JPH09189544A - Method for measuring shape and apparatus for measuring shape using the method - Google Patents

Method for measuring shape and apparatus for measuring shape using the method

Info

Publication number
JPH09189544A
JPH09189544A JP1717996A JP1717996A JPH09189544A JP H09189544 A JPH09189544 A JP H09189544A JP 1717996 A JP1717996 A JP 1717996A JP 1717996 A JP1717996 A JP 1717996A JP H09189544 A JPH09189544 A JP H09189544A
Authority
JP
Japan
Prior art keywords
data
shape
error
measured
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1717996A
Other languages
Japanese (ja)
Other versions
JP2996165B2 (en
Inventor
Masato Negishi
真人 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8017179A priority Critical patent/JP2996165B2/en
Publication of JPH09189544A publication Critical patent/JPH09189544A/en
Application granted granted Critical
Publication of JP2996165B2 publication Critical patent/JP2996165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To correctly calculate a setting error and highly accurately measure a shape of an object to be measured, by obtaining an error shape of the object from a difference between measuring data and design data and extracting abnormal data based on the error shape. SOLUTION: Measuring data of a point group Pi ,j are introduced to a setting error-calculating means 8 from a coordinate data-taking means 7, thereby to calculate a setting error. A design shape is subtracted based on corrected measuring data, whereby an error shape Qi ,j is obtained. In calculating the setting error, if a flag of the error shape Qi ,j from the setting error-calculating means 8 is detected to be larger than 0 by a flag-judging means 12, a value subtracted 1 from the flag by a flag-subtracting means 13 is reset, and the error shape is guided to an abnormal data-extracting means 14, where a point group in which abnormal data are discovered is marked and output as marked position data. The error shape is guided from the flag-judging means 12 to an extraction position-complementing means 15, so that measuring data of the marked point group are complemented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は形状測定方法及びそ
れを用いた形状測定装置に関し、例えばレンズ面やミラ
ー面等の連続した曲面形状を有する被測定物の表面を3
次元座標測定装置で座標点群として測定したときの測定
データと設計形状との差(誤差形状)を求め、これより
被測定物の形状を高精度に測定するようにしたものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shape measuring method and a shape measuring apparatus using the shape measuring method. For example, the surface of an object to be measured having a continuous curved surface such as a lens surface or a mirror surface is
The difference (error shape) between the measurement data and the design shape when measured as a group of coordinate points by the dimensional coordinate measuring apparatus is obtained, and the shape of the measured object is measured with high accuracy.

【0002】[0002]

【従来の技術】従来より、被測定物の表面形状を3次元
的に測定する3次元座標測定装置として、接触式プロー
ブが多用されている。図7は従来の接触式プローブを用
いて被測定物1の形状を3次元的に測定する3次元形状
測定装置の要部概略図である。
2. Description of the Related Art Conventionally, a contact probe has been widely used as a three-dimensional coordinate measuring apparatus for three-dimensionally measuring the surface shape of an object to be measured. FIG. 7 is a schematic view of a main part of a three-dimensional shape measuring apparatus that three-dimensionally measures the shape of the DUT 1 using a conventional contact probe.

【0003】同図においては被測定物1をベース2に取
り付けている。又先端に球体6aをもつ接触式プローブ
6をX,Y,Zの3次元に移動可能に設けられた移動部
材3,4,5に取着している。そして接触式プローブ6
の球体6aで被測定物表面1aをトレースしている。
In FIG. 1, the device under test 1 is attached to a base 2. Further, the contact type probe 6 having a sphere 6a at its tip is attached to moving members 3, 4 and 5 provided so as to be movable in three dimensions of X, Y and Z. And contact probe 6
The surface 6a of the object to be measured is traced by the spherical body 6a.

【0004】図2はこのときの接触式プローブ6の先端
に設けた球体6aと被測定物表面1aの拡大説明図であ
る。
FIG. 2 is an enlarged explanatory view of the sphere 6a provided at the tip of the contact type probe 6 and the surface 1a of the object to be measured at this time.

【0005】同図は半径Rの球体6aをもつ接触式プロ
ーブ6で被測定物表面1aをトレースし、座標点を測定
する様子を示している。図に示すように、プローブ6の
球体6aを被測定物表面1aに接触させながら、被測定
物表面1aを移動させ、そのときのプローブ6の位置を
図示していないリニアスケール等の位置の測定手段によ
り測定している。このとき測定される位置、すなわち座
標の値は先端の球体6aの中心位置であり、被測定物表
面1a上の座標ではない。
The figure shows how the contact probe 6 having a sphere 6a with a radius R traces the surface 1a of the object to be measured and measures the coordinate points. As shown in the figure, while the sphere 6a of the probe 6 is in contact with the measured object surface 1a, the measured object surface 1a is moved, and the position of the probe 6 at that time is measured at a position such as a linear scale (not shown). It is measured by means. The position measured at this time, that is, the coordinate value is the center position of the spherical body 6a at the tip, and is not the coordinate on the measured object surface 1a.

【0006】また、図3は図2を上(z軸方向)からみ
た被測定物表面1aのトレース軌跡16と測定点17を
示す概略図である。図のように、測定点17はランダム
に並んだ点群となっている。この点群に順番をつけ、そ
の位置を位置ベクトルPi,jとしている。
FIG. 3 is a schematic view showing a trace locus 16 and a measurement point 17 on the surface 1a of the object to be measured as viewed from above (z-axis direction) in FIG. As shown in the figure, the measurement points 17 are a set of randomly arranged points. This point group is given an order, and its position is defined as a position vector P i, j .

【0007】図2,図3に示すような接触式プローブを
用いた測定方法において、被測定物1の形状を定義する
座標系(以後ここでは「被測定物座標系」と呼ぶ)と測
定装置の座標系(以後ここでは「装置座標系」と呼ぶ)
は被測定物1の取り付け誤差(セッティング誤差)のた
め、一般に異なっている。そこで装置座標系で測定した
測定点群から設計形状を差し引き、誤差形状を計算する
場合、この装置座標系による形状上の測定点群を被測定
物座標系の形状上の表現に、座標変換する必要がある。
In a measuring method using a contact type probe as shown in FIGS. 2 and 3, a coordinate system (hereinafter referred to as "measurement object coordinate system") for defining the shape of the DUT 1 and a measuring device. Coordinate system (hereinafter referred to as "apparatus coordinate system")
Are generally different because of the mounting error (setting error) of the DUT 1. Therefore, when the design shape is subtracted from the measurement point group measured in the device coordinate system and the error shape is calculated, the coordinate of the shape measurement point group in this device coordinate system is converted into the shape representation in the object coordinate system. There is a need.

【0008】被測定物の形状を測定する為に被測定物を
所定位置に装着したときの予め設定した位置からの誤差
(ずれ)を取り付け誤差又はセッティング誤差という。
以後、この座標変換を被測定物の「取り付け誤差補
正」、または「セッティング誤差補正」と呼ぶ。一般に
セッティング誤差は3次元空間において、3つの位置誤
差(例えばX,Y,Z方向の位置ずれ誤差)と3つの角
度誤差(例えばX,Y,Z軸まわりの回転誤差)の合計
6種類ある。すなわち6自由度の「セッティング誤差」
がある。
An error (deviation) from a preset position when the object to be measured is mounted at a predetermined position in order to measure the shape of the object to be measured is called an installation error or a setting error.
Hereinafter, this coordinate conversion will be referred to as "correction of mounting error" or "correction of setting error" of the object to be measured. Generally, there are a total of 6 types of setting errors in a three-dimensional space, including three position errors (for example, positional deviation errors in the X, Y, and Z directions) and three angular errors (for example, rotation errors around the X, Y, and Z axes). That is, "setting error" with 6 degrees of freedom
There is.

【0009】図7に示す形状測定装置では、接触式プロ
ーブ6の移動に基づく座標取り込み手段7により測定し
た測定データPi,j を、セッティング誤差補正手段8に
導き、セッティング誤差を求め、セッティング誤差より
設計形状を差し引いて誤差形状を求めている。このセッ
ティング誤差補正方法としては最小2乗法を用いた方法
が知られている。セッティング誤差計算手段8でセッテ
ィング誤差と、設計データより誤差形状Qi,jを求め、
このうち例えば誤差形状Qi,jは記憶保存手段9に記憶
したり、又は表示手段10に表示したりしている。
In the shape measuring apparatus shown in FIG. 7, the measurement data P i, j measured by the coordinate fetching means 7 based on the movement of the contact type probe 6 is guided to the setting error correcting means 8 to obtain the setting error, and the setting error is obtained. The design shape is further subtracted to obtain the error shape. As this setting error correction method, a method using the least squares method is known. The setting error calculation means 8 calculates the setting error and the error shape Q i, j from the design data,
Of these, for example, the error shape Q i, j is stored in the storage means 9 or displayed on the display means 10.

【0010】[0010]

【発明が解決しようとする課題】図7に示す形状測定装
置において被測定物1の形状を測定すると、各測定点
(座標点)Pi,j での測定データの中には異常な測定デ
ータを有する測定点が次の理由で存在するため、形状測
定精度が悪化してくる。まず、被測定物表面1a上、あ
るいはプローブの先端の球体6aに付着したゴミにより
上方(Z方向)に突起状の誤差が上乗せされる。又一時
的な振動や電気的なノイズにより誤差が生じる。
When the shape of the object to be measured 1 is measured by the shape measuring apparatus shown in FIG. 7, the measured data at each measurement point (coordinate point) P i, j is abnormal measurement data. Since there are measurement points having “” for the following reason, the accuracy of shape measurement deteriorates. First, a projection-like error is added upward (Z direction) by dust adhering to the surface 1a of the object to be measured or the sphere 6a at the tip of the probe. Also, errors occur due to temporary vibrations and electrical noise.

【0011】このような誤差を含む座標点Pi,j から計
算したセッティング誤差には形状測定誤差が含まれる。
すると、形状測定誤差を含むセッティング誤差から計算
した誤差形状にも誤差が含まれることになり、形状測定
精度を悪化させる。
The setting error calculated from the coordinate point P i, j including such an error includes a shape measurement error.
Then, the error shape calculated from the setting error including the shape measurement error also contains an error, which deteriorates the shape measurement accuracy.

【0012】本発明は、被測定物表面を測定する際の座
標点のうちの異常な測定データ(異常データ)を発生す
る座標点(点群)を抽出し、セッティング誤差を正しく
計算し、被測定物の形状を高精度に測定することができ
る形状測定方法及びそれを用いた形状測定装置の提供を
目的とする。
The present invention extracts coordinate points (point groups) that generate abnormal measurement data (abnormal data) from the coordinate points when measuring the surface of the object to be measured, correctly calculates the setting error, and An object of the present invention is to provide a shape measuring method capable of measuring the shape of a measurement object with high accuracy and a shape measuring apparatus using the shape measuring method.

【0013】この他本発明は簡便な方法で異常データを
抽出し、又は異常データを抽出し、セッティング誤差を
正しく計算することにより、異常データを発生する点群
でのデータを補完し、被測定物の形状を高精度に測定す
ることができる形状測定方法及びそれを用いた形状測定
装置の提供を目的としている。
In addition to the above, the present invention extracts abnormal data by a simple method, or extracts abnormal data and correctly calculates the setting error, thereby complementing the data at the point group where the abnormal data is generated and measuring the measured data. An object of the present invention is to provide a shape measuring method capable of measuring the shape of an object with high accuracy and a shape measuring apparatus using the shape measuring method.

【0014】[0014]

【課題を解決するための手段】本発明の形状測定方法
は、 (1−1)被測定物の複数の点群での形状を求める形状
測定手段からの測定データよりセッティング誤差計算手
段によりセッティング誤差を補正し、これより得た測定
データと設計データの差より被測定物の誤差形状を求
め、該誤差形状に基づいて異常データを抽出し、その位
置座標をマークし、該マークした位置座標を除いた複数
の点群での測定データを再び該セッティング誤差計算手
段に入力してセッティング誤差を補正して、被測定物の
誤差形状を求める工程を利用していることを特徴として
いる。
According to the shape measuring method of the present invention, (1-1) a setting error is calculated by a setting error calculating means based on measurement data from the shape measuring means for obtaining shapes of a plurality of points of an object to be measured. The error shape of the object to be measured is obtained from the difference between the measured data and the design data obtained from this, abnormal data is extracted based on the error shape, the position coordinates are marked, and the marked position coordinates are This method is characterized in that a step of inputting the measurement data of a plurality of removed point groups to the setting error calculating means again to correct the setting error and obtaining the error shape of the object to be measured is used.

【0015】特に、 (1−1−1)前記異常データ抽出手段は前記被測定物
の誤差形状の点群において、一点の隣接する点との差の
最大値が、予め定めた定数を越えている場合に、その一
点を異常データとして抽出していることを特徴としてい
る。
In particular, (1-1-1) the abnormal data extracting means has a maximum value of a difference between one point and an adjacent point in the error shape point group of the object to be measured exceeding a predetermined constant. If there is, one of the points is extracted as abnormal data.

【0016】(1−2)被測定物の複数の点群での形状
を求める形状測定手段からの測定データよりセッティン
グ誤差計算手段によりセッティング誤差を補正し、これ
より得た測定データと設計データの差より被測定物の誤
差形状を求め、該誤差形状より異常データ抽出手段で異
常データを抽出し、その位置座標をマークし、該マーク
した位置座標を除いた複数の点群での測定データを再び
該セッティング誤差計算手段に入力してセッティング誤
差を補正して、被測定物の誤差形状を求め、該求めた誤
差形状を抽出位置補完手段に入力し、該抽出位置補完手
段により、該異常データの発生した位置のデータをすて
て、その代わりに該異常データの発生した位置の周囲の
正常なデータより補完して測定データとする工程を利用
していることを特徴としている。
(1-2) The setting error is corrected by the setting error calculating means from the measurement data from the shape measuring means for obtaining the shapes of the object to be measured at a plurality of point groups, and the measurement data and the design data obtained from this are corrected. The error shape of the object to be measured is obtained from the difference, the abnormal data is extracted from the error shape by the abnormal data extraction means, the position coordinates thereof are marked, and the measurement data at a plurality of point groups excluding the marked position coordinates are obtained. It is input to the setting error calculating means again to correct the setting error to obtain the error shape of the object to be measured, and the obtained error shape is input to the extraction position complementing means. Is used to replace the normal position data around the position where the abnormal data is generated with the measured data. It is set to.

【0017】(1−3)形状測定手段で被測定物の表面
上の複数の点群での形状を測定し、該形状測定手段から
の複数の点群での測定データを座標データ取り込み手段
で取り込み、フラグ設定手段でフラグを1以上にセット
し、次いで該座標データ取り込み手段からの測定データ
よりセッティング誤差計算手段で被測定物を所定位置に
載置したときの姿勢差であるセッティング誤差を補正し
た測定データと、設計データとの差より該被測定物の誤
差形状を求め、該セッティング誤差計算手段からの誤差
形状の値をフラグ判定手段によりフラグが1以上のとき
は該フラグの値より1を引いた後に異常データ抽出手段
により異常データを抽出し、該異常データの発生した点
群を除いた複数の点群の測定データを用いて再度、セッ
ティング誤差計算手段によりセッティング誤差を補正し
た測定データと設計データとの差より再度誤差形状を求
める工程と、該フラグが0となったときは抽出位置補完
手段により該異常データの発生した位置のデータをすて
て、その代わりに該異常データの発生した位置の周囲の
正常なデータより補完して測定データとしている工程を
利用していることを特徴としている。
(1-3) The shape measuring means measures the shapes of a plurality of point groups on the surface of the object to be measured, and the coordinate data fetching means measures the measurement data of the plurality of point groups from the shape measuring means. The flag is set to 1 or more by the fetching and flag setting means, and the setting error calculation means corrects the setting error which is the attitude difference when the measured object is placed at the predetermined position from the measurement data from the coordinate data fetching means. The error shape of the object to be measured is obtained from the difference between the measured data and the design data, and the value of the error shape from the setting error calculation means is 1 from the value of the flag when the flag is 1 or more by the flag determination means. After extracting the abnormal data, the abnormal data is extracted by the abnormal data extracting means, and the setting error is calculated again by using the measurement data of a plurality of point groups excluding the point group in which the abnormal data occurs. The step of obtaining the error shape again from the difference between the measurement data and the design data in which the setting error is corrected by the step, and when the flag becomes 0, the extraction position complementing means is used to send the data of the position where the abnormal data has occurred. Instead of that, a process of complementing normal data around the position where the abnormal data is generated to obtain measurement data is used.

【0018】本発明の形状測定装置は、前述の構成要件
(1−1)〜(1−3)の何れか一つの形状測定方法を
利用して被測定物の形状を求めていることを特徴として
いる。
The shape measuring apparatus of the present invention is characterized in that the shape of an object to be measured is obtained by using the shape measuring method according to any one of the above-mentioned constitutional requirements (1-1) to (1-3). I am trying.

【0019】[0019]

【発明の実施の形態】図1は本発明の実施形態1の要部
概略図である。図2は図1の接触式プローブ6の先端の
球体6aで被測定物表面1aをトレースしている状態を
示す概略図、図3は被測定物表面の測定点を示す摸式
図、図4は被測定物表面の誤差形状の隣接した点の説明
図、図5は誤差形状のうち異常データを示す測定点の説
明図、図6は本実施形態における異常データの補完方法
のフローチャートである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view of a main part of a first embodiment of the present invention. 2 is a schematic view showing a state in which the surface 6a of the object to be measured is traced by the spherical body 6a at the tip of the contact type probe 6 of FIG. 1, FIG. 3 is a schematic diagram showing measurement points on the surface of the object to be measured, and FIG. 5 is an explanatory view of adjacent points of the error shape on the surface of the object to be measured, FIG. 5 is an explanatory view of measurement points showing abnormal data in the error shape, and FIG. 6 is a flowchart of a method of complementing abnormal data in the present embodiment.

【0020】図1において、被測定物1をベース2の上
に取り付け、ベース2にY方向に移動可能にYスライド
3を設け、Yスライド3にX方向に移動可能にXスライ
ド4を設け、Xスライド4にZ方向に移動可能にZスラ
イド5を設け、Zスライド5に接触式プローブ6を設け
ている。接触式プローブ6はその先端に球体6aを有
し、被測定物表面1a上を球体6aがトレースするよう
にX,Y,Zスライド3,4,5の位置を制御する図示
しない制御回路を設けている。
In FIG. 1, an object to be measured 1 is mounted on a base 2, a Y slide 3 is provided on the base 2 so as to be movable in the Y direction, and an X slide 4 is provided on the Y slide 3 so as to be movable in the X direction. A Z slide 5 is provided on the X slide 4 so as to be movable in the Z direction, and a contact probe 6 is provided on the Z slide 5. The contact type probe 6 has a sphere 6a at its tip and is provided with a control circuit (not shown) for controlling the positions of the X, Y, Z slides 3, 4 and 5 so that the sphere 6a traces the surface 1a of the object to be measured. ing.

【0021】X,Y,Zスライド3,4,5の位置はリ
ニアスケールで測定している。座標データ取り込み手段
7によりリニアスケール等で測定したX,Y,Zスライ
ドの位置から球体6aの中心位置を計算し、これを点群
i,j の測定データとしている。
The positions of the X, Y, Z slides 3, 4, and 5 are measured with a linear scale. The center position of the sphere 6a is calculated from the position of the X, Y, Z slides measured by the coordinate data capturing means 7 using a linear scale or the like, and this is used as the measurement data of the point group P i, j .

【0022】一方フラグ設定手段11は動作の流れを制
御するフラグを1にセットする。座標データ取り込み手
段7からセッティング誤差計算手段8に点群Pi,j の測
定データを導きセッティング誤差を計算し、これより補
正した測定データを得て、この補正した測定データをも
とに設計形状を差し引き、誤差形状Qi,j を得ている。
即ち設定形状と具体的な測定データとの差である誤差形
状を求めている。又このときのセッティング誤差を計算
するこの方法は前述した方法により行っている。セッテ
ィング誤差計算手段8からの誤差形状Qi,jはフラグ判
定手段12によりフラグが0よりも大きければフラグ減
算手段13によりフラグから1を引いた値にフラグを設
定し直し、誤差形状を異常データ抽出手段14に導き異
常データを発見した点群にマークをつけ、全てのマーク
した位置(座標点)をマーク位置データとして出力す
る。
On the other hand, the flag setting means 11 sets a flag for controlling the flow of operation to 1. The measurement data of the point group P i, j is derived from the coordinate data acquisition means 7 to the setting error calculation means 8 to calculate the setting error, and the corrected measurement data is obtained from this, and the design shape is based on this corrected measurement data. To obtain the error shape Q i, j .
That is, the error shape, which is the difference between the set shape and the specific measurement data, is obtained. Further, this method of calculating the setting error at this time is performed by the method described above. For the error shape Q i, j from the setting error calculation means 8, if the flag is larger than 0 by the flag determination means 12, the flag subtraction means 13 resets the flag to a value obtained by subtracting 1 from the flag, and the error shape is determined as abnormal data. The extraction means 14 guides a mark to the point group where abnormal data is found, and outputs all marked positions (coordinate points) as mark position data.

【0023】このマーク位置の測定データを再びセッテ
ィング誤差計算手段8に導き、今度はマーク位置を除外
した点群の測定データに対してセッティング誤差を計算
し、再びセッティング誤差と誤差形状を計算する。
The measurement data of the mark position is again guided to the setting error calculation means 8, and this time, the setting error is calculated for the measurement data of the point group excluding the mark position, and the setting error and the error shape are calculated again.

【0024】すると、フラグ判定手段12は今度はフラ
グが1引かれて0となっているので誤差形状を抽出位置
補完手段15に導きマークされた点群の測定データを適
当に補完する。そのあと測定結果を記憶保存手段9や表
示手段10に導いている。又フラグ設定手段11で1を
設定しているが2以上の数値をセットしても良く、これ
によればその回数だけ手順を繰り返すことになり、更に
計算精度を向上できる。
Then, the flag judging means 12 subtracts 1 from the flag this time and becomes 0, so the error shape is guided to the extraction position complementing means 15 and the measurement data of the marked point group is appropriately complemented. After that, the measurement result is led to the storage means 9 and the display means 10. Further, although 1 is set by the flag setting means 11, a numerical value of 2 or more may be set. According to this, the procedure is repeated for that number of times, and the calculation accuracy can be further improved.

【0025】次に、異常データ抽出手段14と抽出位置
補完手段15の動作について説明する。まず図5に示す
ように異常データが発生したときについて説明する。図
5では設計値(設計形状)との差、即ち一部の点群の誤
差形状が設計値から大きくずれている測定点を示してお
り、これらの点群を異常な測定点と呼ぶ。このような場
合、同一の測定条件で同じ場所をもう一度、形状測定し
ても同じ結果が得られず、再現性のない不安定な場合が
ほとんどである。また、これらの異常な測定点と正常な
測定点との差は数十ナノメートルから数ミクロンまでに
及ぶ。特にその差が小さい場合、座標データ取り込み手
段7で得られる設計形状を差し引く前の測定データから
では、設計形状の大きな変化が上乗せされている為、全
く見分けが付かない。
Next, the operations of the abnormal data extracting means 14 and the extraction position complementing means 15 will be described. First, a case where abnormal data occurs as shown in FIG. 5 will be described. FIG. 5 shows measurement points where the difference from the design value (design shape), that is, the error shape of a part of the point group deviates significantly from the design value, and these point groups are called abnormal measurement points. In such a case, even if the shape is measured again at the same place under the same measurement condition, the same result cannot be obtained, and in most cases, the reproducibility is unstable. Further, the difference between these abnormal measurement points and normal measurement points ranges from several tens of nanometers to several microns. Especially when the difference is small, it cannot be distinguished at all from the measured data obtained by the coordinate data fetching means 7 before the design shape is subtracted, because a large change in the design shape is added.

【0026】従って、異常データ抽出手段14はセッテ
ィング誤差補正手段8の後に配置するのが良い。図4は
誤差形状の隣接する測定点の配置を示している。同図で
は測定点が2次元的に並んでいるため2つの添え字で区
別することとし、その位置ベクトルをQi,j などと表し
ている。
Therefore, the abnormal data extraction means 14 is preferably arranged after the setting error correction means 8. FIG. 4 shows the arrangement of adjacent measurement points of the error shape. In the figure, since the measurement points are arranged two-dimensionally, they are distinguished by two subscripts, and the position vector is expressed as Q i, j .

【0027】図5に示したような異常な測定点は周囲と
大きく異なるので、周囲の8点との差の最大値を次式の
ように計算し、その値がある予め設定した評価値を越え
るかどうかを判定することにより、その点が異常な測定
点かどうかを判別している。 fi,j=max(|Qi-1,j+1-Qi,j|,|Qi,j+1-Qi,j|,|Qi+1,j+1-
Qi,j|,|Qi-1,j-Qi,j|,|Qi+1,j-Qi,j|,|Qi-1,j-1-Qi,j|,
|Qi,j-1-Qi,j|,|Qi+1,j-1-Qi,j|) 周辺の測定点は周囲に8点の隣接する点がない場合であ
るので、その場合には存在する点で最大値をとる。判定
に用いる評価値は、被測定物の形状誤差の大小をみて適
当に定めている。例えば誤差が100nm以下であるこ
とが見込まれているレンズ面の形状測定の場合にはその
値を100nmとすれば良い。全測定点について上式を
計算し、評価値を比較し、もし評価値を越えていれば異
常データとみなし、マークしておく。
Since the abnormal measurement point as shown in FIG. 5 is greatly different from the surroundings, the maximum value of the difference from the surrounding 8 points is calculated by the following equation and the value is set to a preset evaluation value. By determining whether or not it exceeds, it is determined whether or not the point is an abnormal measurement point. f i, j = max (| Q i-1, j + 1 -Q i, j |, | Q i, j + 1 -Q i, j |, | Q i + 1, j + 1-
Q i, j |, | Q i-1, j -Q i, j |, | Q i + 1, j -Q i, j |, | Q i-1, j-1 -Q i, j |,
| Q i, j-1 -Q i, j |, | Q i + 1, j-1 -Q i, j |) Since there are no 8 adjacent points around, In that case, it takes the maximum value at the existing point. The evaluation value used for the determination is appropriately determined depending on the size of the shape error of the object to be measured. For example, when the shape of the lens surface is expected to have an error of 100 nm or less, the value may be set to 100 nm. The above formula is calculated for all measurement points, and the evaluation values are compared. If the evaluation values are exceeded, it is regarded as abnormal data and marked.

【0028】このように本実施形態での異常データ抽出
手段は誤差形状の点群において一点の隣接する点との差
の絶対値が予め定めた定数を越えている場合に、その一
点の測定データにマークしている。異常な測定点とは正
常な測定点に対し、かけ離れた値を示すので、隣接する
点との差の大きさをモニタすることによって判別してい
る。
As described above, the abnormal data extracting means in this embodiment uses the measurement data of one point when the absolute value of the difference between one point and the adjacent point in the error shape point group exceeds a predetermined constant. Is marked. An abnormal measurement point indicates a value that is far from a normal measurement point, and is therefore determined by monitoring the magnitude of the difference from an adjacent point.

【0029】次に抽出位置の補完手段15の動作を図6
のフローチャートを用いて説明する。まず、マークした
異常な測定点のデータを捨てる。次に必要ならば、マー
クしてある点群を周囲の点群をみながら適当に補完す
る。まず、全測定領域について添え字i,jを変化さ
せ、Qi,j にマークが付いている場合、カウンタnを0
にセットし、変数Qを0にセットし、ある1以上の定数
mについてi1をi−mからi+mまで変化させ、j1
をj−mからj+mまで変化させ、もしQi1,j1 にマー
クが付いていなければQに加え、nに1をたす。このル
ープが終了したところでもしnがゼロでなければQi,j
にQ/nを代入する。もしnがゼロであれば周囲に正常
な点がないので、何もしないで次に進む。以上の操作を
全ての測定領域について行う。そして、もうこれ以上Q
i,j が変化することがなくなるまで繰り返す。
Next, the operation of the extraction position complementing means 15 will be described with reference to FIG.
This will be described with reference to the flowchart of. First, the data of the marked abnormal measurement points is discarded. Then, if necessary, the marked point group is appropriately complemented while looking at the surrounding point group. First, when the subscripts i and j are changed for all the measurement areas and Q i, j is marked, the counter n is set to 0.
, A variable Q is set to 0, i1 is changed from i−m to i + m for a constant m of 1 or more, and j1
Is changed from j−m to j + m, and if Q i1, j1 is not marked, it is added to Q and n is incremented by 1. At the end of this loop, if n is not zero, then Q i, j
Substitute Q / n for If n is zero, there is no normal point around, so proceed without doing anything. The above operation is performed for all measurement regions. And no more Q
Repeat until i and j do not change.

【0030】このように本実施形態では抽出位置補完手
段は誤差形状の点群においてマークしてある一点の近接
のマークしていない点群の値の平均値を、その一点のデ
ータに代入する操作をマークされた位置がなくなるまで
繰り返している。これにより異常なデータを用いること
なく、周辺の正常な測定点のみから測定結果を得て補完
して誤差形状を求めるようにして測定精度を向上させて
いる。
As described above, in the present embodiment, the extraction position complementing means substitutes the average value of the unmarked point groups adjacent to one point marked in the error shape point group into the data of the one point. Repeat until the marked position disappears. As a result, the measurement accuracy is improved by obtaining the measurement result from only the normal measurement points in the periphery and complementing the error shape without using abnormal data.

【0031】尚、本発明の形状測定装置を、例えばデバ
イス(半導体デバイス)を製造する工程に利用すれば、
デバイスの製造を容易に行うことができる。
If the shape measuring apparatus of the present invention is used in a process of manufacturing a device (semiconductor device), for example,
The device can be easily manufactured.

【0032】[0032]

【発明の効果】本発明によれば以上のように各工程を利
用することにより、被測定物表面を測定する際の座標点
のうちの異常な測定データ(異常データ)を発生する座
標点(点群)を抽出し、セッティング誤差を正しく計算
し、被測定物の形状を高精度に測定することができる形
状測定方法及びそれを用いた形状測定装置を達成するこ
とができる。
As described above, according to the present invention, by utilizing each process as described above, coordinate points (abnormal data) that generate abnormal measurement data (abnormal data) among the coordinate points when measuring the surface of the object to be measured ( It is possible to achieve a shape measuring method and a shape measuring apparatus using the same which can accurately measure the shape of an object to be measured by extracting a point cloud), calculating a setting error correctly.

【0033】又本発明によれば、簡便な方法で異常デー
タを抽出し、又は異常データを抽出し、セッティング誤
差を正しく計算することにより、異常データを発生する
点群でのデータを補完し、被測定物の形状を高精度に測
定することができる形状測定方法及びそれを用いた形状
測定装置を達成することができる。
Further, according to the present invention, the abnormal data is extracted by a simple method, or the abnormal data is extracted and the setting error is correctly calculated, thereby complementing the data in the point group which generates the abnormal data, A shape measuring method and a shape measuring apparatus using the shape measuring method capable of measuring the shape of an object to be measured with high accuracy can be achieved.

【0034】この他本発明によれば次のような効果があ
る。
Besides, according to the present invention, there are the following effects.

【0035】(イ)異常な測定点が混在している場合で
も精度よくセッティング誤差を計算できる。従って、従
来、異常な測定点の為にひずんだ誤差形状の結果を与え
ていた場合に比べ、高精度な形状測定が可能である。ま
た、異常な測定点があっても再測定する必要性も低減す
ることが可能となり、測定装置の運用効率を向上するこ
とができる。
(B) The setting error can be calculated accurately even when abnormal measurement points are mixed. Therefore, it is possible to measure the shape with higher accuracy than in the case where the result of the error shape distorted due to an abnormal measurement point is conventionally given. Further, it becomes possible to reduce the necessity of re-measurement even if there is an abnormal measurement point, and it is possible to improve the operational efficiency of the measuring device.

【0036】(ロ)異常な測定点の主なる原因である被
測定物や、プローブの先端の球体に付着したゴミ等の影
響があっても高精度な形状測定が可能である。従って測
定環境に対する条件をゆるめることが可能となるため、
測定装置の設置コストを下げることが可能である。
(B) It is possible to perform highly accurate shape measurement even if there is an influence of an object to be measured, which is a main cause of an abnormal measuring point, or dust attached to a sphere at the tip of the probe. Therefore, it is possible to loosen the conditions for the measurement environment,
It is possible to reduce the installation cost of the measuring device.

【0037】又、前記効果(イ),(ロ)に加えて、 (ハ)簡便な方法で異常データを抽出できる。In addition to the above effects (a) and (b), (c) abnormal data can be extracted by a simple method.

【0038】(ニ)異常な測定点を除去したあと、その
点を周辺のデータから補完するため、なめらかな測定結
果を得ることができる。
(D) After removing an abnormal measurement point, since that point is complemented by surrounding data, a smooth measurement result can be obtained.

【0039】(ホ)簡便な方法で異常データの補完が可
能となる。等の効果が得られる。
(E) Abnormal data can be complemented by a simple method. And so on.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1の要部概略図FIG. 1 is a schematic diagram of a main part of a first embodiment of the present invention.

【図2】図1の接触式プローブ6の先端の球体6aで被
測定物表面1aをトレースしている状態を示す概略図
FIG. 2 is a schematic view showing a state in which a surface 6a of the object to be measured is traced by a spherical body 6a at the tip of the contact type probe 6 of FIG.

【図3】被測定物表面の測定点を示す摸式図FIG. 3 is a schematic diagram showing measurement points on the surface of the object to be measured.

【図4】被測定物表面の誤差形状の隣接した点の説明図FIG. 4 is an explanatory diagram of adjacent points of the error shape on the surface of the measured object.

【図5】誤差形状のうち異常データを示す測定点の説明
FIG. 5 is an explanatory diagram of measurement points indicating abnormal data in the error shape.

【図6】本実施形態における異常データの補完方法のフ
ローチャート
FIG. 6 is a flowchart of an abnormal data complementing method according to the present embodiment.

【図7】従来の形状測定装置の要部概略図FIG. 7 is a schematic view of a main part of a conventional shape measuring device.

【符号の説明】[Explanation of symbols]

1 被測定物 2 ベース 3 Yスライド 4 Xスライド 5 Zスライド 6 プローブ 6a プローブの先端の球体 7 座標データの取り込み装置 8 セッティング誤差の計算装置 9 記憶保存装置 10 表示装置 11 フラグ設定装置 12 フラグ判定装置 13 フラグ減算装置 14 異常データの抽出装置 15 抽出位置の補完装置 16 プローブの走査軌跡 17 測定点 1 Object to be Measured 2 Base 3 Y Slide 4 X Slide 5 Z Slide 6 Probe 6a Sphere at Tip of Probe 7 Coordinate Data Capture Device 8 Setting Error Calculator 9 Memory Saving Device 10 Display Device 11 Flag Setting Device 12 Flag Judging Device 13 Flag subtracting device 14 Abnormal data extracting device 15 Extraction position complementing device 16 Probe scanning locus 17 Measuring point

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被測定物の複数の点群での形状を求める
形状測定手段からの測定データよりセッティング誤差計
算手段によりセッティング誤差を補正し、これより得た
測定データと設計データの差より被測定物の誤差形状を
求め、該誤差形状に基づいて異常データを抽出し、その
位置座標をマークし、該マークした位置座標を除いた複
数の点群での測定データを再び該セッティング誤差計算
手段に入力してセッティング誤差を補正して、被測定物
の誤差形状を求める工程を利用していることを特徴とす
る形状測定方法。
1. A setting error calculation means corrects a setting error from measurement data from a shape measuring means for obtaining shapes of a plurality of point groups of an object to be measured, and a difference between the measured data and design data obtained from the setting error is used to detect the difference. The error shape of the measurement object is obtained, abnormal data is extracted based on the error shape, the position coordinates thereof are marked, and the measurement data at a plurality of point groups excluding the marked position coordinates are again set by the setting error calculation means. A shape measuring method characterized by using a step of inputting into the step (1) to correct a setting error and obtaining an error shape of the object to be measured.
【請求項2】 前記異常データ抽出手段は前記被測定物
の誤差形状の点群において、一点の隣接する点との差の
最大値が、予め定めた定数を越えている場合に、その一
点を異常データとして抽出していることを特徴とする請
求項1の形状測定方法。
2. The abnormal data extracting means selects one point in the error shape point group of the object to be measured when the maximum value of the difference between the point and the adjacent point exceeds a predetermined constant. The shape measurement method according to claim 1, wherein the shape measurement is performed as abnormal data.
【請求項3】 被測定物の複数の点群での形状を求める
形状測定手段からの測定データよりセッティング誤差計
算手段によりセッティング誤差を補正し、これより得た
測定データと設計データの差より被測定物の誤差形状を
求め、該誤差形状より異常データ抽出手段で異常データ
を抽出し、その位置座標をマークし、該マークした位置
座標を除いた複数の点群での測定データを再び該セッテ
ィング誤差計算手段に入力してセッティング誤差を補正
して、被測定物の誤差形状を求め、該求めた誤差形状を
抽出位置補完手段に入力し、該抽出位置補完手段によ
り、該異常データの発生した位置のデータをすてて、そ
の代わりに該異常データの発生した位置の周囲の正常な
データより補完して測定データとする工程を利用してい
ることを特徴とする形状測定方法。
3. The setting error is corrected by the setting error calculation means from the measurement data from the shape measuring means for obtaining the shapes of the object to be measured at a plurality of point groups, and the difference between the measured data and the design data obtained from the setting error is corrected. The error shape of the measured object is obtained, the abnormal data extracting means extracts the abnormal data from the error shape, the position coordinates are marked, and the measurement data at a plurality of point groups excluding the marked position coordinates are again set. The error shape of the object to be measured is obtained by inputting it to the error calculating means to correct the setting error, the obtained error shape is inputted to the extraction position complementing means, and the abnormal data is generated by the extraction position complementing means. The method is characterized in that a step of using the position data to replace the normal data around the position where the abnormal data is generated to obtain measurement data is used instead. Condition measurement method.
【請求項4】 形状測定手段で被測定物の表面上の複数
の点群での形状を測定し、該形状測定手段からの複数の
点群での測定データを座標データ取り込み手段で取り込
み、フラグ設定手段でフラグを1以上にセットし、次い
で該座標データ取り込み手段からの測定データよりセッ
ティング誤差計算手段で被測定物を所定位置に載置した
ときの姿勢差であるセッティング誤差を補正した測定デ
ータと、設計データとの差より該被測定物の誤差形状を
求め、該セッティング誤差計算手段からの誤差形状の値
をフラグ判定手段によりフラグが1以上のときは該フラ
グの値より1を引いた後に異常データ抽出手段により異
常データを抽出し、該異常データの発生した点群を除い
た複数の点群の測定データを用いて再度、セッティング
誤差計算手段によりセッティング誤差を補正した測定デ
ータと設計データとの差より再度誤差形状を求める工程
と、該フラグが0となったときは抽出位置補完手段によ
り該異常データの発生した位置のデータをすてて、その
代わりに該異常データの発生した位置の周囲の正常なデ
ータより補完して測定データとしている工程を利用して
いることを特徴とする形状測定方法。
4. The shape measuring means measures the shape of a plurality of point groups on the surface of the object to be measured, the measurement data of the plurality of point groups from the shape measuring means is fetched by the coordinate data fetching means, and a flag is set. Measurement data obtained by setting a flag to 1 or more by the setting means and then correcting the setting error which is the attitude difference when the object to be measured is placed at a predetermined position by the setting error calculation means from the measurement data from the coordinate data fetching means. Then, the error shape of the object to be measured is obtained from the difference from the design data, and the value of the error shape from the setting error calculation means is subtracted from the value of the flag when the flag is 1 or more by the flag determination means. After that, the abnormal data is extracted by the abnormal data extracting means, and the measured data of a plurality of point groups excluding the point cloud in which the abnormal data is generated is used again by the setting error calculating means. A step of obtaining an error shape again from the difference between the measurement data corrected for the setting error and the design data, and when the flag becomes 0, the extraction position complementing means is used to pass the data of the position where the abnormal data has occurred, Instead, a shape measuring method is characterized in that a process of complementing normal data around a position where the abnormal data is generated to obtain measurement data is used.
【請求項5】 請求項1から4の何れか1項記載の形状
測定方法を利用して被測定物の形状を測定していること
を特徴とする形状測定装置。
5. A shape measuring device, characterized in that the shape measuring method according to claim 1 is used to measure the shape of an object to be measured.
JP8017179A 1996-01-05 1996-01-05 Shape measuring method and shape measuring device using the same Expired - Fee Related JP2996165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8017179A JP2996165B2 (en) 1996-01-05 1996-01-05 Shape measuring method and shape measuring device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8017179A JP2996165B2 (en) 1996-01-05 1996-01-05 Shape measuring method and shape measuring device using the same

Publications (2)

Publication Number Publication Date
JPH09189544A true JPH09189544A (en) 1997-07-22
JP2996165B2 JP2996165B2 (en) 1999-12-27

Family

ID=11936732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8017179A Expired - Fee Related JP2996165B2 (en) 1996-01-05 1996-01-05 Shape measuring method and shape measuring device using the same

Country Status (1)

Country Link
JP (1) JP2996165B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118466A (en) * 1997-10-17 1999-04-30 Matsushita Electric Ind Co Ltd Shape measuring method and its device
JP2002202115A (en) * 2000-11-09 2002-07-19 Samsung Electronics Co Ltd Method of automatically detecting measuring error of measuring apparatus
JP2008111770A (en) * 2006-10-31 2008-05-15 Makino Milling Mach Co Ltd Measurement display method and machine equipped with measuring display device
JP2008170262A (en) * 2007-01-11 2008-07-24 Matsushita Electric Ind Co Ltd Lens evaluation method
JP2009294134A (en) * 2008-06-06 2009-12-17 Canon Inc Shape measurement method of synthetically combining partial measurements
CN103439085A (en) * 2013-08-29 2013-12-11 中国科学院光电研究院 Contact type method and device for measuring parameters of curve face prism

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118466A (en) * 1997-10-17 1999-04-30 Matsushita Electric Ind Co Ltd Shape measuring method and its device
JP2002202115A (en) * 2000-11-09 2002-07-19 Samsung Electronics Co Ltd Method of automatically detecting measuring error of measuring apparatus
JP2008111770A (en) * 2006-10-31 2008-05-15 Makino Milling Mach Co Ltd Measurement display method and machine equipped with measuring display device
JP2008170262A (en) * 2007-01-11 2008-07-24 Matsushita Electric Ind Co Ltd Lens evaluation method
JP2009294134A (en) * 2008-06-06 2009-12-17 Canon Inc Shape measurement method of synthetically combining partial measurements
CN103439085A (en) * 2013-08-29 2013-12-11 中国科学院光电研究院 Contact type method and device for measuring parameters of curve face prism

Also Published As

Publication number Publication date
JP2996165B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
JP6280525B2 (en) System and method for runtime determination of camera miscalibration
US7885777B2 (en) Probe calibration
JP2000046543A (en) Three-dimensional profile measuring equipment
Hui-yuan et al. Accurate extrinsic calibration method of a line structured-light sensor based on a standard ball
CN111540001A (en) Method for detecting axial direction of air film hole of turbine blade of aero-engine
Wang et al. Automatic reading system for analog instruments based on computer vision and inspection robot for power plant
CN111189403B (en) Tunnel deformation monitoring method and device and computer readable storage medium
JP2007533963A (en) Non-contact optical measuring method and measuring apparatus for 3D position of object
CN109773589B (en) Method, device and equipment for online measurement and machining guidance of workpiece surface
JPH09189544A (en) Method for measuring shape and apparatus for measuring shape using the method
Kohut et al. A structure's deflection measurement and monitoring system supported by a vision system
CN112116665B (en) Structural light sensor calibration method
CN111145247B (en) Position degree detection method based on vision, robot and computer storage medium
CN116092984B (en) Method for determining the positioning accuracy of a wafer transport device
Ricolfe-Viala et al. Optimal conditions for camera calibration using a planar template
JP2000081329A (en) Shape measurement method and device
US20130206983A1 (en) Positioning system and method for precise stage and pattern used thereof
CN115122333A (en) Robot calibration method and device, electronic equipment and storage medium
JP2019207152A (en) Three-dimensional measuring device, position display method for three-dimensional measuring device, and program
CN109732643B (en) Calibration device and method for mechanical arm
US8027528B2 (en) Method for calculating height of chuck top and program storage medium for storing same method
CN109062138A (en) A kind of five shaft platform system calibrating schemes based on stereo calibration block
KR101727165B1 (en) Measurement apparatus for 3d camera module, correction apparatus for 3d camera module and correction method therefor
CN114571506B (en) Gesture alignment method for industrial robot performance measurement
Li et al. 2D vision camera calibration method for high-precision measurement

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees