as of mid-July of the same year, the test with the circulation type cultivation device was started in the glass room of the same department from July 14 of the same year. . The cultivation container is a 25 liter acrylic resin container, the amount of the culture liquid in the storage liquid tank at the time of renewal is 100 liters, and every September until the same year,
After that, the culture solution was exchanged every two weeks.

【0034】1993年(平成5年)の2年目は、前年
栽培した‘デラウェア’を用い、同科ガラス室に隣接し
た網室(122m)で引き続き試験を継続した。この
網室の天井の内側には透明のビニ−ルシ−トを張り、雨
除けとした。2年目は1年目よりも根量が増加したこと
から、栽培用のアクリル樹脂容器は32.7リットルの
ものを用いた。1994年(平成6年)の3年目は、さ
らにこれまで栽培した‘デラウェア’を用い、同網室で
引き続き試験を継続した。栽培用の容器は100リット
ル容量のポリタンクとし、貯留液タンクにおける培養液
の液量は400リットルとした。3年目までの培養液の
窒素濃度は40ppmとし、窒素源の硝酸態窒素とアン
モニア態窒素の濃度比は2:1とした。また、培養液の
ECは0.8〜1.2mS/cmとした。この試験の結
果は表1に示したとおりである。
In the second year of 1993 (Heisei 5), the test was continued in a net room (122 m 2 ) adjacent to the glass room of the same department using'Delaware 'cultivated in the previous year. A transparent vinyl sheet was placed on the inside of the ceiling of this mesh room to protect from rain. Since the root volume in the second year was larger than that in the first year, the acrylic resin container for cultivation used was 32.7 liters. In the third year of 1994 (Heisei 6), the'Delaware 'cultivated so far was used and the test was continued in the same net room. The container for cultivation was a poly tank with a capacity of 100 liters, and the amount of the culture solution in the reservoir tank was 400 liters. The nitrogen concentration of the culture solution until the third year was 40 ppm, and the concentration ratio of nitrate nitrogen and ammonia nitrogen as the nitrogen source was 2: 1. The EC of the culture solution was 0.8 to 1.2 mS / cm. The results of this test are shown in Table 1.

【0035】この結果、表1のようにシャワ−型循環式
水気耕栽培の方法による生育収量は、サイフォン型及び
湛液型の循環式水耕栽培方法の場合よりも明らかに勝
り、樹冠面積当たりの収量は3年目(処理実施2年間)
で0.73kg/mであり、土耕栽培以上の成果を得
た。また、果実の糖度(Brix)は20であり、品質
もよかった。なお、ここでは図1の栽培装置における底
面にある樹脂性網は、敷かなかったので、底面に停滞し
た若干量の培養液に浸かった根は根腐れ傾向にあった
が、根量の増大によって生育のうける影響は小さかっ
た。しかし、根のほとんどの部分が浸漬する湛液型循環
式水耕栽培では、全般に根腐れ傾向を示し、生育が最も
劣ることが明らかとなった。そのため、湛液型循環式水
耕栽培による試験区は、3年目では設けなかった。
As a result, as shown in Table 1, the growth yield by the shower-type circulating hydroponics method was clearly superior to that of the siphon-type and submerged-type circulating hydroponics method, and Yield of 3 years (2 years of treatment)
It was 0.73 kg / m 2 and the result was more than that of soil cultivation. The sugar content (Brix) of the fruit was 20, and the quality was also good. Here, since the resin net on the bottom of the cultivating apparatus of FIG. 1 was not spread, the roots dipped in a small amount of the culture solution stagnating on the bottom tended to root rot, but due to the increase in the amount of roots. The effect on growth was small. However, it was revealed that in the submerged circulation hydroponics in which most of the roots were immersed, roots tended to rot in general and the growth was the poorest. Therefore, the test area by the submerged circulation type hydroponic culture was not established in the third year.

【0036】次に、1995年(平成7年)4月19日
から同年8月17日までの4カ月間、同網室で新たに1
年生樹(鉢育成挿木苗)の‘デラウェア’を供試し、培
養液の窒素濃度が20ppm、ECが0.5〜0.7m
S/cmの場合において、シャワ−型循環式水気耕栽培
及びサイフォン型循環式水耕栽培を行い、両者の栽培に
よる生育を比較した。培養液中窒素源は、硝酸態窒素と
アンモニア態窒素の濃度比を2:1とした。なお、供試
樹は各試験区2樹とした。その結果、シャワ−型循環式
水気耕栽培による総新梢長は2樹平均で7.1m、サイ
フォン型循環式水耕栽培の場合は2.8mを示した。
Next, during the four months from April 19, 1995 (August 1995) to August 17, 1995, a new one was created in the same network room.
"Delaware" of annual tree (potted cutting cutting seedling) was tested and the nitrogen concentration of the culture solution was 20 ppm, EC was 0.5 to 0.7 m
In the case of S / cm, shower-type circulating hydroponics and siphon-type circulating hydroponics were carried out to compare the growths of both cultures. The nitrogen source in the culture broth had a concentration ratio of nitrate nitrogen and ammonia nitrogen of 2: 1. The test trees were 2 trees in each test section. As a result, the total shoot length of the shower type hydroponics was 7.1 m on average for two trees and 2.8 m for the siphon type hydroponics.

【0037】この結果を、表1の1年目における窒素濃
度40ppmの総新梢長と比較すると、両者の栽培とも
20ppmの場合が40ppmよりも劣り、また、栽培
の違いによる生育差は、窒素濃度の低い20ppmで顕
著であった。このことから、ブドウの1年生樹でもシャ
ワ−型循環式水気耕栽培による方法が、サイフォン型循
環式水耕栽培の場合よりも勝ることがわかった。培養液
の窒素濃度については、表1の40ppmの場合は、生
育適期のやや遅れた7月中旬から落葉期までの約4カ月
の総新梢長であり、これがもし、20ppmの場合のよ
うに、4月からの4カ月間の総新梢長であれば、10.
7m以上に伸びていたと推察される。このような点を踏
まえると、‘デラウェア’の培養液の好適窒素濃度は2
0ppm程度ではなく、40ppm程度であることが確
認できる。
Comparing this result with the total shoot length of nitrogen concentration of 40 ppm in the first year of Table 1, both cultures were inferior to 40 ppm in the case of 20 ppm, and the difference in growth due to the difference in cultivation was nitrogen. It was remarkable at a low concentration of 20 ppm. From this, it was found that the shower-type circulating hydroponics method is superior to the siphon-type circulating hydroponics method even for annual trees of grapes. Regarding the nitrogen concentration of the culture broth, in the case of 40 ppm in Table 1, it is the total shoot length of about 4 months from the mid-July to the leaf-falling stage, which is slightly delayed in the suitable growth period, and if this is 20 ppm, If the total shoot length is 4 months from April, 10.
It is speculated that it had grown to over 7 meters. Based on these points, the preferred nitrogen concentration in the culture medium of'Delaware 'is 2
It can be confirmed that it is about 40 ppm instead of about 0 ppm.

【0038】さて、‘巨峰’については、同試験場園芸
部果樹科でビニ−ルハウス(245m)を設置し、1
993年6月18日から、図1で示したシャワ−型循環
式水気耕栽培装置を用い、試験を開始した。‘巨峰’の
根は、1992年に実施した試験の過程で、‘デラウェ
ア’よりも湿害の影響を受け易いことが観察されたの
で、ここでは栽培装置の底面に停滞した若干量の培養液
の液面と根の間に空間を設け、根が培養液に浸かって腐
る可能性を少しでも排除するように工夫した。例えば、
栽培タンク底面に停滞する若干量の培養液表面よりも上
の位置に、上下二段のすのこ状の支持台を設け、それぞ
れの表面に網目の異なる樹脂製網を敷いた。例えば、図
1の栽培タンク底面の近くにある下段の細かい波線は、
網目2mmを、上段に位置する間隔の大きい波線は、網
目3cmを表す。
For "Kyoho", a vinyl house (245 m 2 ) was installed at the Orchard Department, Horticulture Department, at the same test site, and 1
From June 18, 993, the test was started using the shower-type circulating hydroponics device shown in FIG. In the course of the test conducted in 1992, it was observed that the roots of'Kyoho 'were more susceptible to the effects of moisture damage than'Delaware'. A space was provided between the liquid surface and the roots to eliminate the possibility that the roots would be soaked in the culture solution and decay. For example,
At the position above the surface of a small amount of culture solution stagnating on the bottom surface of the cultivation tank, two vertical upper and lower slats-like supports were provided, and a resin net having different meshes was laid on each surface. For example, the fine wavy line in the lower row near the bottom of the cultivation tank in Figure 1
The wavy line with a large interval located in the upper part of the mesh 2 mm represents the mesh 3 cm.

【0039】この図1で示した網付きシャワ−型循環式
水気耕栽培装置は、根を空気に触れさせながら、培養液
を連続したシャワ−状態で、ブドウ樹1の根2の全体を
対象にまばらで散水し、ポリエチレンの栽培タンク3の
底面には樹脂製の網4を敷き、底面に停滞した若干量の
培養液に根が少しでも浸からないように工夫したことを
特徴とする水気耕栽培の方法及び装置である。まず、本
方法を発明するに至った経過について説明する。すでに
述べた(0027〜0031)ように、1992年、
‘巨峰’及び‘デラウェア’を常法の水耕栽培(通気法
を用いた湛液型水耕栽培)で栽培し、‘デラウェア’は
育てることができたが、‘巨峰’は枯死し、育てること
ができなかった。
The shower-type circulating hydroponic cultivation apparatus with a net shown in FIG. 1 targets the entire root 2 of the vine 1 in a shower condition in which the culture solution is continuous while the root is exposed to the air. The water is characterized by sprinkling water sparsely, and laying a mesh 4 made of resin on the bottom of the polyethylene cultivation tank 3 so that the roots are not soaked even in the slightly stagnant culture solution on the bottom. A method and an apparatus for tillage. First, the process leading to the present invention will be described. As already mentioned (0027-0031), in 1992,
"Kyoho" and "Delaware" were cultivated by conventional hydroponics (submerged hydroponics using aeration method), and "Delaware" was able to grow, but "Kyoho" died and grew. I couldn't.

【0040】ここで、‘デラウェア’が順調に生育し、
‘巨峰’が枯死するのは、何か原因があると考えた。そ
して、この原因が見つかり、それなりの対策方法を立て
ることができれば、‘巨峰’を順調に育てる方法の糸口
をつかむことができると考えた。そこで、‘巨峰’の根
が枯死に至る過程を観察しつづけたところ、三つのこと
がわかった。第一は、培養液に浸かっていない根は、乾
燥のため枯死すること。第二は、培養液中に浸漬してい
る根は腐り、枯死すること。第三は、培養液の表面近傍
で、養液に浸漬せず、空気に触れている根は、地上部が
枯れ始めてから枯死し、枯死に至る順番が第一、第二の
場合よりも遅かったこと。
Here, 'Delaware' grows smoothly,
I thought that "Kyoho" died out for some reason. Then, if this cause was found and appropriate countermeasures could be devised, I thought that I could grasp the clue of how to grow'Kyoho 'smoothly. Then, when I continued to observe the process of root death of'Kyoho ', I found three things. First, roots that have not been soaked in the culture solution die due to drying. Second, the roots immersed in the culture rot and die. Third, near the surface of the culture solution, roots that are not soaked in nutrient solution and exposed to air die before the aboveground part begins to die, and the order of death is later than in the first and second cases. Was it.

【0041】この観察結果から、特に第三の観察結果よ
り、根を空気に触れさせ、なお且つ、根を培養液に浸け
ないで、根から養分を吸収させれば、‘巨峰’は順調に
育つと考えた。そこで、三つの方法を考えた。第一は、
栽培タンク底面に停滞する若干量の培養液に根が全く浸
からないように、すのこ状の支持台を作り、その表面に
樹脂製の網を敷き、若干量の液面と根の間に空間を設
け、噴霧状ではなく、根の全体を対象に、まばらなシャ
ワ−状態で連続的に散水し、栽培する方法である。
From this observation result, especially from the third observation result, if the roots are exposed to the air and the nutrients are absorbed from the roots without immersing the roots in the culture solution, the "Kyoho" can be smoothly processed. I thought I would grow up. Therefore, I considered three methods. The first is
In order to prevent the roots from being completely immersed in the small amount of culture solution that stagnates at the bottom of the cultivation tank, a slats-like support base is laid, and a resin net is laid on the surface of the support base. Is provided, and not the spray form, but the whole root is targeted for continuous watering in a sparse shower state and cultivated.

【0042】第二は、すのこ状の支持台を屋根型テント
のような三角形状に作り、この三角形状の底辺を栽培タ
ンクの底面におき、両辺に樹脂製網を敷き、三角形状の
頂点から培養液を樹脂製網に連続して伝わるように流
し、樹脂製網の上にブドウの根を這わせ、栽培する方法
である。第三は、培養液の液面を一定の時間間隔で上下
させる栽培方法である。
Secondly, a slatted support is formed in a triangular shape like a roof tent, the bottom of this triangle is placed on the bottom of the cultivation tank, and resin nets are laid on both sides, starting from the apex of the triangle. In this method, the culture solution is continuously flowed through the resin net and the roots of the grapes are crawled on the resin net for cultivation. The third is a cultivation method in which the liquid level of the culture solution is raised and lowered at regular time intervals.

【0043】この、三つの方法でブドウを栽培したとこ
ろ、第一の方法による栽培のみが、‘巨峰’の根、地上
部とも順調に育つことがわかった。第二の方法では、根
が培養液に常時触れている部分は根腐れを生じ、培養液
に触れることのできない大半の根は乾燥のため、枯死し
た。第三の方法では、根は腐れ傾向を示し、枯死に至ら
なかったが、根痛みのため、地上部の生育が抑制され、
第一の方法による栽培よりも明らかに劣ることがわかっ
た。以下、第一の方法を実際に生かすことのできる装置
の開発の経過について述べる。
When the grapes were cultivated by these three methods, it was found that only the cultivation by the first method satisfactorily grew in the root and the above-ground part of'Kyoho '. In the second method, root rot occurred in the part where the root was constantly in contact with the culture medium, and most of the roots that could not be in contact with the culture medium were dried and died. In the third method, the roots tended to rot and did not die, but because of root pain, the growth of the above-ground part was suppressed,
It turned out to be clearly inferior to the cultivation by the first method. The development process of the device that can actually utilize the first method is described below.

【0044】この装置を、本発明では、次のように発
案、試作した。まず、シャワ−部分は、例えば16mm
用の水道塩化ビニル樹脂管をほぼ正方形(1辺20cm
位)になるようにしてシャワーノズル6を形成し、図1
のように根2の周囲を囲み、シャワ−状態で培養液がノ
ズル6から放出できるように、孔7は直径2.5mm程
度の小孔をドリルであけ、正方形状の水道塩ビ管1辺に
つき8つの小孔7(4辺合計32の小孔)とした。小孔
7のノズル6における位置は、例えば1辺の8つのうち
5つの小孔7は、図1の矢印の付いている波線で示した
培養液がシャワ−状態で根2に直接かかるように、水平
よりもやや斜め下方、さらに斜め下方、そして真下と
し、根の全体を対象にして、まばらに培養液8がかかる
ようにした。また、根2の同じ部位にシャワ−状態の培
養液がかからないように穴をあける向きをそれぞれ違え
た。
In the present invention, this device was proposed and prototyped as follows. First, the shower part is, for example, 16 mm
For water supply polyvinyl chloride resin pipe is almost square (20 cm per side)
1), the shower nozzle 6 is formed as shown in FIG.
Surrounding the root 2 as shown above, a hole 7 having a diameter of about 2.5 mm is drilled with a hole so that the culture solution can be discharged from the nozzle 6 in a shower state. Eight small holes 7 (32 small holes on four sides in total) were used. The positions of the small holes 7 in the nozzle 6 are, for example, 5 of the eight small holes 7 on one side so that the culture medium indicated by the wavy line with an arrow in FIG. 1 directly contacts the root 2 in a shower state. , Slightly below the horizontal, further below the horizontal, and directly below, so that the culture solution 8 was sparsely applied to the entire root. Further, the same direction of the root 2 was drilled in different directions so that the culture medium in the shower state was not applied.

【0045】残りの3つの小孔は、栽培タンク3内の壁
面に向かって、タンクの深さ1/2程度、それよりもや
や斜め下方、さらに斜め下方にシャワ−状態の培養液8
が壁面にあたるように穴の向きをやや下方に違えた。こ
れは、シャワ−状態の培養液8を内壁面にあて、散乱し
た培養液のとばしりが根2にまばらにあたることをねら
った。また、栽培タンク3内の壁面を濡らすことによっ
て、タンク内に湿気を保有し、根2を乾燥から守ること
を配慮した。なお、栽培タンク3内の壁面にシャワ−状
態の培養液8を放散させる場合、その放散の位置は、タ
ンクの深さ1/2程度以下としたのは、シャワ−状態の
とばしりが栽培タンク3のふたの内側にかかり、そのま
ま、ふたの内側を伝って栽培タンクの外側へ液漏れする
ことを防止したためである。
The remaining three small holes are about 1/2 the depth of the tank toward the wall surface in the cultivation tank 3, slightly obliquely below, and further obliquely below the shower medium 8 in a shower state.
The hole was oriented slightly downward so that it hits the wall. This was aimed at applying the culture medium 8 in a shower state to the inner wall surface, and scattering the scattered culture medium to the roots 2 sparsely. In addition, it was considered that the wall surface in the cultivation tank 3 was wet to retain moisture in the tank and protect the root 2 from drying. When the shower medium 8 is diffused on the wall surface of the cultivation tank 3, the position of the diffusion is set to be about a tank depth of about 1/2 or less because the shower in the shower condition is a cultivated tank. This is because it was prevented that the liquid was applied to the inside of the lid of No. 3 and leaked to the outside of the cultivation tank along the inside of the lid as it was.

【0046】根を空気に触れさせながら培養液を連続し
てシャワ−状態で散水することを実現する装置を試作す
るためには、二つの未解決の課題があると考えた。まず
第一は、連続して循環する培養液をシャワ−状態にする
シャワ−部品そのもを発案することであり、第二にブド
ウの新根の伸びに応じて、シャワ−状態の培養液流量を
調節できる部品を装着することである。
It was considered that there are two unsolved problems in order to prototype a device for continuously sprinkling the culture solution in a shower state while exposing the roots to the air. The first is to devise a shower component itself that makes a continuously circulating culture solution into a shower state, and secondly, according to the growth of new roots of grapes, the flow rate of the culture solution in a shower state. Is to install parts that can be adjusted.

【0047】第一の点については、前述(0044、0
045)のようにシャワ−部品を発案、試作した。試作
に際しては、まず、シャワ−状態のでる小孔7の直径を
どの程度にするか、1.0〜5.0mmまで、種々、直
径の異なる穴をドリルであけ、検討した。その結果、小
孔7の直径が大きいほど、豪雨の際の雨滴のように培養
液が根に多量にかかり、マイルドで小雨のようなシャワ
−状態が得られず、また、根2が空気に触れる部分が少
なくなり、根2の生育にとって、よくないことがわかっ
た。そこで、予備的に、市販されている超小型噴霧ノズ
ルを用い、連続して循環される培養液を根にあててみ
た。霧雨状の噴霧は連続して散水するため、根が空気に
触れる部分が極端に少なく、根の表面は全体的に常時、
培養液で濡れており、根腐れを生じ、これもよくないこ
とがわかった。また、小孔7の直径が1mm程度の小さ
い孔では、根のごく小さい切れ端などがあった場合、培
養液は連続して循環させているため、小孔7が詰まりが
ちになり、やがては穴がふさがってしまうことが観察さ
れたので、小孔7の直径は2.5mmとした。そうする
と、培養液8はスム−ズにシャワ−状態で散水できるこ
とがわかった。
As for the first point, the above (0044,0
045), a shower part was devised and prototyped. In the trial manufacture, first, the diameter of the small hole 7 in the shower state was examined by drilling various holes having different diameters from 1.0 to 5.0 mm. As a result, the larger the diameter of the small holes 7, the larger the amount of the culture solution applied to the roots, such as raindrops during heavy rain, and the milder shower conditions such as light rain cannot be obtained. It was found that the number of touched parts was reduced, which was not good for root 2 growth. Therefore, as a preliminary test, a commercially available ultra-small spray nozzle was used, and a continuously circulated culture solution was applied to the root. Because the drizzle-like spray continuously sprinkles water, the root has extremely few parts in contact with the air, and the root surface is always on the whole.
It was found to be bad because it was wet with the culture solution and caused root rot. In addition, in the case where the small hole 7 has a diameter of about 1 mm, if there is a very small piece of the root, the culture solution is continuously circulated, so that the small hole 7 tends to be clogged, and eventually the hole will be broken. Since it was observed that the small holes were blocked, the diameter of the small holes 7 was set to 2.5 mm. Then, it was found that the culture solution 8 could be sprayed on the smooth in a shower state.

【0048】第二の未解決の課題である、連続して循環
するシャワ−状態の培養液流量を調節できる部品の装着
については、水道塩ビ管9で用いられる開閉バルブを利
用し、図1で示した給液バルブ11として装着し、バル
ブ11をゆるめたり、やや閉めたりした。例えば、シャ
ワ−状態の培養液は根にかかった後、底面の下端横にあ
る流出口から、栽培タンクよりも下の位置に置いた貯留
液タンクへ、水位差を利用して自然に流入するようにし
た。この栽培タンクからの流出管は、市販の20mm用
の水道塩ビ管を用いた。これは、シャワ−管を16mm
用としたので、流出管はこれよりも管の直径の大きい2
0mm用とし、栽培タンク底面方向に落下した液滴が停
滞しないで、少しでも早く貯留液タンクに戻るようにす
るためである。
Regarding the second unsolved problem, the mounting of the parts capable of adjusting the flow rate of the culture solution in the continuously circulating shower state, the open / close valve used in the tap water PVC pipe 9 is used, and as shown in FIG. It was installed as the liquid supply valve 11 shown, and the valve 11 was loosened or slightly closed. For example, after showering the culture medium in a shower state, it naturally flows from the outlet on the side of the lower end of the bottom surface to the storage tank placed below the cultivation tank by utilizing the water level difference. I did it. As the outflow pipe from this cultivation tank, a commercially available tap polyvinyl chloride pipe for 20 mm was used. This is a shower tube 16mm
The diameter of the outflow pipe is larger than that of the 2
This is for 0 mm so that the liquid droplets that drop toward the bottom of the cultivation tank do not become stagnant and return to the storage liquid tank as soon as possible.

【0049】給液バルブ11の調整は、全開にすると、
シャワ−状態の出る小孔がすでに述べた(0044、0
045)ように、32個あるので、シャワ−流量が栽培
タンクから流出される培養液の流出量よりも増加し、栽
培タンク底面に停滞した若干の培養液の液面がせり上が
り、やがては、ブドウの根が浸漬され、しまいには栽培
タンクから培養液があふれ出てしまった。そこで、シャ
ワ−状態の流量は、栽培タンク3からの流出量よりも低
下するように給液バルブ11をやや閉じ、調整した。例
えば、前述(0025)のようにシャワ−状態の培養液
流量は、4月から11月までが1分間当たり4.2リッ
トル、12月から3月までが前者の1/3以下の流量
で、1.2リットルである。夏季と冬季とでは流量が異
なるが、これはブドウ樹の生長がおう盛な時期には流量
を多くしたことになる。
Adjustment of the liquid supply valve 11 when fully opened is as follows.
A small hole with a shower state has already been mentioned (0044, 0
045), since there are 32, the shower flow rate increases more than the outflow amount of the culture solution flowing out from the cultivation tank, and the liquid level of the stagnant culture solution rises to the bottom of the cultivation tank, and eventually, The roots of the grapes were soaked and eventually the culture solution overflowed from the cultivation tank. Therefore, the flow rate in the shower state was adjusted by slightly closing the liquid supply valve 11 so as to be lower than the outflow amount from the cultivation tank 3. For example, as described above (0025), the flow rate of the culture medium in the shower state is 4.2 liters per minute from April to November, and from December to March, the flow rate is 1/3 or less of the former, It is 1.2 liters. The flow rate is different between summer and winter, but this means that the flow rate was high during the period when vines were growing rapidly.

【0050】また、栽培タンク底面に培養液が停滞しな
いようにするためには、培養液の流出口12を栽培タン
ク底面の真下に取り付けるのが望ましいが、本発明で
は、図1のように、貯留液タンクへの流出口12は、栽
培タンク底面に近い、タンク横面である壁面最下端に取
り付けた。栽培タンク3と流出用の20mm用の水道塩
ビ管との接続には、培養液が漏れないように、市販の硬
質ゴム様樹脂製パッキングを挟み接続した。
In order to prevent the culture solution from stagnation on the bottom surface of the cultivation tank, it is desirable to install the culture solution outlet 12 directly below the bottom surface of the cultivation tank. In the present invention, as shown in FIG. The outflow port 12 to the storage liquid tank was attached to the bottom end of the wall surface, which is the tank lateral surface, near the bottom surface of the cultivation tank. A commercially available hard rubber-like resin packing was sandwiched and connected between the cultivation tank 3 and the outflowing 20 mm tap vinyl chloride pipe so that the culture solution would not leak.

【0051】流出口12を栽培タンク3の壁面最下端に
取り付けたのは、軽度の地震による天災や栽培装置の何
年間もの使用における材質の劣化などにより、もし液漏
れが生じるとすれば、栽培タンクと培養液の流出管との
接続部分である可能性が高く、修理する場合、タンクの
底面真下よりもタンク横面である壁面の方が手間がかか
らないと考えた結果である。栽培タンク3壁面における
流出口12の位置は、タンク底面に培養液がなるべく停
滞しないように最下端とした。
The outlet 12 is attached to the lowermost end of the wall surface of the cultivation tank 3 because if a liquid leak occurs due to a natural disaster caused by a slight earthquake or deterioration of the material used for many years of the cultivation apparatus, the cultivation is performed. This is because it is likely that it is the connection part between the tank and the culture solution outflow pipe, and that the wall surface that is the lateral surface of the tank is less troublesome than the area directly below the bottom surface of the tank when repairing. The position of the outflow port 12 on the wall surface of the cultivation tank 3 was set to the lowest end so that the culture solution would not be stagnant on the bottom surface of the tank.

【0052】しかし、栽培タンクと流出管との接続に液
漏れ防止のパッキングを挟んだため、底面に近い最下端
でも、流出口と底面までの間は3cm程度が必要であ
り、ここに若干の培養液が溜まったので、栽培タンクの
流出口側を水平よりやや下げ、例えば5〜10°の範囲
(6台の栽培タンクの平均8°)で、底面に培養液が少
しでも停滞しないように工夫した。
However, since the packing for preventing liquid leakage is sandwiched between the cultivation tank and the outflow pipe, about 3 cm is required between the outlet and the bottom even at the bottom end close to the bottom. Since the culture solution has accumulated, the outlet side of the cultivation tank is slightly lowered from the horizontal, for example, in the range of 5 to 10 degrees (average of 8 degrees for 6 cultivation tanks), so that the cultivation solution does not stagnate on the bottom even a little. I devised it.

【0053】しかし、これでも若干量の培養液が底面に
停滞するため、次に視点を変えて、底面に近い若干量の
培養液表面とブドウ樹における根の間に樹脂製の網4を
取り付ければ、根は培養液に浸からず腐らないと考え
た。そこで、例えば、図1に示し、すでに述べた(00
38)ように樹脂製の網4を二段取り付けた。図1の底
面に近接した細かい波線は網目2mmのものを表し、上
段の大きい波線は網目3cmのものを表す。下段の網目
2cmの場合は、20mm用の水道塩ビ管を、栽培タン
クに入る程度の大きさ(縦約38cm、横約54cm)
で、すのこ状のような枠で、日の字型を左右に引き伸ば
した形に組み、この枠の上面に網目2mmの樹脂製網を
2枚重ね、ナイロン糸でくくり付けた。
However, since a small amount of the culture solution still stagnates on the bottom surface, the viewpoint is changed next, and a resin net 4 is attached between the surface of the culture solution and a small amount of the culture solution near the bottom surface. Therefore, it was considered that the roots would not soak in the culture medium and would not rot. Therefore, for example, as shown in FIG.
38), the resin net 4 was attached in two stages. The fine wavy lines near the bottom of FIG. 1 represent the mesh of 2 mm, and the large wavy lines in the upper row represent the mesh of 3 cm. In the case of the lower mesh 2 cm, tap water PVC pipe for 20 mm is large enough to fit in a cultivation tank (length 38 cm, width 54 cm)
Then, a sun-shaped frame was assembled into a shape in which the Japanese character was stretched to the left and right, two resin nets with a mesh of 2 mm were stacked on the upper surface of this frame, and they were tied together with a nylon thread.

【0054】この網が水平になり、根の観察がし易いよ
うに、流出口側の枠の下側には20mm用の水道塩ビ管
による短い足(約3cm)を2本付けた。この網で毛細
根は支えることができたが、網を二重に重ねていること
により、網の表面の一部で、培養液の表面張力によるご
く短時間の停滞が認められた。そこで、さらに、20m
m用の水道塩ビ管で口の字型の枠を、足なしで組み、わ
くの表面に網目3cmの樹脂製網を樹脂製の紐でくくり
付け、目2mmの網の上に乗せた。下段と上段との網の
間は約3cmの空間を保有しており、根が培養液に浸か
る心配はなくなった。
Two short legs (about 3 cm) with a 20 mm tap PVC pipe were attached to the lower side of the frame on the outlet side so that the net became horizontal and the roots could be easily observed. Capillary roots could be supported by this net, but due to the double superposition of nets, stagnation for a short time due to the surface tension of the culture solution was observed on a part of the surface of the net. Then, further 20m
A square frame with a m water tap PVC pipe was assembled without legs, a resin net with a mesh of 3 cm was tied to the surface of the frame with a resin string, and placed on a net with a mesh of 2 mm. There was a space of about 3 cm between the lower and upper nets, so there was no concern that the root would be submerged in the culture solution.

【0055】また、新根が盛んに伸び出すようになる
と、栽培タンクの流出口に根が入り、流出管が詰まるこ
とが懸念されたので、流出口に向かって、コの字型に網
と網を支える水道塩ビ管を切りとり、流出口に根が入ら
ないことを見て確認できるように配慮した。なお、2年
目、3年目になると、根量が増大し、根が下段の目の細
かい樹脂製網を突き破り、停滞した若干量の培養液に浸
かることが観察された。その浸かった根は、一部根腐れ
傾向を示したが、根の全体に占める割合はごくわずかで
あり、地上部の生育に与える悪影響はなかった。
When new roots began to grow vigorously, it was feared that the roots would enter the outlet of the cultivation tank and block the outflow pipe. We cut out the PVC pipe that supports the net so that it can be confirmed by checking that the root does not enter the outlet. In addition, in the second year and the third year, it was observed that the amount of roots increased, the roots broke through the fine resin nets in the lower row and were dipped in a small amount of stagnant culture solution. The soaked roots showed some root rot tendency, but the proportion of the roots in the whole was very small, and there was no adverse effect on the growth of aboveground parts.

【0056】ブドウの栽培タンク3は、例えば、図1で
示したように100リットル容量のタンク(内側、縦4
4cm、横64cm、深さ38cm)で、市販のポリ塩
化ビニル樹脂製のものを用いた。栽培タンクの選択に際
しては、容量の大小、タンクの形状、例えば円筒状のも
のなど考えられたが、通常のブドウ土耕栽培で、根域制
限を行い成園並みの収量を得るためには、ブドウ1樹に
おける根の分布する容量は少なくとも60リットルが必
要であることが知られている。そこで、栽培タンクの容
量は60リットルを四捨五入した100リットルを標準
タイプとし、200リットル容量の2種類の栽培タンク
でブドウ樹を3年間栽培したところ、100リットル容
量及び200リットル容量の栽培タンクともブドウの
根、地上部とも順調に生育することがわかり、100リ
ットル容量タンクが200リットル容量タンクよりも低
コストであることから、以下の例は、100リットル容
量の栽培タンクを用いた場合で説明する。
The grape cultivation tank 3 is, for example, as shown in FIG.
A commercially available polyvinyl chloride resin having a size of 4 cm, a width of 64 cm, and a depth of 38 cm was used. When selecting a cultivation tank, the size of the capacity, the shape of the tank, for example, a cylindrical shape was considered, but in ordinary grape soil cultivation, in order to obtain root-limited yield and yield equivalent to that of an orchard, It is known that the distributed volume of roots in one grape tree requires at least 60 liters. Therefore, the capacity of the cultivation tank is 100 liters, which is rounded off 60 liters, as a standard type, and two kinds of cultivation tanks with 200 liters capacity are used to grow grape trees for 3 years. It can be seen that both roots and above-ground parts grow well, and the cost of the 100-liter capacity tank is lower than that of the 200-liter capacity tank. Therefore, the following example will be explained using a cultivation tank of 100 liter capacity. .

【0057】タンクの形状については、円筒状の場合、
貯留液タンクへの流出口は底面の真下に接続すれば、手
間は要しないが、本発明では前述(0050〜005
2)のような理由から、タンク横の壁面に流出口を接続
したいため、円筒状のタンクは接続が平面の場合よりも
困難であるので、これは不採用とした。箱型のタンクで
は、直方体様のものと立方体様のものがあるが、根の伸
びの観察が容易で、低コストのものがよいと考えたの
で、直方体様の箱型ポリタンクを用いた。
Regarding the shape of the tank, in the case of a cylindrical shape,
If the outflow port to the stored liquid tank is connected directly below the bottom surface, no labor is required, but in the present invention, the above-mentioned (0050 to 005).
For reasons such as 2), it is more difficult to connect a cylindrical tank to a wall surface on the side of the tank than a flat tank, so this is not adopted. There are box-shaped tanks such as a rectangular parallelepiped and a cube-shaped tank, but since it was easy to observe the root growth and it was thought that a low-cost tank would be good, a box-shaped tank with a rectangular parallelepiped shape was used.

【0058】栽培タンクのふた13は、遮光、さらには
タンク内の空気に触れた根が乾燥しないように、ある程
度の湿度をタンク3内に保有することを目的とし、市販
のポリ製のふたを用いた。このふたは、図1で示したよ
うに、半分に切り離し、切り離したふたを切り離す前の
長方形状に並べ、対角線の交わる交点を中心にブドウ樹
が入る範囲の円形の孔14(例えば、直径8cm)をく
りぬいた。ふた13の表面には、網目2mmの樹脂製網
を二重にして、ガムテ−プで所々張り付けた。これは、
フタの材質がポリ塩化ビニル樹脂製のため、光が常時あ
たるとフタは劣化しやすくなるので、ふたの表面を例え
ば、樹脂製網で遮光すると、ふたが少しでも長持ちする
と考えたからである。
The lid 13 of the cultivation tank is provided with a commercially available plastic lid for the purpose of keeping a certain amount of humidity in the tank 3 so that the roots exposed to the air in the tank are not shaded. Using. As shown in FIG. 1, this lid is cut in half, the cut lids are arranged in a rectangular shape before being cut, and a circular hole 14 (for example, a diameter of 8 cm is formed in the range where the vines enter around the intersection of the diagonal lines). ). On the surface of the lid 13, a resin net having a mesh of 2 mm was doubled and stuck in places with a gum tape. this is,
Since the lid is made of polyvinyl chloride resin, the lid is likely to deteriorate when constantly exposed to light. Therefore, if the lid surface is shielded with, for example, a resin net, the lid will last a little longer.

【0059】このようにすれば、ほぼ3年間と4カ月が
経過した1995年9月現在でもふたはまだ丈夫であっ
たが、ビニ−ルハウスの屋根に張ったビニ−ルを通過し
た日光にさらしておいたふたの場合は、角から所々劣化
しており、ふたの機能を果たさなくなりつつあり、ふた
を更新した。ここでは、遮光用網のかわりとしてのアル
ミホイルは用いなかった。直射日光がアルミホイルに反
射し、ブドウの下葉が葉焼けすることを懸念したためで
ある。また、市販されている光を反射しないシ−ト状の
灰色のポリフィルムは、コストを要するので用いなかっ
た。
In this way, although the lid was still strong as of September 1995, after almost three years and four months had passed, it was exposed to sunlight passing through the vinyl on the roof of the vinyl house. In the case of the opened lid, it has deteriorated in some places from the corners, and the lid is no longer functioning, so the lid was renewed. Here, no aluminum foil was used as a substitute for the shading net. This is because I was concerned that direct sunlight would be reflected on the aluminum foil and the lower leaves of the grapes would be burnt. The sheet-like gray poly film which does not reflect light, which is commercially available, is not used because it requires a high cost.

【0060】また、半分に切り離したふた13の合わせ
部分及びブドウ樹1周辺の透き間の上には、板切れ(例
えば、厚さ0.5cm、幅2〜5cm)を置いた。一般
的に植物の根は、光と反対の方向に伸び易いことが知ら
れているので、根を少しでも伸ばしたく、ふたの合わせ
目から光が洩れて根にあたることを防止するため、遮光
の目的で板切れを用いた。さらに、台風時には、強風に
よりふたが吹き飛ばされる懸念があったので、ふたの上
におもしとして棒きれ、例えば5cm角、長さ80cm
程度の木質棒を2〜4本乗せた。
A piece of board (for example, a thickness of 0.5 cm and a width of 2 to 5 cm) was placed on the mating portion of the lid 13 which was cut in half and the gap around the vine 1. It is generally known that the roots of plants easily grow in the direction opposite to the light, so it is desirable to stretch the roots even a little, and to prevent light from leaking from the joints of the lids and hitting the roots, shade it. A piece of board was used for the purpose. Furthermore, during a typhoon, there was a concern that the lid could be blown away by the strong wind, so a stick stick on the lid could be used as a weight, for example, a 5 cm square, 80 cm long.
Two to four wooden rods were placed.

【0061】例えば、1993年、瞬間風速25m程度
の台風が来襲したとき、ハウスのビニ−ルは一部破れた
が、棒切れを置いたふたは飛ばなかった。しかし、おも
しとしての棒切れの置いていないふたはたちまち、栽培
タンクより飛びはずれたので、急きょ、タンクにふたを
し、その上に棒切れを置いた。山陰地方では、台風が来
襲しない時期でも強風の日が多いので、棒切れ2本はふ
たの上に常時置いている。
For example, when a typhoon with an instantaneous wind speed of about 25 m hit in 1993, a part of the vinyl of the house was torn, but the lid with a stick stick did not fly. However, the lid without the stick stick as a fun piece instantly slipped off the cultivation tank, so I quickly put the lid on the tank and put the stick stick on it. In the San'in region, there are many days with strong winds even when no typhoon strikes, so two sticks are always placed on the lid.

【0062】一方、夏季の高温時、例えばハウス内の日
中の最高温度が40℃を超える日が何日も続く場合、栽
培タンクの上にふたをぴったりと乗せて置くと、培養液
の温度が30℃前後であっても、栽培タンク内の最高温
度が35℃を超え、やがては培養液の温度も上昇し、一
部の根が蒸れたようになり、毛細根の先から枯れ始める
ので、図1の栽培タンクの左右両端の壁面上端とふたの
間に5cm角の木質棒きれを挿入し、少しの透き間から
空気を流入させたところ、栽培タンク内の蒸れがなくな
り、培養液及び栽培タンク内の温度は30℃前後を推移
し、根は高温障害から回復し、順調に伸び始めることが
わかった。
On the other hand, when the temperature is high in summer, for example, when the maximum daytime temperature in the house exceeds 40 ° C. for many days, the temperature of the culture solution can be increased by placing the lid on the cultivation tank. Even if the temperature is around 30 ° C, the maximum temperature in the cultivation tank exceeds 35 ° C, the temperature of the culture solution also rises, and some of the roots become damp and begin to die from the tips of the capillary roots. When a 5 cm square wooden stick was inserted between the top and the wall on the left and right ends of the cultivation tank in FIG. 1 and air was allowed to flow in through a small gap, the cultivation tank disappeared and the culture solution and cultivation were carried out. It was found that the temperature in the tank remained around 30 ° C. and the roots recovered from the high temperature injury and started to grow steadily.

【0063】なお、すきまからの空気の流入による根の
乾燥が懸念されたが、シャワ−状態の流量は、前述(0
025)のように、4月から11月までが1分間当たり
4.2リットルとしているため、また、根の全体にシャ
ワ−状態の培養液がまばらにいきわたるように小孔の向
きを工夫しているので、乾燥による根の枯死は観察され
なかった。また、この透き間は光の入らない程度のわず
かなものであった。ふたは、培養液の温度が25℃以下
を推移するようになると、例えば年によって異なるが、
早くて9月中旬、遅い場合で10月以後、空気流入用の
棒切れを抜き取り、栽培タンクにぴったりと乗せ、培養
液の温度低下を防止した。冬季ではハウス内は加温した
が、根の蒸れは観察されなかった。
Although it was feared that the roots would be dried due to the inflow of air from the clearance, the flow rate in the shower state was the above (0
025), the amount is 4.2 liters per minute from April to November, and the orientation of the small pores is devised so that the shower medium is sparsely distributed over the entire root. Therefore, root death due to drying was not observed. In addition, this gap was so small that no light entered. When the temperature of the culture solution changes below 25 ° C, the lid changes depending on the year,
As early as mid-September, and later after October, the rod for air inflow was pulled out and placed exactly on the cultivation tank to prevent the temperature drop of the culture solution. In the winter, the house was warmed, but no root stuffiness was observed.

【0064】なお、栽培タンクは、培養液の温度をある
程度保つため、図1で示したように土中に埋設した。栽
培タンクへ培養液を連続して送る方式は、栽培タンクの
下方に貯留液タンクを埋設し、その貯留液タンクから培
養液をポンプで常時、汲み揚げるようにした。ポンプは
例えば、市販の小型マグネットポンプ(揚程10〜18
m、揚水量15〜30リットル/分)を利用している。
貯留液タンクの容量は、例えば、200リットル、40
0〜500 リットル、1,000リットルで検討した
が、市販のタンク(ポリ塩化ビニル樹脂製)価格が低コ
ストである200 リットル容量で、夏季でも培養液は
ほぼ1週間まかなえ、ブドウが順調に生育したので、以
下、200リットル容量ポリタンクを貯留液タンクとし
て用いた例について述べる。
The cultivation tank was buried in the soil as shown in FIG. 1 in order to keep the temperature of the culture solution to some extent. In the method of continuously feeding the culture solution to the cultivation tank, a storage tank was buried below the cultivation tank, and the culture solution was constantly pumped from the storage tank. The pump is, for example, a commercially available small magnet pump (lifts 10 to 18).
m, pumping capacity 15 to 30 liters / minute).
The storage tank has a capacity of, for example, 200 liters or 40
We examined 0-500 liters and 1,000 liters, but the commercially available tank (made of polyvinyl chloride resin) has a low cost of 200 liters, and the culture solution covers almost one week even in the summer, and the grapes grow smoothly. Therefore, an example in which a 200-liter capacity plastic tank is used as a storage liquid tank will be described below.

【0065】貯留液タンクと栽培タンクとの平面の位置
関係は、凸の形で説明すると、凸をそのまま前方に水平
の位置まで倒した場合の中央頂点の位置に貯留液タンク
を土中に埋設し、栽培タンクは、左右両側(手前方向)
の端に1台ずつ、合計、2台を土中に埋設した。横面の
位置関係は、品の字で説明すると、字のうち、左下の口
の部分が貯留液タンクに相当し、上の口の部分が栽培タ
ンクに相当する。右下の口の部分は、土を階段状に掘り
上げ、貯留液タンクの液量の減少程度を観察できるよう
にした。
The planar positional relationship between the storage liquid tank and the cultivation tank will be described in the form of a convex shape. The storage liquid tank is buried in the soil at the position of the central apex when the projection is tilted forward to a horizontal position. The cultivation tanks are on both the left and right sides (towards the front)
A total of two units were buried in the soil, one at the end of each. The positional relationship on the horizontal surface will be described by the letter of the product. In the letter, the lower left mouth portion corresponds to the reservoir tank, and the upper mouth portion corresponds to the cultivation tank. At the lower right mouth, the soil was dug up in a stepwise fashion so that the degree of decrease in the amount of liquid in the storage liquid tank could be observed.

【0066】貯留液タンクと栽培タンクの流出口との水
位差は、例えば、培養液更新直後で、20〜30cm
(6台の栽培タンク平均25cm)程度である。栽培タ
ンクの底面に滴下した培養液は、前述(0048、00
49)のように自然の水位差を利用して、貯留液タンク
に連続して戻るようにした。貯留液タンクの上には市販
のふたを密着状態で乗せ、ふたの表面にアルミホイルを
張り付け、培養液の蒸発防止をした。このふた表面から
地表面までの深さは50cm程度であり、裸地状態の土
壌断面には、パネル板を直接押し付け、パネル板と貯留
液タンクとの間に、ブドウハウス廃材の金属製パイプを
支柱として土中に打ち込み、土壌断面が貯留液タンクの
ふたの上に崩れ落ちないようにパネル板を支えた。
The water level difference between the storage liquid tank and the outlet of the cultivation tank is, for example, 20 to 30 cm immediately after the culture liquid is renewed.
(6 cultivation tanks average 25 cm). The culture solution dripped on the bottom surface of the cultivation tank is the same as described above (0048,00).
As shown in 49), the natural water level difference was used to continuously return to the reservoir tank. A commercially available lid was placed on the reservoir tank in a close contact state, and an aluminum foil was attached to the surface of the lid to prevent the culture solution from evaporating. The depth from the lid surface to the ground surface is about 50 cm, and a panel plate is directly pressed against the soil cross section in the bare ground state, and a metal pipe of grape house waste is put between the panel plate and the storage tank. It was driven into the soil as a pillar, and the panel plate was supported so that the soil cross section would not fall down on the lid of the storage tank.

【0067】地表面から下方を見ると、大きな直方体様
の穴が、鉛直降下方向にあいており、その穴の底面に貯
留液タンクがある。そのため、作業中に足を踏み外して
貯留液タンクの上に落ち込み、けがをしないように安全
を配慮し、また夏季の日ざしの強い日光が貯留液タンク
のふたにあたり、貯留している培養液の温度に影響しな
いように、パネル板(縦約90cm、横約180cm)
を穴のふたとし、そのパネル板の表面にアルミホイルを
張り付けた。さらにアルミホイルによる日光の反射を防
止するため、パネル板とブドウ棚の間に、屋根型テント
のように、網目2mmの樹脂製網を二重に重ね屋根相当
部分とし、日よけとした。
When viewed downward from the ground surface, a large rectangular parallelepiped hole is present in the vertical descending direction, and the reservoir is at the bottom of the hole. For this reason, it is important to take precautions to prevent injury while falling off the storage tank while working, and to avoid injury during the summer.In addition, the strong sunlight in the summer hits the lid of the storage tank to protect the stored culture solution. Panel plate (length 90cm, width 180cm) so as not to affect the temperature
Was used as the lid of the hole, and aluminum foil was attached to the surface of the panel board. Further, in order to prevent reflection of sunlight due to aluminum foil, a resin net having a mesh of 2 mm was doubled between the panel plate and the grape shelf to form a roof-corresponding portion, like a roof tent.

【0068】このように工夫することによって、また、
前述(0062、0063)のように、栽培タンク内の
温度上昇防止を工夫したことと相まって、夏季の高温時
でも、1995年9月までの過去3年間、貯留液タンク
の培養液温度は、30℃前後を低コストで保つことがで
き、それ以上の温度上昇が防止でき、ブドウの生育は順
調であった。
By devising in this way,
As described above (0062, 0063), in combination with devising measures to prevent temperature rise in the cultivation tank, the temperature of the culture solution in the reservoir tank was 30 during the past three years until September 1995 even at high temperature in summer. It was possible to keep the temperature around ℃ at a low cost, prevent further temperature rise, and the grapes grew smoothly.

【0069】貯留液タンクは土中に埋設しているため、
排水不良の土壌、例えば強粘質土壌の分布する場所で
は、土中水が染み出て、貯留液タンクに流入する場合が
ある。特に、山陰地方では、1時間当たりの降水量が1
0〜20mmの雨の頻度が多く、ときには、1日当たり
総降水量が150mm以上の多雨もあり、1995年5
月までの過去3年間のうち数回、土中水が貯留液タンク
に流入し、その都度、培養液を更新し、手間がかかっ
た。そこで、対策として、例えば、貯留液タンクの深さ
1/2位から地表面まで、タンク上方の土壌断面をセメ
ントでコ−キングし、パネル板を押しあてたところ、土
中水が染み出ることは、防止できた。また、土中水の染
み出しが当初から懸念されたので、培養液の汲み上げポ
ンプは試験開始時から地表面に設置した。
Since the reservoir tank is buried in the soil,
In poorly-drained soil, for example, in a place where highly viscous soil is distributed, underground water may seep out and flow into a reservoir tank. Especially in the San'in region, the amount of rainfall per hour is 1
The frequency of rainfall from 0 to 20 mm is high, and sometimes the total rainfall per day is 150 mm or more.
Soil water flowed into the storage tank several times in the past three years until the moon, and the culture solution was renewed each time, which was troublesome. Therefore, as a countermeasure, for example, when the soil cross section above the tank is cemented with cement from the depth 1/2 of the reservoir tank to the ground surface and the panel board is pressed against it, the soil water seeps out. Could be prevented. In addition, since there was concern about seepage of soil water from the beginning, a pump for pumping the culture solution was installed on the ground surface from the start of the test.

【0070】次に、本発明の栽培方法及び装置を用いた
場合の具体的な試験例について、‘巨峰’を中心に説明
する。試験区は、‘デラウェア’の培養液における好適
窒素濃度が40ppm程度であったことから、培養液の
窒素濃度40ppmを中心にし、20ppm、80pp
mの3区を1993年に設けた。各区に100リットル
容量ポリタンクの栽培装置2台を設置し、それぞれの装
置に‘巨峰’1年生樹(鉢育成挿木苗)を2樹ないし3
樹供試し、1試験区4樹ないし6樹とした。貯留液タン
クの培養液の液量は200リットルとし、水気耕栽培装
置及び貯留液タンクは、培養液の温度をある程度の範囲
に保つため、土中に埋設した。培養液のECは0.8〜
1.2mS/cmとした。
Next, a specific test example using the cultivation method and device of the present invention will be described with a focus on "Kyoho". In the test area, the suitable nitrogen concentration in the culture solution of'Delaware 'was about 40 ppm, so the concentration of nitrogen in the culture solution was 40 ppm, and the concentration was 20 ppm and 80 pp.
3 wards of m were established in 1993. Two cultivators for 100-liter plastic tanks are installed in each ward, and two or three “Kyoho” first-year trees (potted seedlings) are installed in each plant.
Tree trials were conducted, and 1 test section was 4 to 6 trees. The liquid amount of the culture liquid in the storage liquid tank was 200 liters, and the hydroponics device and the storage liquid tank were buried in the soil to keep the temperature of the culture liquid within a certain range. EC of the culture solution is 0.8-
It was set to 1.2 mS / cm.

【0071】窒素源の硝酸態窒素とアンモニア態窒素の
濃度比は2:1とした。その結果、いずれの試験区も根
腐れを生じ、順調に生育せず、同年の落葉期である10
月9日の新梢長は2m以下にとどまった。窒素濃度20
ppmの新梢長は図3の一部として示した。試験は全く
失敗であった。この原因については、‘デラウェア’で
は順調に生育したことから、栽培装置に未解決の課題が
あるのではなく、培養液の濃度に解決すべき課題がある
と判断し、検討したところ、この原因は培養液における
窒素等の高濃度障害であると考えられた。
The concentration ratio of nitrate nitrogen and ammonia nitrogen as the nitrogen source was set to 2: 1. As a result, root rot occurred in all the test plots, did not grow satisfactorily, and was in the defoliation stage of the same year.
The shoot length on 9th of March was less than 2m. Nitrogen concentration 20
The shoot length in ppm is shown as part of FIG. The test was totally unsuccessful. Regarding this cause, since it grew well in'Delaware ', it was judged that there is a problem that should be solved in the concentration of the culture solution rather than an unsolved problem in the cultivation device, and it was investigated. Was considered to be a high-concentration disorder such as nitrogen in the culture solution.

【0072】そこで、1994年は同場所で同栽培装置
を用い、新たに‘巨峰’1年生樹(鉢育成挿木苗)を供
試し、1月4日から18℃で加温し、試験を開始した。
同年の 3月までは前年と同様の処理を行い、4月15
日に窒素濃度の80ppm区の濃度を1ppm、40p
pm区の濃度を5ppmに低下させた。これによって、
両区の根が順調に発根し、新梢も伸びだしたことを確認
した後、同年5月26日に80ppm区の濃度を1pp
mから10ppmに設定し、以後80ppm区を10p
pm、40ppm区を5ppmの区とした。
Therefore, in 1994, using the same cultivation apparatus at the same place, a new'Kyoho 'first-year tree (potted seedling) was tested and heated from January 4th at 18 ° C and the test started. did.
Until March of the same year, the same processing as the previous year is performed and April 15
The concentration of 80ppm of nitrogen concentration per day is 1ppm, 40p
The concentration in the pm section was lowered to 5 ppm. by this,
After confirming that the roots of both plots were rooting smoothly and the shoots were growing, the concentration of 80ppm plot was 1pp on May 26 of the same year.
Set from 10m to 10ppm, then 80ppm section 10p
The pm, 40 ppm group was defined as a 5 ppm group.

【0073】一方、20ppm区も4月下旬頃から、根
の発根、新梢の伸びが止まったので、5月26日に培養
液濃度を1ppmに低下させ、以後1ppmの区とし
た。培養液のECレベルは、昨年よりも低下させ、各区
とも0.5〜0.7mS/cmとした。窒素源の硝酸態
窒素とアンモニア態窒素の濃度比は前年と同様に2:1
とした。
On the other hand, in the 20 ppm group as well, since rooting and growth of new shoots stopped from around the end of April, the concentration of the culture solution was reduced to 1 ppm on May 26, and thereafter the concentration was set to 1 ppm. The EC level of the culture solution was lower than last year, and was 0.5 to 0.7 mS / cm in each section. The concentration ratio of nitrate nitrogen and ammonia nitrogen as the nitrogen source is 2: 1 as in the previous year.
And

【0074】この結果、図3のように、各区とも順調な
生育を示し、同年の落葉期である10月7日の新梢長
は、窒素濃度10ppm区が25m、5ppm区が18
mに達し、両区とも土耕栽培以上の生育を示した。窒素
濃度1ppm区では、根の生育は順調であったが、培養
液の窒素濃度が低く、新梢長は11mにとどまった。以
上の結果から。‘巨峰’1年生樹の生育にとっての好適
窒素濃度は、ECが0.5〜0.7mS/cmの範囲を
推移する場合、5〜10ppmであり、‘デラウェア’
よりも低いレベルにあることが分かった。
As a result, as shown in FIG. 3, all the plots showed favorable growth, and the shoot length on October 7, which is the defoliation stage of the same year, had a nitrogen concentration of 10 ppm at 25 m and a 5 ppm plot of 18
It reached m and both areas showed growth higher than soil cultivation. In the 1 ppm nitrogen concentration group, the roots grew smoothly, but the nitrogen concentration of the culture solution was low, and the shoot length was 11 m. From the above results. The suitable nitrogen concentration for the growth of'Kyoho 'annual trees is 5 to 10 ppm when the EC changes in the range of 0.5 to 0.7 mS / cm.
Turned out to be at a lower level than.

【0075】‘巨峰’について、1995年も前年度に
開始した試験を継続した。同年5月下旬に収穫すること
ができ、樹冠面積当たりの収量は、窒素濃度10ppm
区が0.25kg/m、5ppm区が0.24kg/
cmであり、1年間の処理の結果としては、ほぼ土耕
栽培並みであったが、2年目になると、各区とも葉の緑
色がやや薄くなる傾向がみられ、根は順調に生育してい
るのに、地上部の新梢の伸びは緩慢になってきた。
With respect to "Kyoho", the test started in the previous year in 1995 was continued. It can be harvested in late May of the same year, and the yield per canopy area is 10 ppm nitrogen.
0.25 kg / m 2 , 5 ppm 0.24 kg / m 2
It was cm 2 , and as a result of the treatment for 1 year, it was almost the same level as soil cultivation, but in the 2nd year, the green color of the leaves tended to become slightly thin in each ward, and the roots grew smoothly. However, the growth of shoots on the ground has become slow.

【0076】これは、ブドウ樹にとって、窒素が不足し
ているように観察され、培養液のECレベルをできるだ
け低下させ、同時に培養液の窒素濃度を、高濃度障害の
生じないぎりぎりのレベルまで高めれば、根腐れを生じ
ないで地上部が順調に生育すると考えた。そこで、培養
液のECを0.5〜0.7mS/cmとし、同年5月2
8日から窒素濃度1ppm区の濃度を20ppm区に、
5ppm区は7月2日から8月3日まで40ppm、翌
日の8月4日からは30ppmとし、以後30ppm区
とした。10ppm区は著しく緑色が薄くなったので、
同年8月11日から40ppmにまで高め、以後40p
pm区とした。
This was observed to be deficient in nitrogen for the vines, and the EC level of the culture broth was reduced as much as possible, and at the same time, the nitrogen concentration of the culture broth could be increased to a level just below the level at which high-concentration disorders did not occur. Therefore, it was thought that the above-ground part would grow smoothly without causing root rot. Therefore, the EC of the culture solution was adjusted to 0.5 to 0.7 mS / cm, and the
From 8th, the concentration of nitrogen concentration 1ppm will be changed to 20ppm,
The 5 ppm plot was 40 ppm from July 2 to August 3, 30 ppm from August 4 the next day, and the subsequent 30 ppm plot. As the green color became significantly lighter in the 10 ppm area,
It was increased to 40ppm from August 11 of the same year, then 40p
It was set as the pm ward.

【0077】その結果、いずれの試験区も根、地上部と
も順調に生育した。また、それぞれの試験区に‘巨峰’
の1年生樹(鉢育成挿木苗)を同年5月24日から新た
に供試し観察していたところ、前述のように培養液の窒
素濃度が2年生樹と同時期に高まっても、根及び地上部
とも順調に生育し、8月31日の新梢長は20ppm区
が20.0m、30ppm区が18.8mであり、良好
な成果が得られた。
As a result, in all the test plots, roots and aboveground parts grew well. In addition, "Kyoho" in each test area
As a result of the new test observation of the 1st year tree (potted seedling) from May 24 of the same year, even if the nitrogen concentration of the culture solution increased at the same time as the 2nd year tree as described above, the root and The above-ground part grew well, and the shoot length on August 31 was 20.0 m for the 20 ppm group and 18.8 m for the 30 ppm group, and good results were obtained.

【0078】また、網付きシャワー型循環式水気耕栽培
において、‘巨峰’1年生樹(鉢育成苗)を供試した場
合の培養液のECレベルの違いが新梢長に及ぼす影響
を、当試験場園芸部果樹科のガラス温室(200m
で1994年5月30日から同年9月5日まで試験し
た。培養液窒素濃度10ppmとし、ECは、0.3m
S/cm、0.5mS/cm、1.0mS/cmの3レ
ベルとした。その結果、図4のように、0.5mS/c
mの区が勝る傾向にあったが、いずれの区も生育障害は
みられなかった。ここでは、窒素源の硝酸態窒素とアン
モニア態窒素の濃度比は2:1とした。
Further, in the shower-type circulating hydroponics with a net, the effect of the difference in the EC level of the culture solution on the shoot length was examined when a "Kyoho" first-year tree (potted seedling) was tested. Glass greenhouse (200 m 2 ) of the Orchard Department
, From May 30, 1994 to September 5, 1994. Culture solution nitrogen concentration 10ppm, EC 0.3m
There were three levels of S / cm, 0.5 mS / cm, and 1.0 mS / cm. As a result, as shown in FIG. 4, 0.5 mS / c
The m-districts tended to outperform, but no growth disorder was observed in any of them. Here, the concentration ratio of nitrate nitrogen and ammonia nitrogen as the nitrogen source was set to 2: 1.

【0079】以上から、‘巨峰’を供試し、網付きシャ
ワー型循環式水気耕栽培装置を用いた場合の培養液中窒
素濃度とECとの関係をまとめると表2のとおりであ
る。ここでの培養液のECは、培養液の更新時から次回
更新直前までの範囲を表し、測定期間における更新回数
の平均で示した。ECの測定は、1993年7月15日
から1995年9月20日まで行った。培養液の更新回
数は、ECが0.5〜0.7mS/cmの場合、窒素濃
度1〜10ppmが‘巨峰’1年目で46回、2年目で
7回であり、窒素濃度20ppmが1年目、2年目とも
25回、30ppmが17回、40ppmが15回であ
る。ECが0.8〜1.2mS/cmの場合、1年目、
2年目とも9回である。なお、この更新回数は、更新時
及び次回更新直前の培養液ECを測定した場合の値を採
用した。
From the above, Table 2 summarizes the relationship between the nitrogen concentration in the culture solution and EC when "Kyoho" was tested and the shower type circulating hydroponics device with a net was used. The EC of the culture solution here represents the range from the time when the culture solution was updated to the time immediately before the next update, and was shown as the average number of updates during the measurement period. The EC measurement was performed from July 15, 1993 to September 20, 1995. When the EC is 0.5 to 0.7 mS / cm, the nitrogen concentration of 1 to 10 ppm is 46 times in the 1st year of'Kyoho 'and 7 times in the 2nd year, and the concentration of nitrogen is 20 ppm. In the first and second years, 25 times, 30 ppm is 17 times, and 40 ppm is 15 times. If the EC is 0.8 to 1.2 mS / cm, the first year,
9 times in the second year. As the number of times of renewal, the value when the culture solution EC was measured at the time of renewal and immediately before the next renewal was adopted.

【0080】また、‘巨峰’1年生樹(鉢育成挿木苗)
を供試した網付きシャワー型循環式水気耕栽培におい
て、窒素源の硝酸態窒素とアンモニア態窒素の濃度比の
違いを1995年に試験した。培養液の温度が30℃前
後を推移した場合、アンモニアの根に影響する若干の毒
性が懸念されたので、硝酸態窒素とアンモニア態窒素の
濃度比を4:1にしたところ、培養液のpHが6.5以
上を推移し、一部の新梢葉に鉄欠乏症状がみられたの
で、4:1を3:1にしたところ、鉄欠乏症状が直り正
常な生育を示した。これらの結果と前述(0070〜0
074、0078)の結果を併せて、‘巨峰’を供試し
た場合の培養液中窒素源の濃度比をまとめたのが表4で
ある。また、前述(0029〜0031、0034)し
た結果より、‘デラウェラ’における濃度比をまとめた
のが表5である。
[Kyoho] 1st grade trees (potted seedlings)
In the shower-type circulating hydroponics with a net as a test, the difference in concentration ratio between nitrate nitrogen and ammonia nitrogen as nitrogen sources was tested in 1995. When the temperature of the culture solution remained around 30 ° C, there was concern about some toxicity affecting the roots of ammonia, so when the concentration ratio of nitrate nitrogen and ammonia nitrogen was set to 4: 1, the pH of the culture solution was , Which was 6.5 or more, and some new shoot leaves had iron deficiency symptoms. Therefore, when 4: 1 was changed to 3: 1, iron deficiency symptoms were corrected and normal growth was shown. These results and the above (0070-0
Table 4 summarizes the concentration ratio of the nitrogen source in the culture solution when "Kyoho" was tested together with the results of 074, 0078). In addition, from the results described above (0029 to 0031, 0034), Table 5 summarizes the concentration ratios in'Derawera '.

【0081】[0081]

【表4】 [Table 4]

【0082】[0082]

【表5】 [Table 5]

【0083】以上の結果から、‘巨峰’、‘デラウェ
ア’等のブドウでは、本発明を利用した、根を空気にふ
れさせながら連続してシャワー状に噴水する水気耕栽培
の方法及びその装置がよく、この方法及び装置を用いた
場合の培養液の好適窒素濃度は5〜40ppmで、窒素
源の硝酸態窒素(NO−N)とアンモニア態窒素(N
−N)との濃度比は2:1もしくは3:1であり、
このときの培養液のEC(電気電導度)は0.5〜1.
2mS/cmであることが分かった。
From the above results, for grapes such as "Kyoho" and "Delaware", the method and apparatus for hydroponic cultivation in which the roots are exposed to the air while continuously spraying water in the form of shower using the present invention is provided. Often, the preferable nitrogen concentration of the culture solution when using this method and apparatus is 5 to 40 ppm, and nitrate nitrogen (NO 3 -N) and ammonia nitrogen (N 3
H 4 -N) has a concentration ratio of 2: 1 or 3: 1,
The EC (electrical conductivity) of the culture solution at this time is 0.5 to 1.
It was found to be 2 mS / cm.

【0084】[0084]

【発明の効果】本発明をブドウ栽培に利用すると、次の
ような効果がある。まず第一に、高齢者社会を迎えた現
在、平坦部、中山間部を問わず、本発明は一般の土耕栽
培よりも土づくり、肥培管理の面で労力が軽減されるの
で、ブドウ栽培の振興に役立つ。
When the present invention is used for viticulture, the following effects are obtained. First of all, now that the society for the elderly has come, regardless of whether it is a flat area or a mountainous area, the present invention reduces soil labor and fertilizer management labor than general soil cultivation, so viticulture is possible. Help promote.

【0085】第二に、従来の土耕栽培と同等以上の収
量、品質を得ることができる。また、均一な養分管理が
可能となり、栽培むらが少なく、品質のそろったブドウ
が生産できる。
Secondly, it is possible to obtain a yield and quality equal to or higher than those of conventional soil cultivation. In addition, it enables uniform nutrient management, produces less uneven cultivation, and produces grapes of uniform quality.

【0086】第三に、本発明では培養液の温度管理が容
易なため、冬季でも十分、ブドウを栽培することがで
き、従来の土耕栽培で開発されつつある二期作技術をド
ッキングさせれば、年三作栽培も夢ではなく、収量が飛
躍的に高まり、いつでもブドウを市場に供給でき、一層
の収益増が見込まれる。
Thirdly, in the present invention, since temperature control of the culture solution is easy, grapes can be sufficiently grown even in winter, and if the two-stage cropping technique being developed in conventional soil cultivation is docked, Cultivation of three crops a year is not a dream, yields will increase dramatically, and grapes can be supplied to the market at any time, and further profit growth is expected.

【0087】第四に、一般の土耕栽培では、不良土壌の
ためブドウが順調に生育しない地域、例えば、礫質土壌
で有効土層の浅い地域、の栽培が可能である。
Fourth, in general soil cultivation, it is possible to cultivate a region where grapes do not grow smoothly due to poor soil, for example, a region where gravel soil has a shallow effective soil layer.

【0088】第五に本発明の成果は、従来の土耕栽培の
施肥改善にも役立つ。例えば、‘巨峰’は、通常、‘デ
ラウェア’と同等の施肥量を施用する例が多く、樹勢が
おう盛で、花ぶるいし易く、実がつきにくい場合があ
る。現場では、主として少な目の施肥量で、剪定技術と
土づくりで対応されてきたが、本発明の成果は、従来の
施肥量を、さらに減肥できることを示唆しており、土耕
栽培の低コスト化に役立つと共に、収量を低下させない
ようにしながら、減肥を目指している環境にやさしい農
業の推進に役立つ。
Fifth, the results of the present invention are useful for improving fertilizer application in conventional soil cultivation. For example, "Kyoho" is usually applied with an amount of fertilizer equivalent to that of "Delaware", and there are cases where the tree vigor is high, flowers are easy to bloom, and fruits are difficult to bear. At the site, mainly practicing a small amount of fertilizer, and pruning technology and soil making have been dealt with, but the result of the present invention suggests that the conventional amount of fertilizer can be further reduced, thus reducing the cost of soil cultivation. It also helps to promote eco-friendly agriculture that aims to reduce fertilizer while not reducing yield.

【0089】第六に、本発明の水気耕栽培は従来の土耕
栽培よりも、その栽培方法及び装置は、全く異なってお
り、ブドウにとっての生育環境も違っている。しかし、
ブドウという作物にとっての順調な生育のための条件、
あるいは異なった環境へのブドウの適応性の限界、とい
った基本的な性質は、生育環境や栽培の方法が大幅に異
なったとしても、かなりの程度維持でき且つ安定した食
糧としてのブドウ生産ができる。
Sixth, the hydroponic culture of the present invention is completely different in the cultivation method and apparatus from the conventional soil cultivation, and the growth environment for grapes is also different. But,
Conditions for good growth for a crop called grapes,
Alternatively, basic properties such as the limit of adaptability of grapes to different environments can be maintained to a considerable extent and stable grape production can be achieved even if the growth environment and the cultivation method are significantly different.

【0090】第七に、本発明を利用すると、従来の土耕
栽培以上に効率よく、また、いつでも、どこでもブドウ
が栽培できる可能性が高まる。このことの意味は大きい
と考えられる。例えば、ブドウが生育できないとされて
いる極地や極寒の地域、大型宇宙ロケット内や大型旅客
船、ブドウや植物を育む住みよい地球環境を呼びかける
各種展示会場、オフィス街のビル内におけるインテリア
としての展示場所等、限られた空間、場所でのブドウ栽
培が可能となる。
Seventhly, the use of the present invention increases the possibility that grapes can be cultivated anytime and anywhere more efficiently than in conventional soil cultivation. It is thought that this means a lot. For example, polar and extremely cold regions where grapes cannot grow, large space rockets and large passenger ships, various exhibition venues that call for a livable global environment for growing grapes and plants, and exhibition places as interiors in office buildings. It is possible to grow grapes in a limited space and place.

【図面の簡単な説明】[Brief description of drawings]

【図1】網付きシャワー型循環式水気耕栽培装置の説明
図。
FIG. 1 is an explanatory view of a shower-type circulating hydroponics device with a net.

【図2】通気法を用いた湛液型水耕栽培におけるN濃度
の違いが‘デラウェア’の総新梢長に及ぼす影響(19
92年)を示すグラフ。
[Fig.2] Effect of difference in N concentration on total shoot length of'Delaware 'in submerged hydroponics using aeration method (19
1992).

【図3】網付きシャワー型循環式水気耕栽培におけるN
濃度の違いが‘巨峰’の総新梢長に及ぼす影響を示すグ
ラフ。
[Fig. 3] N in a shower-type circulating hydroponics with a net
Graph showing the effect of different concentrations on the total shoot length of'Kyoho '.

【図4】‘巨峰’における培養液濃度が平均新梢長に及
ぼす影響(1994年)のグラフ。
FIG. 4 is a graph showing the influence (1994) of the culture solution concentration in'Kyoho 'on the average shoot length.

【符号の説明】[Explanation of symbols]

1 ブドウ樹 2 根 3 栽培タンク 4 網(支持棚) 6 ノズル 7 小孔 8 培養液 1 Grape 2 Root 3 Cultivation tank 4 Net (support shelf) 6 Nozzle 7 Small hole 8 Culture solution

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小豆沢 斉 島根県出雲市芦渡町2440 島根県農業試験 場内 (72)発明者 小塚 雅弘 島根県出雲市芦渡町2440 島根県農業試験 場内 (72)発明者 田村 明長 島根県出雲市芦渡町2440 島根県農業試験 場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Sai Qi, 2440, Ashido Town, Izumo City, Shimane Prefecture, Shimane Prefecture Agricultural Experiment Station (72) Inventor, Masahiro 2440, 2440, Ashido Town, Izumo City, Shimane Prefecture, Shimane Prefecture Agricultural Experiment Station (72) Inventor Akinaga Tamura 2440 Ashido Town, Izumo City, Shimane Prefecture Inside the Shimane Agricultural Experiment Station

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 栽培タンク(3)内に挿入されたブドウ
樹(1)の根(2)に対し、空気に触れさせながら培養
液(8)を散水する水気耕栽培の方法であって、栽培タ
ンク(3)の底面に滞留する培養液(8)に根(2)が
浸漬しないように上記根(2)を栽培タンク(3)の底
面より離して支持したことを特徴とするブドウの水気耕
栽培方法。
1. A method for hydroponic cultivation, in which a culture solution (8) is sprinkled on a root (2) of a vine (1) inserted into a cultivation tank (3) while being in contact with air. A grape characterized in that the root (2) is supported away from the bottom surface of the cultivation tank (3) so that the root (2) is not immersed in the culture solution (8) accumulated on the bottom surface of the cultivation tank (3). Hydroponics method.
【請求項2】 栽培タンク(3)の底面に耐水性の支持
棚(4)を形成したことを特徴とする請求項1のブドウ
の水気耕栽培方法及び装置。
2. The method and apparatus for hydroponic cultivation of grapes according to claim 1, wherein a water-resistant support shelf (4) is formed on the bottom surface of the cultivation tank (3).
【請求項3】 培養液(8)の窒素濃度が5〜40pp
mである請求項1又は2のブドウの水気耕栽培方法。
3. A culture solution (8) having a nitrogen concentration of 5 to 40 pp.
The method for hydroponics of grapes according to claim 1 or 2, wherein m is m.
【請求項4】 培養液(8)の電気電導度が0.5〜
1.2mS/cmである請求項1又は2又は3のブドウ
の水気耕栽培方法。
4. The electric conductivity of the culture solution (8) is 0.5 to.
It is 1.2 mS / cm, The hydroponic cultivation method of the grape | vine of Claim 1 or 2 or 3.
【請求項5】 培養液(8)中の窒素源の硝酸態窒素
(NO−N)とアンモニア態窒素(NH−N)の濃
度比が2:1〜3:1である請求項1又は2又は3又は
4のブドウの水気耕栽培方法。
5. The concentration ratio of nitrate nitrogen (NO 3 —N) and ammonia nitrogen (NH 4 —N) as nitrogen sources in the culture solution (8) is 2: 1 to 3: 1. Alternatively, 2 or 3 or 4 of the hydroponic cultivation method for grapes.
【請求項6】 ブドウ樹(1)の根(2)を挿入する栽
培タンク(3)内に、上記根(2)に向かって散水する
ノズル(6)を収容配置するとともに、上記栽培タンク
(3)内に挿入された根(2)の下側となる位置には、
挿入された根(2)を載置支持する通水性を有する支持
棚(4)を設けてなるブドウの水気耕栽培装置。
6. A cultivation tank (3) into which a root (2) of a vine (1) is inserted, a nozzle (6) for sprinkling water toward the root (2) is housed and arranged, and the cultivation tank (3) is 3) At the position below the root (2) inserted in
A hydroponic cultivation device for grapes, comprising a water-permeable support shelf (4) for placing and supporting the inserted root (2).
【請求項7】 支持棚(4)が耐水性の網(4)である
請求項6のブドウの水気耕栽培装置。
7. The apparatus for hydroponic cultivation of grapes according to claim 6, wherein the support shelf (4) is a water resistant net (4).
JP8040694A 1996-02-01 1996-02-01 Method and device for hydroponic cultivation for grape Pending JPH09205911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8040694A JPH09205911A (en) 1996-02-01 1996-02-01 Method and device for hydroponic cultivation for grape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8040694A JPH09205911A (en) 1996-02-01 1996-02-01 Method and device for hydroponic cultivation for grape

Publications (1)

Publication Number Publication Date
JPH09205911A true JPH09205911A (en) 1997-08-12

Family

ID=12587672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8040694A Pending JPH09205911A (en) 1996-02-01 1996-02-01 Method and device for hydroponic cultivation for grape

Country Status (1)

Country Link
JP (1) JPH09205911A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110896845A (en) * 2019-12-23 2020-03-24 孔艳娥 Dragon blood tree hydroponic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110896845A (en) * 2019-12-23 2020-03-24 孔艳娥 Dragon blood tree hydroponic device
CN110896845B (en) * 2019-12-23 2024-05-14 孔艳娥 Dragon blood tree hydroponic device

Similar Documents

Publication Publication Date Title
US20060150497A1 (en) Method of hydroponic cultivation and components for use therewith
US7243459B2 (en) Method of cultivation and components for use therewith
CN101548636A (en) A method suitable for cultivating grape in poor soil regions
CN107182754A (en) A kind of container soilless culture technique of tree peony
Agrawal et al. Hydroponic systems for cultivation of horticultural crops: A review
CN111296146B (en) Composite ecological windbreak for repairing vegetation on windward slope of island and building method thereof
CN108739037A (en) Climb type Liana rosa indica growing structures and cultural method
JPH09205911A (en) Method and device for hydroponic cultivation for grape
JP2001346459A (en) Method for cultivating plant and device for cultivating plant
Dumroese et al. An introduction to subirrigation in forest and conservation nurseries and some preliminary results of demonstrations
Maiti et al. Understanding hydroponics and its scope in India
Bhullar et al. DESIGN AND EVALUATION OF WICK TYPE AND RECIRCULATION TYPE SUBSTRATE HYDROPONIC SYSTEMS FOR GREENHOUSE TOMATOES.
Das et al. Soil-Less Farming-An Innovative Way Towards Sustainability.
Sijali Drip irrigation
KR200271930Y1 (en) Managing apparatus using media cell for cell growing garden plant
Nazir et al. SMART IRRIGATION USING HYDROPONICS
Kumar et al. Trends in Hi-Tech Agriculture Sector
CN115281068A (en) Self-water-absorption cultivation greenhouse and cultivation method for container seedlings
Farmers How To Grow Hydroponics For Beginners
CN104969824A (en) Planting method capable of enabling grapes to appear on market in advance
Singh et al. Scientific ways of new orchard plantation
Kamaruddin Design and development of naturally ventilated tropical crop protection structures and hydroponics systems
SU1595393A1 (en) Method of sprinkling plants
JPH06169659A (en) Artificial growing method of trees in air
Singh ICAR-CSSRI, Regional Research Station, Lucknow, UP