JPH09194253A - Carbon-containing basic refractories and melting and refining vessel for molten metal lined with these refractories - Google Patents

Carbon-containing basic refractories and melting and refining vessel for molten metal lined with these refractories

Info

Publication number
JPH09194253A
JPH09194253A JP2342396A JP2342396A JPH09194253A JP H09194253 A JPH09194253 A JP H09194253A JP 2342396 A JP2342396 A JP 2342396A JP 2342396 A JP2342396 A JP 2342396A JP H09194253 A JPH09194253 A JP H09194253A
Authority
JP
Japan
Prior art keywords
raw material
added
melting
refractories
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2342396A
Other languages
Japanese (ja)
Other versions
JP3330811B2 (en
Inventor
Koji Kono
幸次 河野
Takayuki Inuzuka
孝之 犬塚
Hajime Kasahara
始 笠原
Yasuhiro Yamada
泰宏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2342396A priority Critical patent/JP3330811B2/en
Publication of JPH09194253A publication Critical patent/JPH09194253A/en
Application granted granted Critical
Publication of JP3330811B2 publication Critical patent/JP3330811B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide carbon-contg. basic refractories improved in wear resistance, spalling resistance and hot strength without impairing the corrosion resistance and oxidation resistance thereof and to obtain a melting and refining vessel for molten metal having high durability and long life by lining part or the whole of the heavily wearing section of the melting and refining vessel with these refractories. SOLUTION: An SiC raw material of which the max. grain size [X] (μ) and amt. of addition [Y] (wt.%) in outer per cent satisfy the equation [Y]<=3log[X] is added to 100wt.% compounded compsn. composed of 70 to 94wt.% MgO-based refractory raw material, 5 to 25wt.% C-based refractory material and 1 to 5wt.% Ca-contg. metal. The SiC raw material of a grain size of 0.1 to 0.5mm is otherwise added at <=8wt.% or the SiC raw material having a grain size of 0.5 to 1.0mm is added at <=9wt.% thereto. The mixture is thereafter kneaded and molded by using a binder and is then dried, by which the carbon-contg. basic refractories are obtd. Part or the whole in the furnace is lined with such refractories, by which the melting and refining vessel for molten metal having the high durability and long life is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は溶融還元炉、スクラ
ップ溶解炉、転炉等の溶融金属用溶解・精錬容器の炉底
や側壁の一部を内張りし、あるいは全張りするのに用い
る炭素含有耐火物、並びにその耐火物内張りを施工した
溶融金属用溶解・精錬容器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon-containing material used for lining or completely lining a part of a furnace bottom or a side wall of a melting and refining vessel for molten metal such as a smelting reduction furnace, a scrap melting furnace, and a converter. The present invention relates to a refractory material and a melting / refining vessel for molten metal having a refractory lining.

【0002】[0002]

【従来の技術】一般に銑鋼工程で使用される溶融還元
炉、スクラップ溶解炉、転炉等では、近年、溶解・精錬
効率の向上を狙って上底吹き撹拌力の強化や二次燃焼比
率の増大等が図られ、その結果として、内張り耐火物は
過酷な条件に晒されている。これらの溶融金属用溶解・
精錬容器としては、従来MgO−Cれんがが使用されて
きた。しかし、特に二次燃焼比率の増大に伴って、スラ
グ浴から雰囲気部にかけて高温となり、高温下でのスラ
グ反応のみならず、れんが中のCの酸化、高温下での溶
鋼、スラグ、ダスト等の流動による磨耗、あるいはれん
が稼働面の温度変化増大による熱スポール等が顕著にな
ってきた。
2. Description of the Related Art In recent years, in smelting reduction furnaces, scrap melting furnaces, converters, etc., which are generally used in the pig steel process, in order to improve the melting and refining efficiency, the upper-bottom blowing stirring force and the secondary combustion ratio have been improved. As a result, the refractory linings are exposed to harsh conditions. Melting for these molten metals
MgO-C bricks have been conventionally used as refining vessels. However, especially as the secondary combustion ratio increases, the temperature rises from the slag bath to the atmosphere, and not only the slag reaction at high temperatures but also the oxidation of C in the bricks, molten steel at high temperatures, slag, dust, etc. Wear due to flow or heat spall due to increased temperature change on the working surface of bricks have become noticeable.

【0003】これらの要因によって生じる損耗に対し
て、れんがには具備すべき特性として、耐食性、耐酸化
性、耐磨耗性、耐スポール性及び熱間強度が要求され、
MgO−Cれんがに代わり、MgO−Cr23れんがの
使用が試みられた。しかしながら、熱スポールや構造ス
ポールが激しく、満足のいく結果は得られていない。
Corrosion resistance, oxidation resistance, abrasion resistance, spall resistance, and hot strength are required as properties that a brick must have against the wear caused by these factors.
Instead MgO-C bricks, the use of MgO-Cr 2 O 3 brick was attempted. However, the thermal and structural spalls are so severe that satisfactory results have not been obtained.

【0004】一方、MgO−Cれんがに対しては、耐食
性、耐酸化性、熱間強度を改善する目的で、電融MgO
原料を用いたり、添加金属を増量したりすることが行な
われている。しかし、反面耐スポール性が低下するとい
う問題が生じている。又特開平3−208862号公報
では、耐酸化性を改善する目的で、SiCを1〜6重量
%添加することが記載されている。しかし、この添加量
では耐酸化性改善に不十分であり、逆に耐食性が低下す
るという問題が生じる。
On the other hand, for MgO-C bricks, electromelted MgO is used for the purpose of improving corrosion resistance, oxidation resistance and hot strength.
It is practiced to use raw materials and increase the amount of added metal. However, on the other hand, there is a problem that the spall resistance is reduced. Further, JP-A-3-208862 describes that SiC is added in an amount of 1 to 6% by weight for the purpose of improving oxidation resistance. However, this amount added is not sufficient for improving the oxidation resistance, and conversely causes a problem that the corrosion resistance decreases.

【0005】[0005]

【発明が解決しようとする課題】このように、MgO−
Cれんがに対して耐食性、耐酸化性、熱間強度を改善す
る手段はあるものの、逆に耐スポール性が低下する等の
問題があり、前記5つの具備すべき特性をすべて満足す
る手段は得られていない。本発明はこのような問題に鑑
みてなされたものであり、耐食性、耐酸化性を損なうこ
となく、耐磨耗性、耐スポール性、熱間強度を向上させ
た炭素含有耐火物と、その耐火物を炉内の一部又は全部
に内張りした高耐用かつ長寿命の溶融金属用溶解・精錬
容器を提供する。
As described above, MgO-
Although there are means to improve the corrosion resistance, oxidation resistance, and hot strength of C bricks, there is a problem that spall resistance is reduced, and there is no means to satisfy all the above five characteristics. Has not been done. The present invention has been made in view of such a problem, corrosion resistance, without impairing the oxidation resistance, wear resistance, spall resistance, carbon-containing refractory improved hot strength, and its fire resistance Provided is a melting and refining vessel for molten metal having a high durability and a long life, in which a product is lined in a part or the whole of a furnace.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明では、MgO質耐火原料70〜94重量%、鱗
状黒鉛等のC質耐火原料5〜25重量%、Ca−Si合
金、Ca−Si−Mg合金等のCa含有金属1〜5重量
%で構成される配合組成100重量%に対して、外掛け
で最大粒径[X](μ)と添加量[Y](重量%)とが
次式(1)を満足するSiC原料を添加し、例えばフェ
ノールレジン等のバインダーを用いて混練、成形した
後、乾燥して得られる炭素含有耐火物を提供する。 [Y]≦3log[X] ………(1)
In order to achieve the above object, according to the present invention, 70 to 94% by weight of MgO quality refractory raw material, 5 to 25% by weight of C quality refractory raw material such as scaly graphite, Ca-Si alloy, Ca -Maximum particle size [X] (μ) and addition amount [Y] (% by weight) with respect to 100% by weight of compounding composition composed of 1 to 5% by weight of Ca-containing metal such as -Si-Mg alloy Provides a carbon-containing refractory material obtained by adding a SiC raw material satisfying the following formula (1), kneading and molding using a binder such as phenol resin, and then drying. [Y] ≦ 3log [X] ……… (1)

【0007】特に上記の配合組成100重量%に対し
て、外掛けで粒径0.1mm〜0.5mmのSiC原料
を8重量%以下あるいは粒径0.5mm〜1.0mmの
SiC原料を9重量%以下添加することで、得られる炭
素含有耐火物の耐スポール性は格段に向上する。更にこ
うして得られる炭素含有耐火物を炉の内張りの一部、又
は全部に用いた溶融金属用溶解・精錬容器は、損耗速度
が低下し、長寿命を達成することができる。
In particular, with respect to 100% by weight of the above composition, 8% by weight or less of the SiC raw material having a particle diameter of 0.1 mm to 0.5 mm or 9% of the SiC raw material having a particle diameter of 0.5 mm to 1.0 mm is applied. By adding less than or equal to wt%, the spall resistance of the obtained carbon-containing refractory material is significantly improved. Further, the melting and refining vessel for molten metal, in which the carbon-containing refractory material thus obtained is used for a part or the whole of the lining of the furnace, has a low wear rate and can achieve a long life.

【0008】[0008]

【発明の実施の形態】本発明において、添加するSiC
をその最大粒径で限定する理由は、耐食性の低下を抑制
するためである。SiCはれんが内に浸入したCOガス
と反応し、次式(2)及び(3)で示されるような反応
によってSiO2を生成する。 SiC+CO→SiO+C ………(2) SiO+CO→SiO2+C ………(3)
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, SiC to be added
Is limited by its maximum particle size in order to suppress deterioration of corrosion resistance. SiC reacts with CO gas that has penetrated into the brick, and produces SiO 2 by the reactions represented by the following formulas (2) and (3). SiC + CO → SiO + C ……… (2) SiO + CO → SiO 2 + C ……… (3)

【0009】このようにして生成したSiO2 はガラス
皮膜を形成し、Cの酸化防止の役目を果たす。しかしな
がら、MgO−C系の場合にはガラス皮膜の粘性が高い
ため、SiCを多量に入れないと十分な酸化防止効果が
得られない。又SiC自体は、硬度が高いため、少量の
SiO2 が生成した場合にはこれが組織の空隙を充填
し、耐磨耗性が向上する。しかし多量のSiO2 が生成
すると耐食性が低下する。このようにSiCはれんがの
耐磨耗性を向上させる反面、耐食性を低下させる側面も
持つため、れんがに添加する際、十分な配慮が必要であ
る。
The SiO 2 thus produced forms a glass film and serves to prevent the oxidation of C. However, in the case of the MgO-C system, the viscosity of the glass film is high, and therefore a sufficient antioxidant effect cannot be obtained unless a large amount of SiC is added. Further, since SiC itself has a high hardness, when a small amount of SiO 2 is produced, this fills the voids of the structure and the wear resistance is improved. However, when a large amount of SiO 2 is produced, the corrosion resistance is reduced. As described above, SiC has the side of improving the wear resistance of bricks, but has the side of reducing corrosion resistance, so that sufficient consideration must be taken when adding to bricks.

【0010】一般に固体は微粉になる程、その粒子表面
の活性度が増加し、上記(2),(3)式の反応が早く進む
ようになるため、れんが中にはSiO2 が多量に生成し
て、耐食性が低下する。逆に固体の粒子が大きくなる
と、上記(2),(3)式の反応は粒子表面にのみ限定
されて、SiO2 の生成が抑制されるため耐食性の低下
は小さい。従って微粉のSiCを使用する際には、添加
量を少なくし、中粒〜粗粒のSiCを使用する際には、
その使用量を増やすとよい。
Generally, the finer the solid, the higher the activity of the particle surface, and the faster the reactions of the above formulas (2) and (3) proceed. Therefore, a large amount of SiO 2 is produced in the brick. Then, the corrosion resistance decreases. On the contrary, when the solid particles are large, the reactions of the above formulas (2) and (3) are limited only to the surface of the particles and the production of SiO 2 is suppressed, so that the corrosion resistance is less deteriorated. Therefore, when using fine-powdered SiC, the addition amount should be reduced, and when using medium- to coarse-grained SiC,
It is better to increase the amount used.

【0011】本発明においては、種々の実験調査を行な
い、その結果、耐食性を損なわず耐磨耗性を向上させる
ことが可能な添加SiCの最大粒径[X](μ)と添加量
[Y](重量%)の関係が式[Y]≦31og[X]で表
わされることを見いだした。
In the present invention, various experimental investigations were carried out, and as a result, the maximum grain size [X] (μ) and the addition amount [Y] of the added SiC capable of improving the wear resistance without impairing the corrosion resistance. ] (Wt%) is expressed by the formula [Y] ≦ 31 og [X].

【0012】更にSiCはMgOと比べて熱膨張係数が
小さいため、加熱時にMgOとの膨張差によりマイクロ
クラックが形成されて、れんがの弾性率が低下し、耐ス
ポール性が向上する。このようなマイクロクラックを形
成させるためには、中粒〜粗粒のSiC添加量を多く
し、SiCの粒子表面層での反応を促進し、内部は未反
応のまま残存させておく方が好ましく、特に粒径0.1
mm〜0.5mmのSiC原料では8重量%以下、ま
た、粒径0.5mm〜1.0mmのSiC原料では9重
量%以下を添加した場合に耐スポール性が最も優れてい
る。なお、これよりも小さい粒径とすると弾性率の低下
が少なくなり、耐食性の低下が大きい。又これよりも大
きい粒径では弾性率の低下は大きいものの、組織強度が
低下し、コストアップとなって好ましくない。
Further, since SiC has a smaller thermal expansion coefficient than MgO, microcracks are formed due to the expansion difference from MgO during heating, the elastic modulus of the brick is lowered, and the spall resistance is improved. In order to form such microcracks, it is preferable to increase the amount of medium-grain to coarse-grain SiC added to promote the reaction of SiC in the particle surface layer and leave the inside unreacted. , Especially particle size 0.1
The spall resistance is most excellent when 8% by weight or less is added to the SiC raw material of mm to 0.5 mm and 9% by weight or less is added to the SiC raw material of 0.5 mm to 1.0 mm in particle diameter. If the particle size is smaller than this, the decrease in elastic modulus is small and the corrosion resistance is large. Further, if the particle size is larger than this, the elastic modulus is largely reduced, but the tissue strength is reduced and the cost is increased, which is not preferable.

【0013】一方、熱間強度向上に対しては従来、金属
AlやAl−Mg合金の含有量増が一般的である。しか
し、これらのAl系金属は一旦Al43で示される炭化
物を経由して酸化物となるため、体積膨張を伴い、弾性
率が上昇し、耐スポール性が低下する、あるいは消化し
やすい等の問題があった。
On the other hand, in order to improve the hot strength, it has been general to increase the content of metallic Al or Al-Mg alloy. However, since these Al-based metals once become oxides via the carbides represented by Al 4 C 3 , volume expansion causes an increase in elastic modulus, a decrease in spall resistance, and easy digestion. There was a problem.

【0014】これに対し、本発明のようにCa含有金属
とSiCを併用すると、SiCの酸化で生成したSiO
2 とCaO、MgOが反応し、CMS系の化合物を生成
するため熱間強度が向上する。この反応は体積変化を伴
わず、マトリックスに分散させたCa含有金属の近傍で
生じるため、ボンディング効果が大きく、組織強化(耐
磨耗性向上)にも役立つ。又Ca含有金属はCの酸化防
止の観点からも重要で、とりわけCa−Si−Mg合金
が最も有効である。しかし、Caを含んでいればどの金
属でも適用可能である。なお、Ca含有合金以外の金属
については必要に応じて用いることができる。
On the other hand, when the Ca-containing metal and SiC are used together as in the present invention, SiO produced by the oxidation of SiC
2 reacts with CaO and MgO to form a CMS-based compound, which improves the hot strength. Since this reaction does not change in volume and occurs in the vicinity of the Ca-containing metal dispersed in the matrix, it has a large bonding effect and is also useful for strengthening the structure (improving abrasion resistance). The Ca-containing metal is also important from the viewpoint of preventing C oxidation, and the Ca-Si-Mg alloy is most effective. However, any metal can be applied as long as it contains Ca. Metals other than the Ca-containing alloy can be used as needed.

【0015】本発明で使用するMgO質耐火原料として
は、純度を問わず、焼結、電融品いずれでも適用可能で
ある。又C質耐火原料は純度を問わず、鱗状黒鉛ならば
何でも使用可能であり、その他無定型黒鉛、カーボンブ
ラック、メソフェーズカーボン等も適用可能である。
The MgO-based refractory raw material used in the present invention may be either sintered or electro-melted regardless of its purity. The C-type refractory raw material can be any graphite, regardless of its purity, as long as it is scaly graphite, and other amorphous graphite, carbon black, mesophase carbon, etc. are also applicable.

【0016】SiC原料としては、純度97%以上のも
のが好ましいが、これよりも低純度のものでも適用可能
である。れんがはフェノールレジン、タール、ピッチ等
のバインダーを用いて、混練、成形した後、乾燥し、不
焼成品として提供できる。しかし、更に還元焼成し、タ
ール含浸処理を実施すると特性が向上する。これらのれ
んがは溶融還元炉、スクラップ溶解炉、転炉等の溶融金
属用溶解・精錬容器の炉底、側壁の内張り材としその全
面に使用可能である。特に、損耗の大きい部位に適用す
るとその効果は大きい。
As the SiC raw material, those having a purity of 97% or more are preferable, but those having a purity lower than this are also applicable. Brick can be provided as a non-fired product after kneading and molding using a binder such as phenolic resin, tar, and pitch, and then drying. However, further reduction firing and tar impregnation treatment improve the characteristics. These bricks can be used as the lining material for the melting and refining vessels for molten metal such as smelting reduction furnaces, scrap melting furnaces, converters, etc. as the lining material for the bottom and side walls of the bricks. In particular, the effect is great when it is applied to a site where wear is large.

【0017】[0017]

【実施例】以下図面を用いて実施例を説明する。サンプ
ルとしては、純度99%の電融MgOクリンカー、純度
99%の鱗状黒鉛、Ca−Si−Mg合金を所定の範囲
で配合した後、純度99%のSiC原料を添加し、フェ
ノールレジンをバインダーとして成形したものを供し
た。耐食性は、C/S=1.2のスラグを用い、170
0℃×3Hrsの条件で行なった回転浸食法により溶損
した寸法を指数表示した。耐磨耗性は1600℃×1H
rの条件で溶射バーナーによりMgO粒を吹きつけた時
の減寸量を測定し、その値により評価した。また、弾性
率は1400℃×3Hrsの条件で還元焼成した後、動
弾性率を測定してその値により評価した。さらに、熱間
強度は1400℃還元雰囲気中、3点曲げ法により測定
して求めた。
An embodiment will be described below with reference to the drawings. As a sample, 99% pure electrofused MgO clinker, 99% pure scaly graphite, and a Ca-Si-Mg alloy were mixed in a predetermined range, and then a 99% pure SiC raw material was added, and phenol resin was used as a binder. A molded product was provided. Corrosion resistance is 170 C / S = 1.2 using slag
The size of the melt-damaged by the rotary erosion method performed under the condition of 0 ° C. × 3 Hrs was expressed as an index. Abrasion resistance is 1600 ° C x 1H
The amount of reduction when MgO particles were sprayed by a thermal spray burner under the condition of r was measured, and the value was evaluated. Further, the elastic modulus was evaluated by measuring the kinetic elastic modulus after reduction firing under the condition of 1400 ° C. × 3 Hrs. Further, the hot strength was obtained by measuring by a three-point bending method in a reducing atmosphere at 1400 ° C.

【0018】図1に耐食性に対する添加SiCの最大粒
径と添加量との関係を示す。図中に示した直線より上の
領域では耐食性が大幅に悪化した。なお、SiCを添加
したサンプル全てについて、耐磨耗性は向上したが、特
に添加したSiCの粒径が小さく、添加量の多いもの程
大幅に向上した。
FIG. 1 shows the relationship between the maximum grain size and the amount of added SiC with respect to corrosion resistance. Corrosion resistance was significantly deteriorated in the region above the straight line shown in the figure. The wear resistance was improved for all of the samples to which SiC was added, but the wear resistance was particularly improved as the particle size of the added SiC was smaller and the addition amount was larger.

【0019】一方、動弾性率は、添加SiCの粒径が1
44μ以下の場合あまり変わらず、200μ以下及び5
00μ以下の場合には、添加量が増加するのに伴い、低
下する傾向が見られたが、あまり顕著では無かった。図
2に添加SiCの粒径、添加量及び動弾性率の関係を示
す。中粒のSiCを添加した場合(0.1〜0.5mm
と0.5〜1mm)には添加量が増えるにつれて動弾性
率が大幅に低下し、耐食性も悪化せず、耐磨耗性が向上
した。しかし、0.1mm未満の微粉を含む0.5mm
以下のSiCを添加した場合には、動弾性率の変化は軽
微であり、耐磨耗性が向上するものの、添加量が8重量
%を超えると、耐食性は悪化する結果となった。
On the other hand, the dynamic elastic modulus is such that the particle diameter of the added SiC is 1
If it is 44μ or less, it does not change much, and it is 200μ or less and 5
In the case of 00 μ or less, there was a tendency for the amount to decrease as the addition amount increased, but it was not so remarkable. FIG. 2 shows the relationship between the particle size of SiC added, the amount added, and the dynamic elastic modulus. When medium-sized SiC is added (0.1-0.5 mm
And 0.5 to 1 mm), the dynamic elastic modulus decreased significantly as the addition amount increased, the corrosion resistance did not deteriorate, and the abrasion resistance improved. However, 0.5mm including fine powder less than 0.1mm
When the following SiC was added, the change in the dynamic elastic modulus was slight and the abrasion resistance was improved, but when the addition amount exceeded 8% by weight, the corrosion resistance deteriorated.

【0020】このように耐食性と耐磨耗性を向上させる
には図1の直線及びそれより下の領域が適しており、更
に耐スポール性も向上させるには、中粒のSiC(0.
1〜0.5mmならば8重量%以下、0.5〜1mmな
らば9重量%以下)の添加が効果的である。
Thus, the straight line and the region below it are suitable for improving the corrosion resistance and the wear resistance, and for improving the spall resistance, SiC (0.
It is effective to add 8% by weight or less for 1 to 0.5 mm and 9% by weight or less for 0.5 to 1 mm.

【0021】なお、SiC、Ca−Si−Mg合金のど
ちらも添加しない場合には、1400℃での熱間強度は
10MPaであったが、Ca−Si−Mg合金のみ3重
量%添加すると12MPa、SiCのみ4重量%添加す
ると11MPaとなり、SiCを4重量%、Ca−Si
−Mg合金を3重量%添加すると15MPaに向上し
た。今回発明したれんがのうち、Ca−Si−Mg合金
を3重量%と中粒のSiC(0.1〜0.5mm:4重
量%)とを添加して得られる耐火物をA製鉄所170T
溶解炉の絞り部トラニオンで内張り材として部分張りの
試験をした結果、従来品に比較して約35%溶損速度を
低下させることが可能となった。
When neither SiC nor Ca-Si-Mg alloy was added, the hot strength at 1400 ° C was 10 MPa, but when only 3% by weight of Ca-Si-Mg alloy was added, 12 MPa, When only 4% by weight of SiC is added, the pressure becomes 11 MPa, 4% by weight of SiC, Ca-Si
-Up to 15 MPa when 3 wt% of Mg alloy was added. Among the bricks invented this time, a refractory obtained by adding 3% by weight of Ca-Si-Mg alloy and medium-sized SiC (0.1 to 0.5 mm: 4% by weight) was used as an ironworks 170T.
As a result of performing a partial tension test as an inner lining material in the trunnion of the drawing furnace of the melting furnace, it became possible to reduce the melting loss rate by about 35% as compared with the conventional product.

【0022】[0022]

【発明の効果】本発明は炭素含有耐火物の耐磨耗性、耐
スポール性に加えて、熱間強度も向上させ、溶融還元
炉、スクラップ溶解炉、転炉等の溶融金属用溶解・精錬
容器の炉底、側壁の内張りに用いる耐火物の耐用性を著
しく向上させることが可能になり、炉材コスト、修繕費
の削減のみならず、生産の安定化にも寄与する。
INDUSTRIAL APPLICABILITY The present invention improves the hot strength in addition to the wear resistance and spall resistance of a carbon-containing refractory, and melts and refines molten metal in a smelting reduction furnace, scrap melting furnace, converter, etc. It becomes possible to remarkably improve the durability of the refractory used for the bottom of the vessel and the lining of the side wall, which not only reduces the cost of furnace materials and repairs but also contributes to the stabilization of production.

【図面の簡単な説明】[Brief description of the drawings]

【図1】耐食性に対するSiCの最大粒径と添加量との
関係を示した図である。
FIG. 1 is a diagram showing the relationship between the maximum grain size of SiC and the addition amount with respect to corrosion resistance.

【図2】添加SiCの粒径、添加量及び動弾性率の関係
を示した図である。
FIG. 2 is a diagram showing a relationship between a particle diameter of added SiC, an added amount, and a dynamic elastic modulus.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 泰宏 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiro Yamada 5-3 Tokai-cho, Tokai-shi, Aichi New Nippon Steel Co., Ltd. Nagoya Steel Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 MgO質耐火原料70〜94重量%、C
質耐火原料5〜25重量%、Ca含有金属1〜5重量%
で構成される配合組成100重量%に対して、外掛けで
最大粒径[X](μ)と添加量[Y](重量%)とが次
式を満足するSiC原料を添加し、バインダーを用いて
混練、成形した後、乾燥して得られる炭素含有耐火物。 [Y]≦3log[X]
1. A MgO-based refractory raw material 70 to 94% by weight, C
Quality refractory raw material 5-25% by weight, Ca-containing metal 1-5% by weight
To 100% by weight of the composition of the composition, a SiC raw material whose maximum particle size [X] (μ) and addition amount [Y] (% by weight) satisfy the following equation is added to the binder, and the binder is added. A carbon-containing refractory material obtained by kneading, molding, and drying. [Y] ≦ 3log [X]
【請求項2】 外掛けで粒径0.1mm〜0.5mmの
SiC原料を8重量%以下あるいは粒径0.5mm〜1
0mmのSiC原料を9重量%以下添加し、バインダー
を用いて混練、成形した後、乾燥して得られる請求項1
記載の炭素含有耐火物。
2. A SiC raw material having a particle diameter of 0.1 mm to 0.5 mm is 8% by weight or less, or a particle diameter of 0.5 mm to 1 outside.
9. A 0 mm SiC raw material is added in an amount of 9% by weight or less, and the mixture is kneaded and molded using a binder, and then dried to obtain.
The carbon-containing refractory described.
【請求項3】 請求項1または2記載の炭素含有耐火物
を炉内の一部、又は全部に内張りした溶融金属用溶解・
精錬容器。
3. A molten metal melting / melting material in which the carbon-containing refractory according to claim 1 or 2 is lined in a part or the whole of a furnace.
Refining vessel.
JP2342396A 1996-01-18 1996-01-18 Carbon-containing refractory and melting and refining vessel for molten metal lined with the refractory Expired - Fee Related JP3330811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2342396A JP3330811B2 (en) 1996-01-18 1996-01-18 Carbon-containing refractory and melting and refining vessel for molten metal lined with the refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2342396A JP3330811B2 (en) 1996-01-18 1996-01-18 Carbon-containing refractory and melting and refining vessel for molten metal lined with the refractory

Publications (2)

Publication Number Publication Date
JPH09194253A true JPH09194253A (en) 1997-07-29
JP3330811B2 JP3330811B2 (en) 2002-09-30

Family

ID=12110099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2342396A Expired - Fee Related JP3330811B2 (en) 1996-01-18 1996-01-18 Carbon-containing refractory and melting and refining vessel for molten metal lined with the refractory

Country Status (1)

Country Link
JP (1) JP3330811B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005018851A1 (en) * 2003-08-22 2005-03-03 Krosakiharima Corporation Immersion nozzle for continuous casting of steel and meethod for continuous casting of steel using the immersion nozzle
JP2022182319A (en) * 2021-05-28 2022-12-08 株式会社ヨータイ LOW CARBON MgO-C BRICK AND PRODUCTION METHOD THEREOF

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005018851A1 (en) * 2003-08-22 2005-03-03 Krosakiharima Corporation Immersion nozzle for continuous casting of steel and meethod for continuous casting of steel using the immersion nozzle
US7275584B2 (en) 2003-08-22 2007-10-02 Krosakiharima Corporation Immersion nozzle for continuous casting of steel and continuous steel casting method using same
CN100372633C (en) * 2003-08-22 2008-03-05 黑崎播磨株式会社 Immersion nozzle for continuous casting of steel and method for continuous casting of steel using the immersion nozzle
JP2022182319A (en) * 2021-05-28 2022-12-08 株式会社ヨータイ LOW CARBON MgO-C BRICK AND PRODUCTION METHOD THEREOF

Also Published As

Publication number Publication date
JP3330811B2 (en) 2002-09-30

Similar Documents

Publication Publication Date Title
EP0198925A1 (en) Composition which is capable of being converted into an aluminium oxynitride refractory
JP3330811B2 (en) Carbon-containing refractory and melting and refining vessel for molten metal lined with the refractory
JPH0118030B2 (en)
Ertuğ Classification and characteristics of predominant refractories used in metallurgy
JP3336187B2 (en) MgO-CaO carbon-containing refractory
JP3330810B2 (en) Carbon-containing basic refractory and melting and refining vessel for molten metal lined with the refractory
JP3845160B2 (en) Slag coating method
KR100689154B1 (en) Refractory materials for mgo-c brick
JPH0733513A (en) Magnesia-carbon brick and its production
JPH02285014A (en) Mud material for tap hole of blast furnace
JP2868809B2 (en) Magnesia carbon brick
JPH01162714A (en) Converter
JPH0319183B2 (en)
JPH0692272B2 (en) Carbon-containing ladle lining Irregular refractory
JP3002296B2 (en) Method for producing coarse aggregate blended magnesia-carbon refractory
JPS6143305B2 (en)
JP3201679B2 (en) High spalling resistant magnesia carbon brick and its manufacturing method
JPH0127124B2 (en)
JP3703104B2 (en) Magnesia-chromic unfired brick
JP4695354B2 (en) Carbon-containing refractory brick
JP2911633B2 (en) Refractory lining for kiln
JPH10306308A (en) Carbon-containing refractory for tuyere in molten metal refining furnace
JPH03141152A (en) Carbon-containing unburned refractory brick
JP2953293B2 (en) Gas injection tuyere structure for steelmaking furnace
KR19990059266A (en) High Magnesium-Carbon Refractory

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070719

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees