JPS63158757A - Fuel cell power generating system - Google Patents

Fuel cell power generating system

Info

Publication number
JPS63158757A
JPS63158757A JP61307384A JP30738486A JPS63158757A JP S63158757 A JPS63158757 A JP S63158757A JP 61307384 A JP61307384 A JP 61307384A JP 30738486 A JP30738486 A JP 30738486A JP S63158757 A JPS63158757 A JP S63158757A
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
air
valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61307384A
Other languages
Japanese (ja)
Other versions
JPH073792B2 (en
Inventor
Kunihiro Doi
土居 邦宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61307384A priority Critical patent/JPH073792B2/en
Publication of JPS63158757A publication Critical patent/JPS63158757A/en
Publication of JPH073792B2 publication Critical patent/JPH073792B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04679Failure or abnormal function of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fuel Cell (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)

Abstract

PURPOSE:To make it possible to decrease the flow of fuel and air to a specified value and to control unit cell voltage so as not to exceed a specified value by passing fuel and air to an opening control valve when emergency arises in a system. CONSTITUTION:When emergency arises in a system, a d.c. breaker is tripped to cut off a load 15 from a cell, and a d.c. switch 13 is closed to connect a resister 12. Solenoid valves 22-5 arranged in parallel to opening control valves 18-21 are closed, and flow rate control valves of fuel and air and differential control valves are fully opened. Thereby, passing circuits of fuel and air are switched to opening control valves 18-21 sides. A control state obtained by the flow rate of fuel and air equivalent to the curve aB in the figure can instantaneously be realized. Therefore, output voltage of a cell is controlled so as not to exceed a point Eh and a deterioration in performance of the cell caused by corrosion can be retarded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はシステム非常時に負荷を開放した時に、電池
単セル電圧が所定値を越えることがなく、すみやかに一
定負荷運転に移り、電池を短時間に安全に停止すること
ができる燃料電池システムに関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention prevents the battery single cell voltage from exceeding a predetermined value when the load is released in a system emergency, and quickly shifts to constant load operation to shorten the battery life. The present invention relates to a fuel cell system that can be safely stopped on time.

〔従来の技術〕[Conventional technology]

第2図は、例、!tは特開昭60−250564号公報
に示されたような従来例として示され次燃料電池発電シ
ステムおよび特開昭61−200673号公報に示され
たような従来例を合わせ示した燃料電池発電システムで
あり、図において、(1)は燃料電池スタック槽、(2
)は燃料電池スタック、(3)は燃料極、(4)は空気
極、(5)は+7 y酸電解質層、(6)は燃料流量調
節弁、(7)は窒素流量調節弁、(3)は空気流tv4
節弁、(9)は電池スタック檜の窒巣圧力調節弁、σQ
は燃料極と電池スタック槽窒素の差圧を調節する燃料差
圧調節弁、αυは空気極(4)と電池スタック槽窒素の
差圧を調節する空気差圧調節弁、(2)は抵抗器、03
は直流開閉器で、電池の直流出力端に並列に接続されて
おり、α脣は直流しゃ断器、(至)は負荷装置であるO 次K11J作について説明する。燃料流量調節弁(6)
および空気流’It調節弁(8)より各々所定流量の燃
料および空気が電池スタック(2)の燃料極(3)およ
び空気極(4)に供給され、電池反応によって直流電力
を発生する。電池動作圧力は窒素流量調節弁(7)より
電池スタック僧(1)に供給され、窓素圧力調節弁(9
)により調節された電池スタック4!窒素圧力を基準と
し、該電池スタック槽窒素圧力より、例えば約100 
mm Aq低い圧力に燃料極(3)を、ま九、例えば約
50 mm Aq低い圧力に空気極(4)を、各々燃料
差圧調節弁すQと空気差圧調節弁θυにより調節してい
る。電池反応によp発生した直流電力は直流しゃ断器α
◆を介して負荷装置αQに供給される。負荷装置(ト)
は一般の直流負荷やインバータと交流負荷の組合せなど
である。
Figure 2 shows an example! t is shown as a conventional example as shown in Japanese Unexamined Patent Publication No. 60-250564, and is a fuel cell power generation system that combines the following fuel cell power generation system and a conventional example as shown in Japanese Patent Application Laid-Open No. 61-200673. In the figure, (1) is a fuel cell stack tank, (2 is a fuel cell stack tank,
) is the fuel cell stack, (3) is the fuel electrode, (4) is the air electrode, (5) is the +7y acid electrolyte layer, (6) is the fuel flow control valve, (7) is the nitrogen flow control valve, (3 ) is airflow tv4
The valve, (9) is the battery stack cypress nitrogen nest pressure regulating valve, σQ
is a fuel differential pressure regulating valve that regulates the differential pressure between the fuel electrode and battery stack tank nitrogen, αυ is an air differential pressure regulating valve that regulates the differential pressure between the air electrode (4) and battery stack tank nitrogen, and (2) is a resistor. ,03
is a DC switch, which is connected in parallel to the DC output end of the battery, α is a DC breaker, and (to) is a load device.The following K11J operation will be explained. Fuel flow control valve (6)
Predetermined flow rates of fuel and air are supplied to the fuel electrode (3) and air electrode (4) of the battery stack (2) from the air flow 'It control valve (8), and DC power is generated by a battery reaction. The battery operating pressure is supplied to the battery stack member (1) from the nitrogen flow control valve (7), and is supplied to the battery stack member (1) through the nitrogen flow control valve (9).
) Adjusted battery stack 4! Based on the nitrogen pressure, for example, about 100
The fuel electrode (3) is adjusted to a lower pressure of mm Aq, and the air electrode (4) is adjusted to a lower pressure of about 50 mm Aq, for example, by a fuel differential pressure regulating valve Q and an air differential pressure regulating valve θυ. . The DC power generated by the battery reaction is passed through the DC breaker α.
◆ is supplied to the load device αQ. Load device (g)
is a general DC load or a combination of an inverter and an AC load.

抵抗器(2)は通常、順次投入および一括投入可能な複
数の並列抵抗から成り、電池起動時に電池スタック(2
)に燃料および空気を導入したとき無負荷であると、電
池開放電圧Woe (約1vといわれている)まで上昇
し電極の腐食劣化が進むので、燃料および空気流量増に
応じて順次並列の抵抗を投入し、抵抗器(2)の全抵抗
値を下げ、直流出力消費蓋を増して、単セル′亀圧が例
えばO,SVをこえないようにする。すなわち、抵抗器
@の抵抗容量は、電池特性カーブで単セル電圧が0.8
vとなる直流出力を消費できるように設計されており、
この値が電池から交流出力としてとり出せる最低出力に
つながっている。
Resistor (2) usually consists of multiple parallel resistors that can be applied sequentially or all at once, and is connected to the battery stack (2) during battery startup.
), if there is no load when fuel and air are introduced into the cell, the battery open circuit voltage will rise to Woe (approximately 1 V) and corrosion and deterioration of the electrode will proceed. is introduced, the total resistance value of the resistor (2) is lowered, and the DC output consumption cover is increased to prevent the single cell's voltage from exceeding, for example, O, SV. In other words, the resistance capacity of the resistor @ is 0.8 when the single cell voltage is 0.8 on the battery characteristic curve.
It is designed to consume a DC output of
This value is connected to the minimum output that can be extracted from the battery as AC output.

いま、定格運転中にシステム異常で非常停止がかかった
場合、図示しない横出回路からの信号をうけて、直流し
ゃ断器α◆をトリップして負荷装置(ト)を電池スタッ
ク(2)から切離す。このため、燃料電池は無負荷とな
フ電池開放電圧に上昇する。この値は単セル当りFJl
vと言われており、このままでは腐食電流が流れて電極
の劣化をきたすので、直流開閉器(至)を投入して電池
出力電圧を抵抗器(2)に印加し、最低出力電圧(単セ
ル電圧で約0.8V )になるまで燃料差圧調節弁qQ
および空気差圧調節弁(2)により各差圧を制御しなが
ら、燃料流量調節弁(6)および空気流量調節弁(8)
を絞り、燃料および空気流量を減少させる。
If an emergency stop occurs due to a system abnormality during rated operation, a signal from a side output circuit (not shown) will be received and the DC breaker α◆ will be tripped to disconnect the load device (T) from the battery stack (2). Let go. As a result, the fuel cell's open voltage increases to the level at which it is under no load. This value is FJl per single cell.
If left as is, a corrosive current will flow and cause electrode deterioration, so the DC switch (to) is turned on to apply the battery output voltage to the resistor (2), and the minimum output voltage (single cell Turn off the fuel differential pressure control valve qQ until the voltage reaches approximately 0.8V.
The fuel flow rate control valve (6) and the air flow rate control valve (8) control each differential pressure with the air pressure control valve (2) and
throttle to reduce fuel and air flow.

この際、燃料極(3)と空気極(4)間の差圧を許容値
内に保つため、あまり急激に流量を絞れず、例えば5〜
10分程Kを要する0 〔発明が解決しようとする問題点〕 従来の燃料電池発電システムは以上のように構成されて
いるので、システムの非常時に直流しゃ断器(141を
トリップし負荷装置Q@lを開放して、直流開閉器Q&
lを投入し抵抗器(6)に出力電圧を印加するが、この
1までは燃料利用率、空気利用率が低いため車セル電圧
は0.8V以上となるので、燃料および空気流量調節弁
(6)および(8)をしはシ、燃料および空気差圧調節
弁αQおよび(ロ)で差圧を制御しながら所定流量まで
減少させる。しかし、差圧を許容値内に保つため、あま
り急激にしぼれず、約5〜10分と長時間を要し、この
間電極の劣化が進むという問題がめった。
At this time, in order to maintain the differential pressure between the fuel electrode (3) and the air electrode (4) within the permissible value, the flow rate cannot be reduced too rapidly.
[Problem to be solved by the invention] Since the conventional fuel cell power generation system is configured as described above, in the event of a system emergency, the DC breaker (141) is tripped and the load device Q@ Open l and connect DC switch Q&
1 and applies the output voltage to the resistor (6), but until this point the fuel utilization rate and air utilization rate are low, the vehicle cell voltage will be 0.8V or more, so the fuel and air flow control valve ( 6) and (8), the differential pressure is controlled by the fuel and air differential pressure regulating valves αQ and (b) and reduced to a predetermined flow rate. However, in order to maintain the differential pressure within an allowable value, the pressure difference does not decrease too rapidly and it takes a long time, about 5 to 10 minutes, which often causes the electrode to deteriorate.

この発明は上記のような問題点を解消するためになされ
たもので、システムの非常時にすみやかに所定流量に燃
料および空気を減じることができ、しかも単セル電圧が
所定値を越えることのない燃料電池システムを提供する
ことを目的としている。
This invention was made in order to solve the above-mentioned problems, and it is possible to quickly reduce the flow rate of fuel and air to a predetermined level in the event of a system emergency, and to provide a fuel that does not cause the single cell voltage to exceed a predetermined value. The purpose is to provide a battery system.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る燃料電池発電システムは、燃料および空
気流量調節弁と電池スタックの間の各々の配管にしゃ断
弁と開度調節弁を並列に設置し、また、電池スタック出
口の燃料および空気差圧調節弁までの各々の配管にしゃ
断弁と開度調節弁を並列に設置し、電池スタック槽の窒
素圧力を検知する圧力発信器の信号をうけとり、あらか
じめ圧力に応じてプログラムされた開度になるよう、各
開度調節弁に開度設定信号を与える開度設定器を備えた
ものである。
The fuel cell power generation system according to the present invention includes a shutoff valve and an opening control valve installed in parallel in each pipe between the fuel and air flow rate control valve and the cell stack, and the fuel and air differential pressure at the outlet of the cell stack. A shutoff valve and an opening adjustment valve are installed in parallel on each pipe leading to the control valve, and the valve receives the signal from the pressure transmitter that detects the nitrogen pressure in the battery stack tank, and the opening is programmed in advance according to the pressure. The valve is equipped with an opening setting device that provides an opening setting signal to each opening adjustment valve.

〔作用〕[Effect]

この発明における燃料電池発電システムは、システムの
非常時に、直流しゃ断器を開放し負荷装置を切離し、直
流開閉器を閉として抵抗負荷を投入すると共に、燃料お
よび空気の通気回路をしゃ断弁を閉とすることにより開
度調節弁側に切換え、所定流量の制御状態を瞬時に確立
することにより、単セル電圧を所定値を越兄なh値に抑
え、差圧変動も抑制できるので、安全に停止動作に移る
〇〔発明の実施例〕 以下、この発明の一実施例を図について説明する。第1
図において、α・は電池スタック槽(1)内の窒素圧力
を検出し開度設定器Q′?)に圧力信号を送る圧力発信
器、(至)、四、■、(2)はそれぞれ開度設定器αη
からの開度信号をうけて弁開度を調節する開度調節弁で
、[相]は燃料流量、σeは燃料極−電池スタック槽窒
素の差圧を、■は空気流量、Qυは空気極−電池スタッ
ク佃窒素の差圧を各々設定する開度調節弁である。四、
に)jCI4.@はそれぞれ開度調節弁(ト)、 aS
 、 tA、 @υと各々並列に接続された電磁弁で、
(ホ)は燃料、脅は余剰燃料、(ハ)は空気、(イ)は
余剰燃料ラインに設置された電磁弁である。
In the case of a system emergency, the fuel cell power generation system according to the present invention opens the DC breaker to disconnect the load device, closes the DC switch to apply a resistance load, and closes the cutoff valve for the fuel and air ventilation circuit. By switching to the opening control valve side and instantaneously establishing a control state with a predetermined flow rate, the single cell voltage can be suppressed to an h value that exceeds the predetermined value, and differential pressure fluctuations can also be suppressed, resulting in a safe shutdown. Moving on to operation〇 [Embodiment of the invention] An embodiment of the invention will be described below with reference to the drawings. 1st
In the figure, α. detects the nitrogen pressure in the battery stack tank (1) and is an opening setting device Q'? ), (to), 4, ■, and (2) are the opening setting devices αη, respectively.
This is an opening adjustment valve that adjusts the valve opening in response to an opening signal from the air electrode. - Opening adjustment valves that set the differential pressure of the battery stack Tsukuda nitrogen. four,
)jCI4. @ indicates opening control valve (g) and aS, respectively.
, tA, and @υ are each connected in parallel with a solenoid valve,
(E) is fuel, red is surplus fuel, (c) is air, and (b) is a solenoid valve installed in the surplus fuel line.

次に動作について説明する。燃料電池システムの運転中
には、燃料および空気流量調節弁(6) 、 +8)よ
υ供給された燃料および空気は電池スタック槽(1)の
燃料極(3)および空気極(4)に供給され、電池反応
によって直流電力を発生する。該直流電力は、直流しゃ
断器α→を介して負荷装置(ト)によシ消費される。
Next, the operation will be explained. During operation of the fuel cell system, the fuel and air supplied by the fuel and air flow control valves (6), +8) are supplied to the fuel electrode (3) and air electrode (4) of the cell stack tank (1). DC power is generated by the battery reaction. The DC power is consumed by the load device (G) via the DC breaker α→.

電池反応により水素および酸素を消費された余剰燃料お
よび余剰空気は、燃料および空気差圧調節弁明、a刀で
差圧制御されている。また、望素は窒素流量調節弁(7
)より′Jt池スタック槽(1)に供給され、゛電池ス
タック槽(1)出口の窒素圧力論節弁(9)により圧力
制御され、電池動作圧力が設定される。
The excess fuel and excess air whose hydrogen and oxygen have been consumed by the cell reaction are differentially controlled by a fuel and air differential pressure control mechanism. In addition, the desired element is a nitrogen flow control valve (7
) is supplied to the Jt battery stack tank (1), and the pressure is controlled by a nitrogen pressure control valve (9) at the outlet of the battery stack tank (1) to set the battery operating pressure.

該電池動作圧力は、圧力発信器α呻によV検知され圧力
信号として開度設定器Q7)K送られ、開板設定器σ7
Jからは該圧力信号に応じた開度設定信号が開!1:p
i節弁(至)、 O’J 、(イ)、シυに送られ弁の
開度が設定される。
The battery operating pressure is detected by the pressure transmitter α and sent as a pressure signal to the opening setting device Q7).
The opening setting signal corresponding to the pressure signal is opened from J! 1:p
It is sent to the i node valve (to), O'J, (a), and υ, and the opening degree of the valve is set.

これは、燃料および空気の通気量に関係なく設定されて
おり、各流量調節弁下流の開度調節弁□□□。
This is set regardless of the amount of fuel and air ventilation, and the opening control valve □□□ downstream of each flow control valve.

に)は動作圧力に応じて、例えば20〜3o%定格流量
の一定流量に開度調節され、各差圧調節弁αQ。
) is adjusted to a constant flow rate of, for example, 20 to 30% of the rated flow rate according to the operating pressure of each differential pressure regulating valve αQ.

(ロ)上流の開度調節弁α呻、(ロ)は20〜30%定
格流量の間の一定流量が電池スタック(2)に供給され
たとき、電池スタック楢窒素圧力との差圧が燃料極(3
)側で約100mmAq、空気極(4)側で約50 m
m Aqとなる開度に設定されている。ま九、開度調節
弁(至)、α場。
(b) Upstream opening control valve α (b) When a constant flow rate between 20 and 30% of the rated flow rate is supplied to the battery stack (2), the differential pressure between the battery stack and the nitrogen pressure is the fuel pole (3
) side: approx. 100 mmAq, air electrode (4) side: approx. 50 m
The opening degree is set to mAq. 9. Opening control valve (to), α field.

(ホ)、(2)と並列に設置された電磁弁(2)、脅、
(財)、に)は開である。
(e), solenoid valve (2) installed in parallel with (2),
(goods), ni) is open.

第3図は動作を説明するための電圧電流特性である。FIG. 3 shows voltage-current characteristics for explaining the operation.

動作圧力、動作温度、燃料利用率、空気利用率が定格の
ときの電池の電圧電流特性はガス流量に応じて第3図の
曲線イで示される。定格運転を行っているときの動作点
はA点で、その時の電圧電流値はEr、工rである。ま
た、動作圧力、動作fIA度。
The voltage-current characteristics of the battery when the operating pressure, operating temperature, fuel utilization rate, and air utilization rate are at the rated values are shown by curve A in FIG. 3 depending on the gas flow rate. The operating point during rated operation is point A, and the voltage and current values at that time are Er and Er. Also, operating pressure, operating fIA degree.

燃料および空気の流量が定格で、燃料および空気利用率
が変化することを許した場合、電流値が小さくなるほど
燃料および空気利用率が低くなるので、電池出力電圧は
高くなり゛電池の電圧電流特性は曲線口で示される。
If the fuel and air flow rates are rated and the fuel and air utilization rates are allowed to vary, the smaller the current value, the lower the fuel and air utilization rates, and the higher the battery output voltage will be.Battery voltage-current characteristics is indicated by a curved line.

いま、システムに異常が発生した時、まず直流しゃ断器
Q4)をトリップさせて負荷装置Q5を電池から切り離
す。この′1まだと電池出力電圧は、Eo(開放電圧で
、単セル当り約IV)とな9電池劣化が進行するので、
直流開閉器備を投入して抵抗器(2)K電池出力電圧を
印加する。第3図のlN[線OCは、複数の並列抵抗を
全て投入したときの抵抗器(2)の特性であり、曲線イ
のB点で設計されている。すなわち、抵抗値はEh/I
zである。電圧Ehは単セル当90.8V程度でめジ、
燃料電池電圧の許容上限値である。
Now, when an abnormality occurs in the system, first the DC breaker Q4) is tripped to disconnect the load device Q5 from the battery. If this '1 still remains, the battery output voltage will be Eo (open circuit voltage, approximately IV per single cell).9 As battery deterioration progresses,
Turn on the DC switch equipment and apply the output voltage of the K battery to resistor (2). The lN[ line OC in FIG. 3 is the characteristic of the resistor (2) when all the plurality of parallel resistors are connected, and is designed at point B of the curve A. In other words, the resistance value is Eh/I
It is z. The voltage Eh is approximately 90.8V per single cell,
This is the allowable upper limit of fuel cell voltage.

従来の燃料電池システムでは、抵抗器(6)に電池出力
電圧が印加された時は燃料および空気流量はまだ減少し
ていないので、曲線口の0点、すなわち、電池電圧はE
B (、> Eh )、電流はより(>工l)となり、
燃料電池電圧の許容上限値をこえる。この状態は燃料お
よび空気流量が絞られ、曲線イのB点の状態になるまで
続くこととなる。
In a conventional fuel cell system, when the battery output voltage is applied to the resistor (6), the fuel and air flow rates have not yet decreased, so the 0 point at the beginning of the curve, that is, the battery voltage is E.
B (, > Eh), the current becomes more (> Eh),
The fuel cell voltage exceeds the permissible upper limit. This state will continue until the fuel and air flow rates are throttled and the state is reached at point B of curve A.

本燃料電池システムでは、システムに異常が発生した時
、直流しゃ断器α◆をトリップさせて負荷装置QFJを
電池から切り離し、直流開閉器(至)を閉として抵抗器
a4を投入すると共に、開度調節弁と並列に設置された
電磁弁(2)、に)、 cI4.に)を閉、燃料および
空気の流量調節弁および差圧調節弁を全開とすることに
より、燃料および空気の通気回路を開度設定された開度
調節弁側に切換える。
In this fuel cell system, when an abnormality occurs in the system, the DC breaker α◆ is tripped to disconnect the load device QFJ from the battery, the DC switch (to) is closed, the resistor A4 is turned on, and the opening A solenoid valve (2) installed in parallel with the control valve, cI4. ) is closed, and the fuel and air flow rate control valves and differential pressure control valves are fully opened, thereby switching the fuel and air ventilation circuit to the opening degree control valve side that has been set.

したがって、第3図の曲線43点に相当する燃料および
空気流量が流れた場合の制御状態が瞬時に実現できるの
で、電池出力電圧はEhをこえることはなく、電池の腐
食劣化の進行を抑制することができる。
Therefore, the control state when the fuel and air flow rates correspond to the 43 points of the curve in Fig. 3 can be instantaneously realized, so the battery output voltage does not exceed Eh, and the progress of corrosion deterioration of the battery is suppressed. be able to.

ここで、開度設定器αηで開度設定する動作圧力は、例
えば燃料電池システムで、流量および差圧制御可能な最
大流量を流したとき、曲線内の0点に相当するEB値が
単セル当、り 0.8V iこ兄ない圧力までとしてお
けばよい。
Here, the operating pressure for setting the opening with the opening setting device αη is, for example, in a fuel cell system, when the maximum flow rate that can be controlled by the flow rate and differential pressure is applied, the EB value corresponding to the 0 point in the curve is In this case, the pressure should be set to less than 0.8V.

なお、上記実施例では、開度調節弁として電動弁、しゃ
断弁として電磁弁を用いた場合を示したが開度調節弁と
して空気圧調節弁、しゃ断弁として空気圧駆動式しゃ断
弁を用いてもよい。
In addition, in the above embodiment, a case is shown in which an electric valve is used as the opening adjustment valve and an electromagnetic valve is used as the shutoff valve, but a pneumatic pressure adjustment valve may be used as the opening adjustment valve, and a pneumatically driven shutoff valve may be used as the shutoff valve. .

また、上記実施例ではリン酸形燃料電池の場合について
説明したが、アルカリ型、溶融炭酸塩型。
Furthermore, in the above embodiments, the case of a phosphoric acid fuel cell was explained, but an alkaline type or a molten carbonate type fuel cell may be used.

固体電解質型の燃料電池でもよく、上記実施例と同様の
効果を奏する。
A solid electrolyte fuel cell may also be used, and the same effects as in the above embodiment can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、システム異常時に負
荷装置を開放し、抵抗器を投入したとき電池出力電圧が
単セル当p所定値をこえないような燃料および空気の流
量および差圧の制御状態が瞬時に実現できるよう開度設
定された開度−節弁の回路に燃料および空気が通気され
るようにしたので、電池の腐食劣化を抑制できる効果が
ある。
As described above, according to the present invention, the fuel and air flow rates and differential pressures are adjusted such that the battery output voltage does not exceed the predetermined value per single cell when the load device is opened and the resistor is turned on in the event of a system abnormality. Since fuel and air are vented through the opening-control valve circuit whose opening is set so that a controlled state can be instantaneously realized, corrosion and deterioration of the battery can be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

纂1図はこの発明の一爽施例による燃料電池発電システ
ムを示す系統図、第2図は従来の燃料電池システムを示
す系統図、第3図はこの発明と従来のものとの特性を示
す特性図である。 図において、(1)は燃料電池スタック槽、(2)は燃
料電池スタック、(3)は燃料極、(4)は空気極、(
6)。 (7) 、 (a)は流量調節弁、(9)は圧力調節弁
、(10、αυは差圧調節弁、@は抵抗器、餞は直流開
閉器、α0は圧力発信器、αηは開度設定器、(ト)、
 Ql 、四、ぐυは開度調節弁、a、w、G!4.■
はしゃ断弁である。 なお、図中同一符号は同一または相当部分を示すO
Figure 1 is a system diagram showing a fuel cell power generation system according to a refreshing embodiment of the present invention, Figure 2 is a system diagram showing a conventional fuel cell system, and Figure 3 shows the characteristics of this invention and the conventional system. It is a characteristic diagram. In the figure, (1) is the fuel cell stack tank, (2) is the fuel cell stack, (3) is the fuel electrode, (4) is the air electrode, (
6). (7), (a) is the flow control valve, (9) is the pressure control valve, (10, αυ is the differential pressure control valve, @ is the resistor, 餞 is the DC switch, α0 is the pressure transmitter, αη is the open Degree setting device, (g),
Ql, 4, guυ are opening control valves, a, w, G! 4. ■
This is a big no-no. In addition, the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)燃料電池スタック槽内に収容された燃料電池の燃
料極および空気極、上記燃料電池スタック槽の各々の入
口側に設けられた燃料、空気、窒素を供給する流量調節
弁、上記燃料電池スタック槽各々の出口側に設けられた
上記燃料極と上記燃料電池スタック槽および上記空気極
と上記燃料電池スタック槽の差圧を制御する差圧調節弁
および上記燃料電池スタック槽内の窒素圧力を調節する
窒素圧力調節弁を備え、燃料電池スタックの直流出力端
に並列に抵抗器と直流開閉器を接続した燃料電池発電シ
ステムにおいて、上記燃料および空気流量調節弁と上記
燃料電池スタックの間および上記電池スタックと上記燃
料および上記空気差圧調節弁の間に開度調節弁としや断
弁を並列に組込んだ配管を各々設け、上記燃料電池スタ
ック槽の圧力を検知する圧力発信器と該圧力発信器の信
号を取り込んで上記開度調節弁に設定信号を送る開度設
定器を備え、システムの非常時に負荷を開放した時に上
記抵抗器を投入すると共に上記しや断弁を閉、上記流量
および差圧調節弁を全開とし、上記燃料および空気を上
記開度調節弁に通気するようにしたことを特徴とする燃
料電池発電システム。
(1) A fuel electrode and an air electrode of a fuel cell housed in a fuel cell stack tank, a flow control valve for supplying fuel, air, and nitrogen provided at the inlet side of each of the fuel cell stack tanks, and the fuel cell A differential pressure regulating valve for controlling the differential pressure between the fuel electrode and the fuel cell stack tank, and between the air electrode and the fuel cell stack tank, provided on the outlet side of each stack tank, and a nitrogen pressure in the fuel cell stack tank. In a fuel cell power generation system comprising a nitrogen pressure regulating valve for regulating, and a resistor and a direct current switch connected in parallel to the direct current output end of the fuel cell stack, the nitrogen pressure regulating valve is provided between the fuel and air flow regulating valve and the fuel cell stack; A pressure transmitter for detecting the pressure in the fuel cell stack tank and a pressure transmitter for detecting the pressure in the fuel cell stack tank, each of which is provided with a pipe in which an opening control valve and a sheath valve are installed in parallel between the battery stack and the fuel and air differential pressure control valves. Equipped with an opening setting device that takes in the signal from the transmitter and sends a setting signal to the opening control valve, and when the load is released in the event of a system emergency, the resistor is turned on and the opening valve is closed to adjust the flow rate. and a fuel cell power generation system characterized in that the differential pressure control valve is fully opened and the fuel and air are vented to the opening control valve.
JP61307384A 1986-12-22 1986-12-22 Fuel cell power generation system Expired - Lifetime JPH073792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61307384A JPH073792B2 (en) 1986-12-22 1986-12-22 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61307384A JPH073792B2 (en) 1986-12-22 1986-12-22 Fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPS63158757A true JPS63158757A (en) 1988-07-01
JPH073792B2 JPH073792B2 (en) 1995-01-18

Family

ID=17968404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61307384A Expired - Lifetime JPH073792B2 (en) 1986-12-22 1986-12-22 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JPH073792B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283187A (en) * 1993-03-25 1994-10-07 Youyuu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai Fuel cell power generation system and operation thereof
CN117673400A (en) * 2022-08-24 2024-03-08 中联重科股份有限公司 Control method, processor, device and system for fuel cell system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60250564A (en) * 1984-05-25 1985-12-11 Toshiba Corp Fuel cell power generating system
JPS61200673A (en) * 1985-03-01 1986-09-05 Mitsubishi Electric Corp Fuel cell device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60250564A (en) * 1984-05-25 1985-12-11 Toshiba Corp Fuel cell power generating system
JPS61200673A (en) * 1985-03-01 1986-09-05 Mitsubishi Electric Corp Fuel cell device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283187A (en) * 1993-03-25 1994-10-07 Youyuu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai Fuel cell power generation system and operation thereof
CN117673400A (en) * 2022-08-24 2024-03-08 中联重科股份有限公司 Control method, processor, device and system for fuel cell system

Also Published As

Publication number Publication date
JPH073792B2 (en) 1995-01-18

Similar Documents

Publication Publication Date Title
US4729930A (en) Augmented air supply for fuel cell power plant during transient load increases
US7041405B2 (en) Fuel cell voltage control
JP2003151593A (en) Fuel cell system
JP2007157544A (en) Fuel cell system
JPS6244387B2 (en)
WO2014148153A1 (en) Fuel-cell system and method for controlling fuel-cell system
JPS6326961A (en) Fuel cell power generating system and its operation method
US6641946B2 (en) Fuel dissipater for pressurized fuel cell generators
JPS6030062A (en) Output controller of fuel cell
JP3446465B2 (en) Raw fuel flow control device for fuel cell power plant
JPS63158757A (en) Fuel cell power generating system
JP7244400B2 (en) Fuel cell system and its control method
KR20120056818A (en) Mitigating electrode erosion in high temperature pem fuel cell
JPH08195208A (en) Fuel-cell power plant
WO2005062148A1 (en) Controlled process gas pressure decay at shut down
JPH0354433B2 (en)
JPS622461A (en) Recirculation device for fuel line of fuel cell power generation system
JP3430767B2 (en) Gas supply / discharge device for fuel cell
JPS6046782B2 (en) Fuel cell voltage regulator
JPH01176667A (en) Fuel cell power generating system
JPH01143153A (en) Temperature control method for fused carbonate type fuel cell power generator
JPH05135793A (en) Combustion control device for fuel cell power generating facilities
JPS63232272A (en) Fuel cell power generation system
JPH088113B2 (en) Fuel cell generator
JP3104317B2 (en) Fuel cell container gas supply method