JPH09199562A - Quality inspection method of silicon wafer - Google Patents
Quality inspection method of silicon waferInfo
- Publication number
- JPH09199562A JPH09199562A JP2591196A JP2591196A JPH09199562A JP H09199562 A JPH09199562 A JP H09199562A JP 2591196 A JP2591196 A JP 2591196A JP 2591196 A JP2591196 A JP 2591196A JP H09199562 A JPH09199562 A JP H09199562A
- Authority
- JP
- Japan
- Prior art keywords
- oxide film
- cop
- wafer
- withstand voltage
- density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、シリコンウエハの
品質検査方法に関し、詳しくは、シリコンウエハの表面
に形成される酸化膜の絶縁耐圧特性(酸化膜耐圧)を間
接的に評価する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting a quality of a silicon wafer, and more particularly to a method for indirectly evaluating a dielectric strength voltage characteristic (oxide film breakdown voltage) of an oxide film formed on a surface of a silicon wafer.
【0002】[0002]
【従来の技術】従来、シリコンウエハの品質を評価する
ために、シリコン単結晶棒から所定厚さに切り出したウ
エハの表面に鏡面仕上げを施した後、その表面にMOS
型半導体素子を作製し、その電気的特性を評価するとい
う方法が採られていた。2. Description of the Related Art Conventionally, in order to evaluate the quality of a silicon wafer, the surface of a wafer cut out from a silicon single crystal ingot to a predetermined thickness is mirror-finished, and then the surface of the wafer is MOS-coated.
A method of producing a type semiconductor element and evaluating the electrical characteristics thereof has been adopted.
【0003】また、簡便なシリコンウエハの品質評価方
法として、K2Cr2O2 とフッ酸と水との混合液でウエ
ハの表面を選択的にエッチングし、表面に現れたさざ波
模様の個数と、さざ波模様を伴わないエッチピットの個
数との和の計数結果から結晶品質を評価する方法も知ら
れている(特開平6−177220号公報参照)。As a simple method for evaluating the quality of a silicon wafer, the surface of the wafer is selectively etched with a mixed solution of K 2 Cr 2 O 2 , hydrofluoric acid and water, and the number of ripple patterns appearing on the surface is measured. There is also known a method of evaluating crystal quality from the result of counting the sum of the number of etch pits without ripples (see Japanese Patent Laid-Open No. 6-177220).
【0004】一方、シリコンウエハの表面には、SCl
洗浄後に、微小ピット及びCOP(Crystal Originated
Particle:エッチピットの一種)が形成される。この
COPの密度は、as recieved のウエハでは、酸化膜耐
圧との間に明確な関係は見られないが、一回の繰り返し
洗浄で出現するCOPの密度と酸化膜耐圧の劣化因子の
密度との間には、非常に強い相関があることが明らかと
なった(1993年、応用物理学会秋季講演会予稿、
P.303、29a−HA−8参照)。そこで一回の繰
り返し洗浄によりウエハ表面に出現するCOPの密度か
ら、酸化膜耐圧を間接的に評価する方法が採られてい
た。On the other hand, on the surface of the silicon wafer, SCl
After cleaning, micro pits and COP (Crystal Originated)
Particle: A type of etch pit) is formed. In the as-recieved wafer, this COP density has no clear relationship with the oxide film withstand voltage, but the density of the COP and the density of the deterioration factor of the oxide film withstand voltage appearing in one repeated cleaning. It has been revealed that there is a very strong correlation between the two (1993, Autumn Meeting of the Applied Physics Society of Japan,
P. 303, 29a-HA-8). Therefore, a method of indirectly evaluating the oxide film breakdown voltage has been adopted from the density of COPs appearing on the wafer surface by one-time repeated cleaning.
【0005】[0005]
【発明が解決しようとする課題】しかるに、上記従来技
術に於いて、MOS型半導体素子の電気的特性による評
価法は、MOS型半導体素子を作製する手間やそれに付
随する評価工程に要する時間、および評価のために高価
な設備が必要であった。また、K2Cr2O2 とフッ酸と
水との混合液によるエッチング法では、さざ波模様を伴
わないエッチピットの形成は、ウエハ表面やエッチング
液の状態に影響され易く、再現性が乏しいため、エッチ
ピットを観察するためには、エッチング液やウエハ表面
を厳密に管理する必要があった。しかもK2Cr2O2 は
有害なため、作業上の問題をも伴っていた。さらに、繰
り返し洗浄によるCOPの密度に基づく評価法では、洗
浄毎に出現するCOPの密度を計測する必要があり、そ
の作業は非常に煩雑であった。However, in the above-mentioned prior art, the evaluation method based on the electrical characteristics of the MOS-type semiconductor element requires the time and effort required for manufacturing the MOS-type semiconductor element and the evaluation step associated therewith, and Expensive equipment was required for evaluation. Further, in the etching method using a mixed solution of K 2 Cr 2 O 2 , hydrofluoric acid and water, the formation of etch pits without ripples is easily affected by the state of the wafer surface and the etching solution, and reproducibility is poor. In order to observe the etch pits, it was necessary to strictly control the etching solution and the wafer surface. Moreover, since K 2 Cr 2 O 2 is harmful, there was a problem in working. Furthermore, in the evaluation method based on the density of COP by repeated cleaning, it is necessary to measure the density of COP that appears every cleaning, and the work is very complicated.
【0006】本発明は、このような従来技術の問題点を
解決しようとするものであり、その主な目的は、実際の
酸化膜耐圧を測定する場合に比して迅速に且つ安価に、
また従来の簡便な方法に比して安全に且つ高精度に、不
良率を予測することのできるシリコンウエハの品質検査
方法を提供することにある。The present invention is intended to solve the above-mentioned problems of the prior art, and its main purpose is to quickly and inexpensively as compared with the case of measuring an actual oxide film breakdown voltage.
Another object of the present invention is to provide a silicon wafer quality inspection method capable of predicting a defective rate safely and with high accuracy as compared with a conventional simple method.
【0007】[0007]
【課題を解決するための手段】このような目的を果たす
ために、本発明に於いては、シリコン単結晶棒を育成し
た後、該単結晶棒から所定厚さのウエハを切り出し、該
ウエハの表面に鏡面仕上げを施した上で洗浄し、該表面
に熱酸化にて酸化膜を形成させ、その際に現れたCOP
の個数を計数することにより、結晶品質を評価すること
とした。In order to achieve such an object, in the present invention, after growing a silicon single crystal ingot, a wafer having a predetermined thickness is cut out from the single crystal ingot and The surface is mirror-finished and then washed, and an oxide film is formed on the surface by thermal oxidation.
It was decided to evaluate the crystal quality by counting the number of samples.
【0008】特に本発明は、従来の繰り返し洗浄法では
なく、as recieved のウエハの表面に酸化膜を形成する
ことによって得られるCOPの密度と酸化膜耐圧との間
の強い相関を利用して、COPの密度に基づいて酸化膜
耐圧を評価するものである。In particular, the present invention utilizes a strong correlation between the COP density and the oxide film breakdown voltage obtained by forming an oxide film on the surface of an as recieved wafer, rather than the conventional repeated cleaning method. The oxide film breakdown voltage is evaluated based on the COP density.
【0009】なお、本発明に於いては、面積が0.2m
m2 〜50mm2 、膜厚が7nm〜40nmのゲート酸
化膜をシリコンウエハ上に形成し、この酸化膜上に形成
した燐ドープポリシリコン電極とシリコン単結晶基板と
の間に直流電圧を印加した際に、電流密度で1mA/c
m2 以上ゲート電流が流れ始めた時の酸化膜に加わる電
界強度が8MV/cm未満であるものを不良とし、ま
た、この時の電界強度が8MV/cm以上であるものが
良とした。In the present invention, the area is 0.2 m.
A gate oxide film with a thickness of m 2 to 50 mm 2 and a thickness of 7 nm to 40 nm was formed on a silicon wafer, and a DC voltage was applied between the phosphorus-doped polysilicon electrode formed on the oxide film and the silicon single crystal substrate. At that time, the current density is 1 mA / c
The case where the electric field strength applied to the oxide film when the gate current started to flow m 2 or more was less than 8 MV / cm was regarded as poor, and the case where the electric field strength at this time was 8 MV / cm or more was regarded as good.
【0010】また本発明における熱酸化の条件は、80
0℃〜1100℃の乾燥酸素雰囲気中で、酸化膜厚を7
nm〜40nmとすることが好ましい。熱酸化の条件を
このように設定することにより、ウエハ表面のCOPを
より容易に且つ正確に観察することができる。The condition of thermal oxidation in the present invention is 80
In a dry oxygen atmosphere at 0 ° C to 1100 ° C, the oxide film thickness is set to 7
It is preferably set to nm to 40 nm. By setting the thermal oxidation conditions in this way, the COP on the wafer surface can be observed more easily and accurately.
【0011】[0011]
【発明の実施の形態】以下に本発明をさらに詳細に説明
する。先ず、チョクラルスキー(CZ)法により、種々
の条件で成長させたシリコン単結晶棒からウエハを切り
出す。このウエハの表面を研磨した後、酸化膜耐圧の測
定及び熱酸化を行った。その表面に現れたCOPのう
ち、そのサイズが0.11μmより大きいCOPの密度
(個数/cm2 )を周知の異物検査装置で測定した。な
お、熱酸化は、1000℃の乾燥酸素雰囲気中で行い、
その膜厚を25nmとした。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. First, a wafer is cut out from a silicon single crystal ingot grown under various conditions by the Czochralski (CZ) method. After polishing the surface of this wafer, the oxide film breakdown voltage was measured and thermal oxidation was performed. Among the COPs appearing on the surface, the density (number / cm 2 ) of COPs having a size larger than 0.11 μm was measured by a known foreign matter inspection device. The thermal oxidation is performed in a dry oxygen atmosphere at 1000 ° C,
The film thickness was 25 nm.
【0012】図1は、酸化膜耐圧の評価に用いたシリコ
ンウエハ上に実装したMOS型半導体の断面図であり、
シリコンウエハ1上に酸化シリコン膜2が形成され、そ
の上に、上層がアルミニウム3、下層がドープされた多
結晶シリコン4からなる直径5mmの2層ゲート電極5
が形成されている。FIG. 1 is a cross-sectional view of a MOS semiconductor mounted on a silicon wafer used for evaluation of oxide film breakdown voltage.
A silicon oxide film 2 is formed on a silicon wafer 1, and a two-layer gate electrode 5 having a diameter of 5 mm and made of aluminum 3 as an upper layer and polycrystalline silicon 4 as a lower layer is formed on the silicon oxide film 2.
Are formed.
【0013】酸化膜耐圧の評価は、電圧ランビング法に
より行った。電圧ランビング法とは、図1に於いて、基
板シリコンから多数のキャリアが注入される極性の直流
電圧をアルミニウム層3と裏面電極との間に印加し、そ
の電圧を時間に対してステップ状に増加させる方法であ
る。本発明では、電圧ランビング法の1ステップ当たり
の電圧増加を電界換算で0.25MV/cmとすると共
に、保持時間を200ms/ステップとし、図1に於け
る酸化シリコン膜2を通して流れる電流密度が1.0μ
A/cm2 となる時に、酸化シリコン膜2に加わる平均
電界が8.0MV/cm以上を示すMOS型半導体の個
数の総数に対する割合(Cモード比率)でシリコン単結
晶の酸化膜耐圧を評価した。そしてこのCモード比率が
60%以上の場合を、酸化膜耐圧が良好と評価した。The breakdown voltage of the oxide film was evaluated by the voltage rumbing method. In FIG. 1, the voltage-rambling method is to apply a DC voltage of a polarity, in which a large number of carriers are injected from the substrate silicon, between the aluminum layer 3 and the back electrode and to make the voltage stepwise with respect to time. It is a way to increase. According to the present invention, the voltage increase per step of the voltage rumbing method is 0.25 MV / cm in terms of electric field, the holding time is 200 ms / step, and the current density flowing through the silicon oxide film 2 in FIG. 0.0μ
The oxide film breakdown voltage of the silicon single crystal was evaluated by the ratio (C mode ratio) to the total number of the MOS type semiconductors showing an average electric field applied to the silicon oxide film 2 of 8.0 MV / cm or more at A / cm 2 . . When the C-mode ratio was 60% or more, the oxide film breakdown voltage was evaluated as good.
【0014】上記の手法により求めたウエハ表面のCO
Pの密度と酸化膜耐圧不良率とをプロットすると、図2
及び図3のような、データのばらつきが小さい散布図が
得られた。ここで図2は、酸化前のCOPの密度と酸化
膜耐圧劣化因子の密度との関係を示しており、これよ
り、酸化膜形成前のウエハ表面のCOPの密度と酸化膜
耐圧劣化因子の密度との間には、明確な相関は見られな
いことが分かる。他方、酸化後のCOPの密度と酸化膜
耐圧劣化因子の密度との関係を示す図3より、酸化膜形
成後にウエハ表面に現れたCOPの密度と酸化膜耐圧劣
化因子の密度との間には、強い正の相関があることが分
かる。以上のことから、本発明の方法により、COPの
計数値に基づいて酸化膜耐圧を間接的に評価し得ること
が分かる。CO on the wafer surface obtained by the above method
A plot of the P density and the oxide film withstand voltage failure rate is shown in FIG.
And a scatter plot with little data variation as shown in FIG. 3 was obtained. Here, FIG. 2 shows the relationship between the density of the COP before the oxidation and the density of the oxide film withstand voltage deterioration factor. From this, the density of the COP on the wafer surface before the oxide film formation and the density of the oxide film withstand voltage deterioration factor are shown. It can be seen that there is no clear correlation between and. On the other hand, from FIG. 3 showing the relationship between the COP density after oxidation and the density of the oxide film withstand voltage deterioration factor, from the density of the COP appearing on the wafer surface after the oxide film formation and the density of the oxide film withstand voltage deterioration factor, , There is a strong positive correlation. From the above, it can be seen that the method of the present invention can indirectly evaluate the oxide film breakdown voltage based on the COP count value.
【0015】[0015]
【発明の効果】このように本発明によれば、シリコン単
結晶の微小欠陥を検査するに当たり、鏡面仕上げを施し
たシリコンウエハ表面に酸化膜を形成させ、ウエハ表面
に現れたCOPの個数を計数することでシリコン単結晶
の酸化膜耐圧を評価することができるので、従来の評価
法に比して、高能率かつ高精度な不良率の予測を、安全
にかつ安価に実施することができる。As described above, according to the present invention, when inspecting micro defects in a silicon single crystal, an oxide film is formed on the surface of a silicon wafer having a mirror finish, and the number of COPs appearing on the wafer surface is counted. By doing so, it is possible to evaluate the breakdown voltage of the oxide film of the silicon single crystal, so that it is possible to safely and inexpensively predict the defective rate with higher efficiency and accuracy as compared with the conventional evaluation method.
【図1】従来法によりシリコン単結晶の絶縁酸化膜の耐
圧特性を評価するために実装したMOSダイオードの部
分断面図。FIG. 1 is a partial cross-sectional view of a MOS diode mounted to evaluate withstand voltage characteristics of a silicon single crystal insulating oxide film by a conventional method.
【図2】酸化前のウエハについてのCOPと酸化膜耐圧
劣化因子との密度の関係を示す散布図。FIG. 2 is a scatter diagram showing the relationship between the COP and the density of the oxide film withstand voltage deterioration factor for a wafer before oxidation.
【図3】酸化後のウエハについてのCOPと酸化膜耐圧
劣化因子との密度の関係を示す散布図。FIG. 3 is a scatter diagram showing the relationship between the COP and the density of the oxide film withstand voltage deterioration factor for an oxidized wafer.
1 シリコン単結晶 2 絶縁酸化膜 3 アルミニウム膜 4 多結晶シリコン 5 2層ゲート電極 1 Silicon Single Crystal 2 Insulating Oxide Film 3 Aluminum Film 4 Polycrystalline Silicon 5 Two Layer Gate Electrode
───────────────────────────────────────────────────── フロントページの続き (72)発明者 川上 和人 川崎市中原区井田1618番地 新日本製鐵株 式会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuto Kawakami 1618 Ida, Nakahara-ku, Kawasaki City Nippon Steel Corp. Technology Development Division
Claims (1)
晶棒から所定厚さのウエハを切り出し、 該ウエハの表面に鏡面仕上げを施した上で洗浄し、 該表面に熱酸化にて酸化膜を形成させ、 その際に現れたCOP(Crystal Originated Particl
e)の個数を計数することにより、結晶品質を評価する
ことを特徴とするシリコンウエハの品質検査方法。1. After growing a silicon single crystal ingot, a wafer having a predetermined thickness is cut out from the single crystal ingot, the surface of the wafer is mirror-finished and washed, and the surface is oxidized by thermal oxidation. A COP (Crystal Originated Particl) that appears when a film is formed
A quality inspection method for a silicon wafer, which comprises evaluating the crystal quality by counting the number of e).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2591196A JPH09199562A (en) | 1996-01-19 | 1996-01-19 | Quality inspection method of silicon wafer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2591196A JPH09199562A (en) | 1996-01-19 | 1996-01-19 | Quality inspection method of silicon wafer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09199562A true JPH09199562A (en) | 1997-07-31 |
Family
ID=12178969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2591196A Pending JPH09199562A (en) | 1996-01-19 | 1996-01-19 | Quality inspection method of silicon wafer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09199562A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017152544A (en) * | 2016-02-24 | 2017-08-31 | 信越半導体株式会社 | Single crystal wafer evaluation method |
-
1996
- 1996-01-19 JP JP2591196A patent/JPH09199562A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017152544A (en) * | 2016-02-24 | 2017-08-31 | 信越半導体株式会社 | Single crystal wafer evaluation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5534112A (en) | Method for testing electrical properties of silicon single crystal | |
JP3789220B2 (en) | Insulating film evaluation method and apparatus, and process evaluation method | |
US5786231A (en) | Screening method for selecting semiconductor substrates having defects below a predetermined level in an oxide layer | |
JPWO2008081567A1 (en) | Evaluation method of silicon wafer | |
Ghezzo et al. | LOPOS: Advanced device isolation for a 0.8 μm CMOS/BULK process technology | |
JPH09199562A (en) | Quality inspection method of silicon wafer | |
JPH07263429A (en) | Selective etching liquid | |
JP2864920B2 (en) | Silicon wafer quality inspection method | |
JP5071304B2 (en) | Semiconductor wafer, method for manufacturing semiconductor wafer, and method for evaluating semiconductor wafer | |
US5990022A (en) | Method of evaluating a silicon wafer | |
JP3147758B2 (en) | Evaluation method of insulation layer | |
JPH10189677A (en) | Evaluation method for silicon wafer | |
JP3859357B2 (en) | Insulating film evaluation method | |
JP4506181B2 (en) | Semiconductor wafer evaluation method | |
JP2000208469A (en) | Method of evaluating quality of semiconductor wafer | |
JPH10242230A (en) | Method of evaluating silicon wafer | |
JP4179003B2 (en) | Semiconductor substrate evaluation method | |
JP2002231779A (en) | Method for evaluating semiconductor substrate | |
KR100251644B1 (en) | Defect analysing method of bare wafer | |
KR100862312B1 (en) | Method for measuring wafer defect in semiconductor device | |
Ragnarsson et al. | Surface potential influence on defect passivation kinetics probed by chromium gated metal-oxide-silicon devices | |
JP2906776B2 (en) | Silicon wafer crystal evaluation method | |
JPH0738100A (en) | Method of manufacturing misfet | |
JPH05102274A (en) | Silicon wafer crystal evaluation method | |
JP2003100831A (en) | Method for evaluating silicon wafer |