JPH09205704A - Control device for automobile - Google Patents

Control device for automobile

Info

Publication number
JPH09205704A
JPH09205704A JP8011512A JP1151296A JPH09205704A JP H09205704 A JPH09205704 A JP H09205704A JP 8011512 A JP8011512 A JP 8011512A JP 1151296 A JP1151296 A JP 1151296A JP H09205704 A JPH09205704 A JP H09205704A
Authority
JP
Japan
Prior art keywords
speed
electric motor
torque
vehicle
torque command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8011512A
Other languages
Japanese (ja)
Inventor
Tetsuya Yokoyama
哲也 横山
Nobunori Matsudaira
信紀 松平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8011512A priority Critical patent/JPH09205704A/en
Publication of JPH09205704A publication Critical patent/JPH09205704A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate abnormal torque generated at a low speed in low torque and make capable safe smooth operation of an automobile, by driving an electric motor with only reference torque, when a reference torque command is sufficiently small namely, at the so-called low torque driving condition, and actuating the motor with a value adding vibration compensation except at low torque driving time. SOLUTION: In an electric motor control means 4, a vehicle model 16 is input, a diameter of a tire 11, a vehicle weight, vehicle inertia equivalent quantity, gear ratio of a reduction gear 10 and rotor inertia of an electric motor 1 are input. These vehicle data are used, a vehicle speed is estimated in a vehicle model speed computing means 17 by a value of a reference torque command. In a compensation torque computing means 14, a difference between the estimated speed and an actual rotational speed of the electric motor 1 is calculated, calculation having a prescribed transmission coefficient is performed, vibration compensation torque is calculated. The sum of this value and the reference torque value is taken, a power converter 2 is controlled. In this way, an automobile can be safely and smoothly controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は自動車の制御装置、
特に電気車の制御装置に係り、特に、運転性を向上させ
るのに好適な自動車の制御装置である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle control device,
In particular, the present invention relates to a control device for an electric vehicle, and particularly to a control device for an automobile that is suitable for improving drivability.

【0002】[0002]

【従来の技術】従来、電気車を駆動させる際、蓄電池で
電動機を駆動させる場合には、蓄電池電圧の垂下により
電動機入力電圧が低下し駆動トルクが低下すること、或
いはある速度域によって駆動軸系に共振を起こすことが
原因で、車体に振動を起こすことがある。この振動を抑
制する方法として、特開平7−163011 号公報がある。
2. Description of the Related Art Conventionally, when an electric motor is driven by a storage battery when driving an electric vehicle, the input voltage of the motor is lowered due to drooping of the storage battery voltage, or the drive torque is lowered, or the drive shaft system is driven by a certain speed range. Vibrations may occur in the car body due to resonance. As a method of suppressing this vibration, there is Japanese Patent Laid-Open No. 7-163011.

【0003】[0003]

【発明が解決しようとする課題】この方法は、トルク電
動機の回転数及びエンジンの回転数を検出するだけでア
クセルやブレーキ,シフトポジションから得られる基準
となるトルク指令に関係なく振動抑制のための補償トル
ク指令を算出してある一定の回転数以上ならば振動を抑
制しようとするものである。
This method is for suppressing the vibration regardless of the reference torque command obtained from the accelerator, brake or shift position only by detecting the rotational speed of the torque motor and the rotational speed of the engine. When the compensation torque command is calculated and a certain number of revolutions or more is exceeded, vibration is suppressed.

【0004】しかし、ロールバックからアクセルを踏
み、前進しようとした極低回転時に発生する振動は抑え
られない。常時振動抑制の制御働かせた場合、積載量や
路面抵抗,空気抵抗,タイヤの空気圧により制御装置に
組み込まれた車両モデル速度と実際の車両速度とは合致
しにくく、電動機の回転数又はエンジンの回転数が低速
になるほどトルクや速度の検出精度の低下を招き、実際
の車両速度と予測の車両モデル速度との差が大きくな
る。その結果、低トルク指令のとき、アクセルやブレー
キからのトルク指令に対し振動を抑制しようとする補償
トルク指令の値の割合が大きくなり、振動抑制用の補償
トルク演算が悪影響を及ぼし、逆に振動を増幅させて自
動車が安全かつスムーズに停止できない場合がある。
However, it is impossible to suppress the vibration generated at the extremely low rotation speed when the accelerator is pressed from the rollback to move forward. When the control of constant vibration control is operated, it is difficult to match the actual vehicle speed with the vehicle model speed incorporated in the control device due to the load capacity, road surface resistance, air resistance, and tire air pressure. The lower the number, the lower the accuracy of torque or speed detection, and the greater the difference between the actual vehicle speed and the predicted vehicle model speed. As a result, when the low torque command is issued, the ratio of the value of the compensation torque command that tries to suppress the vibration becomes larger than that of the torque command from the accelerator or brake, and the compensating torque calculation for vibration suppression adversely affects the vibration. There is a case that the car cannot be stopped safely and smoothly by amplifying.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決させる
ために、本発明の第1に電動機とトルク指令により前記
電動機を駆動するための電力変換装置、前記電力変換装
置を制御する手段を備えた電動機制御装置、前記電動機
制御装置が電動機の回転数を検出して負荷を駆動する速
度を演算する手段、電動機のトルク指令を入力し負荷モ
デルから負荷モデル速度を演算する手段、前記負荷モデ
ル速度と電動機の速度との差に基づき、補償トルクを演
算する手段を備えた自動車の制御装置において、前記電
動機制御装置が前記トルク指令の大きさにより前記補償
トルクによる前記トルク指令の補償を停止する手段を備
えたことを特徴とする自動車の制御装置を発明の要旨と
するものである。また、本発明の第2に電動機とトルク
指令により前記電動機を駆動するための電力変換装置、
前記電力変換装置を制御する手段を備えた電動機制御装
置、前記電動機制御装置が車両速度を検出して実際の車
両速度を演算する手段、電動機のトルク指令を入力し負
荷モデルから負荷モデル速度を演算する手段、前記負荷
モデル速度と車両速度との差に基づき、補償トルクを演
算する手段を備えた自動車の制御装置において、前記電
動機制御装置が前記トルク指令の大きさにより前記補償
トルクによる前記トルク指令の補償を停止する手段を備
えたことを特徴とする自動車の制御装置を発明の要旨と
するものである。また、本発明の第3に自動車の駆動力
を発生するエンジン、前記エンジンのトルク指令を制御
する手段を備えた内燃機関の制御装置、前記制御装置が
前記自動車の動作を模擬した車両モデルから車両モデル
速度を演算する手段、前記車両モデル速度と前記エンジ
ンの回転速度との差に基づき前記エンジンのトルクを制
御する補償トルクを演算する手段を備えた自動車の制御
装置は、前記エンジンのトルクの大きさにより前記補償
トルクによる前記トルク指令の補償を停止する手段を備
えたことを特徴とする自動車の制御装置を発明の要旨と
するものである。
In order to solve the above-mentioned problems, a first aspect of the present invention comprises an electric motor and a power converter for driving the electric motor according to a torque command, and means for controlling the power converter. Motor controller, means for calculating the speed at which the motor controller detects the rotation speed of the motor to drive the load, means for inputting the torque command of the motor to calculate the load model speed from the load model, the load model speed And a speed of the electric motor based on a difference between the motor and the speed of the electric motor, the electric motor control means for stopping the compensation of the torque command by the compensation torque according to the magnitude of the torque command. The present invention provides a control device for an automobile, which is characterized by including the following. A second aspect of the present invention is an electric power converter for driving the electric motor according to the electric motor and the torque command.
An electric motor control device having a means for controlling the electric power conversion device, a means for the electric motor control device to detect a vehicle speed to calculate an actual vehicle speed, and a load model speed is calculated from a load model by inputting a torque command of the electric motor. Means for calculating the compensation torque based on the difference between the load model speed and the vehicle speed, the motor control device according to the magnitude of the torque command, the torque command according to the compensation torque. SUMMARY OF THE INVENTION An object of the present invention is to provide a control device for an automobile, which is provided with means for stopping the compensation of the above. Thirdly, according to a third aspect of the present invention, an engine for generating a driving force for an automobile, a control device for an internal combustion engine including means for controlling a torque command of the engine, and a vehicle model from which the control device simulates the operation of the automobile are used. A vehicle control device comprising means for calculating a model speed and means for calculating a compensation torque for controlling a torque of the engine based on a difference between the vehicle model speed and a rotation speed of the engine is Accordingly, the present invention provides a control device for an automobile, which is provided with means for stopping the compensation of the torque command by the compensation torque.

【0006】制御手段で、電動機のトルク指令を基準入
力とし、車両モデルを用いて車両の動作を予測演算を行
う。車両モデルは、電動機慣性と電動機側に換算した車
両慣性の和を車両モデル慣性としており、そこで電動機
のトルク指令に対する車両速度を予測算出するものであ
る。次に、この予測算出された速度と実際の電動機の回
転速度との差を算出し、所定の伝達関数を持つ演算を行
い、振動補償トルクを算出する。この値と最初の基準ト
ルク指令と和をとり、電力変換装置の制御を行う。実際
には車両の場合、負荷外乱やそのときの質量の違いによ
り振動を起こすに至らなく、速度は合致しない。そこ
で、基準となるトルク指令が十分小さいとき、いわゆる
低トルク駆動時はその基準トルクのみで電動機を動か
し、それ以外のときは振動補償トルクを加えた値で動作
させるようにすることで、低速,低トルクで発生する異
常トルクをなくすことができ、安全でスムーズな運転が
可能となる。
The control means uses the torque command of the electric motor as a reference input, and predicts the operation of the vehicle using the vehicle model. The vehicle model uses the sum of the motor inertia and the vehicle inertia converted on the electric motor side as the vehicle model inertia, and predicts and calculates the vehicle speed with respect to the torque command of the electric motor. Next, the difference between the predicted and calculated speed and the actual rotation speed of the electric motor is calculated, a calculation having a predetermined transfer function is performed, and the vibration compensation torque is calculated. This value is summed with the first reference torque command to control the power converter. Actually, in the case of a vehicle, vibration does not occur due to load disturbance or difference in mass at that time, and speeds do not match. Therefore, when the reference torque command is sufficiently small, the motor is driven only by the reference torque during so-called low torque driving, and at other times, the motor is operated with a value including the vibration compensation torque, so that the low speed, The abnormal torque generated by low torque can be eliminated, and safe and smooth operation becomes possible.

【0007】また、本発明の第2の目的に対しては、第
1の目的で用いている電動機の回転数検出のセンサレス
化に対応して、車両速度センサを用いて実際の速度を得
る。一方、車両モデルをアクセルとブレーキ,シフトポ
ジションから得られた基準トルクに突き合わせ、予測の
速度を算出し、実際の車両速度と比較し振動を抑制させ
るための補償トルクを算出させる。基準トルク指令が十
分小さいとき、いわゆる低トルク駆動時はその基準トル
クのみで電動機を動かし、それ以外のときは補償トルク
を加えた値で動作させるようにすることで、低速,低ト
ルクで発生する異常トルクをなくすことができ、安全で
スムーズな運転が可能となる。
For the second object of the present invention, the vehicle speed sensor is used to obtain the actual speed in response to the sensorless detection of the rotational speed of the electric motor used for the first object. On the other hand, the vehicle model is matched with the reference torque obtained from the accelerator, brake, and shift position, the predicted speed is calculated, and the compensation torque for suppressing the vibration is calculated by comparing with the actual vehicle speed. When the reference torque command is sufficiently small, the so-called low torque drive drives the motor only with the reference torque, and at other times, it operates with the value to which the compensation torque is added. Abnormal torque can be eliminated and safe and smooth operation becomes possible.

【0008】また、本発明の第3の目的に対しては、エ
ンジンで駆動する自動車について車両モデル速度と実際
の車両速度から得られた誤差を含んだ補償トルク分を低
トルク駆動時は加算させないため、異常トルクの発生を
なくすことができ、安全でスムーズな運転が可能とな
る。
Further, for the third object of the present invention, a compensation torque component including an error obtained from a vehicle model speed and an actual vehicle speed for a vehicle driven by an engine is not added during low torque driving. Therefore, generation of abnormal torque can be eliminated, and safe and smooth operation can be performed.

【0009】[0009]

【発明の実施の形態】以下本発明の一実施例を説明す
る。図1は本実施例の電気車における構成図を示す。三
相結線で走行用の電動機1は電力変換装置2によって交
流の電力を与えられることにより駆動する。電気車は大
抵蓄電池3を代表するように直流の電源装置を搭載す
る。電力変換装置2は蓄電池3の直流電源を入力とし、
トランジスタを代表とするスイッチング素子で構成され
る回路で交流電力に変換する。交流に変換するには、電
動機1に流れる電流を検出するために三相分の電流セン
サ23を備え、電流センサ23の出力を電動機制御手段
4に帰還して、交流の電流を流すように電流制御し、P
WM発生装置5により搬送波と比較してPWM信号を出
力している。PWM信号によりスイッチング素子が駆動
し電動機1に交流の電流が流れ駆動することができる。
基準トルク指令τc は、トルク指令発生手段13で算出
される。これは、アクセル6の踏み込み量またはブレー
キ7の踏み込み量そしてシフトポジション8に応じて変
化する。基準トルク指令τc の大きさにより電動機1に
流れる各相の電流の振幅や周波数が変化し、所定の出力
トルクを発生することができる。電動機1には回転数を
検出するエンコーダ9が設けられ、電動機制御手段4に
入力し電動機1の回転数を検出する。電動機1の駆動力
は減速機10を介し電気車のタイヤ11へと伝達されて
電気車が駆動する。そのため減速比が変わらなければエ
ンコーダ9により車両速度がわかる。また、一般的に自
動車は実際の車両速度を計るために車両速度センサ12
が備えられる。このため、エンコーダ9,車両速度セン
サ12どちらでも車両速度を検出することができる。エ
ンコーダ9からの値は、トルク指令発生手段13と補正
トルク演算手段14、一般に知られているベクトル演算
手段15に入力される。また、電動機制御手段4には、
車両モデル16が入力され、タイヤ11の径,車両重
量,車両慣性相当重量、減速機10のギヤ比、電動機1
の回転子慣性が入力されている。これら車両データを用
い、基準トルク指令τc の値により車両モデル速度演算
手段17で車両速度を予測する。図3は、図1に示す車
両モデル速度演算手段17と補償トルク演算手段14の
演算内容を、ブロック図で示したものである。モデル速
度演算手段17は、トルク指令発生手段13から算出し
た基準トルク指令τc と補償トルク演算手段14で得ら
れたモデル負荷トルクτLMの和である実際のトルクとみ
なしたτp を算出し、車両モデル特性Gvm(S) に応じて
予測の車両モデル速度ωR を算出する。補償トルク演算
手段14は、予測された車両モデル速度ωR と実際の車
両速度ωV との差ΔωM から振動補償演算Gw(s)を行
い、補償トルクτg を算出する。速度差ΔωM を用いて
負荷トルク演算GLM(s) を行い、その結果をモデル負荷
トルクτLMとしている。速度差ΔωM は振動成分を除く
と、負荷トルクτL の影響を反映しているので、この速
度差ΔωM を入力して負荷トルクτL を模擬したモデル
負荷トルクτLMを算出することができる。負荷トルク演
算GLM(s) は比例演算でよい。振動補償演算Gw(s)も比
例制御演算でよく、車両モデル速度ωR が車両速度ωV
に一致していれば、車両モデル16及び補償トルク演算
手段14により、速度差ΔωM を検出できたことと等価
になる。ここに、振動の要因が発生しようとして速度変
化が予測と違って現れるとモデル速度差ΔωM が現れ
る。ここで、この偏差を抑えようと補償トルクτg が発
生し、出力トルクを調整して速度差ΔωM を零にしよう
とする。実際に出る振動に対してはその微分要素となる
速度差ΔωM を積分したものであり、速度差ΔωM を単
純に比例演算を行い、帰還することで、振動の発生を初
期段階で抑えることができるので振動抑制に効果があ
る。比例制御のゲインを高くすれば、振動の抑制効果は
増大する。しかし、車両モデル速度ωR と実際の車両速
度ωV とは、正確に合致しにくい。特に低速・低トルク
指令の領域では、補償トルクτg が悪影響を起こし逆に
振動しやすい。そこで、この領域では、補償トルクτg
を用いない様にするため、図4に示すようにスイッチの
役割をなす部分に補償トルクτg と基準トルクτc を読
み込ませる。このスイッチは図1の切り替え手段18に
対応する。このスイッチの制御は、自動車の搭乗者が振
動の体感しづらい基準トルク指令τc が小さい領域では
スイッチをオープンにする。振動が体感できる基準トル
ク指令τc の領域になったらスイッチをクローズにす
る。このスイッチ制御された後の出力は、実際に電動機
1を動作させるためのトルク指令τM となる。基準トル
クτc がいくら以下になったら切り放すかは、実際に試
験して値を決めるのがよい。このとき、補償トルクτg
の切り放しと接続を頻繁にやらないようにするため、切
り放すときの基準トルク指令τc と接続するときの基準
トルク指令τc は異なるようにヒステリシスを設ける。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below. FIG. 1 shows a block diagram of the electric vehicle of this embodiment. The electric motor 1 for traveling with three-phase connection is driven by being supplied with AC power by the power converter 2. Most electric vehicles are equipped with a DC power supply device, which is representative of the storage battery 3. The power converter 2 receives the DC power supply of the storage battery 3 as an input,
It is converted into AC power by a circuit composed of switching elements represented by transistors. In order to convert into an alternating current, a current sensor 23 for three phases is provided to detect the current flowing through the electric motor 1, and the output of the current sensor 23 is fed back to the electric motor control means 4 so that an alternating current flows. Control P
The WM generator 5 compares the carrier wave and outputs a PWM signal. The switching element is driven by the PWM signal, and an alternating current flows through the electric motor 1 to drive the electric motor 1.
The reference torque command τ c is calculated by the torque command generating means 13. This changes depending on the amount of depression of the accelerator 6 or the amount of depression of the brake 7 and the shift position 8. Depending on the magnitude of the reference torque command τ c , the amplitude and frequency of the current of each phase flowing in the electric motor 1 change, and a predetermined output torque can be generated. The electric motor 1 is provided with an encoder 9 for detecting the number of revolutions, which is input to the electric motor control means 4 to detect the number of revolutions of the electric motor 1. The driving force of the electric motor 1 is transmitted to the tire 11 of the electric vehicle via the speed reducer 10 to drive the electric vehicle. Therefore, if the reduction ratio does not change, the vehicle speed can be known by the encoder 9. Generally, a vehicle has a vehicle speed sensor 12 to measure the actual vehicle speed.
Is provided. Therefore, both the encoder 9 and the vehicle speed sensor 12 can detect the vehicle speed. The value from the encoder 9 is input to the torque command generating means 13, the correction torque calculating means 14, and the generally known vector calculating means 15. Further, the electric motor control means 4 includes
The vehicle model 16 is input, and the diameter of the tire 11, vehicle weight, vehicle inertia equivalent weight, gear ratio of the speed reducer 10, electric motor 1
The rotor inertia of has been entered. Using these vehicle data, the vehicle model speed calculation means 17 predicts the vehicle speed based on the value of the reference torque command τ c . FIG. 3 is a block diagram showing the calculation contents of the vehicle model speed calculation means 17 and the compensation torque calculation means 14 shown in FIG. The model speed calculation means 17 calculates τ p, which is regarded as the actual torque which is the sum of the reference torque command τ c calculated from the torque command generation means 13 and the model load torque τ LM obtained by the compensation torque calculation means 14. , The predicted vehicle model speed ω R is calculated according to the vehicle model characteristic G vm (S). The compensation torque calculation means 14 performs a vibration compensation calculation G w (s) from the difference Δω M between the predicted vehicle model speed ω R and the actual vehicle speed ω V to calculate the compensation torque τ g . The load torque calculation G LM (s) is performed using the speed difference Δω M , and the result is used as the model load torque τ LM . Since the speed difference Δω M reflects the influence of the load torque τ L when the vibration component is excluded, it is possible to calculate the model load torque τ LM by simulating the load torque τ L by inputting this speed difference Δω M. it can. The load torque calculation G LM (s) may be a proportional calculation. The vibration compensation calculation G w (s) may be a proportional control calculation, and the vehicle model speed ω R is the vehicle speed ω V
If it coincides with, it is equivalent to that the vehicle model 16 and the compensation torque calculation means 14 can detect the speed difference Δω M. A model speed difference Δω M appears when a change in speed appears differently than expected due to the occurrence of a vibration factor. Here, in order to suppress this deviation, a compensation torque τ g is generated, and the output torque is adjusted to try to make the speed difference Δω M zero. For actually exits vibration is obtained by integrating the speed difference [Delta] [omega M to be the derivative element performs simple proportional calculation the speed difference [Delta] [omega M, by feedback, to suppress generation of vibration in the initial stage This is effective in suppressing vibration. If the gain of the proportional control is increased, the vibration suppressing effect is increased. However, it is difficult to accurately match the vehicle model speed ω R and the actual vehicle speed ω V. Particularly in the low speed / low torque command range, the compensating torque τ g has a bad influence and is liable to vibrate. Therefore, in this region, the compensation torque τ g
In order not to use the compensation torque τ g , the compensation torque τ g and the reference torque τ c are read in the portion which plays the role of the switch as shown in FIG. This switch corresponds to the switching means 18 in FIG. The control of this switch opens the switch in a region where the reference torque command τ c is small, in which it is difficult for passengers of the vehicle to experience vibration. When the vibration reaches the range of the reference torque command τ c where you can feel it, close the switch. The output after this switch control becomes the torque command τ M for actually operating the electric motor 1. It is better to actually test and determine the value when the reference torque τ c becomes less than or equal to which the reference torque τ c should be released. At this time, the compensation torque τ g
Order to not do a disassociate the connection frequently, the reference torque command tau c when connecting to the reference torque command tau c when detach the provision of the hysteresis differently.

【0010】なお、これらは、電動機1につけられたエ
ンコーダ9で実際の車両速度ωV を検出したものであ
る。電動機の回転数を検出するのに実際のタイヤ11の
回転数を検出するための車両速度センサ12でも可能で
ある。図1に示すように、電動機制御手段4内に入力す
る前に減速器10のギヤ比を考慮して換算器19で電動
機1の回転数に換算させれば、同じように振動抑制の制
御が可能である。
These are the actual vehicle speed ω V detected by the encoder 9 attached to the electric motor 1. It is also possible to use the vehicle speed sensor 12 for detecting the actual rotation speed of the tire 11 to detect the rotation speed of the electric motor. As shown in FIG. 1, if the converter 19 is used to convert the rotation speed of the electric motor 1 in consideration of the gear ratio of the speed reducer 10 before inputting into the electric motor control means 4, the vibration suppression control is similarly performed. It is possible.

【0011】図2は電動機1の代わりにエンジン21を
用いて自動車を駆動するときの実施例である。エンジン
21の回転数を検出する装置と変速比を伝える変速比情
報22を備え、アクセル6とブレーキ7,シフトポジシ
ョン8の状態からトルク指令発生手段13で基準トルク
指令τc を発生させる。一方、車両モデル16の情報を
予め入力させておき、基準トルク指令τc と変速比情報
22の大きさにより車両モデル速度演算17で予測の車
両速度を得る。この速度と実際の車両速度が合致しない
場合、補償トルク演算14で補償トルクτg が発生す
る。発生した補償トルクτg は、高トルク駆動時に基準
トルク指令τc に加算させ振動発生時には振動を抑制さ
せる。低トルク駆動時は、基準トルクτc に補償トルク
τg を加算させないようにスイッチの働きをする切り換
え手段18を設ける。前記切り換え手段18は、基準ト
ルク指令τc の大きさを判断できるスイッチの役割であ
る。これにより、振動を抑制させる制御を動作させた時
の、悪影響をなくすことができる。
FIG. 2 shows an embodiment in which an engine 21 is used instead of the electric motor 1 to drive an automobile. A device for detecting the number of revolutions of the engine 21 and gear ratio information 22 for transmitting a gear ratio are provided, and the torque command generating means 13 generates a reference torque command τ c from the state of the accelerator 6, the brake 7, and the shift position 8. On the other hand, the information of the vehicle model 16 is input in advance, and the predicted vehicle speed is obtained by the vehicle model speed calculation 17 based on the reference torque command τ c and the size of the gear ratio information 22. When this speed does not match the actual vehicle speed, the compensation torque τ g is generated in the compensation torque calculation 14. The generated compensating torque τ g is added to the reference torque command τ c during high torque driving, and the vibration is suppressed when the vibration occurs. At the time of low torque driving, a switching means 18 is provided which functions as a switch so as not to add the compensation torque τ g to the reference torque τ c . The switching means 18 functions as a switch that can determine the magnitude of the reference torque command τ c . As a result, it is possible to eliminate adverse effects when the control for suppressing the vibration is operated.

【0012】本実施例では、自動車に振動抑制の制御を
通用するとき、車両と車両モデルの相違による不適切な
補償に起因する異常トルクの発生を防止することができ
る。
In this embodiment, when applying the vibration suppression control to the automobile, it is possible to prevent the generation of the abnormal torque due to the inappropriate compensation due to the difference between the vehicle and the vehicle model.

【0013】[0013]

【発明の効果】本発明の自動車の制御装置によれば振動
を体感しづらいが、一方で車両モデルが実際の車と合致
しにくい、低トルク駆動時に振動を抑制させる補償トル
クを加えないことで、基準トルク指令のみで制御するこ
とにより、自動車を安全かつスムーズに制御することが
できる。
According to the control device for an automobile of the present invention, it is difficult to feel the vibration, but on the other hand, the vehicle model does not easily match the actual vehicle, and the compensating torque for suppressing the vibration is not applied at the time of low torque driving. By controlling only with the reference torque command, the vehicle can be controlled safely and smoothly.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すブロック図。FIG. 1 is a block diagram showing one embodiment of the present invention.

【図2】エンジン車の場合のエンジン制御装置と振動抑
制の装置を組み合わせたブロック図。
FIG. 2 is a block diagram in which an engine control device and a vibration suppressing device in the case of an engine vehicle are combined.

【図3】車両モデルと補償トルク演算から補償トルク指
令を算出するブロック図。
FIG. 3 is a block diagram for calculating a compensation torque command from a vehicle model and a compensation torque calculation.

【図4】補償トルクの切り替え手段を示すブロック図。FIG. 4 is a block diagram showing a compensation torque switching unit.

【符号の説明】[Explanation of symbols]

1…電動機、2…電力変換装置、3…蓄電池、4…電動
機制御手段、5…PWM発生装置、6…アクセル、7…
ブレーキ、8…シフトポジション、9…エンコーダ、1
0…減速機、11…タイヤ、12…車両速度センサ、1
3…トルク指令発生手段、14…補償トルク演算手段、
15…ベクトル演算手段、16…車両モデル、17…車
両モデル速度演算手段、18…切り替え手段、19…換
算器、23…電流センサ。
DESCRIPTION OF SYMBOLS 1 ... Electric motor, 2 ... Electric power converter, 3 ... Storage battery, 4 ... Electric motor control means, 5 ... PWM generator, 6 ... Accelerator, 7 ...
Brake, 8 ... shift position, 9 ... encoder, 1
0 ... reducer, 11 ... tire, 12 ... vehicle speed sensor, 1
3 ... Torque command generation means, 14 ... Compensation torque calculation means,
15 ... Vector computing means, 16 ... Vehicle model, 17 ... Vehicle model speed computing means, 18 ... Switching means, 19 ... Converter, 23 ... Current sensor.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】電動機とトルク指令により前記電動機を駆
動するための電力変換装置、前記電力変換装置を制御す
る手段を備えた電動機制御装置、前記電動機制御装置が
電動機の回転数を検出して負荷を駆動する速度を演算す
る手段、電動機のトルク指令を入力し負荷モデルから負
荷モデル速度を演算する手段、前記負荷モデル速度と電
動機の速度との差に基づき補償トルクを演算する手段を
備えた自動車の制御装置において、前記電動機制御装置
が前記トルク指令の大きさにより前記補償トルクによる
前記トルク指令の補償を停止する手段を備えたことを特
徴とする自動車の制御装置。
1. An electric power converter for driving the electric motor according to an electric motor and a torque command, an electric motor controller having means for controlling the electric power converter, and the electric motor controller detecting the rotational speed of the electric motor to load the load. A vehicle having means for calculating a speed for driving a motor, means for calculating a load model speed from a load model by inputting a torque command of the electric motor, and means for calculating a compensation torque based on a difference between the load model speed and the speed of the electric motor 2. The control device for an automobile according to claim 1, wherein the electric motor control device includes means for stopping the compensation of the torque command by the compensation torque according to the magnitude of the torque command.
【請求項2】電動機とトルク指令により前記電動機を駆
動するための電力変換装置、前記電力変換装置を制御す
る手段を備えた電動機制御装置、前記電動機制御装置が
電動機の回転数を検出して負荷を駆動する速度を演算す
る手段、電動機のトルク指令を入力し負荷モデルから負
荷モデル速度を演算する手段、前記負荷モデル速度と電
動機の速度との差に基づき補償トルクを演算する手段を
備えた自動車の制御装置において、前記電動機制御装置
が前記トルク指令の大きさにより前記速度差に対する補
償トルクのゲインを調整する手段を備えたことを特徴と
する自動車の制御装置。
2. An electric power converter for driving the electric motor according to an electric motor and a torque command, an electric motor controller having means for controlling the electric power converter, and the electric motor controller detecting the number of revolutions of the electric motor to load the load. A vehicle having means for calculating a speed for driving a motor, means for calculating a load model speed from a load model by inputting a torque command of the electric motor, and means for calculating a compensation torque based on a difference between the load model speed and the speed of the electric motor 2. The control device for an automobile according to claim 1, wherein the electric motor control device includes means for adjusting the gain of the compensation torque with respect to the speed difference according to the magnitude of the torque command.
【請求項3】電動機とトルク指令により前記電動機を駆
動するための電力変換装置、前記電力変換装置を制御す
る手段を備えた電動機制御装置、前記電動機制御装置が
車両速度を検出して実際の車両速度を演算する手段、電
動機のトルク指令を入力し負荷モデルから負荷モデル速
度を演算する手段、前記負荷モデル速度と車両速度との
差に基づき、補償トルクを演算する手段を備えた自動車
の制御装置において、前記電動機制御装置が前記トルク
指令の大きさにより前記補償トルクによる前記トルク指
令の補償を停止する手段を備えたことを特徴とする自動
車の制御装置。
3. An electric power converter for driving the electric motor according to an electric motor and a torque command, an electric motor controller having means for controlling the electric power converter, and the electric motor controller detecting a vehicle speed to detect an actual vehicle. A vehicle control device comprising means for calculating a speed, means for calculating a load model speed from a load model by inputting a torque command of an electric motor, and means for calculating a compensation torque based on a difference between the load model speed and a vehicle speed. The motor control device according to claim 1, further comprising means for stopping the compensation of the torque command by the compensation torque according to the magnitude of the torque command.
【請求項4】電動機とトルク指令により前記電動機を駆
動するための電力変換装置、前記電力変換装置を制御す
る手段を備えた電動機制御装置、前記電動機制御装置が
車両速度を検出して実際の車両速度を演算する手段、電
動機のトルク指令を入力し負荷モデルから負荷モデル速
度を演算する手段、前記負荷モデル速度と車両速度との
差に基づき補償トルクを演算する手段を備えた自動車の
制御装置において、前記電動機制御装置が前記トルク指
令の大きさにより前記速度差に対する補償トルクのゲイ
ンを調整する手段を備えたことを特徴とする自動車の制
御装置。
4. An electric power converter for driving the electric motor according to an electric motor and a torque command, an electric motor controller having means for controlling the electric power converter, and the electric motor controller detecting a vehicle speed to detect an actual vehicle. A vehicle control apparatus comprising: a means for calculating a speed; a means for calculating a load model speed from a load model by inputting a torque command of an electric motor; and a means for calculating a compensation torque based on a difference between the load model speed and a vehicle speed. The motor control device includes means for adjusting the gain of the compensation torque with respect to the speed difference according to the magnitude of the torque command.
【請求項5】自動車の駆動力を発生するエンジン、前記
エンジンのトルク指令を制御する手段を備えた内燃機関
の制御装置、前記制御装置が前記自動車の動作を模擬し
た車両モデルから車両モデル速度を演算する手段、前記
車両モデル速度と前記エンジンの回転速度との差に基づ
き前記エンジンのトルクを制御する補償トルクを演算す
る手段を備えた自動車の制御装置は、前記エンジンのト
ルクの大きさにより前記補償トルクによる前記トルク指
令の補償を停止する手段を備えたことを特徴とする自動
車の制御装置。
5. An engine for generating a driving force for an automobile, a control device for an internal combustion engine comprising means for controlling a torque command of the engine, and the control device for deriving a vehicle model speed from a vehicle model simulating the operation of the automobile. A vehicle control device comprising means for calculating, a means for calculating a compensation torque for controlling the torque of the engine based on the difference between the vehicle model speed and the rotation speed of the engine, is based on the magnitude of the torque of the engine. A vehicle control device comprising means for stopping the compensation of the torque command by the compensation torque.
【請求項6】自動車の駆動力を発生するエンジン、前記
エンジンのトルク指令を制御する手段を備えた内燃機関
の制御装置、前記制御装置が前記自動車の動作を模擬し
た車両モデルから車両モデル速度を演算する手段、前記
車両モデル速度と前記エンジンの回転速度との差に基づ
き前記エンジンのトルクを制御する補償トルクを演算す
る手段を備えた自動車の制御装置において、前記トルク
指令の大きさにより前記速度差に対する補償トルクのゲ
インを調整する手段を備えたことを特徴とする自動車の
制御装置。
6. An engine for generating a driving force for an automobile, a control device for an internal combustion engine comprising means for controlling a torque command for the engine, and the control device for determining a vehicle model speed from a vehicle model simulating the operation of the automobile. In a control device for an automobile, comprising: a means for calculating, a means for calculating a compensation torque for controlling the torque of the engine based on a difference between the vehicle model speed and the rotation speed of the engine, wherein the speed is determined by the magnitude of the torque command. A vehicle control device comprising means for adjusting a gain of a compensation torque with respect to a difference.
JP8011512A 1996-01-26 1996-01-26 Control device for automobile Pending JPH09205704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8011512A JPH09205704A (en) 1996-01-26 1996-01-26 Control device for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8011512A JPH09205704A (en) 1996-01-26 1996-01-26 Control device for automobile

Publications (1)

Publication Number Publication Date
JPH09205704A true JPH09205704A (en) 1997-08-05

Family

ID=11780074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8011512A Pending JPH09205704A (en) 1996-01-26 1996-01-26 Control device for automobile

Country Status (1)

Country Link
JP (1) JPH09205704A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0953471A3 (en) * 1998-04-29 2001-10-17 Lockheed Martin Corporation Drive-line damping control for an electric vehicle
KR100579924B1 (en) * 2004-06-17 2006-05-15 현대자동차주식회사 A cruise control device of hybrid electric vehicle and control method thereof
KR101417666B1 (en) * 2013-07-23 2014-07-09 현대자동차주식회사 Method for removing motor torque ripple of electric vehicle
CN106143209A (en) * 2015-04-09 2016-11-23 上海汽车集团股份有限公司 Vehicle torsion vibration control method, Apparatus and system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0953471A3 (en) * 1998-04-29 2001-10-17 Lockheed Martin Corporation Drive-line damping control for an electric vehicle
KR100579924B1 (en) * 2004-06-17 2006-05-15 현대자동차주식회사 A cruise control device of hybrid electric vehicle and control method thereof
KR101417666B1 (en) * 2013-07-23 2014-07-09 현대자동차주식회사 Method for removing motor torque ripple of electric vehicle
CN106143209A (en) * 2015-04-09 2016-11-23 上海汽车集团股份有限公司 Vehicle torsion vibration control method, Apparatus and system

Similar Documents

Publication Publication Date Title
JP3114470B2 (en) Automotive control device
KR950015169B1 (en) Control system for induction motor driven electric car
US6283252B1 (en) Leveling control device for elevator system
JP5055836B2 (en) Phase shift detection device and detection method for magnetic pole position sensor for synchronous motor
JP5146102B2 (en) Vehicle behavior test equipment
JP2000125410A (en) Controller of electric vehicle
KR100934041B1 (en) Permanent Magnet Electric Motor Potato Detection Device and Method of Hybrid Electric Vehicle
JP3047598B2 (en) Electric power steering device
JPH09205704A (en) Control device for automobile
JP3903787B2 (en) Electric vehicle drive control device, electric vehicle drive control method, and program thereof
JP4026482B2 (en) Control device for engine test equipment
JPH099411A (en) Motor controller for electric motor car
JP2647576B2 (en) Electric inertia compensation controller for driving test machine
JP3053121B2 (en) Control method of induction motor
JPH11103507A (en) Speed controller for car
JPH06219312A (en) Electrically driven power steering device
JPH1014300A (en) Control system-switching system
JP3742582B2 (en) Electric vehicle control device
JP3969861B2 (en) Electric vehicle control device
JPS6114450B2 (en)
JPH0755006B2 (en) Electric vehicle constant speed device
JPH1014283A (en) Controller and control method for induction motor
JPH0937416A (en) Drive motor controller for electric vehicle
JPH09308281A (en) Motor drive control apparatus in electric vehicle
JPH0960547A (en) Throttle control device for internal combustion engine