JPH09196577A - Heat exchanging element - Google Patents

Heat exchanging element

Info

Publication number
JPH09196577A
JPH09196577A JP2461596A JP2461596A JPH09196577A JP H09196577 A JPH09196577 A JP H09196577A JP 2461596 A JP2461596 A JP 2461596A JP 2461596 A JP2461596 A JP 2461596A JP H09196577 A JPH09196577 A JP H09196577A
Authority
JP
Japan
Prior art keywords
heat exchange
flow
flow path
heat exchanging
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2461596A
Other languages
Japanese (ja)
Inventor
Shigeo Ohata
成生 大畑
Toru Saito
透 斉藤
Kenji Odajima
賢治 小田島
Taku Kawanishi
卓 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2461596A priority Critical patent/JPH09196577A/en
Publication of JPH09196577A publication Critical patent/JPH09196577A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanging element improving a heat exchanging efficiency by generating turbulent flow positively in fluid flowing alternatively within a plurality of flow passages. SOLUTION: Rectangular flat plate-like heat exchanging plates 11 having end members 12 at both opposing edges are piled up in a vertical direction while being rotated by 90 deg. with their faces being directed in the same direction from each other so as to form flow passages 14a, 14b between adjoining heat exchanging plates 11 along a longitudinal direction of the end member 12 and at the same time some coil-like members 15 extending along a substantial full length in a width direction crossing at a right angle with a flowing direction of each of the flow passages 14a, 14b are spaced apart by a predetermined distance within each of the flow passages 14a, 14b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば外気の給気
と室内空気の排気との間で熱交換させながら換気を行う
ことにより、空調機負荷を低減し省エネルギ効果を得る
ようにした熱交換ユニットに使用する熱交換エレメント
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention reduces the load on an air conditioner to obtain an energy saving effect by performing ventilation while exchanging heat between the supply of outside air and the exhaust of indoor air. The present invention relates to a heat exchange element used in an exchange unit.

【0002】[0002]

【従来の技術】図3は、上記外気と室内空気とを混合さ
せずに熱交換を行うようにした従来の一般的な熱交換エ
レメントを示す斜視図、図4は、その一部拡大正面図、
図5は、図6のA−A線断面図である。
2. Description of the Related Art FIG. 3 is a perspective view showing a conventional general heat exchange element for performing heat exchange without mixing the outside air with the indoor air, and FIG. 4 is a partially enlarged front view thereof. ,
FIG. 5 is a cross-sectional view taken along the line AA of FIG.

【0003】これらの図に示すように、従来の一般的な
熱交換エレメント1は、主に全熱交換を目的とした透湿
性のある矩形平板状の熱交換板2の表面に、例えば難燃
紙やプラスチック等からなる波状のコルゲートフィン3
を張り合わせて、横断面三角形状の複数の流路4を有す
る段ボール状の熱交換素子5を形成する。そして、四隅
に、該隅部をシールするとともに、ユニット組み込み時
にレールに嵌合する金属製の形状保持用の支柱6を配置
した状態で、前記熱交換素子4を互いに90度ずらしつ
つ多層に積層することによって構成されていた。
As shown in these figures, the conventional general heat exchange element 1 has, for example, flame retardant on the surface of a rectangular flat plate heat exchange plate 2 having a moisture permeability for the purpose of total heat exchange. Wavy corrugated fin 3 made of paper or plastic
Are bonded together to form a corrugated cardboard heat exchange element 5 having a plurality of flow paths 4 each having a triangular cross section. Then, the heat exchange elements 4 are laminated in multiple layers while shifting the heat exchanging elements 4 from each other by 90 degrees while sealing the corners at the four corners and arranging the metal shape-supporting pillars 6 that fit into the rails when the unit is assembled. It was composed by doing.

【0004】この種の熱交換エレメント1は、例えば複
数の熱交換素子5を多層に積層した後、切断によって所
定の形状に形成され、また空気の混合を防止するため、
熱交換板2とコルゲートフィン3とを強固に接着する必
要があった。
This type of heat exchange element 1 is formed into a predetermined shape by cutting, for example, a plurality of heat exchange elements 5 which are laminated in a plurality of layers, and in order to prevent air mixing,
It was necessary to firmly bond the heat exchange plate 2 and the corrugated fins 3 together.

【0005】そして、熱交換ユニットの内部に前記熱交
換エレメント1を組み込み、一方の流路から熱交換ユニ
ットに流入した空気を室内側に供給し、他方の流路から
熱交換ユニットに流入した空気を室外に排出する際に、
室内側に流入する空気と室外に流出する空気とが、熱交
換エレメント1の内部の多層の流路4内を一層置き、即
ち交互にたすき状に流れ、ここで熱交換が行われるよう
になっている。
Then, the heat exchange element 1 is incorporated in the heat exchange unit, the air flowing into the heat exchange unit from one flow path is supplied to the indoor side, and the air flowing into the heat exchange unit from the other flow path. When discharging the
The air flowing into the indoor side and the air flowing out to the outdoor are further placed in the multi-layer flow passages 4 inside the heat exchange element 1, that is, flow alternately in a plow shape, and heat exchange is performed here. ing.

【0006】ここに、例えば特開昭59−142390
号公報又は実開昭60−21882号公報には、熱交換
板(フィン)の内部に、熱伝導率の良好な金属細線から
なるスプリング構造体(スプリングフィン)を該熱交換
板と熱的に接続させつつそのほぼ全域に亘って配置し
て、放熱(フィン)面積を拡大させるようにしたものが
提案されている。
Here, for example, Japanese Patent Laid-Open No. 59-142390.
JP-A No. 60-21882 or JP-A No. 60-21882 discloses a heat exchange plate (fin) in which a spring structure (spring fin) made of a fine metal wire having good thermal conductivity is thermally coupled to the heat exchange plate. There has been proposed a structure in which the heat dissipation (fin) area is enlarged by arranging it over almost the entire area while being connected.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来例の前者においては、コルゲートフィンにより形成さ
れた多数の三角形流路の流路断面積が小さく、圧力損失
が大きいばかりでなく、熱交換効率の劣るコルゲートフ
ィンと熱交換板との接着部が多くなって、熱交換板の有
効利用が図れない。更に、流路内壁が平滑であるため、
温度境界層が発達し易く、且つ流路形状に対して流速が
一般に遅いため流れが層流になって、熱交換効率が低下
してしまう。
However, in the former case of the above-mentioned conventional example, not only the large number of triangular flow passages formed by corrugated fins have a small flow passage sectional area and a large pressure loss, but also the heat exchange efficiency is high. Since the number of inferior corrugated fins and the heat exchange plate is increased, the heat exchange plate cannot be effectively used. Furthermore, since the inner wall of the flow path is smooth,
Since the temperature boundary layer easily develops and the flow velocity is generally slow with respect to the shape of the flow path, the flow becomes a laminar flow and the heat exchange efficiency decreases.

【0008】更に、形状を保持するための支柱やねじ等
が必要であるばかりでなく、所定の形状に切り出した
り、コルゲートフィンと熱交換板とを強固に接着する必
要があって、部品点数、製作工数の増大に繋がり、しか
も、製品としての品質にばらつきが生じ易いといった問
題があった。
Further, not only a pillar or a screw for holding the shape is required, but also it is necessary to cut out into a predetermined shape or to firmly bond the corrugated fin and the heat exchange plate. There is a problem that this leads to an increase in manufacturing man-hours and that the quality of the product tends to vary.

【0009】また、特開昭59−142390号公報又
は実開昭60−21882号公報に記載の後者は、放熱
面積を拡大するためにスプリング構造体を使用したもの
であって、複数の流路内を交互に流れる流体間で熱交換
を行うようにしたものではないばかりでなく、スプリン
グ構造体を熱交換板と互いに接着させつつ該熱交換板の
ほぼ全域に亘って設ける必要がある。
The latter disclosed in Japanese Patent Laid-Open No. 59-142390 or Japanese Utility Model Laid-Open No. 60-21882 uses a spring structure in order to increase the heat radiation area. Not only is the heat exchange performed between the fluids that alternately flow therein, but it is also necessary to provide the spring structure over the entire area of the heat exchange plate while adhering the spring structure to the heat exchange plate.

【0010】本発明は上述した事情に鑑みて為されたも
ので、複数の流路内を交互に流れる流体に積極的に乱流
を発生させることによって、熱交換効率の向上を図り、
しかも、シール性能が高くて空気の混合を確実に防止し
たものを比較的簡易に組み立てて構成することができる
ようにした熱交換エレメントを提供することを目的とす
る。
The present invention has been made in view of the above-mentioned circumstances, and aims to improve heat exchange efficiency by positively generating turbulence in a fluid alternately flowing in a plurality of flow paths.
Moreover, it is an object of the present invention to provide a heat exchange element which can be relatively easily assembled and configured with a sealing performance being high and air being surely prevented from mixing.

【0011】[0011]

【課題を解決するための手段】本発明に係る熱交換エレ
メントは、対向する両側縁に端材を設けた矩形平板状の
熱交換板を、同一向きで互いに90度づつ回転させつつ
上下に積み合わせて、互いに隣接する熱交換板間に端材
の長さ方向に沿った流路を形成するとともに、各流路内
に、該流路の流れ方向と直交する幅方向のほぼ全長に亘
って延びるコイル状部材を、前記流路の流れ方向に沿っ
て所定間隔離間させて配設したことを特徴とする。
In the heat exchange element according to the present invention, heat exchange plates in the shape of a rectangular flat plate provided with end materials on opposite side edges are stacked vertically while rotating 90 ° each in the same direction. Together, a flow path is formed along the length direction of the end material between the heat exchange plates adjacent to each other, and within each flow path over substantially the entire length in the width direction orthogonal to the flow direction of the flow path. It is characterized in that the extending coil-shaped members are arranged at a predetermined interval along the flow direction of the flow path.

【0012】また、前記対向する端材間に1つの流路を
形成し、この両端材間に前記コイル状部材を掛け渡すこ
とを特徴とする。
Further, one flow path is formed between the facing end materials, and the coil member is bridged between the both end materials.

【0013】[0013]

【発明の実施の形態】上記のように構成した本発明によ
れば、流路内に配置したコイル状部材によって、流路内
を流れる流体に擾乱を与えるとともに、流路内壁面の近
傍の温度境界層を積極的に破壊して、熱伝導率の高い乱
流を発生させることができる。ここに、前記対向する端
材間に1つの流路を形成し、この両端材間に前記コイル
状部材を掛け渡すことによって、部品点数の削減及び製
作工数の低減を図るとともに、伝熱面積を増大させるこ
とができる。
According to the present invention having the above-described structure, the coil-shaped member disposed in the flow channel disturbs the fluid flowing in the flow channel, and the temperature in the vicinity of the inner wall surface of the flow channel is disturbed. The boundary layer can be actively destroyed to generate turbulent flow with high thermal conductivity. Here, one flow path is formed between the end materials facing each other, and the coil-shaped member is bridged between the both end materials to reduce the number of parts and the manufacturing man-hour, and at the same time, reduce the heat transfer area. Can be increased.

【0014】[0014]

【実施例】以下、添付図面を参照しながら本発明の実施
例について説明する。図1は、本発明の熱交換エレメン
トの一実施例を示す分解斜視図で、同図に示すように、
本実施例における熱交換エレメント10には、矩形平板
状の熱交換板11が備えられている。この熱交換板11
の一方の面、即ち図では表面側の互いに対向する両側縁
には、その長さ方向全長に亘って端材12が設けられ、
更に、この両端材12間には、これと平行で、かつ同一
高さの計3本のリブ13が配置されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is an exploded perspective view showing an embodiment of the heat exchange element of the present invention. As shown in FIG.
The heat exchange element 10 in the present embodiment is provided with a rectangular flat plate-shaped heat exchange plate 11. This heat exchange plate 11
On one surface, that is, on both side edges of the surface side facing each other in the figure, a scrap material 12 is provided over the entire length in the length direction,
Further, a total of three ribs 13 which are parallel to the both end members 12 and have the same height are arranged between the both end members 12.

【0015】そして、前記熱交換板11を、同一向きで
互いに90度づつ回転させつつ上下方向に順次積層する
ことによって、互いに直交する第1流路14aと第2流
路14bとを上下方向に沿って交互に有する熱交換エレ
メント10が構成されるようになっている。
Then, the heat exchange plates 11 are sequentially laminated in the vertical direction while rotating in the same direction by 90 degrees, so that the first flow passage 14a and the second flow passage 14b orthogonal to each other are formed in the vertical direction. A heat exchange element 10 having alternating sides is constructed.

【0016】ここに、この各流路14a,14bは、そ
の左右を端材12とリブ13によって、上下を互いに隣
接する熱交換板11によってボックス状に仕切られてお
り、熱交換板11を挟んで、この上下に第1流路14a
と第2流路14bとが形成されている。このようにし
て、横断面矩形状で流路断面積が比較的大きな流路14
a,14bを形成することにより、熱交換エレメントと
しての圧力損失を低減させることができる。
Here, each of the flow paths 14a and 14b is partitioned into a box shape on the left and right sides by end pieces 12 and ribs 13 and on the upper and lower sides by heat exchange plates 11 adjacent to each other, and the heat exchange plates 11 are sandwiched between them. Then, above and below this, the first channel 14a
And the second flow path 14b are formed. In this way, the flow path 14 having a rectangular cross section and a relatively large flow path cross-sectional area is formed.
By forming a and 14b, the pressure loss as a heat exchange element can be reduced.

【0017】前記端材12とリブ13との間、及び互い
に隣接するリブ13間には、この端材12及びリブ13
と直交する方向、即ち流路14a,14bの流れ方向と
直交する幅方向にそのほぼ全長に亘って延びるコイル状
部材15が掛け渡されて配設されている。
The end material 12 and the rib 13 are provided between the end material 12 and the rib 13 and between the ribs 13 adjacent to each other.
A coil-shaped member 15 that extends over substantially the entire length of the flow path 14a, 14b in the width direction orthogonal to the flow direction of the flow passages 14a and 14b is arranged so as to extend across the entire length.

【0018】このコイル状部材15は、流路14a,1
4bの流れ方向に沿って、所定間隔離間させて、即ち、
流路14a,14bの入口付近、出口付近及びそのほぼ
中央に配置されている。このコイル状部材15は、例え
ば金属細線を所定のピッチで螺旋状に巻き付けて構成し
たものであり、このコイル状部材15の螺旋の外径は、
前記端材12の高さとほぼ等しく設定されている。
The coil-shaped member 15 includes the flow paths 14a, 1
Along the flow direction of 4b, separated by a predetermined distance, that is,
The flow paths 14a and 14b are arranged near the inlet, near the outlet, and in the approximate center thereof. The coil-shaped member 15 is formed by spirally winding fine metal wires at a predetermined pitch, and the outer diameter of the spiral of the coil-shaped member 15 is
The height is set to be substantially equal to the height of the scrap 12.

【0019】このように、流路14a,14b内にその
幅方向のほぼ全長に亘って延びるコイル状部材15を所
定間隔離間して配置することによって、このコイル部材
15で流路14a,14b内を流れる流体に擾乱を与え
るとともに、流路内壁面の近傍の温度境界層を積極的に
破壊して、熱伝導率の高い乱流を発生させることができ
る。
In this way, by arranging the coil-shaped members 15 extending over substantially the entire length in the width direction in the flow paths 14a, 14b at predetermined intervals, the coil members 15 can be used in the flow paths 14a, 14b. It is possible to generate a turbulent flow having a high thermal conductivity by disturbing the fluid flowing through the chamber and actively destroying the temperature boundary layer near the inner wall surface of the flow channel.

【0020】そして、熱交換ユニットの内部に前記熱交
換エレメント10を組み込み、一方の流路から熱交換ユ
ニットに流入した空気を室内側に供給し、他方の流路か
ら熱交換ユニットに流入した空気を室外に排出する際
に、室内側に流入する空気と室外に流出する空気とを、
熱交換エレメント10の内部の流路14a,14b内を
交互にたすき状に流すことによって、ここで熱交換が行
われる。
The heat exchange element 10 is installed inside the heat exchange unit, the air flowing into the heat exchange unit from one flow passage is supplied to the indoor side, and the air flowing into the heat exchange unit from the other flow passage. When the air is discharged out of the room, the air flowing into the room and the air flowing out to the room are
Heat exchange is performed here by alternately flowing the flow paths 14a and 14b inside the heat exchange element 10 in a plow shape.

【0021】この時、前述のように、各流路14a,1
4b内を流れる空気は、乱流となり、乱流における熱伝
達率は、層流における熱伝達率に比べて大きいため、熱
交換効率が向上する。
At this time, as described above, each flow path 14a, 1
The air flowing in 4b becomes a turbulent flow, and the heat transfer coefficient in the turbulent flow is larger than the heat transfer coefficient in the laminar flow, so that the heat exchange efficiency is improved.

【0022】図2は、他の実施例を示すもので、この実
施例の上記実施例と異なる点は、熱交換板11の両側縁
に設けた互いに対向する端材12で、即ちリブを設ける
ことなく、各々1つの流路14a,14bを形成し、両
端材12間にこのほぼ幅方向全長に亘って延びるコイル
状部材15を掛け渡して配置した点にある。このよう
に、互いに対向する端材12で流路を確保して、コイル
状部材に剛性の高い材料を用いることにより、リブを廃
止することができ、部品点数の削減及び、組立工数の低
減を図るとともに、伝熱面積を増大させることができ
る。
FIG. 2 shows another embodiment. The difference of this embodiment from the above-mentioned embodiment is that end members 12 provided on both side edges of the heat exchange plate 11 are opposed to each other, that is, ribs are provided. Without this, one flow path 14a, 14b is formed, respectively, and the coil-shaped member 15 extending over substantially the entire width in the width direction is arranged between both end members 12. As described above, the flow path is secured by the end materials 12 facing each other, and by using a material having high rigidity for the coil-shaped member, the rib can be eliminated, and the number of parts and the number of assembling steps can be reduced. Along with this, the heat transfer area can be increased.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
流路内に配置したコイル状部材によって、流路内を流れ
る流体に擾乱を与えるとともに、流路内壁面の近傍の温
度境界層を積極的に破壊して、複数の流路内を交互に流
れる流体に熱伝導率の高い乱流を発生させ、これによっ
て熱交換効率を向上させることができる。
As described above, according to the present invention,
The coil-shaped member placed in the flow channel disturbs the fluid flowing in the flow channel, and actively breaks the temperature boundary layer near the inner wall surface of the flow channel to flow alternately in multiple flow channels. A turbulent flow having a high thermal conductivity is generated in the fluid, so that the heat exchange efficiency can be improved.

【0024】しかも、流路断面積を大きくして、圧力損
失を低減させることができるばかりでなく、熱交換板を
互いに90度回転させつつ、順次積層することによっ
て、品質の均一な熱交換エレメントを簡易に組み立てる
ことができる。
Moreover, not only can the flow passage cross-sectional area be increased to reduce the pressure loss, but the heat exchange plates can also be rotated 90 degrees with respect to each other, and the heat exchange plates can be sequentially laminated to form a heat exchange element of uniform quality. Can be easily assembled.

【0025】更に、対向する端材間に1つの流路を形成
し、この両端材間にコイル状部材を掛け渡すことによっ
て、部品点数の削減及び製作工数の低減を図るととも
に、伝熱面積を増大させることができる。
Further, one flow path is formed between the end materials facing each other, and a coil-shaped member is laid between the both end materials to reduce the number of parts and the manufacturing man-hour, and to increase the heat transfer area. Can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す分解斜視図。FIG. 1 is an exploded perspective view showing an embodiment of the present invention.

【図2】他の実施例を示す斜視図。FIG. 2 is a perspective view showing another embodiment.

【図3】従来例を示す斜視図。FIG. 3 is a perspective view showing a conventional example.

【図4】同じく、一部拡大正面図。FIG. 4 is a partially enlarged front view of the same.

【図5】図4のA−A線断面図。FIG. 5 is a sectional view taken along line AA of FIG. 4;

【符号の説明】[Explanation of symbols]

10 熱交換エレメント 11 熱交換板 12 端材 13 リブ 14a,14b 流路 15 コイル状部材 10 heat exchange element 11 heat exchange plate 12 end material 13 ribs 14a, 14b flow path 15 coil-shaped member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川西 卓 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Taku Kawanishi 4-2-1 Honfujisawa, Fujisawa City, Kanagawa Prefecture EBARA Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 対向する両側縁に端材を設けた矩形平板
状の熱交換板を、同一向きで互いに90度づつ回転させ
つつ上下に積み合わせて、互いに隣接する熱交換板間に
端材の長さ方向に沿った流路を形成するとともに、各流
路内に、該流路の流れ方向と直交する幅方向のほぼ全長
に亘って延びるコイル状部材を、前記流路の流れ方向に
沿って所定間隔離間させて配設したことを特徴とする熱
交換エレメント。
1. A heat exchanger plate in the shape of a rectangular flat plate provided with end pieces on opposite side edges is stacked vertically while rotating 90 degrees in the same direction, and end pieces are placed between adjacent heat exchange plates. Forming a flow path along the length direction of each of the flow paths, and in each flow path, a coil-shaped member extending over substantially the entire length in the width direction orthogonal to the flow direction of the flow path is provided in the flow direction of the flow path. A heat exchange element characterized in that the heat exchange elements are arranged along a predetermined distance.
【請求項2】 前記対向する端材間に1つの流路を形成
し、この両端材間に前記コイル状部材を掛け渡したこと
を特徴とする請求項1記載の熱交換エレメント。
2. The heat exchange element according to claim 1, wherein one flow path is formed between the end materials facing each other, and the coil member is bridged between the end materials.
JP2461596A 1996-01-18 1996-01-18 Heat exchanging element Pending JPH09196577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2461596A JPH09196577A (en) 1996-01-18 1996-01-18 Heat exchanging element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2461596A JPH09196577A (en) 1996-01-18 1996-01-18 Heat exchanging element

Publications (1)

Publication Number Publication Date
JPH09196577A true JPH09196577A (en) 1997-07-31

Family

ID=12143064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2461596A Pending JPH09196577A (en) 1996-01-18 1996-01-18 Heat exchanging element

Country Status (1)

Country Link
JP (1) JPH09196577A (en)

Similar Documents

Publication Publication Date Title
US8376036B2 (en) Air to air heat exchanger
EP2893284B1 (en) Membrane support assembly for an energy exchanger
JPH09184692A (en) Heat exchanging element
JPH0211837B2 (en)
JPH09152292A (en) Heat exchanging element
KR20000047728A (en) Film fill-pack for inducement of spiraling gas flow in heat and mass transfer contact apparatus with self-spacing fill-sheets
US6435268B1 (en) Evaporator with improved condensate drainage
TWI421460B (en) Heat exchange element
JP3651938B2 (en) Heat exchange element
JPH035511B2 (en)
JP2001041678A (en) Heat exchanger
KR101303234B1 (en) Heat exchanger for exhaust-heat recovery
JPH09196577A (en) Heat exchanging element
JP2003130571A (en) Stacked heat exchanger
KR101730890B1 (en) Plastic Heat Exchanger for Heat Recovery
JP2005291618A (en) Total enthalpy heat exchange element and total enthalpy heat exchanger
US11187470B2 (en) Plate fin crossflow heat exchanger
JPH09184693A (en) Heat exchanging element
KR20100059140A (en) Heat exchange element for ventilating duct
KR100505482B1 (en) Plastics heat exchanger for exhaust heat withdrawal
JP3305559B2 (en) Heat exchange element
WO2022244102A1 (en) Heat exchange element
JPH06281379A (en) Heat exchanging element and heat exchanging ventilator using the same
JP2690272B2 (en) Heat exchange element
JP4021048B2 (en) Heat exchange element