JPH09199149A - Gas feeding/discharging device for fuel cell - Google Patents

Gas feeding/discharging device for fuel cell

Info

Publication number
JPH09199149A
JPH09199149A JP8003521A JP352196A JPH09199149A JP H09199149 A JPH09199149 A JP H09199149A JP 8003521 A JP8003521 A JP 8003521A JP 352196 A JP352196 A JP 352196A JP H09199149 A JPH09199149 A JP H09199149A
Authority
JP
Japan
Prior art keywords
valve
fuel
air
electrode
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8003521A
Other languages
Japanese (ja)
Other versions
JP3430767B2 (en
Inventor
Hideo Nishigaki
英雄 西垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP00352196A priority Critical patent/JP3430767B2/en
Publication of JPH09199149A publication Critical patent/JPH09199149A/en
Application granted granted Critical
Publication of JP3430767B2 publication Critical patent/JP3430767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To smoothly guide the fuel gas and air to electrodes without developing excessive differential pressure by providing small-diameter valves in parallel with a case-fuel electrode equalizing valve and a case-air electrode equalizing valve respectively. SOLUTION: A case-fuel electrode equalizing small valve 4 smaller in diameter than a case-fuel electrode equalizing valve 3 is provided on a small-diameter piping 4P bypassing the case-fuel electrode equalizing valve 3 in this gas feeding/ discharging device for a fuel cell. A case-air fuel equalizing small valve 11 smaller in diameter than a case-air electrode equalizing valve 10 is provided on a small-diameter pipe 11P bypassing the case-air electrode equalizing valve 10. Four valves 3, 4, 10, 11 are opened, the differential pressure is suppressed by the low fluid resistance of the case-fuel electrode equalizing valve 3 and the case-air electrode equalizing valve 10, and the nitrogen pressure is boosted on a fuel electrode, an air electrode, and the case. The equalizing valves 3, 10 are closed and the equalizing small valves 4, 11 are opened, and the differential pressure is suppressed to suppress the nitrogen flow. Nitrogen can be switched to reaction gas without generating an excessive differential pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、燃料極に燃料ガ
スを,窒素による燃料極,空気極および筐体の加圧操作
および均圧操作を行った後、燃料ガスおよび空気の供給
を開始し、発電停止時には窒素による燃料極,空気極の
窒素パージを行う燃料電池へのガス給排装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention starts the supply of fuel gas and air after the fuel gas is supplied to the fuel electrode and the pressure and pressure equalization operations of the fuel electrode, the air electrode, and the casing by nitrogen are performed. The present invention relates to a gas supply / discharge device for a fuel cell that performs nitrogen purging of a fuel electrode and an air electrode with nitrogen when power generation is stopped.

【0002】[0002]

【従来の技術】例えば電解質を保持したマトリックスと
これを挟持する燃料極および空気極とからなる単位セル
を複数層積層した燃料電池本体(スタック)を電池筐体
に収納した燃料電池は、一般に燃料極−空気極間,筐体
−燃料極間,および筐体−空気極間に過大な差圧がかか
ることに対して機械的に弱い性質を持っている。即ち、
過大な差圧に対して燃料極−空気極間ではガスの吹き抜
けによって水素リッチな燃料ガスと空気が直接反応した
り、吹き抜けには至らなくとも電池特性の低下を招いた
りする。また、筐体−燃料極間,および筐体−空気極間
では燃料極および空気極と筐体との間のガスシール構造
が破損して筐体内の窒素が燃料極または空気極に侵入
し、電池特性の低下をもたらしたり、あるいは燃料,空
気が筐体内に漏れだし、燃料と空気が共存する危険な状
態を招いたりする。したがって、これらの障害の発生を
未然に防ぐために、燃料電池本体(スタック)を電池筐
体に収納し、筐体内に供給する窒素の圧力を基準にして
燃料極−空気極間,筐体−燃料極間,および筐体−空気
極間の差圧が常に所定の差圧設定値、例えば±500mm
H2O 以下を保つよう燃料極内の燃料ガス圧力および空気
極内の空気圧力を制御する対策が採られている。
2. Description of the Related Art For example, a fuel cell in which a fuel cell main body (stack) in which a plurality of unit cells including a matrix holding an electrolyte and a fuel electrode and an air electrode sandwiching the matrix are stacked in a cell housing It is mechanically weak against excessive pressure differences between the pole and air pole, between the housing and fuel pole, and between the housing and air pole. That is,
In response to an excessive pressure difference, the hydrogen-rich fuel gas directly reacts with air due to gas blow-through between the fuel electrode and the air electrode, or the cell characteristics are deteriorated even if the gas does not blow-through. Further, between the housing-fuel electrode and between the housing-air electrode, the gas seal structure between the fuel electrode and the air electrode and the housing is damaged, and nitrogen in the housing enters the fuel electrode or the air electrode, This may cause deterioration of cell characteristics, or fuel and air may leak into the housing, resulting in a dangerous state where fuel and air coexist. Therefore, in order to prevent the occurrence of these obstacles, the fuel cell main body (stack) is housed in the cell housing, and the pressure between the fuel electrode and the air electrode and the housing-fuel electrode are set on the basis of the pressure of nitrogen supplied into the housing. The pressure difference between the poles and between the housing and the air pole is always the prescribed pressure difference set value, for example ± 500 mm.
Measures have been taken to control the fuel gas pressure in the fuel electrode and the air pressure in the air electrode so as to maintain below H 2 O.

【0003】ところで、燃料電池が発電を開始する前に
は、燃料極,空気極および筐体それぞれのガス圧を規定
値に昇圧する昇圧操作と、一定流量のガスを流した状態
で燃料極−空気極間,筐体−燃料極間,および筐体−空
気極間の差圧を調整する差圧制御操作を必要とする。し
かし、上記2つの予備操作に燃料ガス,空気,および窒
素を用い、差圧をその設定値以下に保持した状態で互い
に並行して行うことは一般に困難である。そこで、上記
2つの予備操作を不活性ガスである窒素を用いて行い、
差圧制御操作を終了した段階で窒素を燃料ガスおよび空
気に切り換える操作方法が採られている。また、発電運
転の終了時には、電極内の燃料ガスおよび空気を窒素に
置換する窒素パージが行われる。
By the way, before the fuel cell starts power generation, a pressure increasing operation is performed to increase the gas pressures of the fuel electrode, the air electrode, and the casing to specified values, and the fuel electrode is operated with a constant flow rate of gas. A differential pressure control operation that adjusts the differential pressure between the air electrodes, between the housing and the fuel electrode, and between the housing and the air electrode is required. However, it is generally difficult to use fuel gas, air, and nitrogen for the above two preliminary operations and to perform them in parallel with each other while keeping the differential pressure below the set value. Therefore, the above two preliminary operations are performed using nitrogen as an inert gas,
An operation method is adopted in which nitrogen is switched to fuel gas and air when the differential pressure control operation is completed. Further, at the end of the power generation operation, nitrogen purge is performed to replace the fuel gas and air in the electrode with nitrogen.

【0004】図10は従来の燃料電池へのガス給排装置
を示す配管系統図である。図において、燃料電池(スタ
ック)30は電池筐体(単に筐体とも呼ぶ)31に収納
されており、ガス給排装置は、燃料極への燃料ガス供給
配管系に設けられて流量を制御する燃料流量制御弁1
と、燃料極からの燃料ガス排出配管系に設けられて燃料
極の差圧を制御する燃料極差圧制御弁5と、空気極への
空気供給配管系に設けられて流量を制御する空気流量制
御弁8と、空気極からの空気排出配管系に設けられて空
気極の差圧を制御する空気極差圧制御弁12と、筐体3
1への窒素供給配管系に設けられて流量を制御する窒素
流量制御弁15と、筐体からの窒素排出配管系に設けら
れて筐体の圧力を制御する筐体圧力制御弁16と、窒素
流量制御弁15の上流側と燃料流量制御弁1の下流側と
に連通する配管系に設けられて燃料極への窒素の供給を
制御する燃料極窒素供給弁2と、窒素流量制御弁15の
上流側と空気流量制御弁8の下流側とに連通する配管系
に設けられて空気極への窒素の供給を制御する空気極窒
素供給弁9と、窒素流量制御弁15の下流側と燃料流量
制御弁1の下流側とに連通する配管系に設けられて燃料
極と筐体との差圧を抑制する筐体−燃料極均圧弁3と、
窒素流量制御弁15の下流側と空気流量制御弁8の下流
側とに連通する配管系に設けられて空気極と筐体との差
圧を抑制する筐体−空気極均圧弁10と、燃料極差圧制
御弁5の上流側で分岐して大気に連通する配管系に設け
られて大気と燃料極の差圧を調節する燃料−大気放出差
圧制御弁6と、空気極差圧制御弁12の上流側で分岐し
て大気に連通する配管系に設けられて大気と空気極の差
圧を調節する空気−大気放出差圧制御弁13とを備えて
いる。
FIG. 10 is a piping system diagram showing a conventional gas supply / discharge device for a fuel cell. In the figure, a fuel cell (stack) 30 is housed in a cell casing (also simply referred to as a casing) 31, and a gas supply / discharge device is provided in a fuel gas supply pipe system to a fuel electrode to control a flow rate. Fuel flow control valve 1
And a fuel electrode differential pressure control valve 5 provided in the fuel gas discharge piping system from the fuel electrode to control the differential pressure of the fuel electrode, and an air flow rate provided in the air supply piping system to the air electrode to control the flow rate. A control valve 8, an air electrode differential pressure control valve 12 provided in an air discharge piping system from the air electrode to control a differential pressure of the air electrode, and a housing 3.
1. A nitrogen flow rate control valve 15 provided in a nitrogen supply pipe system for controlling the flow rate, a case pressure control valve 16 provided in a nitrogen discharge pipe system from the case for controlling the pressure of the case, and a nitrogen The fuel electrode nitrogen supply valve 2 for controlling the supply of nitrogen to the fuel electrode, which is provided in the piping system communicating with the upstream side of the flow rate control valve 15 and the downstream side of the fuel flow rate control valve 1, and the nitrogen flow rate control valve 15. An air electrode nitrogen supply valve 9 that is provided in a piping system that communicates with the upstream side and the downstream side of the air flow rate control valve 8 and controls the supply of nitrogen to the air electrode, and the downstream side of the nitrogen flow rate control valve 15 and the fuel flow rate. A casing-fuel electrode pressure equalizing valve 3, which is provided in a piping system that communicates with the downstream side of the control valve 1 and suppresses a pressure difference between the fuel electrode and the casing.
A casing-air electrode equalizing valve 10 that is provided in a piping system that communicates with the downstream side of the nitrogen flow rate control valve 15 and the downstream side of the air flow rate control valve 8 to suppress the differential pressure between the air electrode and the casing; A fuel-atmosphere release differential pressure control valve 6 that is provided in a piping system that branches on the upstream side of the polar differential pressure control valve 5 and communicates with the atmosphere, and that adjusts the differential pressure between the atmospheric pressure and the fuel electrode, and the air polar differential pressure control valve. An air-atmosphere release differential pressure control valve 13 that is provided in a piping system that branches on the upstream side of 12 and communicates with the atmosphere and that adjusts the differential pressure between the atmosphere and the air electrode is provided.

【0005】また、従来例では、筐体−燃料極均圧弁3
および筐体−空気極均圧弁10には、制御用空気源,制
御用電源などの駆動源により全閉状態となり、駆動源の
喪失により全開状態となる遮断弁が用いられ、他の各弁
は制御用空気源,制御用電源などの制御源により開度が
制御され、駆動源の喪失により全閉状態となる調整弁が
用いられる。
In the conventional example, the casing-fuel electrode pressure equalizing valve 3
The casing-air electrode pressure equalizing valve 10 is a shutoff valve that is fully closed by a drive source such as a control air source and a control power source, and is fully opened by the loss of the drive source. An opening is controlled by a control source such as a control air source and a control power source, and a regulating valve that is in a fully closed state due to loss of a drive source is used.

【0006】次に、燃料電池30の発電開始時点および
発電停止時点における従来のガス給排装置の弁操作につ
いて説明する。 (イ)窒素による燃料極,空気極,および筐体の昇圧操
作。駆動源の喪失状態から、窒素流量制御弁15および
筐体圧力制御弁16の開度を制御し、筐体31に窒素を
導入すると、全開状態の筐体−燃料極均圧弁3および筐
体−空気極均圧弁10を介して燃料極および空気極に窒
素が導入され、3者が同じ圧力に昇圧される。この昇圧
操作で、筐体−燃料極均圧弁3および筐体−空気極均圧
弁10とその配管の流体抵抗が高いと過渡的な差圧を生
じやすくなるので、筐体−燃料極均圧弁3および筐体−
空気極均圧弁10とその配管の口径は、例えば燃料流量
制御弁1を含む燃料供給配管系、空気流量制御弁8を含
む空気供給配管系と同程度の口径に設定される。
Next, the valve operation of the conventional gas supply / exhaust device at the time of starting power generation of the fuel cell 30 and at the time of power generation stop will be described. (B) Pressurization operation of the fuel electrode, air electrode, and housing with nitrogen. When the openings of the nitrogen flow rate control valve 15 and the case pressure control valve 16 are controlled from the state where the drive source is lost and nitrogen is introduced into the case 31, the case in the fully open state-the fuel electrode pressure equalizing valve 3 and the case- Nitrogen is introduced into the fuel electrode and the air electrode through the air electrode pressure equalizing valve 10, and the pressures of the three are raised to the same pressure. If the fluid resistance of the casing-fuel electrode pressure equalizing valve 3 and the casing-air electrode pressure equalizing valve 10 and its piping is high due to this boosting operation, a transient differential pressure is likely to occur. And housing −
The caliber of the air electrode pressure equalizing valve 10 and its piping is set to, for example, the same caliber as that of the fuel supply piping system including the fuel flow control valve 1 and the air supply piping system including the air flow control valve 8.

【0007】(ロ)窒素による燃料極,空気極,および
筐体の差圧制御操作。燃料極窒素供給弁2および空気極
窒素供給弁9、燃料−大気放出差圧制御弁6および空気
−大気放出差圧制御弁13の開度を調整し、燃料極−空
気極間,筐体−燃料極間,および筐体−空気極間の差圧
を±500mmH2O 以下となるよう制御しつつ燃料極およ
び空気極に一定流量の窒素を流す。
(B) Differential pressure control operation of the fuel electrode, the air electrode, and the casing by nitrogen. The opening degrees of the fuel electrode nitrogen supply valve 2, the air electrode nitrogen supply valve 9, the fuel-atmosphere release differential pressure control valve 6 and the air-atmosphere release differential pressure control valve 13 are adjusted so that the fuel electrode-air electrode, the housing- A constant flow rate of nitrogen is passed through the fuel electrode and the air electrode while controlling the pressure difference between the fuel electrode and between the housing and the air electrode to be ± 500 mmH 2 O or less.

【0008】(ハ)窒素から反応ガスへの切り換え操
作。まず筐体−燃料極均圧弁3および筐体−空気極均圧
弁10を閉じ、燃料流量制御弁1および空気流量制御弁
8の開度を調整して燃料極に燃料ガス,空気極に空気を
徐々に導入するとともに、燃料極窒素供給弁2および空
気極窒素供給弁9を閉じ、次いで燃料−大気放出差圧制
御弁6および空気−大気放出差圧制御弁13の開度を調
整し、筐体圧力を基準にして筐体−燃料極間,筐体−空
気極間の差圧をその設定値に制御する(この状態で燃料
電池30を負荷回路に接続する)。
(C) Switching operation from nitrogen to reaction gas. First, the casing-fuel electrode pressure equalizing valve 3 and the casing-air electrode pressure equalizing valve 10 are closed, and the opening degrees of the fuel flow rate control valve 1 and the air flow rate control valve 8 are adjusted to supply fuel gas to the fuel electrode and air to the air electrode. While gradually introducing, the fuel electrode nitrogen supply valve 2 and the air electrode nitrogen supply valve 9 are closed, and then the opening degrees of the fuel-atmosphere release differential pressure control valve 6 and the air-atmosphere release differential pressure control valve 13 are adjusted, Based on the body pressure, the pressure differences between the housing and the fuel electrode and between the housing and the air electrode are controlled to their set values (the fuel cell 30 is connected to the load circuit in this state).

【0009】(ニ)発電運転状態への切り換え操作 燃料極差圧制御弁5および空気極差圧制御弁12の開度
を徐々に増し、逆に燃料−大気放出差圧制御弁6および
空気−大気放出差圧制御弁13の開度を徐々に絞って反
応ガスの流れを燃料極差圧制御弁5および空気極差圧制
御弁12に移し換える。その後は、負荷が要求する電力
値に対応した外部指令により燃料流量制御弁1および空
気流量制御弁8の開度が制御されるとともに、筐体圧力
を基準にして予め定まる差圧の設定値に基づいて燃料極
差圧制御弁5および空気極差圧制御弁12の開度が自動
調整され、燃料極,空気極の圧力および差圧が規定値に
調整される。なお、このとき窒素流量制御弁15および
筐体圧力制御弁16は、筐体圧力を設定値に保って少量
の窒素を外部に放出するよう、それぞれの開度が自動調
整される。
(D) Switching operation to the power generation operation state The opening degree of the fuel electrode differential pressure control valve 5 and the air electrode differential pressure control valve 12 is gradually increased, and conversely, the fuel-atmosphere release differential pressure control valve 6 and the air- The opening of the atmospheric pressure release differential pressure control valve 13 is gradually reduced to transfer the flow of the reaction gas to the fuel electrode differential pressure control valve 5 and the air electrode differential pressure control valve 12. After that, the opening degree of the fuel flow rate control valve 1 and the air flow rate control valve 8 is controlled by an external command corresponding to the electric power value required by the load, and the differential pressure is set to a preset differential pressure value based on the casing pressure. Based on this, the opening degrees of the fuel electrode differential pressure control valve 5 and the air electrode differential pressure control valve 12 are automatically adjusted, and the pressures and differential pressures of the fuel electrode and the air electrode are adjusted to specified values. At this time, the openings of the nitrogen flow control valve 15 and the case pressure control valve 16 are automatically adjusted so that the case pressure is maintained at a set value and a small amount of nitrogen is discharged to the outside.

【0010】(ホ)運転停止状態への切り換え操作。燃
料極窒素供給弁2および空気流量制御弁8を徐々に閉
じ、代わりに筐体−燃料極均圧弁3および筐体−空気極
均圧弁10を開くと、筐体31中の窒素が筐体−燃料極
均圧弁3および筐体−空気極均圧弁10を介して燃料極
および空気極に供給され、燃料極および空気極中の燃料
ガスおよび空気が燃料極差圧制御弁5および空気極差圧
制御弁12を介して排出されることにより、燃料極−空
気極間,筐体−燃料極間,および筐体−空気極間の差圧
を±500mmH2O 以下抑えて燃料ガスおよび空気を窒素
に置換する窒素パージが行われる。
(E) Switching operation to the operation stop state. When the fuel electrode nitrogen supply valve 2 and the air flow rate control valve 8 are gradually closed, and the housing-fuel electrode pressure equalizing valve 3 and housing-air electrode pressure equalizing valve 10 are opened instead, nitrogen in the housing 31 becomes the housing- The fuel gas and air in the fuel electrode and the air electrode are supplied to the fuel electrode and the air electrode through the fuel electrode pressure equalizing valve 3 and the casing-air electrode pressure equalizing valve 10, and the fuel electrode differential pressure control valve 5 and the air electrode differential pressure are supplied. By being discharged through the control valve 12, the pressure difference between the fuel electrode and the air electrode, between the housing and the fuel electrode, and between the housing and the air electrode is suppressed to ± 500 mmH 2 O or less, and the fuel gas and the air are nitrogen. A nitrogen purge to replace

【0011】[0011]

【発明が解決しようとする課題】従来のガス給排装置で
は、筐体−燃料極均圧弁3および筐体−空気極均圧弁1
0とその配管の口径を、通常燃料流量制御弁1,空気流
量制御弁8を含む反応ガス供給配管系と同程度の口径に
まで大きくして流体抵抗を低減し、(イ)項で説明した
窒素による燃料極,空気極,および筐体の昇圧操作を行
うことにより、燃料極−空気極間,筐体−燃料極間,お
よび筐体−空気極間の差圧を例えば±500mmH2O 以下
に抑えた状態で燃料極,空気極,および筐体の圧力を規
定の運転圧力値まで昇圧できる。
In the conventional gas supply and discharge device, the housing-fuel electrode pressure equalizing valve 3 and the housing-air electrode pressure equalizing valve 1 are used.
No. 0 and its pipe diameter are increased to the same diameter as that of the reaction gas supply piping system including the normal fuel flow rate control valve 1 and the air flow rate control valve 8 to reduce the fluid resistance. By increasing the pressure of the fuel electrode, the air electrode, and the housing with nitrogen, the differential pressure between the fuel electrode and the air electrode, between the housing and the fuel electrode, and between the housing and the air electrode is, for example, ± 500 mmH 2 O or less. It is possible to raise the pressure of the fuel electrode, air electrode, and housing to the specified operating pressure value with the pressure kept to a minimum.

【0012】図11は従来例における窒素による燃料
極,空気極,および筐体の差圧制御操作状態を模式化し
て示す図であり、燃料極窒素供給弁2および空気極窒素
供給弁9、燃料−大気放出差圧制御弁6および空気−大
気放出差圧制御弁13の開度を調整し、燃料極および空
気極に一定流量の窒素を流そうとすると、流体抵抗の低
い筐体−燃料極均圧弁3および筐体−空気極均圧弁10
を介して燃料極および空気極に比べて流体抵抗の低い筐
体31に窒素が多量に流入してしまい、その分燃料極お
よび空気極への燃料ガスおよび空気の流量が少なくなる
ため、これが原因で燃料−大気放出差圧制御弁6および
空気−大気放出差圧制御弁13による差圧制御が不安定
になり、ときには圧力変動(ハンチング現象)により燃
料極−空気極間,筐体−燃料極間,および筐体−空気極
間に過大な差圧が発生し、燃料電池を損傷してしまうと
いう問題が発生する。また、(ハ)項で説明した窒素か
ら反応ガスへの切り換え操作に移行する際、燃料極窒素
供給弁2および空気極窒素供給弁9を絞り、燃料流量制
御弁1および燃料極差圧制御弁5の開度を調整して燃料
極に燃料ガス,空気極に空気を徐々に導入する過程で、
燃料極側および空気極側の圧力が筐体側の圧力より過渡
的に低下するため、筐体に供給された窒素が筐体−燃料
極均圧弁3および筐体−空気極均圧弁10を介して燃料
極側および空気極側に放出されることになり、筐体に燃
料ガスまたは空気が侵入する事態を回避できる反面、筐
体−燃料極均圧弁3および筐体−空気極均圧弁10を閉
じる過程でやはりハンチング現象による過大な差圧が発
生し、燃料電池を損傷してしまうという問題が発生す
る。
FIG. 11 is a diagram schematically showing a differential pressure control operation state of the fuel electrode, the air electrode, and the casing by nitrogen in the conventional example. The fuel electrode nitrogen supply valve 2, the air electrode nitrogen supply valve 9 and the fuel are shown. -Atmosphere release differential pressure control valve 6 and air-Adjusting the opening degree of the atmospheric release differential pressure control valve 13 to cause a constant flow rate of nitrogen to flow to the fuel electrode and the air electrode, the casing having low fluid resistance-Fuel electrode Pressure equalizing valve 3 and casing-air electrode pressure equalizing valve 10
A large amount of nitrogen flows into the casing 31 having a lower fluid resistance than the fuel electrode and the air electrode through the fuel cell, and the flow rate of the fuel gas and the air to the fuel electrode and the air electrode is reduced by that much. Therefore, the differential pressure control by the fuel-atmosphere release differential pressure control valve 6 and the air-atmosphere release differential pressure control valve 13 becomes unstable, sometimes due to pressure fluctuation (hunting phenomenon) between the fuel electrode-air electrode and the case-fuel electrode. There is a problem that an excessive differential pressure is generated between the fuel cell and the housing and the air electrode, and the fuel cell is damaged. Further, when shifting to the switching operation from nitrogen to the reaction gas described in (C), the fuel electrode nitrogen supply valve 2 and the air electrode nitrogen supply valve 9 are throttled to make the fuel flow rate control valve 1 and the fuel electrode differential pressure control valve. In the process of gradually introducing the fuel gas to the fuel electrode and the air to the air electrode by adjusting the opening degree of 5,
Since the pressure on the fuel electrode side and the pressure on the air electrode side transiently drop below the pressure on the housing side, the nitrogen supplied to the housing passes through the housing-fuel electrode pressure equalizing valve 3 and the housing-air electrode pressure equalizing valve 10. Although it will be released to the fuel electrode side and the air electrode side, and the situation where fuel gas or air enters the casing can be avoided, the casing-fuel electrode pressure equalizing valve 3 and the casing-air electrode pressure equalizing valve 10 are closed. In the process, an excessive differential pressure is generated due to the hunting phenomenon and the fuel cell is damaged.

【0013】一方、停電などが発生すると、弁の駆動源
である燃料電池発電装置の制御電源が喪失したり、制御
用空気圧縮機が停止して弁開度の制御用空気が喪失した
りする。このため、ガス給排装置のシーケンシャルな停
止操作(例えば窒素パージや、燃料極,空気極,および
筐体の大気圧への降圧操作)は行えなくなる。その対策
として、無停電電源装置(CVCF) の設置が考えられる
が、装置の大型化や設備費の高騰を回避するために、通
常、駆動源の喪失時に開状態となる均圧弁を用いて差圧
の上昇を抑制する対策が採られている。
On the other hand, when a power failure or the like occurs, the control power source of the fuel cell power generator which is the drive source of the valve is lost, or the control air compressor is stopped and the control air for the valve opening is lost. . For this reason, it is not possible to perform a sequential stop operation of the gas supply / discharge device (for example, a nitrogen purge or a pressure reduction operation of the fuel electrode, the air electrode, and the casing to the atmospheric pressure). As a countermeasure, it is possible to install an uninterruptible power supply (CVCF), but in order to avoid the increase in size of equipment and the rise in equipment costs, normally, a pressure equalizing valve that opens when the drive source is lost is used. Measures are taken to suppress the rise in pressure.

【0014】図12は従来例において駆動源が喪失した
場合の弁位置を模式化して示す図であり、筐体−燃料極
均圧弁3および筐体−空気極均圧弁10は、空気圧,電
気などの駆動源が喪失したとき全開状態となるが、他の
各弁は空気圧,電気などの駆動源の喪失により全閉状態
となり、燃料極,空気極,および筐体がそれぞれ一定圧
力の燃料ガス,空気,および窒素を包蔵し、開状態の筐
体−燃料極均圧弁3および筐体−空気極均圧弁10によ
り互いに連通した状態で停止状態となる。したがって、
燃料電池内部で燃料ガスと空気が混合して直接反応する
可能性の高い不安全な停止状態を招くという問題があ
る。
FIG. 12 is a diagram schematically showing the valve position when the drive source is lost in the conventional example. The case-fuel electrode pressure equalizing valve 3 and the case-air electrode pressure equalizing valve 10 are air pressure, electricity, etc. When the drive source of is lost, it will be in the fully open state, but the other valves will be in the fully closed state due to the loss of the drive source such as air pressure and electricity, and the fuel electrode, the air electrode, and the casing will each have a constant pressure of fuel gas, It encloses air and nitrogen, and is in a stopped state in a state where they are in communication with each other by the casing-fuel electrode pressure equalizing valve 3 and casing-air electrode pressure equalizing valve 10 in the open state. Therefore,
There is a problem that an unsafe stop state in which the fuel gas and the air are mixed and directly react with each other inside the fuel cell is caused.

【0015】この発明の課題は、過大な差圧を生ずるこ
となく燃料ガスおよび空気の供給を開始でき、かつ発電
終了時および駆動源喪失時の窒素パージを安定して行え
る燃料電池へのガス給排装置を提供することにある。
An object of the present invention is to supply gas to a fuel cell which can start the supply of fuel gas and air without producing an excessive differential pressure and can stably perform nitrogen purging at the end of power generation and when the drive source is lost. To provide an ejector.

【0016】[0016]

【課題を解決するための手段】前述の課題を解決するた
めに、請求項1記載の発明は、電池筐体に窒素を供給・
排出し、この電池筐体に収納された燃料電池の燃料極に
燃料ガスを,空気極に空気をそれぞれ供給・排出する装
置であって、燃料ガス供給配管系に設けられて流量を制
御する燃料流量制御弁と、燃料ガス排出配管系に設けら
れて燃料極の差圧を制御する燃料極差圧制御弁と、空気
供給配管系に設けられて流量を制御する空気流量制御弁
と、空気排出配管系に設けられて空気極の差圧を制御す
る空気極差圧制御弁と、窒素供給配管系に設けられて流
量を制御する窒素流量制御弁と、窒素排出配管系に設け
られて筐体の圧力を制御する筐体圧力制御弁と、前記窒
素流量制御弁の上流側と前記燃料流量制御弁の下流側と
に連通する配管系に設けられて燃料極への窒素の供給を
制御する燃料極窒素供給弁と、前記窒素流量制御弁の上
流側と前記空気流量制御弁の下流側とに連通する配管系
に設けられて空気極への窒素の供給を制御する空気極窒
素供給弁と、前記窒素流量制御弁の下流側と前記燃料流
量制御弁の下流側とに連通する配管系に設けられて燃料
極と筐体との差圧を抑制する筐体−燃料極均圧弁と、前
記窒素流量制御弁の下流側と前記空気流量制御弁の下流
側とに連通する配管系に設けられて空気極と筐体との差
圧を抑制する筐体−空気極均圧弁と、前記燃料極差圧制
御弁の上流側で分岐して大気に連通する配管系に設けら
れて大気と燃料極の差圧を調節する燃料−大気放出差圧
制御弁と、前記空気極差圧制御弁の上流側で分岐して大
気に連通する配管系に設けられて大気と空気極の差圧を
調節する空気−大気放出差圧制御弁とを備え、燃料ガス
および空気の供給開始に先立って窒素による燃料極,空
気極および筐体の昇圧操作および均圧操作を行うガス給
排装置において、前記筐体−燃料極均圧弁をバイパスす
る小口径の配管に設けた筐体−燃料極均圧弁より小口径
の筐体−燃料極均圧小弁と、前記筐体−空気極均圧弁を
バイパスする小口径の配管に設けた筐体−空気極均圧弁
より小口径の筐体−空気極均圧小弁とを備える。
In order to solve the above-mentioned problems, the invention according to claim 1 supplies nitrogen to the battery casing.
A device for discharging and supplying and discharging fuel gas to the fuel electrode and air to the air electrode of the fuel cell housed in the cell housing, which is provided in the fuel gas supply piping system and controls the flow rate. A flow control valve, a fuel electrode differential pressure control valve installed in the fuel gas exhaust piping system to control the differential pressure of the fuel electrode, an air flow control valve installed in the air supply piping system to control the flow rate, and an air exhaust An air electrode differential pressure control valve installed in the piping system to control the differential pressure of the air electrode, a nitrogen flow control valve installed in the nitrogen supply piping system to control the flow rate, and a housing installed in the nitrogen discharge piping system. And a fuel for controlling the supply of nitrogen to the fuel electrode, which is provided in a pipe system that communicates with a casing pressure control valve that controls the pressure of the fuel cell and an upstream side of the nitrogen flow rate control valve and a downstream side of the fuel flow rate control valve. Polar nitrogen supply valve, upstream of the nitrogen flow control valve and the air flow An air electrode nitrogen supply valve that is provided in a piping system that communicates with the downstream side of the control valve and controls the supply of nitrogen to the air electrode, a downstream side of the nitrogen flow rate control valve and a downstream side of the fuel flow rate control valve. A casing provided in a pipe system communicating with the casing for suppressing a pressure difference between the fuel electrode and the casing-a fuel electrode pressure equalizing valve, and communicated with a downstream side of the nitrogen flow rate control valve and a downstream side of the air flow rate control valve. Provided in the piping system for suppressing the pressure difference between the air electrode and the housing-the air electrode pressure equalizing valve, and provided in the piping system branching upstream of the fuel electrode differential pressure control valve and communicating with the atmosphere. A fuel-atmosphere release differential pressure control valve for adjusting the differential pressure between the atmosphere and the fuel electrode, and a pipe system branching upstream of the air electrode differential pressure control valve and communicating with the atmosphere. The air-atmosphere release differential pressure control valve for adjusting the differential pressure of the In a gas supply / discharge device for performing pressure increasing operation and pressure equalizing operation of a fuel electrode, an air electrode, and a casing by means of a casing-fuel electrode equalizing valve provided in a pipe of a small diameter bypassing the casing-fuel electrode equalizing valve. Small-diameter casing-fuel electrode equalizing small valve, and casing provided in a small-diameter pipe that bypasses the casing-air electrode equalizing valve-smaller diameter casing than the air electrode equalizing valve-air electrode equalizing valve With a small valve.

【0017】ここで、請求項2に記載の発明は、請求項
1に記載の燃料電池へのガス給排装置において、筐体−
燃料極均圧弁,筐体−燃料極均圧小弁,筐体−空気極均
圧弁,および筐体−空気極均圧小弁が共にその駆動源が
喪失したときバネの作用により開放状態となる遮断弁と
することが好ましい。また、請求項3に記載の発明は、
請求項1または請求項2に記載の燃料電池へのガス給排
装置において、燃料−大気放出差圧制御弁をバイパスす
る配管系、およびこの配管系に設けた燃料−大気放出弁
と、空気−大気放出差圧制御弁をバイパスする配管系、
およびこの配管系に設けた空気−大気放出弁とを備え、
前記燃料−大気放出弁および空気−大気放出弁が共にそ
の駆動源が喪失したときバネの作用により開放状態とな
る遮断弁とすることが好ましい。
The invention described in claim 2 is the gas supply / discharge device for a fuel cell according to claim 1, wherein
Both the fuel electrode pressure equalizing valve, the housing-fuel electrode pressure equalizing small valve, the housing-air electrode pressure equalizing valve, and the housing-air electrode pressure equalizing small valve are opened by the action of the spring when their drive sources are lost. A shutoff valve is preferred. Further, the invention according to claim 3 is
The gas supply / discharge device for a fuel cell according to claim 1 or 2, wherein a pipe system that bypasses the fuel-atmosphere release differential pressure control valve, and a fuel-atmosphere release valve provided in this pipe system, and air- A piping system that bypasses the atmospheric release differential pressure control valve,
And an air-atmosphere release valve provided in this piping system,
It is preferable that both the fuel-atmosphere discharge valve and the air-atmosphere discharge valve are cut-off valves that are opened by the action of a spring when their drive sources are lost.

【0018】さらに、請求項4に記載の発明は、請求項
3に記載の燃料電池へのガス給排装置において、燃料−
大気放出弁および空気−大気放出弁がそれぞれに直列に
連結されたオリフィスを備えるよう構成すると良い。一
方、請求項5に記載の発明は、請求項1に記載の燃料電
池へのガス給排装置において、燃料流量制御弁,燃料極
差圧制御弁,空気流量制御弁,空気極差圧制御弁,窒素
流量制御弁,筐体圧力制御弁,燃料極窒素供給弁,空気
極窒素供給弁,燃料−大気放出差圧制御弁,および空気
−大気放出差圧制御弁が共に制御用空気源,制御用電源
などの制御源により開度調整される流量調節弁からな
り、前記制御源が喪失した状態で閉じるとともに、それ
ぞれに直列に制御源が喪失した状態で閉じる遮断弁を備
えるよう構成すると良い。
Further, the invention according to claim 4 is the gas supply / exhaust device for a fuel cell according to claim 3, wherein:
The atmosphere release valve and the air-air atmosphere release valve may each be provided with an orifice connected in series. On the other hand, the invention according to claim 5 is the gas supply / discharge device for a fuel cell according to claim 1, wherein a fuel flow rate control valve, a fuel pole differential pressure control valve, an air flow rate control valve, and an air pole differential pressure control valve are provided. , A nitrogen flow control valve, a housing pressure control valve, a fuel electrode nitrogen supply valve, an air electrode nitrogen supply valve, a fuel-atmosphere release differential pressure control valve, and an air-atmosphere release differential pressure control valve are both control air sources and controls. It is preferable that the flow control valve is configured to adjust the opening degree by a control source such as a power source, and the shutoff valve is closed in the state where the control source is lost and is closed in series in the state where the control source is lost.

【0019】請求項1に記載の発明では、(イ)項で説
明した窒素による燃料極,空気極,および筐体の昇圧操
作において筐体−燃料極均圧弁および筐体−燃料極均圧
小弁、筐体−空気極均圧弁および筐体−空気極均圧小弁
を開とすることにより、筐体−燃料極均圧弁および筐体
−空気極均圧弁の低い流体抵抗により差圧を抑制した状
態で燃料極,空気極,および筐体の窒素昇圧が可能にな
る。また、(ロ)項で説明した窒素による燃料極,空気
極,および筐体の差圧制御操作では、筐体−燃料極均圧
弁および筐体−空気極均圧弁を閉じ、流体抵抗の高い筐
体−燃料極均圧小弁、筐体−空気極均圧小弁を開いて差
圧を抑制することにより、均圧小弁を介して電池筐体へ
流入する窒素流量が抑制される。さらに、(ハ)項で説
明した窒素から反応ガスへの切り換え操作において、均
圧小弁を介して燃料極,空気極に逆流する窒素流量が抑
制されるので、均圧小弁の閉鎖に伴って生ずるハンチン
グ現象も抑制され、過大な差圧を生ずることなく窒素か
ら反応ガスへの切り換え操作が行われる。
According to the first aspect of the invention, in the boosting operation of the fuel electrode, the air electrode, and the casing by nitrogen described in (a), the casing-fuel electrode equalizing valve and the casing-fuel electrode equalizing small pressure. By opening the valve, housing-cathode equalizing valve and housing-cathode equalizing small valve, the differential pressure is suppressed by the low fluid resistance of the housing-fuel electrode equalizing valve and the housing-cathode equalizing valve. In this state, it is possible to boost the nitrogen pressure of the fuel electrode, air electrode, and housing. Further, in the differential pressure control operation of the fuel electrode, the air electrode, and the housing by nitrogen described in (b), the housing-fuel electrode pressure equalizing valve and the housing-air electrode pressure equalizing valve are closed, and the housing having high fluid resistance is closed. By opening the body-fuel electrode pressure equalizing small valve and the casing-air electrode pressure equalizing small valve to suppress the differential pressure, the flow rate of nitrogen flowing into the cell casing via the pressure equalizing small valve is suppressed. Further, in the switching operation from the nitrogen to the reaction gas described in (C), the flow rate of nitrogen flowing back to the fuel electrode and the air electrode via the pressure equalizing small valve is suppressed. The resulting hunting phenomenon is also suppressed, and the operation of switching from nitrogen to the reaction gas is performed without generating an excessive differential pressure.

【0020】請求項2に記載の発明では、請求項1に記
載の燃料電池へのガス給排装置において、筐体−燃料極
均圧弁,筐体−燃料極均圧小弁,筐体−空気極均圧弁,
および筐体−空気極均圧小弁を共に駆動源喪失時にバネ
の作用により開放状態となる遮断弁を用いたことによ
り、駆動源喪失により他の弁が閉状態となっても、燃料
極,空気極,および筐体間が互いに連通し、差圧の発生
が阻止される。
According to a second aspect of the invention, in the gas supply / discharge device for the fuel cell according to the first aspect, the casing-fuel electrode pressure equalizing valve, the casing-fuel electrode pressure equalizing small valve, the casing-air. Pole equalization valve,
Since both the casing and the air electrode pressure equalizing small valve are shut off valves that are opened by the action of the spring when the drive source is lost, even if other valves are closed due to the loss of the drive source, the fuel electrode, The air electrode and the housing communicate with each other to prevent the generation of differential pressure.

【0021】請求項3に記載の発明では、燃料−大気放
出差圧制御弁および空気−大気放出差圧制御弁に並列に
設けた燃料−大気放出弁および空気−大気放出弁が駆動
源喪失と同時にバネの作用により開放状態となり、請求
項2との相補作用により、燃料極内燃料ガスおよび空気
極内空気を筐体内窒素の圧力を利用して大気中に放出す
る窒素パージ経路が形成される。
According to the third aspect of the invention, the fuel-atmosphere release valve and the air-atmosphere release valve provided in parallel with the fuel-atmosphere release differential pressure control valve and the air-atmosphere release differential pressure control valve have a drive source loss. At the same time, it is opened by the action of the spring, and the complementary action with claim 2 forms a nitrogen purge path for releasing the fuel gas in the fuel electrode and the air in the air electrode to the atmosphere by utilizing the pressure of nitrogen in the housing. .

【0022】請求項4に記載の発明では、駆動源喪失時
に燃料−大気放出弁および空気−大気放出弁が開いたと
き、オリフィスが大気中に放出されるガス流量を抑制す
るので、これに付随して発生する差圧が抑制され、過大
な差圧を生ずることなく窒素パージが行われ、燃料極,
空気極,および筐体が緩やかに大気圧の窒素雰囲気に導
かれる。
According to the fourth aspect of the present invention, when the fuel-air release valve and the air-air release valve are opened when the drive source is lost, the orifice suppresses the flow rate of gas released into the atmosphere. The generated differential pressure is suppressed, nitrogen purge is performed without generating an excessive differential pressure, and the fuel electrode,
The air electrode and the casing are slowly introduced into the nitrogen atmosphere at atmospheric pressure.

【0023】請求項5に記載の発明では、電気などの制
御源により開度調整される流量調整弁の締切り性の欠点
を、これに直列に設けた遮断弁の優れた締切り性を利用
して補完できるので、例えば窒素パージ後も微量の燃料
ガスが供給され続けるなどの不都合が排除され、制御源
喪失時における窒素パージがより確実になり、燃料電池
の安全性が保持される。
In the invention described in claim 5, the disadvantage of the shutoff property of the flow rate adjusting valve whose opening is adjusted by a control source such as electricity is taken advantage of by the excellent shutoff property of the shutoff valve provided in series therewith. Since this can be complemented, inconveniences such as, for example, continuing supply of a small amount of fuel gas even after the nitrogen purge is eliminated, the nitrogen purge becomes more reliable when the control source is lost, and the safety of the fuel cell is maintained.

【0024】[0024]

【発明の実施の形態】以下この発明を実施例に基づいて
説明する。なお、従来例と同じ参照符号を付けた部材は
従来例のそれと同じ機能をもつので、その説明を省略す
る。図1はこの発明の一実施例になる燃料電池へのガス
給排装置を示す配管系統図である。図において、この実
施例のガス給排装置が図10に示す従来のガス給排装置
と異なるところは、筐体−燃料極均圧弁3をバイパスす
る小口径の配管4Pに設けた筐体−燃料極均圧弁3より
小口径の筐体−燃料極均圧小弁4と、筐体−空気極均圧
弁10をバイパスする小口径の配管11Pに設けた筐体
−空気極均圧弁10より小口径の筐体−空気極均圧小弁
11とを備えた点にある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. Since the members having the same reference numerals as those of the conventional example have the same functions as those of the conventional example, the description thereof will be omitted. FIG. 1 is a piping system diagram showing a gas supply / discharge device for a fuel cell according to an embodiment of the present invention. In the figure, the gas supply / exhaust device of this embodiment differs from the conventional gas supply / exhaust device shown in FIG. 10 in that the housing-the housing provided in a small-diameter pipe 4P that bypasses the fuel electrode pressure equalizing valve 3-the fuel Case-smaller diameter than the pole-equal pressure equalizing valve 3 and housing-smaller-diameter pipe 11P bypassing the case-air pole equalizing-valve 10 and the case-air pole equalizing-valve 10. The case-the air electrode pressure equalizing small valve 11 is provided.

【0025】また、筐体−燃料極均圧小弁4および筐体
−空気極均圧小弁11には筐体−燃料極均圧弁3および
筐体−空気極均圧弁10と同様に、電気,ガス圧などの
駆動源が喪失したときバネの作用により開放状態となる
遮断弁が用いられる。図2は図1に示す実施例の窒素に
よる燃料極,空気極,および筐体の昇圧操作における弁
位置を模式化して示す図であり、筐体−燃料極均圧弁
3,筐体−燃料極均圧小弁4,筐体−空気極均圧弁10
筐体−空気極均圧小弁11が開、その他の各弁が閉じた
状態で窒素流量制御弁15および筐体圧力制御弁16の
開度を調整すると、筐体31に窒素が流入すると同時
に、流体抵抗の低い筐体−燃料極均圧弁3および筐体−
空気極均圧弁10を介して燃料極および空気極に窒素が
流入し、燃料極−空気極間、筐体−燃料極間、筐体−空
気極間の差圧を差圧設定値以下に抑制した状態で燃料
極,空気極,および筐体が規定圧力にる昇圧される。
The housing-fuel electrode pressure equalizing small valve 4 and the housing-air electrode pressure equalizing small valve 11 have the same electrical characteristics as the case-fuel electrode pressure equalizing valve 3 and housing-air electrode pressure equalizing valve 10. A shut-off valve that is opened by the action of a spring when the drive source such as gas pressure is lost is used. FIG. 2 is a view schematically showing the fuel electrode, the air electrode, and the valve position in the pressure rising operation of the casing of the embodiment shown in FIG. 1, and the casing-fuel electrode pressure equalizing valve 3, the casing-fuel electrode. Pressure equalizing small valve 4, casing-air electrode pressure equalizing valve 10
When the openings of the nitrogen flow control valve 15 and the housing pressure control valve 16 are adjusted with the housing-air electrode equalizing small valve 11 open and the other valves closed, nitrogen flows into the housing 31 at the same time. , Casing with low fluid resistance-Fuel electrode equalizing valve 3 and casing-
Nitrogen flows into the fuel electrode and the air electrode through the air electrode pressure equalizing valve 10, and suppresses the differential pressure between the fuel electrode and the air electrode, between the housing and the fuel electrode, and between the housing and the air electrode to the differential pressure set value or less. In this state, the fuel electrode, the air electrode, and the housing are pressurized to the specified pressure.

【0026】図3は図1に示す実施例の窒素による燃料
極,空気極,および筐体の差圧制御操作における弁位置
を模式化して示す図であり、まず筐体−燃料極均圧弁3
および筐体−空気極均圧弁10を閉じ、燃料極窒素供給
弁2および空気極窒素供給弁9を徐々に開いて燃料極お
よび空気極に窒素を供給するとともに、燃料−大気放出
差圧制御弁6および空気−大気放出差圧制御弁13の開
度を調整して筐体−燃料極間、筐体−空気極間の差圧を
差圧設定値に制御する。このとき、開いている筐体−燃
料極均圧小弁4および筐体−空気極均圧小弁11が圧力
変動を吸収して過度の差圧の発生を抑制するとともに、
例えば筐体−燃料極均圧弁3および筐体−空気極均圧弁
10の口径を100Aとした場合、筐体−燃料極均圧小
弁4および筐体−空気極均圧小弁11の口径を25A程
度と小さくして流路抵抗を高く設定することにより、電
池筐体31への窒素の流入が抑制される。
FIG. 3 is a diagram schematically showing the valve positions in the differential pressure control operation of the fuel electrode, the air electrode, and the casing by nitrogen in the embodiment shown in FIG. 1. First, the casing-fuel electrode pressure equalizing valve 3
And the housing-air electrode pressure equalizing valve 10 is closed, the fuel electrode nitrogen supply valve 2 and the air electrode nitrogen supply valve 9 are gradually opened to supply nitrogen to the fuel electrode and the air electrode, and the fuel-atmosphere release differential pressure control valve. 6 and the opening degree of the air-atmosphere release differential pressure control valve 13 are adjusted to control the differential pressure between the housing-fuel electrode and between the housing-air electrode to the differential pressure set value. At this time, the open casing-fuel electrode pressure equalizing small valve 4 and the casing-air electrode pressure equalizing small valve 11 absorb pressure fluctuations and suppress the generation of excessive differential pressure.
For example, when the diameters of the housing-fuel electrode pressure equalizing valve 3 and the housing-air electrode pressure equalizing valve 10 are 100A, the diameters of the housing-fuel electrode pressure equalizing small valve 4 and the housing-air electrode pressure equalizing small valve 11 are set. By setting the flow path resistance to a high value by reducing it to about 25 A, the flow of nitrogen into the battery case 31 is suppressed.

【0027】図4は図1に示す実施例の窒素から反応ガ
スへの切り換え操作における弁位置を模式化して示す図
であり、まず筐体−燃料極均圧小弁4および筐体−空気
極均圧小弁11を閉じる。このとき、筐体−燃料極均圧
小弁4および筐体−空気極均圧小弁11の高い流路抵抗
によって電池筐体への窒素流量が従来より格段に小さく
抑制されているので、ハンチング現象も小さくて済み、
したがって過大な差圧の発生も阻止される。次いで、燃
料流量制御弁1および空気流量制御弁8を徐々に開いて
燃料ガスおよび空気の供給を開始するとともに、燃料極
窒素供給弁2および空気極窒素供給弁9を徐々に絞って
全閉する。このような操作によって、燃料極,空気極,
および電池筐体にそれぞれ燃料ガス,空気,および窒素
が供給され、さらに一定圧力に制御された筐体圧力をベ
ースにして燃料極,空気極の差圧が一定に制御される。
FIG. 4 is a diagram schematically showing the valve position in the switching operation from the nitrogen gas to the reaction gas in the embodiment shown in FIG. 1. First, the case-fuel electrode pressure equalizing small valve 4 and the case-air electrode. The pressure equalizing small valve 11 is closed. At this time, the flow rate of nitrogen to the battery case is suppressed to be much smaller than the conventional one due to the high flow resistance of the case-fuel electrode pressure equalizing small valve 4 and the case-air electrode pressure equalizing small valve 11, so that hunting is performed. The phenomenon is small,
Therefore, generation of an excessive pressure difference is also prevented. Then, the fuel flow rate control valve 1 and the air flow rate control valve 8 are gradually opened to start the supply of the fuel gas and the air, and the fuel electrode nitrogen supply valve 2 and the air electrode nitrogen supply valve 9 are gradually throttled and fully closed. . By such operation, fuel electrode, air electrode,
Fuel gas, air, and nitrogen are supplied to the battery case and the cell case, respectively, and the pressure difference between the fuel electrode and the air electrode is controlled to be constant based on the case pressure controlled to a constant pressure.

【0028】図5は図1に示す実施例の発電運転状態へ
の切り換え操作における弁位置を模式化して示す図であ
り、燃料極差圧制御弁5および空気極差圧制御弁12の
開度を徐々に増し、逆に燃料−大気放出差圧制御弁6お
よび空気−大気放出差圧制御弁13の開度を徐々に絞っ
て反応ガスの流れを燃料極差圧制御弁5および空気極差
圧制御弁12に移し換えることにより発電運転が可能に
なる。
FIG. 5 is a diagram schematically showing the valve positions in the switching operation to the power generation operation state of the embodiment shown in FIG. 1, and the opening degrees of the fuel electrode differential pressure control valve 5 and the air electrode differential pressure control valve 12. Is gradually increased, and conversely, the opening degrees of the fuel-atmosphere release differential pressure control valve 6 and the air-atmosphere release differential pressure control valve 13 are gradually reduced so that the flow of the reaction gas is controlled by the fuel pole differential pressure control valve 5 and the air pole difference. The power generation operation can be performed by transferring the pressure control valve 12.

【0029】図6はこの発明の異なる実施例になる燃料
電池のガス給排装置を示す配管系統図である。この実施
例が図1に示す実施例と異なるところは、燃料−大気放
出差圧制御弁6をバイパスする配管系7Pに設けた燃料
−大気放出弁7と、空気−大気放出差圧制御弁13をバ
イパスする配管系14Pに設けた空気−大気放出弁14
とを備え、この燃料−大気放出弁7および空気−大気放
出弁14にその駆動源が喪失したときバネの作用により
開放状態となる遮断弁を用いた点にある。
FIG. 6 is a piping system diagram showing a gas supply / discharge device for a fuel cell according to a different embodiment of the present invention. This embodiment differs from the embodiment shown in FIG. 1 in that a fuel-atmosphere release differential pressure control valve 13 and a fuel-atmosphere release differential pressure control valve 13 provided in a piping system 7P bypassing the fuel-atmosphere release differential pressure control valve 6 are provided. Air-atmosphere release valve 14 provided in the piping system 14P that bypasses the
And a shutoff valve that is opened by the action of a spring when the drive source is lost for the fuel-atmosphere release valve 7 and the air-atmosphere release valve 14.

【0030】図7は図6に示す実施例の駆動源喪失時に
おける弁位置を模式化して示す図であり、空気圧,電気
などの駆動源の喪失により、各流量調節弁1,2,5,
6,8,9,12,13,15,16は全閉状態とな
り、燃料極には燃料ガスが、空気極には空気が、電池筐
体には窒素が封入された状態となるが、駆動源が喪失し
たときバネの作用により開放状態となる遮断弁3,4,
6,7,10,11,14は全開状態となり、電池筐体
内の窒素を筐体−燃料極均圧弁3,筐体−燃料極均圧小
弁4を介して燃料極に供給し、燃料極内の燃料ガスを燃
料−大気放出弁7を介して大気中に放出する窒素パージ
経路と、電池筐体内の窒素を筐体−空気極均圧弁10,
筐体−空気極均圧小弁11を介して空気極に供給し、空
気極内の空気を空気−大気放出弁14を介して大気中に
放出する窒素パージ経路とが形成され、燃料極,空気極
は大気圧の窒素に置換される。また、燃料極,空気極,
および電池筐体は流路抵抗の低い筐体−燃料極均圧弁
3,筐体−空気極均圧弁10、および筐体−燃料極均圧
小弁4,筐体−空気極均圧小弁11により互いに連通状
態となるので、筐体−燃料極間,筐体−空気極間,およ
び燃料極−空気極間の差圧も抑制される。
FIG. 7 is a diagram schematically showing the valve position when the drive source of the embodiment shown in FIG. 6 is lost. Due to the loss of the drive source such as air pressure and electricity, each flow rate control valve 1, 2, 5, 5 is shown.
6,8,9,12,13,15,16 are fully closed, and fuel gas is filled in the fuel electrode, air is filled in the air electrode, and nitrogen is filled in the battery case. Shut-off valve 3, 4, which is opened by the action of the spring when the source is lost
6, 7, 10, 11, and 14 are fully opened, and nitrogen in the cell housing is supplied to the fuel electrode through the housing-fuel electrode pressure equalizing valve 3 and the housing-fuel electrode pressure equalizing small valve 4, and the fuel electrode A nitrogen purge path for releasing the fuel gas in the interior to the atmosphere via the fuel-atmosphere release valve 7, and the nitrogen in the battery enclosure for the enclosure-air electrode pressure equalizing valve 10,
A nitrogen purge path for supplying air to the air electrode through the casing-air electrode pressure equalizing small valve 11 and discharging the air in the air electrode into the atmosphere through the air-atmosphere discharge valve 14 is formed. The air electrode is replaced with nitrogen at atmospheric pressure. In addition, fuel electrode, air electrode,
And the battery case has a low flow passage resistance-the fuel electrode pressure equalizing valve 3, the case-air electrode pressure equalizing valve 10, and the case-fuel electrode pressure equalizing small valve 4, the case-air electrode pressure equalizing small valve 11. As a result, they are brought into communication with each other, so that the pressure differences between the housing and the fuel electrode, between the housing and the air electrode, and between the fuel electrode and the air electrode are suppressed.

【0031】図8はこの発明の他の実施例になる燃料電
池のガス給排装置の要部を模式化した弁位置で示す配管
系統図である。この実施例が他の実施例と異なるところ
は、燃料−大気放出弁7および空気−大気放出弁14が
それぞれに直列に連結されたオリフィス21を備えた点
にある。燃料−大気放出弁7および空気−大気放出弁1
4は、その上流側が電池の運転圧力、下流側が大気圧で
あり、その差圧が大きいため、電池運転圧力を高く設定
した発電装置では、例えば放出弁7,14に25A程度
の口径の小さい遮断弁を用いても、制御用電源または空
気源の喪失時には多量のガスが流出し、筐体−燃料極
間,筐体−空気極間に過大な差圧を生ずる恐れがある。
この実施例のように、例えば燃料−大気放出弁7および
空気−大気放出弁14の取り付けフランジ等を利用して
小口径の制限オリフィス21を形成すれば、装置の大型
化を招くことなく放出ガス流量を制限して緩やかに窒素
パージを行い、燃料極内,空気極内,および筐体内を大
気圧の窒素雰囲気に導ける利点が得られる。
FIG. 8 is a piping system diagram showing in schematic valve position a main part of a gas supply / discharge device for a fuel cell according to another embodiment of the present invention. This embodiment differs from the other embodiments in that the fuel-air release valve 7 and the air-air release valve 14 each have an orifice 21 connected in series. Fuel-Atmosphere Release Valve 7 and Air-Atmosphere Release Valve 1
4, the upstream side is the operating pressure of the battery, the downstream side is the atmospheric pressure, and the differential pressure is large. Therefore, in a power generator in which the operating pressure of the battery is set high, for example, the release valves 7 and 14 are shut off with a small diameter of about 25 A. Even if the valve is used, a large amount of gas may flow out when the control power source or the air source is lost, and an excessive pressure difference may occur between the housing and the fuel electrode and between the housing and the air electrode.
If, as in this embodiment, the restriction orifice 21 having a small diameter is formed by using, for example, the mounting flanges of the fuel-atmosphere release valve 7 and the air-atmosphere release valve 14 and the like, the discharged gas can be obtained without increasing the size of the apparatus. This has the advantage that the flow rate is limited and the nitrogen purge is performed gently, and the inside of the fuel electrode, the inside of the air electrode, and the inside of the housing can be introduced into a nitrogen atmosphere at atmospheric pressure.

【0032】図9はこの発明の異なる他の実施例になる
燃料電池のガス給排装置を模式化した弁位置で示す配管
系統図である。この実施例が図6に示す実施例と異なる
ところは、駆動源喪失時に閉状態となる各流量調節弁
1,2,5,6,8,9,12,13,15,16それ
ぞれに直列に、駆動源喪失時に開状態となる遮断弁20
を設けた点にあり、締切り性が幾分劣る流量調節弁の欠
点を、これに直列に設けた遮断弁20の優れた締切り性
を利用して補完し、窒素パージ後も微量の燃料ガスまた
は空気が燃料極,空気極に供給され,排出され続けるよ
うな不安全状態を確実に回避できる利点が得られる。
FIG. 9 is a schematic piping system diagram showing valve positions of a gas supply / discharge device for a fuel cell according to another embodiment of the present invention. This embodiment is different from the embodiment shown in FIG. 6 in that the flow rate control valves 1, 2, 5, 6, 8, 9, 12, 13, 15, 16 which are closed when the drive source is lost are connected in series. , Shut-off valve 20 that opens when the drive source is lost
Since the flow control valve is somewhat inferior in shutoff property, it is supplemented by utilizing the excellent shutoff property of the shutoff valve 20 provided in series, and even after the nitrogen purge, a small amount of fuel gas or The advantage is that it is possible to reliably avoid an unsafe state in which air is supplied to the fuel electrode and the air electrode and is continuously discharged.

【0033】[0033]

【発明の効果】この発明の燃料電池へのガス給排装置は
前述のように、大口径の筐体−燃料極均圧弁および筐体
−空気極均圧弁それぞれに並列に小口径の筐体−燃料極
均圧小弁および筐体−空気極均圧小弁を設けるよう構成
した。その結果、窒素による燃料極,空気極,および筐
体の昇圧操作時には、大口径の筐体−燃料極均圧弁およ
び筐体−空気極均圧弁の低い流路抵抗を利用して差圧が
抑制され、窒素による燃料極,空気極,および筐体の差
圧制御操作時には、筐体−燃料極均圧小弁および筐体−
空気極均圧小弁の高い流路抵抗を利用して電池筐体への
窒素の過剰な流入が阻止され、窒素から反応ガスへの切
り換え操作時には、筐体−燃料極均圧小弁および筐体−
空気極均圧小弁の遮断に起因して発生する筐体−燃料極
間,筐体−空気極間の圧力変動および差圧の増大が抑制
されることになり、従来例で問題になった、燃料電池の
発電開始時点に生ずる過大な差圧による燃料電池の破損
が回避され、過大な差圧を生ずることなく円滑に燃料ガ
スおよび空気を電極に導入できるガス給排装置を備えた
燃料電池を提供できる。
As described above, the gas supply / discharge device for a fuel cell according to the present invention has a large-diameter casing-a fuel electrode equalizing valve and a casing-a small-diameter casing in parallel with each of the air electrode equalizing valves- A fuel electrode pressure equalizing small valve and a housing-air electrode pressure equalizing small valve were provided. As a result, when boosting operation of the fuel electrode, air electrode, and housing with nitrogen, the differential pressure is suppressed by using the low flow resistance of the large diameter housing-fuel electrode pressure equalizing valve and housing-air electrode pressure equalizing valve. When operating the differential pressure control of the fuel electrode, the air electrode, and the housing by nitrogen, the housing-the fuel electrode pressure equalizing small valve and the housing-
The high flow resistance of the air electrode pressure equalizing small valve is used to prevent excessive inflow of nitrogen into the battery case, and during the switching operation from nitrogen to reaction gas, the case-fuel electrode pressure equalizing small valve and the housing Body
The pressure fluctuation between the housing and the fuel electrode and the increase in the pressure difference between the housing and the air electrode, which are caused by the shutoff of the air electrode pressure equalizing small valve, and the increase in the differential pressure are suppressed, which is a problem in the conventional example. A fuel cell equipped with a gas supply / exhaust device capable of avoiding damage to the fuel cell due to an excessive pressure difference occurring at the start of power generation of the fuel cell and smoothly introducing fuel gas and air into the electrode without causing an excessive pressure difference Can be provided.

【0034】また、燃料−大気放出差圧制御弁および空
気−大気放出差圧制御弁にそれぞれ並列に、駆動源が喪
失したときバネの作用により開放状態となる燃料−大気
放出弁および空気−大気放出弁を設けるよう構成した。
その結果、停電等により駆動電源,制御用空気源などが
喪失状態となった際、燃料−大気放出弁および空気−大
気放出弁が開放状態になり、これと同様に開放状態にな
っている筐体−燃料極均圧弁,筐体−空気極均圧弁,筐
体−燃料極均圧小弁,および筐体−空気極均圧小弁との
相補作用によって、電池筐体中の窒素を燃料極および空
気極を経由して大気中に放出する窒素パージ経路が形成
されることになり、均圧弁により連通状態となった燃料
極および空気極中に加圧状態の燃料ガスおよび空気が密
封状態になるという従来技術の不安全状態が解消され、
定常的な運転停止時は勿論、不時の駆動源喪失状態にお
いても、窒素パージが自動的に行われて燃料極,空気
極,およびを大気圧の窒素雰囲気に導き、安全状態が確
実に確保される信頼性の高いガス給排装置を備えた燃料
電池を提供することができる。さらに、安全性確保のた
めに従来必要とした無停電電源装置の設置も不要になる
ので、設備費の低減および発電装置の小型化にも貢献で
きる利点が得られる。
Further, in parallel with the fuel-atmosphere release differential pressure control valve and the air-atmosphere release differential pressure control valve, respectively, the fuel-atmosphere release valve and the air-atmosphere are opened by the action of the spring when the drive source is lost. A discharge valve was provided.
As a result, when the drive power source, the control air source, etc. are lost due to a power failure or the like, the fuel-atmosphere release valve and the air-atmosphere release valve are opened, and likewise, the casing is open. The body-fuel electrode pressure equalizing valve, the case-air electrode pressure equalizing valve, the case-fuel electrode pressure equalizing small valve, and the case-air electrode pressure equalizing small valve complement the nitrogen in the cell case to the fuel electrode. A nitrogen purge path for discharging to the atmosphere via the air electrode and the air electrode will be formed, and the pressurized fuel gas and air will be sealed in the fuel electrode and the air electrode that are in communication by the pressure equalizing valve. The unsafe condition of the conventional technology that
Nitrogen purging is automatically performed not only when the operation is stopped steadily but also when the drive source is lost in an untimely manner, and the fuel electrode, air electrode, and the atmosphere are introduced into a nitrogen atmosphere at atmospheric pressure to ensure a safe state. It is possible to provide a fuel cell provided with a highly reliable gas supply and discharge device. Further, since it is not necessary to install an uninterruptible power supply, which was conventionally required for ensuring safety, there is an advantage that it can contribute to reduction of equipment cost and downsizing of a power generator.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例になる燃料電池へのガス給
排装置を示す配管系統図
FIG. 1 is a piping system diagram showing a gas supply / discharge device for a fuel cell according to an embodiment of the present invention.

【図2】図1に示す実施例の窒素による燃料極,空気
極,および筐体の昇圧操作における弁位置を模式化して
示す図
FIG. 2 is a diagram schematically showing a valve position in a pressure increasing operation of a fuel electrode, an air electrode, and a casing by nitrogen in the embodiment shown in FIG.

【図3】図1に示す実施例の窒素による燃料極,空気
極,および筐体の差圧制御操作における弁位置を模式化
して示す図
FIG. 3 is a diagram schematically showing a valve position in a differential pressure control operation of a fuel electrode, an air electrode, and a casing by nitrogen in the embodiment shown in FIG.

【図4】図1に示す実施例の窒素から反応ガスへの切り
換え操作における弁位置を模式化して示す図
FIG. 4 is a diagram schematically showing a valve position in a switching operation from nitrogen to a reaction gas in the embodiment shown in FIG.

【図5】図1に示す実施例の発電運転状態への切り換え
操作における弁位置を模式化して示す図
FIG. 5 is a diagram schematically showing a valve position in a switching operation to a power generation operation state of the embodiment shown in FIG.

【図6】この発明の異なる実施例になる燃料電池のガス
給排装置を示す配管系統図
FIG. 6 is a piping system diagram showing a gas supply / discharge device for a fuel cell according to a different embodiment of the present invention.

【図7】図6に示す実施例の駆動源喪失時における弁位
置を模式化して示す図
FIG. 7 is a diagram schematically showing a valve position when the drive source is lost in the embodiment shown in FIG.

【図8】この発明の他の実施例になる燃料電池のガス給
排装置の要部を模式化した弁位置で示す配管系統図
FIG. 8 is a piping system diagram showing in schematic valve position the essential parts of a gas supply / discharge device for a fuel cell according to another embodiment of the present invention.

【図9】この発明の異なる他の実施例になる燃料電池の
ガス給排装置を模式化した弁位置で示す配管系統図
FIG. 9 is a piping system diagram showing the gas supply / exhaust device for a fuel cell according to another embodiment of the present invention, the valve position being schematically shown.

【図10】従来の燃料電池へのガス給排装置を示す配管
系統図
FIG. 10 is a piping system diagram showing a conventional gas supply / discharge device for a fuel cell.

【図11】従来例における窒素による燃料極,空気極,
および筐体の差圧制御操作状態を模式化して示す図
FIG. 11 shows a fuel electrode, an air electrode by nitrogen in a conventional example,
And a diagram schematically showing the differential pressure control operation state of the housing

【図12】従来例において駆動源が喪失した場合の弁位
置を模式化して示す図
FIG. 12 is a diagram schematically showing a valve position when a drive source is lost in a conventional example.

【符号の説明】[Explanation of symbols]

1 燃料流量制御弁 2 燃料極窒素供給弁 3 筐体−燃料極均圧弁 4 筐体−燃料極均圧小弁 5 燃料極差圧制御弁 6 燃料−大気放出差圧制御弁 7 燃料−大気放出弁 8 空気流量制御弁 9 空気極窒素供給弁 10 筐体−空気極均圧弁 11 筐体−空気極均圧小弁 12 空気極差圧制御弁 13 空気−大気放出差圧制御弁 14 空気−大気放出弁 15 窒素流量制御弁 16 筐体圧力制御弁 20 遮断弁 21 オリフィス 30 燃料電池 31 電池筐体 1 Fuel flow rate control valve 2 Fuel electrode nitrogen supply valve 3 Case-Fuel electrode pressure equalizing valve 4 Case-Fuel electrode pressure equalizing small valve 5 Fuel electrode differential pressure control valve 6 Fuel-atmosphere release Differential pressure control valve 7 Fuel-atmosphere release Valve 8 Air flow rate control valve 9 Air electrode nitrogen supply valve 10 Case-air electrode pressure equalizing valve 11 Case-air electrode pressure equalizing small valve 12 Air electrode differential pressure control valve 13 Air-atmosphere release differential pressure control valve 14 Air-atmosphere Release valve 15 Nitrogen flow rate control valve 16 Case pressure control valve 20 Shutoff valve 21 Orifice 30 Fuel cell 31 Battery case

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】電池筐体に窒素を供給・排出し、この電池
筐体に収納された燃料電池の燃料極に燃料ガスを,空気
極に空気をそれぞれ供給・排出する装置であって、燃料
ガス供給配管系に設けられて流量を制御する燃料流量制
御弁と、燃料ガス排出配管系に設けられて燃料極の差圧
を制御する燃料極差圧制御弁と、空気供給配管系に設け
られて流量を制御する空気流量制御弁と、空気排出配管
系に設けられて空気極の差圧を制御する空気極差圧制御
弁と、窒素供給配管系に設けられて流量を制御する窒素
流量制御弁と、窒素排出配管系に設けられて筐体の圧力
を制御する筐体圧力制御弁と、前記窒素流量制御弁の上
流側と前記燃料流量制御弁の下流側とに連通する配管系
に設けられて燃料極への窒素の供給を制御する燃料極窒
素供給弁と、前記窒素流量制御弁の上流側と前記空気流
量制御弁の下流側とに連通する配管系に設けられて空気
極への窒素の供給を制御する空気極窒素供給弁と、前記
窒素流量制御弁の下流側と前記燃料流量制御弁の下流側
とに連通する配管系に設けられて燃料極と筐体との差圧
を抑制する筐体−燃料極均圧弁と、前記窒素流量制御弁
の下流側と前記空気流量制御弁の下流側とに連通する配
管系に設けられて空気極と筐体との差圧を抑制する筐体
−空気極均圧弁と、前記燃料極差圧制御弁の上流側で分
岐して大気に連通する配管系に設けられて大気と燃料極
の差圧を調節する燃料−大気放出差圧制御弁と、前記空
気極差圧制御弁の上流側で分岐して大気に連通する配管
系に設けられて大気と空気極の差圧を調節する空気−大
気放出差圧制御弁とを備え、燃料ガスおよび空気の供給
開始に先立って窒素による燃料極,空気極および筐体の
昇圧操作および均圧操作を行うガス給排装置において、
前記筐体−燃料極均圧弁をバイパスする小口径の配管に
設けた筐体−燃料極均圧弁より小口径の筐体−燃料極均
圧小弁と、前記筐体−空気極均圧弁をバイパスする小口
径の配管に設けた筐体−空気極均圧弁より小口径の筐体
−空気極均圧小弁とを備えたことを特徴とする燃料電池
へのガス給排装置。
1. A device for supplying / discharging nitrogen to / from a cell casing, supplying / discharging fuel gas to / from a fuel electrode and air to / from an air electrode of a fuel cell housed in the cell casing, respectively. A fuel flow rate control valve provided in the gas supply piping system to control the flow rate, a fuel electrode differential pressure control valve provided in the fuel gas discharge piping system to control the differential pressure of the fuel electrode, and an air supply piping system Flow rate control valve to control the flow rate, an air electrode differential pressure control valve to control the differential pressure of the air electrode provided in the air exhaust piping system, and a nitrogen flow rate control valve to control the flow rate in the nitrogen supply piping system A valve, a casing pressure control valve provided in the nitrogen discharge piping system to control the pressure of the casing, and a piping system communicating with the upstream side of the nitrogen flow control valve and the downstream side of the fuel flow control valve. And a fuel electrode nitrogen supply valve for controlling the supply of nitrogen to the fuel electrode. An air electrode nitrogen supply valve that is provided in a piping system that communicates with the upstream side of the elementary flow rate control valve and the downstream side of the air flow rate control valve and controls the supply of nitrogen to the air electrode, and the downstream side of the nitrogen flow rate control valve. Side and a downstream side of the fuel flow rate control valve, which is provided in a piping system that suppresses the differential pressure between the fuel electrode and the case-a fuel electrode pressure equalizing valve, and a downstream side of the nitrogen flow rate control valve. A casing provided in a piping system communicating with the downstream side of the air flow rate control valve to suppress the differential pressure between the air electrode and the casing-an air electrode pressure equalizing valve, and an upstream side of the fuel electrode differential pressure control valve. A fuel-atmosphere release differential pressure control valve that is provided in a pipe system that branches and communicates with the atmosphere and that regulates the differential pressure between the atmosphere and the fuel electrode, and a branch on the upstream side of the air electrode differential pressure control valve that communicates with the atmosphere. The air-atmosphere release differential pressure control valve for adjusting the differential pressure between the atmosphere and the air electrode, the fuel gas And the air fuel electrode by nitrogen prior to the start of the supply of the gas supply and discharge apparatus for performing the boost operation and equalizing pressure operation of the air electrode and the housing,
The casing-a casing provided in a small-diameter pipe that bypasses the fuel electrode pressure equalizing valve-a casing having a smaller diameter than the fuel electrode pressure equalizing valve-a fuel electrode pressure equalizing small valve, and the casing-bypassing the air electrode pressure equalizing valve A gas supply / discharge device for a fuel cell, comprising: a casing provided in a pipe having a small diameter, a casing having a smaller diameter than the air electrode pressure equalizing valve, and an air electrode pressure equalizing small valve.
【請求項2】請求項1に記載の燃料電池へのガス給排装
置において、筐体−燃料極均圧弁,筐体−燃料極均圧小
弁,筐体−空気極均圧弁,および筐体−空気極均圧小弁
が共にその駆動源が喪失したときバネの作用により開放
状態となる遮断弁であることを特徴とする燃料電池への
ガス給排装置。
2. The gas supply / discharge device for a fuel cell according to claim 1, wherein the housing-fuel electrode pressure equalizing valve, the housing-fuel electrode pressure equalizing small valve, the housing-air electrode equalizing valve, and the housing. A gas supply / discharge device for a fuel cell, characterized in that both the air electrode pressure equalizing small valves are shut-off valves that are opened by the action of a spring when their drive source is lost.
【請求項3】請求項1または請求項2に記載の燃料電池
へのガス給排装置において、燃料−大気放出差圧制御弁
をバイパスする配管系、およびこの配管系に設けた燃料
−大気放出弁と、空気−大気放出差圧制御弁をバイパス
する配管系、およびこの配管系に設けた空気−大気放出
弁とを備え、前記燃料−大気放出弁および空気−大気放
出弁が共にその駆動源が喪失したときバネの作用により
開放状態となる遮断弁であることを特徴とする燃料電池
へのガス給排装置。
3. The gas supply / discharge device for a fuel cell according to claim 1 or 2, wherein a pipe system bypassing the fuel-atmosphere release differential pressure control valve, and a fuel-atmosphere release provided in this pipe system. Valve, a piping system that bypasses the air-atmosphere release differential pressure control valve, and an air-atmosphere release valve provided in this piping system, and the fuel-atmosphere release valve and the air-atmosphere release valve are both driving sources thereof. A gas supply / exhaust device for a fuel cell, which is a shutoff valve that is opened by the action of a spring when the fuel is lost.
【請求項4】請求項3に記載の燃料電池へのガス給排装
置において、燃料−大気放出弁および空気−大気放出弁
がそれぞれに直列に連結されたオリフィスを備えたこと
を特徴とする燃料電池へのガス給排装置。
4. The gas supply / discharge device for a fuel cell according to claim 3, wherein the fuel-atmosphere release valve and the air-atmosphere release valve each have an orifice connected in series. Gas supply / discharge device for batteries.
【請求項5】請求項1に記載の燃料電池へのガス給排装
置において、燃料流量制御弁,燃料極差圧制御弁,空気
流量制御弁,空気極差圧制御弁,窒素流量制御弁,筐体
圧力制御弁,燃料極窒素供給弁,空気極窒素供給弁,燃
料−大気放出差圧制御弁,および空気−大気放出差圧制
御弁が共に制御用空気源,制御用電源などの制御源によ
り開度調整される流量調節弁からなり、前記制御源が喪
失した状態で閉じるとともに、それぞれに直列に制御源
が喪失した状態で閉じる遮断弁を備えたことを特徴とす
る燃料電池へのガス給排装置。
5. The gas supply / discharge device for a fuel cell according to claim 1, wherein a fuel flow rate control valve, a fuel pole differential pressure control valve, an air flow rate control valve, an air pole differential pressure control valve, a nitrogen flow rate control valve, The casing pressure control valve, the fuel electrode nitrogen supply valve, the air electrode nitrogen supply valve, the fuel-atmosphere release differential pressure control valve, and the air-atmosphere release differential pressure control valve are all control sources such as a control air source and a control power source. A gas for a fuel cell, which comprises a flow control valve whose opening degree is adjusted by, and which is provided with a shut-off valve which is closed in a state where the control source is lost and is closed in series in a state where the control source is lost. Supply and discharge device.
JP00352196A 1996-01-12 1996-01-12 Gas supply / discharge device for fuel cell Expired - Fee Related JP3430767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00352196A JP3430767B2 (en) 1996-01-12 1996-01-12 Gas supply / discharge device for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00352196A JP3430767B2 (en) 1996-01-12 1996-01-12 Gas supply / discharge device for fuel cell

Publications (2)

Publication Number Publication Date
JPH09199149A true JPH09199149A (en) 1997-07-31
JP3430767B2 JP3430767B2 (en) 2003-07-28

Family

ID=11559688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00352196A Expired - Fee Related JP3430767B2 (en) 1996-01-12 1996-01-12 Gas supply / discharge device for fuel cell

Country Status (1)

Country Link
JP (1) JP3430767B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050001671A (en) * 2003-06-26 2005-01-07 현대자동차주식회사 Fuel electric cell device having variable pressure device
JP2006134807A (en) * 2004-11-09 2006-05-25 Honda Motor Co Ltd Fuel cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050001671A (en) * 2003-06-26 2005-01-07 현대자동차주식회사 Fuel electric cell device having variable pressure device
JP2006134807A (en) * 2004-11-09 2006-05-25 Honda Motor Co Ltd Fuel cell system
US7846596B2 (en) 2004-11-09 2010-12-07 Honda Motor Co., Ltd. Fuel cell system and method of discharging a reaction gas from the fuel cell system
JP4699010B2 (en) * 2004-11-09 2011-06-08 本田技研工業株式会社 Fuel cell system

Also Published As

Publication number Publication date
JP3430767B2 (en) 2003-07-28

Similar Documents

Publication Publication Date Title
JP2660097B2 (en) Fuel cell generator
JP3430767B2 (en) Gas supply / discharge device for fuel cell
JP6699566B2 (en) Fuel cell system
JP5239376B2 (en) Fuel cell system
JP2006322345A (en) Pressure fluctuation suppressing device and pressure fluctuation suppressing method
JPH02244559A (en) Method of stopping operation of fuel cell
JPS63116373A (en) Fuel cell operating method
US20050277010A1 (en) Controlled process gas pressure decay at shut-down
JP7046741B2 (en) Fuel cell system and fuel cell ship
JP2017157283A (en) Tank shut-off valve control method
JP3605236B2 (en) Fuel cell module
JPH0656766B2 (en) Fuel cell device
JP2008218170A (en) Fuel cell system and scavenging treatment method therefor
JPH0354433B2 (en)
JPS63170864A (en) Fuel cell equipped with protector
JP2014120468A (en) Hydrogen supply device of fuel cell system
JPS60241663A (en) Fuel cell protector
CN218629709U (en) Protection system of hydrogen analyzer
JPS6046782B2 (en) Fuel cell voltage regulator
JP2928583B2 (en) Fuel cell generator
KR20210110926A (en) System for filling hydrogen and check valve using the same
KR100827984B1 (en) Apparatus for raise the pressure of gas fuel vehicle
JPS59111270A (en) Control device for fuel-cell power generating system
JP3244133B2 (en) How to prevent excessive differential pressure in fuel cells
JPS63158757A (en) Fuel cell power generating system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees