JP3563186B2 - Tire pressure detector - Google Patents

Tire pressure detector Download PDF

Info

Publication number
JP3563186B2
JP3563186B2 JP01225196A JP1225196A JP3563186B2 JP 3563186 B2 JP3563186 B2 JP 3563186B2 JP 01225196 A JP01225196 A JP 01225196A JP 1225196 A JP1225196 A JP 1225196A JP 3563186 B2 JP3563186 B2 JP 3563186B2
Authority
JP
Japan
Prior art keywords
tire
wheel speed
vibration
detection
frequency component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01225196A
Other languages
Japanese (ja)
Other versions
JPH09203679A (en
Inventor
真和 竹市
育生 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP01225196A priority Critical patent/JP3563186B2/en
Publication of JPH09203679A publication Critical patent/JPH09203679A/en
Application granted granted Critical
Publication of JP3563186B2 publication Critical patent/JP3563186B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、タイヤの共振周波数に基づいてタイヤの空気圧の状態を検知するタイヤ空気圧検知装置に関するものである。
【0002】
【従来の技術】
安価で信頼性の高いタイヤ空気圧検知装置としては、特開平5−133831号公報に記載されているものがある。この開示例は、タイヤの振動周波数成分を含む信号からタイヤの共振周波数を抽出し、この共振周波数の変化から空気圧を検知するものである。
【0003】
【発明が解決しようとする課題】
このタイヤの振動周波数成分を含む信号にはタイヤの共振振動や、路面等からの外乱による振動等が存在する。車両が走行する場合、タイヤの共振振動は約40Hz付近に現れ、これを周波数解析(例えばFFT演算)をすることで共振周波数が求められ、その結果タイヤ空気圧が検知できる。しかし、前記信号には、路面等からの外乱による振動が多く存在し、前記40Hz付近の共振振動の強度と比較すると、路面等からの外乱による振動は無視できない程に大きいため、外乱振動のランダムな信号の影響によって検出精度が低下する。ここで検出精度を向上するべく、平均処理回数を増やすことにより検出精度の向上を図ることも行われてきたが、検出精度は飽和傾向を示し高い検出精度が得られないという問題があった。
【0004】
本発明は、上記問題に着目してなされたものであって、その目的とするところは、路面等からの外乱による影響を排除し、タイヤ空気圧を精度良く検知することができるタイヤ空気圧検知装置を提供することである。
【0005】
【課題を解決するための手段】
車両が走行する場合、タイヤの共振振動は一般に約40Hz付近に現れるが、その共振信号の振動強度は車両毎に所定の車輪速度で最大値を有し、この車輪速度から遠ざかるほど減少傾向を示す。より具体的には、図4に示すように、タイヤを含む振動系の共振振動のパワースペクトル(信号強度)のピーク値は、図中の車輪速度V0で最大値を呈し、同車輪速度V0から遠ざかるほど小さくなる。かかる場合、車輪速度V0から遠ざかり共振振動のパワースペクトルのピーク値が小さくなることは、路面等からの外乱(ノイズ)の影響を受け易いことを意味する。つまり、例えば図4のVα〜Vβの車輪速度帯は、タイヤの共振振動が発生し易い帯域であると言える。
【0006】
以上のことから、前記Vα〜Vβの車輪速度帯にてタイヤの振動周波数成分を検出し、その検出結果だけを用いて共振周波数を演算すれば、演算誤差が低減できることとなる。ところが、通常の車両走行時においては、車輪速度(車速)は一定でなく、前記車輪速度帯Vα〜Vβで走行する期間は全走行期間の一部にすぎない。そのため、例えばタイヤの振動周波数成分の検出結果の移動平均処理にて共振周波数を検出する場合において、車輪速度帯Vα〜Vβでの振動周波数成分の検出回数(或いは走行時間)が所定値よりも小さいと共振周波数の演算精度が却って悪くなることもある。そこで、本発明では、車両走行時において、その時々の最適な共振周波数算出方法を選択的に用いて検出精度の向上を図ることを提案する。
【0007】
つまり、本発明のタイヤ空気圧検知装置では、車両走行時におけるタイヤの振動周波数成分を検出すると共に、タイヤ振動周波数成分の検出結果を用いて前記タイヤの共振周波数を演算する。さらに、前記演算されたタイヤの共振周波数に基づいて前記タイヤの空気圧を検知する。このとき、タイヤを含む振動系の共振振動のパワースペクトルのピーク値が最大値を呈する車輪速度を基準として所定の車輪速度帯を設定し、当該車輪速度帯でのタイヤの振動周波数成分の検出回数、又は車両走行時間が所定値を越えるか否かを判別する(判別手段)。前記車輪速度帯での振動周波数成分の検出回数又は車両走行時間が所定値を越えない場合、任意のタイヤ振動周波数成分の検出結果を用いて前記タイヤの共振周波数を演算する(第1の演算手段)。前記車輪速度帯での振動周波数成分の検出回数又は車両走行時間が所定値を越える場合、当該車輪速度帯でのタイヤ振動周波数成分の検出結果だけを用いて前記タイヤの共振周波数を演算する(第2の演算手段)。
【0008】
上記構成によれば、複数の演算方法を選択的に用いて共振周波数を求めることにより、外乱等のノイズの影響が効率良く排除でき、タイヤ空気圧を精度良く検知することが可能となる。なお、車両の走行速度とは、車輪速度≧0の場合の時間を意味し、これを車両走行距離と置き換え同意のものとして扱うことも可能である。
【0009】
【発明の実施の形態】
(第1の実施の形態)
以下、この発明を具体化した第1の実施の形態を図面に従って説明する。
【0010】
図1は本実施の形態におけるタイヤ空気圧検知装置の全体構成を示す概略図である。本図に示すように、車両のタイヤ1a,1b,1c,1dの回転軸(図示せず)には、各々のタイヤ1a〜1dに対応する車輪速度センサ2a,2b,2c,2dが設けられており、同センサ2a〜2dはタイヤ1a〜1dの振動周波数成分を含む信号を出力する。より具体的には、各車輪速度センサ2a〜2dは、歯車3a,3b,3c,3d及びピックアップコイル4a,4b,4c,4dにて構成されている。歯車3a〜3dは、各タイヤ1a〜1dの回転軸に同軸に取り付けられており、円盤状の磁性体より成る。ピックアップコイル4a〜4dは、歯車3a〜3d、即ちタイヤ1a〜1dの回転速度に応じた周期を有する交流信号を出力する。
【0011】
車輪速度センサ2a〜2dから出力される交流信号は、波形整形回路、CPU,ROM,RAM等によりなる公知の電子制御装置(以下、ECUという)5に入力され、波形整形を含む所定の信号処理が行われる。この信号処理結果は、表示部6に入力され、表示部6は、各タイヤ1a〜1dの空気圧の状態を運転者に報知する。この表示部6は各タイヤ1a〜1dの空気圧の状態を独立に表示してもよいし、1つの警告ランプを設けて、いずれか1つのタイヤの空気圧が基準値以下になった時に点灯させて、それを警告するようにしてもよい。なお、本実施の形態では、車輪速度センサ2a〜2dが車両走行時におけるタイヤの振動周波数成分を検出する手段として構成されている。また、ECU5により判別手段、第1の演算手段及び第2の演算手段が構成されている。
【0012】
図2は、ECU5の構成を作用毎に示す機能ブロック図であり、その概要を略述する。図2において、車輪速演算部11は車輪速度センサ2a〜2d(ピックアップコイル3a〜3d)から出力された交流信号を波形整形してパルス信号とすると共に、そのパルス間隔及びタイヤ径から車輪速度V〔km/h〕を演算する。なお、車輪速度Vは、車両走行方向に対するタイヤの進む速度であって、車体速度(車速)に一致する。
【0013】
また、周波数解析部12は、車輪速演算部11により演算された車輪速度Vに対して周波数解析(例えばFFT演算)を行って各周波数毎の信号強度を演算する。選定部13は、それまでの振動周波数成分の検出回数或いは車両の走行時間に基づいて、複数の共振周波数算出方法から一つの算出方法を選定する。空気圧検知部14は、前記選定部13により選定された共振周波数算出方法に基づいて共振周波数を算出すると共に、タイヤの空気圧を検知する。
【0014】
次に、上記の如く構成されるタイヤ空気圧検知装置の作用について、ECU5の処理動作を中心に詳しく説明する。図3はECU5により実行されるタイヤ空気圧判定ルーチンを示すフローチャートである。なお、ECU5は各タイヤ1a〜1dに対して同様の処理を行うため、ここではタイヤ1aに対する処理のみを示す。
【0015】
さて、図3のルーチンがスタートすると、ステップ101では、車輪速度センサ2aの検出信号に応じたパルス信号に対し、そのパルス間隔(回転角)をその所要時間で除算すると共にタイヤ径を乗算することにより車輪速度V〔km/h〕を演算する。ステップ102では、演算された車輪速度Vに対して周波数解析(FFT演算)を行って各周波数毎の信号強度を求める。
【0016】
一方、一般にタイヤの共振振動は以下の特徴を有することが、本発明者の実験結果から確認された。即ち、図5に示すように、タイヤの共振振動は主として約40Hz付近に現れる。また、車輪速度Vの信号強度は図4のように、所定の車輪速度V0(本実施の形態では、50km/h)でピークとなり、V0以下又はV0以上の車輪速度においては減少傾向を示す。このことから、タイヤの共振振動は車輪速度と相関関係があり、共振振動の発生し易い車輪速度帯(Vα〜Vβ)が存在することを見い出した。
【0017】
言い加えれば、タイヤの振動周波数成分を含む信号には、路面等からの外乱による振動成分(ノイズ)も含まれる。このとき、車輪速度VがVα〜Vβの車輪速度帯にあれば、共振振動による車輪速度Vの信号強度は充分大きいため、路面等からの外乱による振動成分の影響を受けにくい。これに対して、車輪速度VがVα〜Vβの車輪速度帯から外れる場合には、共振振動による車輪速度Vの信号強度は小さくなるため、路面等からの外乱による振動成分の影響を大きく受けることになる。この時、得られる共振周波数Fkには路面等からの外乱振動によるランダムな信号の影響が大きく反映してしまい、そのため、安定したタイヤの共振振動による周波数が得られにくくなる。
【0018】
また、本発明者は、タイヤ共振周波数算出方法によって検出誤差−抽出回数の特性が異なることを見いだした。図6は、2種類のタイヤ共振周波数算出方法に対応する検出誤差−検出回数特性を示す図である。図6の(a)は、抽出された全ての周波数解析結果を用いて平均処理を行った場合のタイヤ空気圧の検出誤差を示す。また、図6の(b)は、抽出された周波数解析結果の中から車輪速度VがVα〜Vβの間にある場合の周波数解析結果のみを用いて平均処理を行った場合のタイヤ空気圧の検出誤差を示す。かかる図6によれば、全体的に(b)の特性の方が検出誤差が小さいことが分かる。
【0019】
ところが、平均的な市街地走行を行う場合を考えれば、車輪速度VがVα〜Vβの間にある時間は全体の5割程度となるため、図7に示すように、図6の(b)の特性線は右方にシフトする。つまり、検出回数がN0より小さい時には、(a)のタイヤ共振周波数算出方法の方が(b)よりも検出誤差が小さく検出精度が良い。これに対して、検出回数がN0よりも大きくなると、(b)のタイヤ共振周波数算出方法の方が検出誤差が小さく検出精度が良くなる。従って、検出回数N0を基準としてその時々に最適なタイヤ共振周波数算出方法を選定することにより、タイヤ空気圧の検出誤差が低減されることとなる。
【0020】
なお、図8は市街地走行時における車輪速度を横軸に、その車輪速度の発生頻度を縦軸に示す図であり、発生頻度は走行時間のトータル時間に対する%表示となっている。本データは市街地走行の実験値であるが、本データによれば市街地走行では50km/h付近で走行する頻度が最も多く、これは前記図4のVα〜Vβの車輪速度帯にほぼ一致することが分かる。そして、この図8に示す車両速度の分布に基づいて、前記図7の「N0」が設定されている。
【0021】
以上のことから、図3のルーチンに戻りステップ103では、車輪速度VがVα〜Vβの車輪速度帯にある回数Nsをカウントする。この回数Nsは、現時点から遡る所定回数NXの範囲内について、車輪速度VがVα〜Vβの間にある回数であって、仮に車両がVα〜Vβの間の速度で定速走行していれば、Ns=NXとなる。続くステップ104では、回数Nsが所定回数N0(図7参照、但しN0<NX)よりも大きいか否かを判別し、同ステップ104の肯定又は否定の判別結果に応じて2種類のタイヤ共振周波数の算出方法を選定する。
【0022】
即ち、車輪速度VがVα〜Vβの車輪速度帯にある回数Nsが所定回数N0以下の場合には、ステップ105に進み、それまでに抽出された全ての周波数解析結果を用いて移動平均処理を実施する。また、回数Nsが所定回数N0よりも大きい場合には、ステップ106に進み、車輪速度VがVα〜Vβの間にある場合の周波数解析結果のみを用いて移動平均処理を実施する。前記ステップ105,106の平均処理により各周波数毎の平均信号強度が算出される。
【0023】
その後、ステップ107では、40Hz付近に現れるタイヤの共振振動を検出対象とすべく周波数範囲をf1〜f2とし、同f1〜f2の範囲内にて共振周波数Fkを求める。さらに、続くステップ108では、図9に示す共振周波数と空気圧の関係から、前記ステップ107で検出した共振周波数Fkを基に空気圧Pを演算する。ステップ109では、求められた空気圧Pが予め設定された許容下限値Pd以下であるか否かを判別し、空気圧Pが許容下限値Pd以下であればステップ110に進み、表示部6より運転者に警報表示を行わせる。
【0024】
以上詳述した本実施の形態によれば、以下に示す効果が得られる。
(a)複数の演算方法を選択的に用いて共振周波数Fkを求めることにより、外乱等のノイズの影響が効率良く排除でき、ひいてはタイヤ空気圧Pを精度良く検知することが可能となる。
【0025】
(b)本実施の形態では、タイヤの振動周波数成分の検出回数に基づいて共振周波数算出方法を選定した。そのため、例えば車両が走行していない場合、即ち振動周波数成分が検出されていない場合には検出回数がカウントされず、不要なカウント処理が行われることはない。その結果、安定した演算結果を得ることができる。
【0026】
(c)本実施の形態では、所定個の最新データのみを用いる移動平均処理により共振周波数Fkを演算するようにした。そのため、タイヤ空気圧Pの急変時にもその空気圧の変化を逐次求めることができる。また、メモリ容量を軽減することができる。
【0027】
(第2の実施の形態)
次に、本発明の第2の実施の形態を説明する。但し、本実施の形態の構成において、上述した第1の実施の形態と同等であるものについてはその説明を省略する。そして、以下には第1の実施の形態との相違点を中心に説明する。
【0028】
上記第1の実施の形態では、車輪速度VがVα〜Vβの間にある場合の振動周波数成分の検出回数が所定回数に達したか否かを判別することにより、タイヤ共振周波数算出方法を選定したが、本第2の実施の形態では、車両の走行時間を判別することによりタイヤ共振周波数算出方法を選定する。
【0029】
以下、図10に示すフローチャートに従って処理内容を説明する。図10に示すルーチンは、第1の実施の形態における図3のステップ103,104をステップ201,202に置き換えたことのみが相違する。即ち、ステップ201では、車輪速度VがVα〜Vβの車輪速度帯にある走行時間Tsを計測し、続くステップ202では、走行時間Tsが所定時間T0よりも大きいか否かを判別する。この所定時間T0は前記図7の検出回数N0に相当する時間である。なお、かかる走行時間の判別処理は、現時点から遡る所定期間(>T0)内に占める走行時間Tsを判別するものである。
【0030】
そして、車輪速度VがVα〜Vβの車輪速度帯にある走行回数Tsが所定時間T0以下の場合には、ステップ105に進み、それまでに抽出された全ての周波数解析結果を用いて平均処理を実施する。また、走行時間Tsが所定時間T0よりも大きい場合には、ステップ106に進み、車輪速度VがVα〜Vβの間にある場合の周波数解析結果のみを用いて平均処理を実施する。
【0031】
以降の処理では、第1の実施の形態と同様に、共振周波数Fkが算出されると共に、当該共振周波数Fkから空気圧Pが演算される。
以上第2の実施の形態においても、前記第1の実施の形態と同様の作用・効果を得ることができ、結果としてタイヤ空気圧を精度良く検知することが可能になる。
【0032】
(第3の実施の形態)
次いで、前記第1の実施の形態の一部を変更して具体化した第3の実施の形態を説明する。上記第1の実施の形態では、車輪速度Vが車輪速度帯Vα〜Vβの間にある振動周波数成分の検出回数Nsをカウントし、その回数Nsが所定回数n0を越えるか否かに応じて2種類の共振周波数算出方法のうち一つを選択的に用いたが、本実施の形態では、3種類の共振周波数算出方法のうち一つを選択的に用いる。
【0033】
つまり、図11に示すように、前記車輪速度帯Vα〜Vβの範囲内に新たな車輪速度帯Vγ1〜Vγ2を設ける。この場合、各々の車輪速度帯に応じて3種類の共振周波数算出方法が設けられ、それら3種類の共振周波数算出方法における検出誤差−抽出回数特性を図12に示す。図12の(a)は、抽出された全ての周波数解析結果を用いて平均処理を行った場合のタイヤ空気圧の検出誤差を示す。また、図12の(b)は、抽出された周波数解析結果の中から車輪速度VがVα〜Vβの間にある場合の周波数解析結果のみを用いて平均処理を行った場合のタイヤ空気圧の検出誤差を示す。さらに、図12の(c)は、抽出された周波数解析結果の中から車輪速度VがVγ1〜Vγ2の間にある場合の周波数解析結果のみを用いて平均処理を行った場合のタイヤ空気圧の検出誤差を示す。
【0034】
かかる場合、検出回数がN0よりも小さい時には(a)のタイヤ共振周波数算出方法が最も検出誤差が小さく、検出回数がN0〜N1になると(b)のタイヤ共振周波数算出方法が最も検出誤差が小さく、さらに、検出回数がN1よりも大きくなると(c)のタイヤ共振周波数算出方法が最も検出誤差が小さくなることが分かる。
【0035】
図13は、本実施の形態におけるタイヤ空気圧判定ルーチンの一部を示すフローチャートである。なお、本ルーチンは、前記図3の一部を変更したものである。
【0036】
図13によれば、ステップ103では、車輪速度VがVα〜Vβの車輪速度帯にある回数Nsをカウントし、続くステップ301では、車輪速度VがVγ1〜Vγ2の車輪速度帯にある回数Ns1をカウントする。続くステップ302では、回数Nsが所定回数N0(図12参照)よりも大きいか否かを判別し、Ns≦N0であれば、ステップ304に進みそれまでに抽出された全ての周波数解析結果を用いて移動平均処理を実施する。また、Ns>N0であればステップ303に進み、回数Ns1が所定回数N1(図12参照)よりも大きいか否かを判別する。
【0037】
Ns1≦N1であればステップ305に進み、車輪速度VがVα〜Vβの間にある場合の周波数解析結果のみを用いて移動平均処理を実施する。また、Ns1>N1であればステップ306に進み、車輪速度VがVγ1〜Vγ2の間にある場合の周波数解析結果のみを用いて移動平均処理を実施する。
【0038】
以上第3の実施の形態においても、前記第1,第2の実施の形態と同様の作用・効果を得ることができ、結果としてタイヤ空気圧を精度良く検知することが可能になる。特に、本実施の形態では前記第1の実施の形態と比べて、検出誤差がより小さくなる3つ目の共振周波数算出方法を設定し、それを加えた3種類の中から共振周波数算出方法を選定するようにしたため、より精度の高い検知結果が得られる。
【0039】
なお、本発明は上記実施の形態の他に次の様態にて具体化できる。
(1)上記各実施の形態では、車輪速度センサ2a〜2dの検出結果から車輪速度(=車体速度〔km/h〕)を求め、同車輪速度を基に共振周波数算出方法を選定したが、これを変更してもよい。例えば、タイヤ1a〜1dの回転速度〔deg/単位時間〕を求め、同回転速度を基に共振周波数算出方法を選定するようにしてもよい。かかる場合、前記図4の横軸がタイヤの回転速度となり、共振振動が発生し易い帯域を判定する処理も回転速度に基づいて行われる。
【0040】
(2)前記第2の実施の形態では、車両走行時間に基づいて共振周波数算出方法を選別したが、この車両走行時間を車両走行距離に変更してもよい。
(3)前記第3の実施の形態では、3種類の共振周波数算出方法を設定したが、4種類以上の算出方法を設定してもよい。
【0041】
(4)本発明におけるパワースペクトルとは、振動周波数成分の信号強度を示すためのものであって、それと同意に用いられる他の信号強度(エネルギスペクトルやインテンシティスペクラル等)を用いても上記実施の形態と同等の作用・効果が得られる。
【図面の簡単な説明】
【図1】発明の実施の形態におけるタイヤ空気圧検知装置の概要を示す構成図。
【図2】ECUの構成を作用毎に示す機能ブロック図。
【図3】第1の実施の形態におけるタイヤ空気圧判定ルーチンを示すフローチャート。
【図4】共振振動のパワースペクトルピークを車輪速度に対応させて示す線図。
【図5】車輪速度のパワースペクトルと周波数との関係を示す波形図。
【図6】2種類の共振周波数算出方法について、共振振動の検出回数と検出誤差との関係を示す線図。
【図7】市街地走行時における共振振動の検出回数と検出誤差との関係を示す線図。
【図8】市街地走行時における車輪速度とその頻度との関係を示す線図。
【図9】共振周波数とタイヤ空気圧との関係を示す線図。
【図10】第2の実施の形態におけるタイヤ空気圧判定ルーチンを示すフローチャート。
【図11】共振振動のパワースペクトルピーク値を車輪速度に対応させて示す線図。
【図12】第3の実施の形態において、市街地走行時の共振振動の検出回数と検出誤差との関係を示す線図。
【図13】第3の実施の形態におけるタイヤ空気圧判定ルーチンを示すフローチャート。
【符号の説明】
1a〜1d…タイヤ、2a〜2d…車輪速度センサ、5…判別手段,第1の演算手段,第2の演算手段としてのECU。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a tire pressure detecting device that detects a state of a tire pressure based on a resonance frequency of the tire.
[0002]
[Prior art]
An inexpensive and highly reliable tire pressure detecting device is disclosed in Japanese Patent Application Laid-Open No. 5-133831. In the disclosed example, a tire resonance frequency is extracted from a signal including a tire vibration frequency component, and air pressure is detected from a change in the resonance frequency.
[0003]
[Problems to be solved by the invention]
The signal including the vibration frequency component of the tire includes resonance vibration of the tire and vibration due to disturbance from a road surface or the like. When the vehicle runs, the resonance vibration of the tire appears at about 40 Hz, and the resonance frequency is obtained by performing frequency analysis (for example, FFT calculation) on the resonance vibration. As a result, the tire pressure can be detected. However, the signal has many vibrations due to disturbances from the road surface and the like, and the vibration due to the disturbances from the road surface and the like is so large as to be not negligible when compared with the intensity of the resonance vibration around 40 Hz. The detection accuracy decreases due to the influence of a large signal. Here, in order to improve the detection accuracy, the detection accuracy has been improved by increasing the number of averaging processes. However, the detection accuracy tends to be saturated and a high detection accuracy cannot be obtained.
[0004]
The present invention has been made in view of the above problems, and an object of the present invention is to eliminate the influence of disturbance from a road surface or the like and to provide a tire pressure detection device capable of accurately detecting tire pressure. To provide.
[0005]
[Means for Solving the Problems]
When a vehicle is running, the resonance vibration of the tire generally appears around 40 Hz, but the vibration intensity of the resonance signal has a maximum value at a predetermined wheel speed for each vehicle, and shows a decreasing tendency as the distance from the wheel speed increases. . More specifically, as shown in FIG. 4, the peak value of the power spectrum (signal intensity) of the resonance vibration of the vibration system including the tire exhibits a maximum value at the wheel speed V0 in the figure, The further away, the smaller. In such a case, a decrease in the peak value of the power spectrum of the resonance vibration away from the wheel speed V0 means that the vehicle is easily affected by disturbance (noise) from a road surface or the like. That is, for example, the wheel speed range of Vα to Vβ in FIG. 4 can be said to be a band in which the resonance vibration of the tire is likely to occur.
[0006]
As described above, if the vibration frequency component of the tire is detected in the wheel speed range of Vα to Vβ and the resonance frequency is calculated using only the detection result, the calculation error can be reduced. However, during normal traveling of the vehicle, the wheel speed (vehicle speed) is not constant, and the period of traveling in the wheel speed bands Vα to Vβ is only a part of the entire traveling period. Therefore, for example, in the case where the resonance frequency is detected by moving average processing of the detection result of the vibration frequency component of the tire, the number of detections (or the running time) of the vibration frequency component in the wheel speed bands Vα to Vβ is smaller than a predetermined value. In some cases, the calculation accuracy of the resonance frequency may worsen. Therefore, the present invention proposes to improve the detection accuracy by selectively using the optimum resonance frequency calculation method at each time when the vehicle is running.
[0007]
That is, the tire pressure detection device of the present invention detects the vibration frequency component of the tire when the vehicle is running, and calculates the resonance frequency of the tire using the detection result of the tire vibration frequency component. Further, the tire pressure is detected based on the calculated tire resonance frequency. At this time, a predetermined wheel speed band is set based on the wheel speed at which the peak value of the power spectrum of the resonance vibration of the vibration system including the tire exhibits the maximum value, and the number of times the tire vibration frequency component is detected in the wheel speed band Alternatively, it is determined whether the vehicle traveling time exceeds a predetermined value (determination means). When the number of times of detection of the vibration frequency component in the wheel speed band or the vehicle traveling time does not exceed a predetermined value, the resonance frequency of the tire is calculated using a detection result of an arbitrary tire vibration frequency component (first calculation means). ). When the number of times of detection of the vibration frequency component in the wheel speed band or the vehicle traveling time exceeds a predetermined value, the resonance frequency of the tire is calculated using only the detection result of the tire vibration frequency component in the wheel speed band (No. 2).
[0008]
According to the above configuration, the influence of noise such as disturbance can be efficiently eliminated by selectively using a plurality of calculation methods to determine the resonance frequency, and the tire air pressure can be accurately detected. The running speed of the vehicle means a time when the wheel speed is equal to or greater than 0, and may be replaced with the running distance of the vehicle and treated as the same.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
(First Embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
[0010]
FIG. 1 is a schematic diagram showing the overall configuration of the tire pressure detecting device according to the present embodiment. As shown in the figure, wheel rotation sensors 2a, 2b, 2c, 2d corresponding to the respective tires 1a to 1d are provided on the rotation axes (not shown) of the tires 1a, 1b, 1c, 1d of the vehicle. The sensors 2a to 2d output signals including vibration frequency components of the tires 1a to 1d. More specifically, each of the wheel speed sensors 2a to 2d includes gears 3a, 3b, 3c, 3d and pickup coils 4a, 4b, 4c, 4d. The gears 3a to 3d are coaxially attached to the rotation axes of the tires 1a to 1d, and are made of a disk-shaped magnetic material. The pickup coils 4a to 4d output AC signals having a cycle corresponding to the rotation speed of the gears 3a to 3d, that is, the tires 1a to 1d.
[0011]
AC signals output from the wheel speed sensors 2a to 2d are input to a known electronic control unit (hereinafter referred to as an ECU) 5 including a waveform shaping circuit, a CPU, a ROM, a RAM, and the like, and are subjected to a predetermined signal processing including waveform shaping. Is performed. This signal processing result is input to the display unit 6, and the display unit 6 notifies the driver of the state of the air pressure of each of the tires 1a to 1d. The display unit 6 may independently display the state of the air pressure of each of the tires 1a to 1d, or may be provided with one warning lamp and turned on when the air pressure of any one of the tires becomes lower than a reference value. May be warned. In the present embodiment, the wheel speed sensors 2a to 2d are configured as means for detecting a vibration frequency component of a tire when the vehicle is running. Further, the ECU 5 constitutes a determination unit, a first calculation unit, and a second calculation unit.
[0012]
FIG. 2 is a functional block diagram showing the configuration of the ECU 5 for each operation, and its outline will be briefly described. In FIG. 2, a wheel speed calculation unit 11 shapes the waveform of an AC signal output from the wheel speed sensors 2a to 2d (pickup coils 3a to 3d) into a pulse signal, and calculates a wheel speed V based on a pulse interval and a tire diameter. [Km / h] is calculated. Note that the wheel speed V is the speed at which the tire advances in the vehicle running direction, and matches the vehicle speed (vehicle speed).
[0013]
Further, the frequency analysis unit 12 performs frequency analysis (for example, FFT calculation) on the wheel speed V calculated by the wheel speed calculation unit 11 to calculate a signal strength for each frequency. The selection unit 13 selects one calculation method from a plurality of resonance frequency calculation methods based on the number of times of detection of the vibration frequency component or the running time of the vehicle. The air pressure detector 14 calculates the resonance frequency based on the resonance frequency calculation method selected by the selector 13, and detects the tire pressure.
[0014]
Next, the operation of the tire pressure detecting device configured as described above will be described in detail focusing on the processing operation of the ECU 5. FIG. 3 is a flowchart showing a tire pressure determination routine executed by the ECU 5. Since the ECU 5 performs the same processing for each of the tires 1a to 1d, only the processing for the tire 1a is shown here.
[0015]
When the routine shown in FIG. 3 starts, in step 101, the pulse interval (rotation angle) of the pulse signal corresponding to the detection signal of the wheel speed sensor 2a is divided by the required time and multiplied by the tire diameter. To calculate the wheel speed V [km / h]. In step 102, a frequency analysis (FFT calculation) is performed on the calculated wheel speed V to obtain a signal strength for each frequency.
[0016]
On the other hand, it was confirmed from the experimental results of the present inventors that the resonance vibration of the tire generally has the following characteristics. That is, as shown in FIG. 5, the resonance vibration of the tire mainly appears at about 40 Hz. Further, as shown in FIG. 4, the signal intensity of the wheel speed V peaks at a predetermined wheel speed V0 (50 km / h in the present embodiment) and shows a decreasing tendency at a wheel speed equal to or lower than V0 or equal to or higher than V0. From this, it has been found that the resonance vibration of the tire has a correlation with the wheel speed, and there is a wheel speed band (Vα to Vβ) where resonance vibration is easily generated.
[0017]
In addition, the signal including the vibration frequency component of the tire also includes a vibration component (noise) due to disturbance from a road surface or the like. At this time, if the wheel speed V is in the wheel speed range of Vα to Vβ, the signal intensity of the wheel speed V due to the resonance vibration is sufficiently large, so that it is hardly affected by a vibration component due to disturbance from a road surface or the like. On the other hand, when the wheel speed V deviates from the wheel speed range of Vα to Vβ, the signal intensity of the wheel speed V due to the resonance vibration becomes small, so that it is greatly affected by the vibration component due to disturbance from the road surface or the like. become. At this time, the obtained resonance frequency Fk largely reflects the influence of a random signal due to disturbance vibration from a road surface or the like, so that it is difficult to obtain a stable frequency due to resonance vibration of the tire.
[0018]
In addition, the inventor has found that the characteristics of the detection error-the number of extractions differ depending on the tire resonance frequency calculation method. FIG. 6 is a diagram showing detection error-detection frequency characteristics corresponding to two types of tire resonance frequency calculation methods. FIG. 6A shows a detection error of the tire air pressure when an averaging process is performed using all the extracted frequency analysis results. FIG. 6B shows the detection of the tire air pressure when the averaging process is performed using only the frequency analysis result when the wheel speed V is between Vα and Vβ among the extracted frequency analysis results. Indicates the error. According to FIG. 6, it can be seen that the detection error is smaller in the characteristic (b) as a whole.
[0019]
However, considering the case of traveling in an average city area, the time during which the wheel speed V is between Vα and Vβ is about 50% of the whole, and therefore, as shown in FIG. The characteristic line shifts to the right. That is, when the number of detections is smaller than N0, the tire resonance frequency calculation method of (a) has a smaller detection error and a higher detection accuracy than (b). On the other hand, when the number of detections is larger than N0, the tire resonance frequency calculation method (b) has a smaller detection error and a higher detection accuracy. Therefore, by selecting an optimum tire resonance frequency calculation method at each time based on the number of detections N0, the detection error of the tire air pressure is reduced.
[0020]
FIG. 8 is a diagram in which the horizontal axis indicates the wheel speed and the vertical axis indicates the frequency of occurrence of the wheel speed when traveling in an urban area, and the frequency of occurrence is expressed as% of the total running time. Although this data is an experimental value of running in an urban area, according to this data, the frequency of running around 50 km / h is the most frequent in urban area running, and this almost matches the wheel speed range of Vα to Vβ in FIG. I understand. "N0" in FIG. 7 is set based on the vehicle speed distribution shown in FIG.
[0021]
From the above, returning to the routine of FIG. 3, in step 103, the number of times Ns in which the wheel speed V is in the wheel speed band of Vα to Vβ is counted. This number Ns is the number of times that the wheel speed V is between Vα and Vβ within a range of a predetermined number of times NX going back from the present time, and if the vehicle is traveling at a constant speed between Vα and Vβ. , Ns = NX. In the following step 104, it is determined whether or not the number Ns is greater than a predetermined number N0 (see FIG. 7, where N0 <NX), and two types of tire resonance frequencies are determined according to the positive or negative determination result in step 104. Select the calculation method for.
[0022]
That is, when the number Ns of times when the wheel speed V is in the wheel speed band of Vα to Vβ is equal to or less than the predetermined number N0, the process proceeds to step 105, and the moving average process is performed using all the frequency analysis results extracted up to that time. carry out. If the number Ns is larger than the predetermined number N0, the process proceeds to step 106, and the moving average process is performed using only the frequency analysis result when the wheel speed V is between Vα and Vβ. The average signal strength for each frequency is calculated by the averaging process in steps 105 and 106.
[0023]
Thereafter, in step 107, the frequency range is set to f1 to f2 in order to detect the resonance vibration of the tire appearing in the vicinity of 40 Hz, and the resonance frequency Fk is obtained within the range of f1 to f2. Further, in the subsequent step 108, the air pressure P is calculated based on the resonance frequency Fk detected in the step 107 from the relationship between the resonance frequency and the air pressure shown in FIG. In step 109, it is determined whether or not the obtained air pressure P is equal to or lower than a preset allowable lower limit value Pd. If the air pressure P is equal to or lower than the allowable lower limit value Pd, the process proceeds to step 110, and the display unit 6 displays To display an alarm.
[0024]
According to the embodiment described in detail above, the following effects can be obtained.
(A) By obtaining the resonance frequency Fk by selectively using a plurality of calculation methods, the influence of noise such as disturbance can be efficiently eliminated, and the tire pressure P can be detected with high accuracy.
[0025]
(B) In the present embodiment, the resonance frequency calculation method is selected based on the number of times the vibration frequency component of the tire is detected. Therefore, for example, when the vehicle is not traveling, that is, when the vibration frequency component is not detected, the number of times of detection is not counted, and unnecessary count processing is not performed. As a result, a stable calculation result can be obtained.
[0026]
(C) In the present embodiment, the resonance frequency Fk is calculated by moving average processing using only a predetermined number of latest data. Therefore, even when the tire pressure P changes suddenly, the change in the tire pressure can be sequentially obtained. Further, the memory capacity can be reduced.
[0027]
(Second embodiment)
Next, a second embodiment of the present invention will be described. However, in the configuration of the present embodiment, the description of the same components as those of the above-described first embodiment will be omitted. The following description focuses on the differences from the first embodiment.
[0028]
In the first embodiment, the tire resonance frequency calculation method is selected by determining whether or not the number of detections of the vibration frequency component when the wheel speed V is between Vα and Vβ has reached a predetermined number. However, in the second embodiment, the tire resonance frequency calculation method is selected by determining the travel time of the vehicle.
[0029]
The processing will be described below with reference to the flowchart shown in FIG. The routine shown in FIG. 10 is different only in that steps 103 and 104 in FIG. 3 in the first embodiment are replaced with steps 201 and 202. That is, in step 201, the running time Ts in which the wheel speed V is in the wheel speed range of Vα to Vβ is measured, and in the following step 202, it is determined whether or not the running time Ts is longer than the predetermined time T0. This predetermined time T0 is a time corresponding to the number of detections N0 in FIG. In addition, the processing for determining the traveling time is for determining the traveling time Ts occupying a predetermined period (> T0) which is retroactive from the present time.
[0030]
When the number of runs Ts in which the wheel speed V is in the wheel speed range of Vα to Vβ is equal to or less than the predetermined time T0, the process proceeds to step 105, and the averaging process is performed using all the frequency analysis results extracted so far. carry out. If the running time Ts is longer than the predetermined time T0, the process proceeds to step 106, where the averaging process is performed using only the frequency analysis result when the wheel speed V is between Vα and Vβ.
[0031]
In the subsequent processing, as in the first embodiment, the resonance frequency Fk is calculated, and the air pressure P is calculated from the resonance frequency Fk.
As described above, also in the second embodiment, the same operation and effect as those of the first embodiment can be obtained, and as a result, it is possible to accurately detect the tire air pressure.
[0032]
(Third embodiment)
Next, a third embodiment will be described in which a part of the first embodiment is modified and embodied. In the first embodiment, the number of detections Ns of the vibration frequency component in which the wheel speed V is between the wheel speed bands Vα to Vβ is counted, and 2 is determined according to whether the number Ns exceeds a predetermined number n0. Although one of the three resonance frequency calculation methods is selectively used, in the present embodiment, one of the three resonance frequency calculation methods is selectively used.
[0033]
That is, as shown in FIG. 11, new wheel speed bands Vγ1 to Vγ2 are provided in the range of the wheel speed bands Vα to Vβ. In this case, three types of resonance frequency calculation methods are provided according to the respective wheel speed bands, and FIG. 12 shows detection error-extraction frequency characteristics in the three types of resonance frequency calculation methods. FIG. 12A shows a detection error of the tire air pressure when an averaging process is performed using all the extracted frequency analysis results. FIG. 12B shows the detection of the tire air pressure when the averaging process is performed using only the frequency analysis result when the wheel speed V is between Vα and Vβ from the extracted frequency analysis results. Indicates the error. Further, FIG. 12 (c) shows the detection of the tire air pressure when the averaging process is performed using only the frequency analysis result when the wheel speed V is between Vγ1 and Vγ2 from the extracted frequency analysis results. Indicates the error.
[0034]
In such a case, when the number of detections is smaller than N0, the tire resonance frequency calculation method of (a) has the smallest detection error, and when the number of detections is N0 to N1, the tire resonance frequency calculation method of (b) has the smallest detection error. Further, it can be seen that when the number of detections is greater than N1, the tire resonance frequency calculation method (c) has the smallest detection error.
[0035]
FIG. 13 is a flowchart showing a part of the tire pressure determination routine in the present embodiment. This routine is a modification of part of FIG.
[0036]
According to FIG. 13, in step 103, the number of times Ns in which the wheel speed V is in the wheel speed band of Vα to Vβ is counted, and in the following step 301, the number of times Ns1 in which the wheel speed V is in the wheel speed band of Vγ1 to Vγ2 is calculated. Count. In the following step 302, it is determined whether or not the number Ns is greater than a predetermined number N0 (see FIG. 12). If Ns ≦ N0, the process proceeds to step 304, and all frequency analysis results extracted so far are used. To perform moving average processing. If Ns> N0, the process proceeds to step 303, where it is determined whether or not the number Ns1 is greater than a predetermined number N1 (see FIG. 12).
[0037]
If Ns1 ≦ N1, the process proceeds to step 305, and the moving average process is performed using only the frequency analysis result when the wheel speed V is between Vα and Vβ. If Ns1> N1, the process proceeds to step 306, and the moving average process is performed using only the frequency analysis result when the wheel speed V is between Vγ1 and Vγ2.
[0038]
As described above, also in the third embodiment, the same operation and effect as those in the first and second embodiments can be obtained, and as a result, it is possible to accurately detect the tire air pressure. In particular, in the present embodiment, a third resonance frequency calculation method in which the detection error is smaller than that of the first embodiment is set, and the resonance frequency calculation method is selected from among the three additional resonance frequency calculation methods. Since the selection is made, a more accurate detection result can be obtained.
[0039]
The present invention can be embodied in the following modes in addition to the above embodiment.
(1) In the above embodiments, the wheel speed (= vehicle speed [km / h]) is obtained from the detection results of the wheel speed sensors 2a to 2d, and the resonance frequency calculation method is selected based on the wheel speed. This may be changed. For example, the rotational speed [deg / unit time] of the tires 1a to 1d may be obtained, and the resonance frequency calculation method may be selected based on the rotational speed. In such a case, the horizontal axis in FIG. 4 indicates the rotation speed of the tire, and the process of determining a band in which resonance vibration is likely to occur is also performed based on the rotation speed.
[0040]
(2) In the second embodiment, the method of calculating the resonance frequency is selected based on the vehicle travel time, but the vehicle travel time may be changed to the vehicle travel distance.
(3) In the third embodiment, three types of resonance frequency calculation methods are set, but four or more types of calculation methods may be set.
[0041]
(4) The power spectrum in the present invention is for indicating the signal strength of the vibration frequency component, and the above-mentioned power spectrum is used even when another signal strength (energy spectrum, intensity spectrum, etc.) used in agreement with the power spectrum is used. The same operation and effect as in the embodiment can be obtained.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating an outline of a tire pressure detection device according to an embodiment of the invention.
FIG. 2 is a functional block diagram showing a configuration of an ECU for each operation.
FIG. 3 is a flowchart illustrating a tire air pressure determination routine according to the first embodiment.
FIG. 4 is a diagram showing a power spectrum peak of resonance vibration corresponding to a wheel speed.
FIG. 5 is a waveform diagram showing a relationship between a power spectrum of a wheel speed and a frequency.
FIG. 6 is a diagram showing a relationship between the number of times of resonance vibration detection and a detection error in two types of resonance frequency calculation methods.
FIG. 7 is a diagram showing a relationship between the number of times of detection of resonance vibration and a detection error when traveling in an urban area.
FIG. 8 is a diagram showing the relationship between the wheel speed and the frequency when traveling in an urban area.
FIG. 9 is a diagram showing a relationship between a resonance frequency and a tire pressure.
FIG. 10 is a flowchart illustrating a tire air pressure determination routine according to the second embodiment.
FIG. 11 is a diagram showing a power spectrum peak value of resonance vibration corresponding to a wheel speed.
FIG. 12 is a diagram showing a relationship between the number of times of detection of resonance vibration and a detection error when traveling in an urban area in the third embodiment.
FIG. 13 is a flowchart illustrating a tire air pressure determination routine according to a third embodiment.
[Explanation of symbols]
1a to 1d: tires, 2a to 2d: wheel speed sensors, 5: ECU as discriminating means, first calculating means, and second calculating means.

Claims (3)

車両走行時におけるタイヤの振動周波数成分を検出すると共に、タイヤ振動周波数成分の検出結果を用いて前記タイヤの共振周波数を演算し、さらに、前記演算されたタイヤの共振周波数に基づいて前記タイヤの空気圧を検知するタイヤ空気圧検知装置であって、
タイヤを含む振動系の共振振動のパワースペクトルのピーク値が最大値を呈する車輪速度を基準として所定の車輪速度帯を設定し、当該車輪速度帯でのタイヤの振動周波数成分の検出回数、又は車両走行時間が所定値を越えるか否かを判別する判別手段と、
前記車輪速度帯での振動周波数成分の検出回数又は車両走行時間が所定値を越えない場合、任意のタイヤ振動周波数成分の検出結果を用いて前記タイヤの共振周波数を演算する第1の演算手段と、
前記車輪速度帯での振動周波数成分の検出回数又は車両走行時間が所定値を越える場合、当該車輪速度帯でのタイヤ振動周波数成分の検出結果だけを用いて前記タイヤの共振周波数を演算する第2の演算手段と
を備えることを特徴とするタイヤ空気圧検知装置。
While detecting the vibration frequency component of the tire when the vehicle is traveling, the resonance frequency of the tire is calculated using the detection result of the tire vibration frequency component, and further, the air pressure of the tire is calculated based on the calculated resonance frequency of the tire. A tire pressure detection device for detecting
A predetermined wheel speed band is set on the basis of the wheel speed at which the peak value of the power spectrum of the resonance vibration of the vibration system including the tire exhibits the maximum value, and the number of detection of the vibration frequency component of the tire in the wheel speed band, or the vehicle Determining means for determining whether the traveling time exceeds a predetermined value,
First calculation means for calculating a resonance frequency of the tire using a detection result of an arbitrary tire vibration frequency component when the number of times of detection of the vibration frequency component in the wheel speed band or the vehicle traveling time does not exceed a predetermined value; ,
When the number of times of detection of the vibration frequency component in the wheel speed band or the vehicle traveling time exceeds a predetermined value, a second resonance frequency of the tire is calculated using only the detection result of the tire vibration frequency component in the wheel speed band. A tire pressure detecting device comprising:
前記判別手段にてタイヤ振動周波数成分の検出回数又は車両走行時間を判別するための所定値は、車両走行時における車輪速度の分布に基づいて設定される請求項1に記載のタイヤ空気圧検知装置。The tire pressure detecting device according to claim 1, wherein the predetermined value for determining the number of times of detection of the tire vibration frequency component or the vehicle traveling time by the determination unit is set based on a distribution of wheel speeds during traveling of the vehicle. 前記判別手段は、所定回数又は所定時間内における前記車輪速度帯での振動周波数成分の検出回数又は車両走行時間が所定値を越えるか否かを判別し、
前記第1及び第2の演算手段は、所定回数又は所定時間内における移動平均処理にて前記タイヤの共振周波数を演算する請求項1又は2に記載のタイヤ空気圧検知装置。
The determination means determines whether the number of detections of the vibration frequency component in the wheel speed band within a predetermined number of times or a predetermined time or whether the vehicle traveling time exceeds a predetermined value,
The tire pressure detecting device according to claim 1 or 2, wherein the first and second calculation means calculate the resonance frequency of the tire by a moving average process for a predetermined number of times or within a predetermined time.
JP01225196A 1996-01-26 1996-01-26 Tire pressure detector Expired - Fee Related JP3563186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01225196A JP3563186B2 (en) 1996-01-26 1996-01-26 Tire pressure detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01225196A JP3563186B2 (en) 1996-01-26 1996-01-26 Tire pressure detector

Publications (2)

Publication Number Publication Date
JPH09203679A JPH09203679A (en) 1997-08-05
JP3563186B2 true JP3563186B2 (en) 2004-09-08

Family

ID=11800154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01225196A Expired - Fee Related JP3563186B2 (en) 1996-01-26 1996-01-26 Tire pressure detector

Country Status (1)

Country Link
JP (1) JP3563186B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4028848B2 (en) 2004-01-21 2007-12-26 住友ゴム工業株式会社 Tire pressure drop detection method and apparatus, and tire decompression determination program
JP4490342B2 (en) 2005-07-08 2010-06-23 住友ゴム工業株式会社 Tire pressure drop detection method and apparatus, and tire decompression determination program

Also Published As

Publication number Publication date
JPH09203679A (en) 1997-08-05

Similar Documents

Publication Publication Date Title
JP3159596B2 (en) Hydroplaning phenomenon detector
US5557552A (en) System for projecting vehicle speed and tire condition monitoring system using same
EP0441599B1 (en) Method of detecting a deflated tyre on a vehicle
JP2012173211A (en) Approaching vehicle detection device and approaching vehicle detection method
US20100131208A1 (en) Method for determining at least one parameter representative of at least one interaction along a longitudinal direction between a tyre for vehicle and the ground
KR101475578B1 (en) Tire state determination device
JP3563186B2 (en) Tire pressure detector
JP3451774B2 (en) Tire pressure detector
JP2002205518A (en) Tire air pressure detecting device
JP3563187B2 (en) Tire pressure detector
JP2002082123A (en) Wheel rotation information detector
JP3362522B2 (en) Tire pressure detector
JP3146733B2 (en) Tire pressure detector
JP3136801B2 (en) Tire pressure detector
JP3550998B2 (en) Tire pressure estimation device
JP2003260910A (en) Tire air pressure estimating device
JP3289384B2 (en) Tire pressure detector
JP3163952B2 (en) Tire pressure detector
JPH06328920A (en) Tire pneumatic pressure detector
JP3095095B2 (en) Tire abnormal wear detection device
JPH10264621A (en) Estimation device for tire inflation pressure
JPH05221208A (en) Tire pneumatic pressure detecting device
JP3289312B2 (en) Tire pressure detector
JP3131201B2 (en) Tire pressure drop detection method and device
JPH06183231A (en) Tire pressure detecting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees