JPH09203680A - Tire-air-pressure detector - Google Patents

Tire-air-pressure detector

Info

Publication number
JPH09203680A
JPH09203680A JP1225296A JP1225296A JPH09203680A JP H09203680 A JPH09203680 A JP H09203680A JP 1225296 A JP1225296 A JP 1225296A JP 1225296 A JP1225296 A JP 1225296A JP H09203680 A JPH09203680 A JP H09203680A
Authority
JP
Japan
Prior art keywords
wheel speed
tire
weighting
resonance
weighting amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1225296A
Other languages
Japanese (ja)
Other versions
JP3563187B2 (en
Inventor
Masakazu Takeichi
真和 竹市
Ikuo Hayashi
育生 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP01225296A priority Critical patent/JP3563187B2/en
Publication of JPH09203680A publication Critical patent/JPH09203680A/en
Application granted granted Critical
Publication of JP3563187B2 publication Critical patent/JP3563187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To detect the pressure of air in a tire by excluding the effect of disturbance from road surfaces and the like. SOLUTION: An electronic control device (ECU) 5 operates the wheel speeds from the detected signals of wheel-speed sensors 2a-2d, performs frequency analysis (FET operation) for the wheel speeds and obtains the signal strength for every frequency. Furthermore, the resonance frequency is obtained within the specified frequency range in order to make the resonance vibration appearing in the vicinity of 40Hz to be the object to be detected. Furthermore, two kinds of weighting processings for the resonance frequency are performed in accordance with whether the speed is located in the wheel-speed band (Vα-Vβ), where the resonance vibration is liable to occur, or not. That is to say, when the wheel speed is located in the wheel speed band of Vα-Vβ, a relatively large weighting amount Jα is used, and the weighting operation is performed. When the wheel speed is not located in the wheel speed band of Vα-Vβ, a relatively small weighting amount Jβ is used, and the weighting operation is performed. Thereafter, the ECU 5 computes the average resonance frequency from the resonance frequency of (n) times and operates the pressures of air of the tires 1a-1d from the above described resonance frequency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、タイヤの共振周
波数に基づいてタイヤの空気圧の状態を検知するタイヤ
空気圧検知装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tire air pressure detecting device for detecting a tire air pressure state based on a tire resonance frequency.

【0002】[0002]

【従来の技術】安価で信頼性の高いタイヤ空気圧検知装
置としては、特開平5−133831号公報に記載され
ているものがある。この開示例は、タイヤの振動周波数
成分を含む信号からタイヤの共振周波数を抽出し、この
共振周波数の変化から空気圧を検知するものである。
2. Description of the Related Art As an inexpensive and highly reliable tire air pressure detecting device, there is one disclosed in Japanese Patent Application Laid-Open No. 5-133831. In this disclosed example, the resonance frequency of the tire is extracted from the signal including the vibration frequency component of the tire, and the air pressure is detected from the change in the resonance frequency.

【0003】[0003]

【発明が解決しようとする課題】このタイヤの振動周波
数成分を含む信号にはタイヤの共振振動や、路面等から
の外乱による振動などが存在する。車両が走行する場
合、タイヤの共振振動は約40Hz付近に現れ、これを
周波数解析(例えばFFT演算)することで共振周波数
が求められ、その結果タイヤ空気圧が検知できる。しか
し、前記信号には、路面等からの外乱による振動が多く
存在し、前記40Hz付近の共振振動の強度と比較する
と、路面等からの外乱による振動は無視できない程に大
きい。その結果、外乱振動のランダムな信号の影響によ
って検出精度が低下するという問題があった。
The signal containing the vibration frequency component of the tire includes resonance vibration of the tire, vibration due to disturbance from the road surface, and the like. When the vehicle travels, the resonance vibration of the tire appears in the vicinity of about 40 Hz, and the resonance frequency is obtained by frequency analysis (for example, FFT calculation) of this, and as a result, the tire pressure can be detected. However, there are many vibrations due to disturbance from the road surface or the like in the signal, and the vibrations due to the disturbance from the road surface or the like are so large that they cannot be ignored when compared with the intensity of the resonance vibration around 40 Hz. As a result, there is a problem that the detection accuracy is lowered due to the influence of the random signal of the disturbance vibration.

【0004】本発明は、上記問題に着目してなされたも
のであって、その目的とするところは、路面等からの外
乱による影響を排除し、タイヤ空気圧を精度良く検知す
ることができるタイヤ空気圧検知装置を提供することで
ある。
The present invention has been made in view of the above problems, and an object of the present invention is to eliminate the influence of disturbance from a road surface or the like and to accurately detect the tire air pressure. It is to provide a detection device.

【0005】[0005]

【課題を解決するための手段】車両が走行する場合、タ
イヤの共振振動は一般に約40Hz付近に現れるが、そ
の共振信号の振動強度は車両毎に所定の車輪速度で最大
値を有し、この車輪速度から遠ざかるほど減少傾向を示
す。より具体的には、図4に示すように、タイヤを含む
振動系の共振振動のパワースペクトル(信号強度)のピ
ーク値は、図中の車輪速度V0で最大値を呈し、同車輪
速度V0から遠ざかるほど小さくなる。かかる場合、車
輪速度V0から遠ざかり共振振動のパワースペクトルの
ピーク値が小さくなることは、路面等からの外乱(ノイ
ズ)の影響を受け易いことを意味する。このことから、
本発明では、タイヤの共振振動が発生し易い車輪速度帯
(例えば、図4のVα〜Vβ)が存在することを見いだ
し、車輪速度に応じてタイヤの共振振動の信号に対する
重み付け量を設定する。
When the vehicle is traveling, the resonance vibration of the tire generally appears around 40 Hz, but the vibration intensity of the resonance signal has the maximum value at a predetermined wheel speed for each vehicle. It shows a decreasing tendency as it goes away from the wheel speed. More specifically, as shown in FIG. 4, the peak value of the power spectrum (signal intensity) of the resonance vibration of the vibration system including the tire exhibits the maximum value at the wheel speed V0 in the figure, and The smaller the distance, the smaller it gets. In this case, the fact that the peak value of the power spectrum of the resonance vibration becomes smaller as the distance from the wheel speed V0 becomes smaller means that it is easily affected by the disturbance (noise) from the road surface or the like. From this,
In the present invention, it is found that there exists a wheel speed band (for example, Vα to Vβ in FIG. 4) in which the tire resonance vibration is likely to occur, and the weighting amount for the signal of the tire resonance vibration is set according to the wheel speed.

【0006】つまり、本発明のタイヤ空気圧検知装置で
は、車両走行時におけるタイヤの振動周波数成分を検出
すると共に、タイヤ振動周波数成分の検出結果を用いて
前記タイヤの共振周波数を演算する。さらに、前記演算
されたタイヤの共振周波数に基づいて前記タイヤの空気
圧を検知する。このとき、タイヤを含む振動系の共振振
動のパワースペクトルのピーク値が最大値を呈する車輪
速度V0を中心として、当該車輪速度に近づくほど大き
くなる、重み付け量を設定する(重み付け量設定手
段)。前記重み付け量設定手段により設定された重み付
け量を用いて、その時のタイヤ振動周波数成分の検出結
果に対して重み付け演算を実施する(重み付け演算手
段)。さらに、前記重み付け量に応じた平均処理にて共
振周波数を演算する(共振周波数演算手段)。
That is, the tire air pressure detecting device of the present invention detects the vibration frequency component of the tire when the vehicle is running, and calculates the resonance frequency of the tire using the detection result of the tire vibration frequency component. Further, the air pressure of the tire is detected based on the calculated resonance frequency of the tire. At this time, a weighting amount is set around the wheel speed V0 at which the peak value of the power spectrum of the resonance vibration of the vibration system including the tire exhibits the maximum value, the weighting amount becoming larger toward the wheel speed (weighting amount setting means). Using the weighting amount set by the weighting amount setting means, weighting calculation is performed on the detection result of the tire vibration frequency component at that time (weighting calculation means). Further, the resonance frequency is calculated by averaging processing according to the weighting amount (resonance frequency calculating means).

【0007】上記構成によれば、路面等からの外乱によ
る影響が少ない場合(車輪速度が図4のV0付近にある
場合)には重み付け量が大きい値に設定され、同じく路
面等からの外乱による影響が多い場合(車輪速度が図4
のV0から遠ざかる場合)には重み付け量が小さい値に
設定される。その結果、外乱等のノイズの影響が排除で
き、タイヤ空気圧を精度良く検知することが可能とな
る。
According to the above construction, when the influence of the disturbance from the road surface or the like is small (when the wheel speed is in the vicinity of V0 in FIG. 4), the weighting amount is set to a large value, and also due to the disturbance from the road surface or the like. When there is a lot of influence (Wheel speed is
(When moving away from V0), the weighting amount is set to a small value. As a result, the influence of noise such as disturbance can be eliminated, and the tire air pressure can be accurately detected.

【0008】[0008]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(第1の実施の形態)以下、この発明を具体化した第1
の実施の形態を図面に従って説明する。
(First Embodiment) Hereinafter, a first embodiment of the present invention will be described.
Embodiments will be described with reference to the drawings.

【0009】図1は本実施の形態におけるタイヤ空気圧
検知装置の全体構成を示す概略図である。本図に示すよ
うに、車両のタイヤ1a,1b,1c,1dの回転軸
(図示せず)には、各々のタイヤ1a〜1dに対応する
車輪速度センサ2a,2b,2c,2dが設けられてお
り、同センサ2a〜2dはタイヤ1a〜1dの振動周波
数成分を含む信号を出力する。より具体的には、各車輪
速度センサ2a〜2dは、歯車3a,3b,3c,3d
及びピックアップコイル4a,4b,4c,4dにて構
成されている。歯車3a〜3dは、各タイヤ1a〜1d
の回転軸に同軸に取り付けられており、円盤状の磁性体
より成る。ピックアップコイル4a〜4dは、歯車3a
〜3d、即ちタイヤ1a〜1dの回転速度に応じた周期
を有する交流信号を出力する。
FIG. 1 is a schematic diagram showing the overall construction of a tire pressure detecting device according to this embodiment. As shown in the figure, wheel speed sensors 2a, 2b, 2c and 2d corresponding to the tires 1a to 1d are provided on rotating shafts (not shown) of vehicle tires 1a, 1b, 1c and 1d. Therefore, the sensors 2a to 2d output signals including vibration frequency components of the tires 1a to 1d. More specifically, the wheel speed sensors 2a to 2d include gears 3a, 3b, 3c, 3d.
And pickup coils 4a, 4b, 4c and 4d. The gears 3a to 3d are used for the tires 1a to 1d.
It is attached coaxially to the rotation axis of and is made of a disk-shaped magnetic body. The pickup coils 4a to 4d are gears 3a.
.About.3d, that is, an AC signal having a cycle corresponding to the rotation speeds of the tires 1a to 1d is output.

【0010】車輪速度センサ2a〜2dから出力される
交流信号は、波形整形回路、CPU,ROM,RAM等
によりなる公知の電子制御装置(以下、ECUという)
5に入力され、波形整形を含む所定の信号処理が行われ
る。この信号処理結果は、表示部6に入力され、表示部
6は、各タイヤ1a〜1dの空気圧の状態を運転者に報
知する。この表示部6は各タイヤ1a〜1dの空気圧の
状態を独立に表示してもよいし、1つの警告ランプを設
けて、いずれか1つのタイヤの空気圧が基準値以下にな
った時に点灯させて、それを警告するようにしてもよ
い。なお、本実施の形態では、車輪速度センサ2a〜2
dが車両走行時におけるタイヤの振動周波数成分を検出
する手段として構成されている。また、ECU5により
重み付け量設定手段、重み付け演算手段、共振周波数演
算手段、重み付け量加算手段及び共振周波数平均値演算
手段が構成されている。
AC signals output from the wheel speed sensors 2a to 2d are well-known electronic control units (hereinafter referred to as ECUs) including a waveform shaping circuit, CPU, ROM, RAM and the like.
5 is input to the signal processing unit 5 and predetermined signal processing including waveform shaping is performed. The result of this signal processing is input to the display unit 6, and the display unit 6 notifies the driver of the air pressure states of the tires 1a to 1d. The display unit 6 may independently display the air pressure states of the tires 1a to 1d, or one warning lamp may be provided to turn on the light when the air pressure of any one of the tires falls below a reference value. , It may be warned. In the present embodiment, the wheel speed sensors 2a-2
d is a means for detecting the vibration frequency component of the tire when the vehicle is running. Further, the ECU 5 constitutes weighting amount setting means, weighting calculation means, resonance frequency calculation means, weighting amount addition means, and resonance frequency average value calculation means.

【0011】図2は、ECU5の構成を作用毎に示す機
能ブロック図であり、その概要を略述する。図2におい
て、車輪速演算部11は車輪速度センサ2a〜2d(ピ
ックアップコイル3a〜3d)から出力された交流信号
を波形整形してパルス信号とすると共に、そのパルス間
隔及びタイヤ径から車輪速度V〔km/h〕を演算す
る。なお、車輪速度Vは、車両走行方向に対するタイヤ
の進む速度であって、車体速度(車速)に一致する。
FIG. 2 is a functional block diagram showing the configuration of the ECU 5 for each action, and its outline will be briefly described. In FIG. 2, the wheel speed calculation unit 11 waveform-shapes the AC signals output from the wheel speed sensors 2a to 2d (pickup coils 3a to 3d) into pulse signals, and determines the wheel speed V from the pulse interval and the tire diameter. [Km / h] is calculated. The wheel speed V is the speed at which the tire travels in the vehicle traveling direction, and matches the vehicle speed (vehicle speed).

【0012】また、周波数解析部12は、車輪速演算部
11により演算された車輪速度Vに対して周波数解析
(例えばFFT演算)を行って各周波数毎の信号強度を
演算する。また、40Hz付近に現れるタイヤの共振周
波数を算出する。重み付け量設定部13は、複数の重み
付け量を予め有しており、車輪速度Vに応じて重み付け
量を選択的に設定する。空気圧検知部14は、前記周波
数解析部12により得られたタイヤの共振周波数(或い
は、ばね定数)、及び前記重み付け量設定部13により
設定された重み付け量に基づいてタイヤの空気圧を検知
する。
The frequency analysis unit 12 also performs a frequency analysis (for example, FFT calculation) on the wheel speed V calculated by the wheel speed calculation unit 11 to calculate a signal strength for each frequency. Also, the resonance frequency of the tire that appears near 40 Hz is calculated. The weighting amount setting unit 13 has a plurality of weighting amounts in advance, and selectively sets the weighting amount according to the wheel speed V. The air pressure detection unit 14 detects the tire air pressure based on the tire resonance frequency (or spring constant) obtained by the frequency analysis unit 12 and the weighting amount set by the weighting amount setting unit 13.

【0013】次に、上記の如く構成されるタイヤ空気圧
検知装置の作用について、ECU5の処理動作を中心に
詳しく説明する。図3はECU5により実行されるタイ
ヤ空気圧判定ルーチンを示すフローチャートである。な
お、ECU5は各タイヤ1a〜1dに対して同様の処理
を行うため、ここではタイヤ1aに対する処理のみを示
す。
Next, the operation of the tire air pressure detecting device constructed as described above will be described in detail focusing on the processing operation of the ECU 5. FIG. 3 is a flowchart showing a tire pressure determination routine executed by the ECU 5. Since the ECU 5 performs the same processing on each tire 1a to 1d, only the processing on the tire 1a is shown here.

【0014】さて、図3のルーチンがスタートすると、
ステップ101では、車輪速度センサ2aの検出信号に
応じたパルス信号に対し、そのパルス間隔(回転角)を
その所要時間で除算すると共にタイヤ径を乗算すること
により車輪速度V〔km/h〕を演算する。ステップ1
02では、演算された車輪速度Vに対して周波数解析
(FFT演算)を行って各周波数毎の信号強度を求め
る。ステップ103では、40Hz付近に現れるタイヤ
の共振振動を検出対象とすべく周波数範囲をf1〜f2
とし、同f1〜f2の範囲内にて共振周波数Fkを求め
る。
Now, when the routine of FIG. 3 starts,
At step 101, the wheel speed V [km / h] is calculated by dividing the pulse interval (rotation angle) of the pulse signal corresponding to the detection signal of the wheel speed sensor 2a by the required time and multiplying the tire diameter. Calculate Step 1
In 02, frequency analysis (FFT calculation) is performed on the calculated wheel speed V to obtain the signal strength for each frequency. In step 103, the frequency range is f1 to f2 so that the resonance vibration of the tire appearing near 40 Hz is detected.
Then, the resonance frequency Fk is obtained within the range of f1 to f2.

【0015】一方、一般にタイヤの共振振動は以下の特
徴を有することが、本発明者の実験結果から確認され
た。即ち、図5に示すように、タイヤの共振振動は主と
して約40Hz付近に現れる。また、車輪速度Vの信号
強度は図4のように、所定の車輪速度V0(本実施の形
態では、50km/h)でピークとなり、V0以下又は
V0以上の車輪速度においては減少傾向を示す。このこ
とから、タイヤの共振振動は車輪速度と相関関係があ
り、共振振動の発生し易い車輪速度帯(Vα〜Vβ)が
存在することを見い出した。
On the other hand, it was confirmed from the experimental results of the present inventor that the resonance vibration of the tire generally has the following characteristics. That is, as shown in FIG. 5, the resonance vibration of the tire mainly appears near about 40 Hz. Further, as shown in FIG. 4, the signal intensity of the wheel speed V has a peak at a predetermined wheel speed V0 (50 km / h in the present embodiment), and tends to decrease at a wheel speed of V0 or lower or V0 or higher. From this, it was found that the resonance vibration of the tire has a correlation with the wheel speed, and that there exists a wheel speed band (Vα to Vβ) in which the resonance vibration is likely to occur.

【0016】言い加えれば、タイヤの振動周波数成分を
含む信号には、路面等からの外乱による振動成分(ノイ
ズ)も含まれる。このとき、車輪速度VがVα〜Vβの
車輪速度帯にあれば、共振振動による車輪速度Vの信号
強度は充分大きいため、路面等からの外乱による振動成
分の影響を受けにくい。これに対して、車輪速度VがV
α〜Vβの車輪速度帯から外れる場合には、共振振動に
よる車輪速度Vの信号強度は小さくなるため、路面等か
らの外乱による振動成分の影響を大きく受けることにな
る。この時、得られる共振周波数Fkには路面などから
の外乱振動によるランダムな信号の影響が大きく反映し
てしまい、そのため、安定したタイヤの共振振動による
周波数が得られにくくなる。
In other words, the signal including the vibration frequency component of the tire also includes the vibration component (noise) due to the disturbance from the road surface or the like. At this time, if the wheel speed V is in the wheel speed range of Vα to Vβ, the signal strength of the wheel speed V due to the resonance vibration is sufficiently large, so that it is unlikely to be affected by the vibration component due to the disturbance from the road surface or the like. On the other hand, the wheel speed V is V
When the wheel speed deviates from the wheel speed range of α to Vβ, the signal strength of the wheel speed V due to the resonance vibration becomes small, so that the vibration component due to the disturbance from the road surface or the like is greatly affected. At this time, the obtained resonance frequency Fk largely reflects the influence of a random signal due to the disturbance vibration from the road surface or the like, so that it becomes difficult to obtain a stable frequency due to the resonance vibration of the tire.

【0017】そこで、本実施の形態では、車輪速度Vが
Vα〜Vβの車輪速度帯にあるか否かに応じて、共振周
波数Fkに対して2種類の重み付け処理を行うこととし
た。つまり、車輪速度VがVα〜Vβの車輪速度帯にあ
れば、比較的大きな重み付け量Jαを設定し、車輪速度
VがVα〜Vβの車輪速度帯になければ、比較的小さな
重み付け量Jβを設定することとした(即ち、Jα>J
β)。
Therefore, in the present embodiment, two types of weighting processing are performed on the resonance frequency Fk depending on whether the wheel speed V is in the wheel speed range of Vα to Vβ. That is, if the wheel speed V is in the wheel speed range of Vα to Vβ, a relatively large weighting amount Jα is set, and if the wheel speed V is not in the wheel speed range of Vα to Vβ, a relatively small weighting amount Jβ is set. (Ie Jα> J
β).

【0018】図3の処理で示せば、ステップ104で
は、車輪速度VがVα〜Vβの車輪速度帯にあるか否か
を判別し、以下のステップ105〜108ではステップ
104の判別結果に応じた重み付け演算を実施する。即
ち、車輪速度VがVα〜Vβの車輪速度帯にあれば、ス
テップ104を肯定判別し、ステップ105で重み付け
量を「Jα」とする。また、続くステップ106では、
重み付け量Jαに基づいて前記ステップ103で抽出さ
れた共振周波数Fkに対して重み付け処理Fkn=Fk
・Jαを行う。
As shown in the process of FIG. 3, in step 104, it is judged whether or not the wheel speed V is in the wheel speed range of Vα to Vβ, and in the following steps 105 to 108, the judgment result of step 104 is determined. Perform a weighting operation. That is, if the wheel speed V is in the wheel speed range of Vα to Vβ, a positive determination is made in step 104, and the weighting amount is set to “Jα” in step 105. Further, in the following step 106,
Weighting processing Fkn = Fk for the resonance frequency Fk extracted in step 103 based on the weighting amount Jα.
・ Perform Jα.

【0019】車輪速度VがVα〜Vβの車輪速度帯にな
ければ、ステップ104を否定判別し、ステップ107
で重み付け量を「Jβ」とする(Jβ<Jα)。また、
続くステップ108では、設定された重み付け量Jβに
基づいて前記ステップ103で抽出された共振周波数F
kに対して重み付け処理Fkn=Fk・Jβを行う。こ
のように、重み付け量は車輪速度が変わる度に設定変更
される。
If the wheel speed V is not within the wheel speed range of Vα to Vβ, a negative decision is made in step 104 and step 107
Then, the weighting amount is set to “Jβ” (Jβ <Jα). Also,
In the following step 108, the resonance frequency F extracted in step 103 is calculated based on the set weighting amount Jβ.
A weighting process Fkn = Fk · Jβ is performed on k. In this way, the weighting amount is changed every time the wheel speed changes.

【0020】重み付け演算の実施後において、ステップ
109では、これまでに抽出された複数の共振周波数
(Fk1〜Fkn)毎に設定した重み付け量(J1〜J
n)を全て加算し、それまでの総重み付け量Jtを算出
する(Jt=J1+J2+J3+・・・+Jn)。ま
た、ステップ110では、総重み付け量Jtが予め設定
しておいた判定量Jrefよりも大きくなったか否かを
判別し、総重み付け量Jtが判定量Jref以下であれ
ばステップ101に戻り前述のステップ101〜109
を再度実行する。
After the weighting calculation is performed, in step 109, the weighting amount (J1 to J) set for each of the plurality of resonance frequencies (Fk1 to Fkn) extracted so far.
n) are all added and the total weighting amount Jt up to that point is calculated (Jt = J1 + J2 + J3 + ... + Jn). In step 110, it is determined whether or not the total weight amount Jt is larger than the preset determination amount Jref. If the total weight amount Jt is equal to or smaller than the determination amount Jref, the process returns to step 101 and the above-mentioned step is performed. 101-109
And try again.

【0021】総重み付け量Jtが判定量Jrefよりも
大きくなると、ステップ111に進み、重み付け処理後
の共振周波数Fk1〜Fknを平均化処理することによ
り、所定回数における共振周波数の平均値Fkaveを
算出する{Fkave=(Fk1+Fk2+Fk3+・
・・+Fkn)/Jt}。
When the total weighting amount Jt becomes larger than the determination amount Jref, the routine proceeds to step 111, where the resonance frequencies Fk1 to Fkn after the weighting processing are averaged to calculate the average value Fkave of the resonance frequencies at a predetermined number of times. {Fkave = (Fk1 + Fk2 + Fk3 + ・
.. + Fkn) / Jt}.

【0022】その後、ステップ112では、図6に示す
共振周波数と空気圧の関係から、前記ステップ111で
検出した共振周波数Fkaveを基に空気圧Pを演算す
る。また、ステップ113では、求められた空気圧Pが
予め設定された許容下限値Pd以下であるか否かを判別
し、空気圧Pが許容下限値Pd以下であればステップ1
14に進み、表示部6より運転者に警報表示を行わせ
る。
Thereafter, in step 112, the air pressure P is calculated from the relationship between the resonance frequency and the air pressure shown in FIG. 6 based on the resonance frequency Fkave detected in step 111. Further, in step 113, it is determined whether or not the obtained air pressure P is equal to or lower than a preset allowable lower limit value Pd. If the air pressure P is equal to or lower than the allowable lower limit value Pd, step 1
Proceeding to 14, the display unit 6 causes the driver to display an alarm.

【0023】以上詳述した本実施の形態によれば、以下
に示す効果が得られる。 (a)路面等からの外乱による影響が少ない場合(車輪
速度が図4のV0付近にある場合)には重み付け量を比
較的大きい値「Jα」に設定し、同じく路面等からの外
乱による影響が多い場合(車輪速度が図4のV0から遠
ざかる場合)には重み付け量を比較的小さい値「Jβ」
に設定するようにした。そして、前記重み付け量をその
時の共振周波数に乗算して重み付け演算を行うようにし
た。その結果、外乱等のノイズの影響が排除でき、タイ
ヤ空気圧を精度良く検知することが可能となる。
According to this embodiment described in detail above, the following effects can be obtained. (A) When the influence of the disturbance from the road surface or the like is small (when the wheel speed is near V0 in FIG. 4), the weighting amount is set to a relatively large value “Jα”, and the influence of the disturbance from the road surface or the like is also set. Is large (when the wheel speed is moving away from V0 in FIG. 4), the weighting amount is a relatively small value "Jβ".
I set it to. Then, the weighting amount is multiplied by the resonance frequency at that time to perform the weighting calculation. As a result, the influence of noise such as disturbance can be eliminated, and the tire air pressure can be accurately detected.

【0024】(b)本実施の形態では、タイヤを含む振
動系の共振振動のパワースペクトルのピーク値が最大値
を呈する車輪速度V0を中心として複数の車輪速度帯
(Vα〜Vβ)を設けると共に、同車輪速度帯とそれ以
外とで2種類の重み付け量を用意し、その時の車輪速度
に応じた重み付け量を選定するようにした。かかる場
合、車輪速度が前記車輪速度帯(Vα〜Vβ)にあるか
否かに応じて重み付け量を変更することにより、高精度
なタイヤ空気圧検知をより簡易的な手法にて実現でき
る。
(B) In the present embodiment, a plurality of wheel speed zones (Vα to Vβ) are provided around the wheel speed V0 at which the peak value of the power spectrum of the resonance vibration of the vibration system including the tire exhibits the maximum value. , Two kinds of weighting amounts are prepared for the same wheel speed zone and the other, and the weighting amount is selected according to the wheel speed at that time. In such a case, by changing the weighting amount depending on whether or not the wheel speed is in the wheel speed range (Vα to Vβ), highly accurate tire pressure detection can be realized by a simpler method.

【0025】(c)さらに、本実施の形態では、重み付
け量を逐次加算し、その総和を用いてタイヤの共振周波
数の平均値を演算した。そして、共振周波数の平均値か
らタイヤの空気圧を演算するようにした。この場合、重
み付け演算を行わない場合に比べて、タイヤ空気圧の演
算精度が高められる。
(C) Further, in the present embodiment, the weighting amounts are successively added, and the average value of the tire resonance frequencies is calculated using the sum. Then, the tire air pressure is calculated from the average value of the resonance frequencies. In this case, as compared with the case where the weighting calculation is not performed, the tire air pressure calculation accuracy is improved.

【0026】(第2の実施の形態)次に、本発明の第2
の実施の形態を説明する。但し、本実施の形態の構成に
おいて、上述した第1の実施の形態と同等であるものに
ついてはその説明を省略する。そして、以下には第1の
実施の形態との相違点を中心に説明する。
(Second Embodiment) Next, a second embodiment of the present invention will be described.
An embodiment will be described. However, in the configuration of the present embodiment, the description of the same components as those in the above-described first embodiment will be omitted. Then, the differences from the first embodiment will be mainly described below.

【0027】上記第1の実施の形態では、抽出された共
振周波数に対して重み付け処理を行っていたが、本第2
の実施の形態では、周波数解析により得られる周波数特
性の波形に対して重み付け処理を実施する。以下、本実
施の形態におけるタイヤ空気圧判定処理を図7のフロー
チャートに従って説明する。
In the first embodiment described above, the weighting process is performed on the extracted resonance frequency.
In the embodiment, the weighting process is performed on the waveform of the frequency characteristic obtained by the frequency analysis. Hereinafter, the tire air pressure determination process according to the present embodiment will be described with reference to the flowchart of FIG. 7.

【0028】さて、図7のルーチンがスタートすると、
ステップ201では車輪速度V〔km/h〕を演算し、
続くステップ202では、演算された車輪速度Vに対し
て周波数解析(FFT演算)を行って各周波数毎の信号
強度を求める。ステップ203では、f1〜f2の周波
数範囲内にて共振周波数を抽出する以前の周波数特性波
形Wkを求める。
Now, when the routine of FIG. 7 starts,
In step 201, the wheel speed V [km / h] is calculated,
In the following step 202, frequency analysis (FFT calculation) is performed on the calculated wheel speed V to obtain the signal strength for each frequency. In step 203, the frequency characteristic waveform Wk before the resonance frequency is extracted within the frequency range of f1 to f2 is obtained.

【0029】その後、ステップ204では、車輪速度V
がVα〜Vβの車輪速度帯にあるか否かを判別し、以下
のステップ205〜208ではステップ204の判別結
果に応じた重み付け演算を実施する。即ち、車輪速度V
がVα〜Vβの車輪速度帯にあれば、ステップ204を
肯定判別し、ステップ205で重み付け量を「Jα」と
する。また、続くステップ206では、重み付け量Jα
に基づいて前記ステップ203で抽出された周波数特性
波形Wkに対して重み付け処理Wkn=Wk・Jαを行
う。車輪速度VがVα〜Vβの車輪速度帯になければ、
ステップ204を否定判別し、ステップ207で重み付
け量を「Jβ」とする(但し、Jβ<Jα)。また、続
くステップ208では、設定された重み付け量Jβに基
づいて前記ステップ203で抽出された周波数特性波形
Wkに対して重み付け処理Wkn=Wk・Jβを行う。
Then, in step 204, the wheel speed V
Is in the wheel speed range of Vα to Vβ, and in the following steps 205 to 208, weighting calculation is performed according to the determination result of step 204. That is, the wheel speed V
Is in the wheel speed range of Vα to Vβ, an affirmative decision is made in step 204, and the weighting amount is set to “Jα” in step 205. Further, in the following step 206, the weighting amount Jα
Based on the above, weighting processing Wkn = Wk · Jα is performed on the frequency characteristic waveform Wk extracted in step 203. If the wheel speed V is not in the wheel speed range of Vα to Vβ,
A negative determination is made in step 204, and the weighting amount is set to "Jβ" in step 207 (where Jβ <Jα). Further, in the following step 208, the weighting process Wkn = Wk · Jβ is performed on the frequency characteristic waveform Wk extracted in step 203 based on the set weighting amount Jβ.

【0030】重み付け演算後において、ステップ209
では、これまでに抽出された複数の周波数特性波形(W
k1〜Wkn)毎に設定した重み付け量(J1〜Jn)
を全て加算し、それまでの総重み付け量Jtを算出する
(Jt=J1+J2+J3+・・・+Jn)。また、ス
テップ210では、総重み付け量Jtが予め設定してお
いた判定量Jrefよりも大きくなったか否かを判別
し、総重み付け量Jtが判定量Jref以下であればス
テップ201に戻り前述のステップ201〜209を再
度実行する。
After the weighting calculation, step 209
Then, the plurality of frequency characteristic waveforms (W
Weighting amount (J1 to Jn) set for each k1 to Wkn)
Are all added, and the total weighting amount Jt up to that point is calculated (Jt = J1 + J2 + J3 + ... + Jn). In step 210, it is determined whether or not the total weight amount Jt is larger than the preset determination amount Jref. If the total weight amount Jt is equal to or less than the determination amount Jref, the process returns to step 201 and the above-mentioned step is performed. 201 to 209 are executed again.

【0031】総重み付け量Jtが判定量Jrefよりも
大きくなると、ステップ211に進み、重み付け処理後
の周波数特性波形Wk1〜Wknを平均処理することに
より、所定回数における平均周波数特性波形Wkave
を算出する{Wkave=(Wk1+Wk2+Wk3+
・・・+Wkn)/Jt}。なお、前記ステップ20
6,208の重み付け処理、及びステップ211の平均
周波数特性波形の算出処理に関する処理内容は図8に示
す通りである。
When the total weighting amount Jt becomes larger than the determination amount Jref, the routine proceeds to step 211, where the weighted frequency characteristic waveforms Wk1 to Wkn are averaged so that the average frequency characteristic waveform Wkave at a predetermined number of times.
Calculate {Wkave = (Wk1 + Wk2 + Wk3 +
... + Wkn) / Jt}. In addition, the step 20
The processing contents relating to the weighting processings 6, 208 and the calculation processing of the average frequency characteristic waveform in step 211 are as shown in FIG.

【0032】その後、ステップ212では、平均周波数
特性波形Wkaveから平均共振周波数Fkaveを抽
出し、続くステップ213では、図6に示す関係から平
均共振周波数Fkaveを基に空気圧Pを演算する。ま
た、ステップ214では、空気圧Pが予め設定された許
容下限値Pd以下であるか否かを判別し、空気圧Pが許
容下限値Pd以下であればステップ215に進み、表示
部6より運転者に警報表示を行わせる。
After that, in step 212, the average resonance frequency Fkave is extracted from the average frequency characteristic waveform Wkave, and in the following step 213, the air pressure P is calculated based on the average resonance frequency Fkave from the relationship shown in FIG. Further, in step 214, it is determined whether or not the air pressure P is equal to or lower than a preset allowable lower limit value Pd. If the air pressure P is equal to or lower than the allowable lower limit value Pd, the process proceeds to step 215, and the display unit 6 prompts the driver Make an alarm display.

【0033】以上第2の実施の形態においても、前記第
1の実施の形態と同様の作用・効果を得ることができ、
結果として路面等からの外乱による影響を排除し、タイ
ヤ空気圧を精度良く検知することができる。
In the second embodiment as described above, the same operation and effect as in the first embodiment can be obtained,
As a result, the influence of disturbance from the road surface or the like can be eliminated, and the tire pressure can be detected accurately.

【0034】(第3の実施の形態)以下、第3の実施の
形態について、前述の第1,第2の実施の形態との相違
点を中心に説明する。上記第1,第2の実施の形態で
は、車輪速度VがVα〜Vβの車輪速度帯にある場合に
は重み付け量を「Jα」、車輪速度VがVα〜Vβの車
輪速度帯にない場合には重み付け量を「Jβ」とし、2
種類の重み付け量を設定していたが、本第3の実施の形
態では、その時々の車輪速度毎に応じてその度に異なる
重み付け量を設定する。以下、図9に示すフローチャー
トを用いて本実施の形態の空気圧判定処理を説明する。
(Third Embodiment) The third embodiment will be described below, focusing on the differences from the first and second embodiments described above. In the first and second embodiments, when the wheel speed V is in the wheel speed range of Vα to Vβ, the weighting amount is “Jα”, and when the wheel speed V is not in the wheel speed range of Vα to Vβ. Sets the weighting amount to “Jβ”, and 2
Although different types of weighting amounts have been set, in the third embodiment, different weighting amounts are set for each wheel speed at that time. Hereinafter, the air pressure determination processing of the present embodiment will be described using the flowchart shown in FIG.

【0035】要するに、図9のルーチンは、第1の実施
の形態における図3のステップ104〜108をステッ
プ301,302に置き換えたことが相違する。即ち、
図9のステップ301では、図10に示す車輪速度と重
み付け量の関係を用いて、その時の車輪速度Vに対応し
た重み付け量Jを設定する。ここで、図10では、タイ
ヤを含む振動系の共振振動のパワースペクトルが最大値
を呈する車輪速度V0を中心として、当該車輪速度V0
にて最大の重み付け量(J=1)が設定されている。ま
た、車輪速度V0から遠ざかるほど、重み付け量が小さ
くなるように設定されている。
In summary, the routine of FIG. 9 differs in that steps 104 to 108 of FIG. 3 in the first embodiment are replaced with steps 301 and 302. That is,
In step 301 of FIG. 9, the weighting amount J corresponding to the wheel speed V at that time is set using the relationship between the wheel speed and the weighting amount shown in FIG. 10. Here, in FIG. 10, the wheel speed V0 is centered around the wheel speed V0 at which the power spectrum of the resonance vibration of the vibration system including the tire exhibits the maximum value.
The maximum weighting amount (J = 1) is set in. In addition, the weighting amount is set to decrease as the distance from the wheel speed V0 increases.

【0036】そして、続くステップ302では、ステッ
プ103で抽出された共振周波数Fkに対して重み付け
処理Fkn=Fk・Jを行う。他の処理は既述したため
省略する。
Then, in the following step 302, weighting processing Fkn = Fk · J is performed on the resonance frequency Fk extracted in step 103. The other processing is already described and will be omitted.

【0037】本第3の実施の形態においても、前記第
1,第2の実施の形態と同様に、路面等からの外乱によ
る影響を排除し、タイヤ空気圧を精度良く検知すること
ができる。特に、本実施の形態では、重み付け量が精密
に求められ、タイヤ空気圧の検知精度をより高めること
が可能となる。
Also in the third embodiment, similarly to the first and second embodiments, the influence of the disturbance from the road surface or the like can be eliminated and the tire air pressure can be detected accurately. In particular, in the present embodiment, the weighting amount is precisely obtained, and the tire air pressure detection accuracy can be further increased.

【0038】なお、本発明は上記実施の形態の他に次の
様態にて具体化できる。 (1)上記第1,第2の実施の形態では、車輪速度に応
じて2種類の重み付け量を設定したが、これを変更して
もよい。例えば前記図4のVα〜Vβの車輪速度帯にお
いて、それよりも幅の狭い車輪速度V0を中心とするV
γ1〜Vγ2の車輪速度帯を設ける(図11参照)。そ
して、各々の車輪速度帯に応じて3種類の重み付け量を
設定する。つまり、車輪速度VがVγ1〜Vγ2の車輪
速度帯にある場合は、最も大きい重み付け量Jα’を与
え、車輪速度VがVα〜Vγ1又はVγ2〜Vβの車輪
速度帯にある場合は、中間の重み付け量Jβ’を与え、
車輪速度VがVα以下又はVβ以上の車輪速度帯にある
場合は、最も小さい重み付け量Jγ’を与える(即ち、
Jα’>Jβ’>Jγ’)。かかる場合、より細かく重
み付け量を設定することで、共振周波数の検出精度が向
上する。他に4種類以上の車輪速度帯を設け、各々に異
なる重み付け量を設定するようにしてもよい。
The present invention can be embodied in the following modes other than the above embodiment. (1) In the first and second embodiments described above, two types of weighting amounts are set according to the wheel speed, but they may be changed. For example, in the wheel speed range of Vα to Vβ in FIG. 4, V centered on a wheel speed V0 having a narrower width than that.
A wheel speed band of γ1 to Vγ2 is provided (see FIG. 11). Then, three types of weighting amounts are set according to each wheel speed band. That is, when the wheel speed V is in the wheel speed range of Vγ1 to Vγ2, the largest weighting amount Jα ′ is given, and when the wheel speed V is in the wheel speed range of Vα to Vγ1 or Vγ2 to Vβ, the intermediate weighting is performed. Give the quantity Jβ ',
When the wheel speed V is in the wheel speed range of Vα or less or Vβ or more, the smallest weighting amount Jγ ′ is given (that is,
Jα '>Jβ'> Jγ '). In such a case, setting the weighting amount more finely improves the detection accuracy of the resonance frequency. Alternatively, four or more types of wheel speed zones may be provided and different weighting amounts may be set for each.

【0039】(2)上記各実施の形態では、車輪速度セ
ンサ2a〜2dの検出結果から車輪速度(=車体速度
〔km/h〕)を求め、同車輪速度に応じて重み付け量
を設定するようにしたが、これを変更してもよい。例え
ば、タイヤ1a〜1dの回転速度〔deg/単位時間〕
を求め、同回転速度に応じて重み付け量を設定するよう
にしてもよい。かかる場合、前記図4の横軸がタイヤの
回転速度となり、共振振動のパワースペクトルのピーク
値が最大値となる回転速度を基準に重み付け量が設定さ
れる。
(2) In each of the above embodiments, the wheel speed (= vehicle speed [km / h]) is obtained from the detection results of the wheel speed sensors 2a to 2d, and the weighting amount is set according to the wheel speed. However, this may be changed. For example, the rotational speed of the tires 1a to 1d [deg / unit time]
And the weighting amount may be set according to the rotation speed. In such a case, the horizontal axis of FIG. 4 represents the rotational speed of the tire, and the weighting amount is set based on the rotational speed at which the peak value of the power spectrum of resonance vibration becomes the maximum value.

【0040】(3)上記各実施の形態では、重み付け量
の値を特に指定しなかったが、例えば「Jα=1.0、
Jβ=0」のように重み付け量を設定すれば、ノイズ成
分の少ないデータ、即ち車輪速度帯Vα〜Vβの共振周
波数データのみを用いて平均共振周波数Fkaveを算
出することができる。
(3) In each of the above embodiments, the value of the weighting amount is not specified, but for example, "Jα = 1.0,
If the weighting amount is set as “Jβ = 0”, the average resonance frequency Fkave can be calculated using only the data with few noise components, that is, the resonance frequency data of the wheel speed bands Vα to Vβ.

【0041】(4)本発明におけるパワースペクトルと
は、振動周波数成分の信号強度を示すためのものであっ
て、それと同意に用いられる他の信号強度(エネルギス
ペクトルやインテンシティスペクラル等)を用いても上
記実施の形態と同等の作用・効果が得られる。
(4) The power spectrum in the present invention is for indicating the signal strength of the vibration frequency component, and other signal strengths (energy spectrum, intensity spectrum, etc.) used to agree with it are used. Even if it is, the same operation and effect as the above embodiment can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】発明の実施の形態におけるタイヤ空気圧検知装
置の概要を示す構成図。
FIG. 1 is a configuration diagram showing an outline of a tire air pressure detection device according to an embodiment of the invention.

【図2】ECUの構成を作用毎に示す機能ブロック図。FIG. 2 is a functional block diagram showing the configuration of an ECU for each action.

【図3】第1の実施の形態におけるタイヤ空気圧判定ル
ーチンを示すフローチャート。
FIG. 3 is a flowchart showing a tire air pressure determination routine according to the first embodiment.

【図4】共振振動のパワースペクトルピークを車輪速度
に対応させて示す線図。
FIG. 4 is a diagram showing a power spectrum peak of resonance vibration in correspondence with a wheel speed.

【図5】車輪速度のパワースペクトルと周波数との関係
を示す波形図。
FIG. 5 is a waveform chart showing the relationship between the power spectrum of wheel speed and frequency.

【図6】共振周波数とタイヤ空気圧との関係を示す線
図。
FIG. 6 is a diagram showing a relationship between resonance frequency and tire pressure.

【図7】第2の実施の形態におけるタイヤ空気圧判定ル
ーチンを示すフローチャート。
FIG. 7 is a flowchart showing a tire air pressure determination routine according to the second embodiment.

【図8】周波数特性波形の重み付け処理を説明するため
の波形図。
FIG. 8 is a waveform chart for explaining weighting processing of frequency characteristic waveforms.

【図9】第3の実施の形態におけるタイヤ空気圧判定ル
ーチンを示すフローチャート。
FIG. 9 is a flowchart showing a tire air pressure determination routine according to the third embodiment.

【図10】第3の実施の形態における重み付け量と車輪
速度との関係を示す線図。
FIG. 10 is a diagram showing a relationship between weighting amounts and wheel speeds according to the third embodiment.

【図11】共振振動のパワースペクトルピークを車輪速
度に対応させて示す線図。
FIG. 11 is a diagram showing a power spectrum peak of resonance vibration in correspondence with a wheel speed.

【符号の説明】[Explanation of symbols]

1a〜1d…タイヤ、2a〜2d…車輪速度センサ、5
…重み付け量設定手段,重み付け演算手段,共振周波数
演算手段,重み付け量加算手段,共振周波数平均値演算
手段としてのECU。
1a to 1d ... tires, 2a to 2d ... wheel speed sensors, 5
... An ECU as weighting amount setting means, weighting calculating means, resonance frequency calculating means, weighting amount adding means, resonance frequency average value calculating means.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】車両走行時におけるタイヤの振動周波数成
分を検出すると共に、タイヤ振動周波数成分の検出結果
を用いて前記タイヤの共振周波数を演算し、さらに、前
記演算されたタイヤの共振周波数に基づいて前記タイヤ
の空気圧を検知するタイヤ空気圧検知装置であって、 タイヤを含む振動系の共振振動のパワースペクトルのピ
ーク値が最大値を呈する車輪速度を中心として、当該車
輪速度に近づくほど大きくなる、重み付け量を設定する
重み付け量設定手段と、 前記重み付け量設定手段により設定された重み付け量を
用いて、その時のタイヤ振動周波数成分の検出結果に対
して重み付け演算を実施する重み付け演算手段と、 前記重み付け量に応じた平均処理にて共振周波数を演算
する共振周波数演算手段とを備えることを特徴とするタ
イヤ空気圧検知装置。
1. A vibration frequency component of a tire when a vehicle is traveling is detected, a resonance frequency of the tire is calculated using the detection result of the tire vibration frequency component, and further, based on the calculated resonance frequency of the tire. A tire air pressure detection device for detecting the air pressure of the tire, wherein the peak value of the power spectrum of the resonance vibration of the vibration system including the tire is centered on the wheel speed at which the peak value is reached, and becomes larger as the wheel speed is approached. A weighting amount setting means for setting a weighting amount; a weighting amount calculating means for performing a weighting operation on the detection result of the tire vibration frequency component at that time using the weighting amount set by the weighting amount setting means; And a resonance frequency calculating means for calculating the resonance frequency by averaging processing according to the amount. It hates the air pressure detection device.
【請求項2】タイヤを含む振動系の共振振動のパワース
ペクトルのピーク値が最大値を呈する車輪速度を中心と
して複数の車輪速度帯を設けると共に、各車輪速度帯毎
に重み付け量を予め設定しておき、前記重み付け量設定
手段は、その時の車輪速度に応じた車輪速度帯の重み付
け量を選定する請求項1に記載のタイヤ空気圧検知装
置。
2. A plurality of wheel speed zones are provided around a wheel speed at which the peak value of the power spectrum of resonance vibration of a vibration system including a tire exhibits a maximum value, and a weighting amount is preset for each wheel speed zone. The tire air pressure detection device according to claim 1, wherein the weighting amount setting means selects a weighting amount of a wheel speed band according to a wheel speed at that time.
【請求項3】前記重み付け量を逐次加算する重み付け量
加算手段と、 前記重み付け量の加算結果が所定値に達した際、その加
算結果を用いて前記タイヤの共振周波数の平均値を演算
する共振周波数平均値演算手段とを備える請求項1又は
2にタイヤ空気圧検知装置。
3. A weighting amount adding means for sequentially adding the weighting amounts, and a resonance for calculating an average value of the resonance frequency of the tire when the addition result of the weighting amounts reaches a predetermined value. The tire air pressure detection device according to claim 1 or 2, further comprising frequency average value calculation means.
JP01225296A 1996-01-26 1996-01-26 Tire pressure detector Expired - Fee Related JP3563187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01225296A JP3563187B2 (en) 1996-01-26 1996-01-26 Tire pressure detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01225296A JP3563187B2 (en) 1996-01-26 1996-01-26 Tire pressure detector

Publications (2)

Publication Number Publication Date
JPH09203680A true JPH09203680A (en) 1997-08-05
JP3563187B2 JP3563187B2 (en) 2004-09-08

Family

ID=11800181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01225296A Expired - Fee Related JP3563187B2 (en) 1996-01-26 1996-01-26 Tire pressure detector

Country Status (1)

Country Link
JP (1) JP3563187B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021556A (en) * 2001-03-30 2003-01-24 Continental Teves Inc On-line vibration frequency analysis for resources utilizing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021556A (en) * 2001-03-30 2003-01-24 Continental Teves Inc On-line vibration frequency analysis for resources utilizing system

Also Published As

Publication number Publication date
JP3563187B2 (en) 2004-09-08

Similar Documents

Publication Publication Date Title
US5541859A (en) Speed detecting apparatus for rotating body
US5557552A (en) System for projecting vehicle speed and tire condition monitoring system using same
KR0145271B1 (en) Method and apparatus for estimating disturbance acting on vehicle tyred wheel based on whel angular velocity
RU2347685C2 (en) Method of signalling about abnormal wheel tire air pressure and device to this effect
EP0808731B1 (en) Apparatus for estimating vehicle tire air pressure from not only tired wheel motion but also tire temperature
JP3159596B2 (en) Hydroplaning phenomenon detector
WO2011099579A1 (en) Tire state determination device
CA2363917C (en) Method and apparatus for estimating tire air pressure
US6584427B2 (en) Method and apparatus for estimating tire air pressure
JP3993899B2 (en) Safety insert that generates a transverse vibration signal and device for detecting tire support on the safety insert
JP3451774B2 (en) Tire pressure detector
US7941255B2 (en) Process and apparatus for detecting damper damage
JPH09203680A (en) Tire-air-pressure detector
US6865456B2 (en) Underinflation detector
JPH0688483B2 (en) Wheel air pressure detector
JP3563186B2 (en) Tire pressure detector
US20040148074A1 (en) System and method for monitoring the vehicle dynamics of a vehicle
JP3148104B2 (en) Tire resonance frequency detection device
JP3136801B2 (en) Tire pressure detector
US6675653B2 (en) Method and system for detecting drive train vibrations
JP3147472B2 (en) Tire pressure detector
JPH07137509A (en) Tire pneumatic pressure detector
JPH06270618A (en) Air pressure sensing device for tire
JP3518575B2 (en) Tire pressure estimation device
JPH06328920A (en) Tire pneumatic pressure detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040427

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040601

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040602

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110611

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120611

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees