JPH09189458A - Method for controlling absorbed chiller heater - Google Patents

Method for controlling absorbed chiller heater

Info

Publication number
JPH09189458A
JPH09189458A JP8001244A JP124496A JPH09189458A JP H09189458 A JPH09189458 A JP H09189458A JP 8001244 A JP8001244 A JP 8001244A JP 124496 A JP124496 A JP 124496A JP H09189458 A JPH09189458 A JP H09189458A
Authority
JP
Japan
Prior art keywords
evaporator
temperature
heat transfer
high temperature
temperature regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8001244A
Other languages
Japanese (ja)
Inventor
Tomoharu Kudo
智春 久土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP8001244A priority Critical patent/JPH09189458A/en
Publication of JPH09189458A publication Critical patent/JPH09189458A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PROBLEM TO BE SOLVED: To keep a vacuum condition within an absorbed chiller heater and maintain a reliability in operation of the machine even in the case of performing a heating operation at the machine. SOLUTION: This chiller heater is comprises a high temperature regenerator 1 for heating absorbing liquid; a separator 2 connected to the high temperature regenerator 1 so as to separate gas and liquid; an evaporator 5 for evaporating liquid refrigerant on a heat transfer pipe 16 of the evaporator installed in it and for cooling thermal medium within the heat transfer pipe 16 of the evaporator; a pipe for communicating the separator 2 with the evaporator 5 through a cooling or heating changing-over valve 10. Then, a pressure of the evaporator is set in advance in the case that non- condensed gas corresponding to a temperature of the thermal medium at an outlet of the heat transfer pipe of the evaporator is not present during a heating operation in which the cooling or heating changing-over valve 10 is opened, the temperature of the thermal medium at the outlet of the heat transfer pipe of the evaporator is detected, the pressure of the evaporator set in response to the detected temperature of the thermal medium is calculated and it is discriminated whether or not an amount of non-condensed gas within a circulating system is within an allowable range in response to a difference between the set pressure of the evaporator and the detected pressure of the evaporator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、吸収式冷温水機の
制御方法に係り、特に暖房運転時の機内真空状態の維持
に配慮した制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling an absorption chiller-heater, and more particularly to a method for controlling an in-machine vacuum state during heating operation.

【0002】[0002]

【従来の技術】吸収式冷温水機の冷媒循環系内部に不凝
縮性ガスが存在した場合、冷房運転時はすべての不凝縮
性ガスが吸収器に集まり、抽気装置によってガス貯蔵室
に溜められ機外に排出される。これにに対して暖房運転
時は、図11に示すようにボイラー運転のため、抽気装
置が働かず不凝縮性ガスの抽気ができないということ
と、不凝縮性ガスが多少あっても性能にほとんど影響を
与えず問題なく運転できてしまうことから、暖房運転時
の不凝縮性ガスは今まであまり問題にされなかった。
2. Description of the Related Art When non-condensable gas is present in the refrigerant circulation system of an absorption chiller-heater, all the non-condensable gas gathers in the absorber during cooling operation and is collected in a gas storage chamber by an extraction device. It is discharged outside the aircraft. On the other hand, during the heating operation, as shown in FIG. 11, because the boiler operation is performed, the extraction device does not work and the non-condensable gas cannot be extracted. The non-condensable gas during heating operation has not been a problem so far because it can be operated without any problem.

【0003】[0003]

【発明が解決しようとする課題】しかし、機外リーク等
により系統内の不凝縮性ガスが多くなると機内圧力が上
昇し、高温再生器温度異常にて停止することになる。ま
た、不凝縮性ガスが機外リークによる空気だった場合、
系統内に酸素が存在する状態で運転することとなり、内
部の腐食が促進されてしまう。従来技術では、系統内に
不凝縮性ガスが存在しても高温再生器温度異常が働くま
でそのまま運転してしまうことから、その間内部の腐食
を進行させ機器の信頼性を低下させるという結果になっ
ていた。
However, when the amount of non-condensable gas in the system increases due to leaks from the outside of the machine, the internal pressure of the machine rises, and the high temperature regenerator temperature is stopped. Also, if the non-condensable gas was air due to an external leak,
The system is operated in the presence of oxygen in the system, which promotes internal corrosion. In the prior art, even if there is non-condensable gas in the system, the high temperature regenerator will continue to operate until abnormal temperature is activated, resulting in the progress of internal corrosion during that time, resulting in a decrease in device reliability. Was there.

【0004】本発明の課題は、吸収式冷温水機の暖房運
転時においても、機内の真空状態を維持し、装置の信頼
性を保つにある。
An object of the present invention is to maintain the internal vacuum state and maintain the reliability of the apparatus even during the heating operation of the absorption chiller-heater.

【0005】[0005]

【課題を解決するための手段】暖房運転では、高温再生
器で発生した冷媒蒸気が蒸発器伝熱管上で伝熱管内を流
れる温水(熱媒体)に熱を与え、凝縮して水となる。し
たがって、蒸発器の圧力は冷媒蒸気が凝縮する圧力、つ
まり飽和蒸気圧となる。系統内に不凝縮性ガスがない場
合、この飽和蒸気圧は、蒸発器伝熱管の出口における温
水出口温度により決まるため、蒸発器圧力は温水出口温
度により図3に示すように変動する。一方、系統内に不
凝縮性ガスが存在する場合、不凝縮性ガスは、暖房運転
において、低圧部である蒸発器、吸収器、凝縮器に分散
して存在する。この状態における蒸発器圧力は、飽和蒸
気圧にガスの分圧を加えた値となり、不凝縮性ガスの存
在が蒸発器圧力を上昇させる結果となる。図2に示すよ
うに、蒸発器圧力は、不凝縮性ガスのガス量に比例して
上昇していく。
In the heating operation, the refrigerant vapor generated in the high temperature regenerator gives heat to the hot water (heat medium) flowing in the heat transfer tube on the evaporator heat transfer tube, and is condensed to water. Therefore, the pressure of the evaporator is the pressure at which the refrigerant vapor is condensed, that is, the saturated vapor pressure. When there is no non-condensable gas in the system, this saturated vapor pressure is determined by the hot water outlet temperature at the outlet of the evaporator heat transfer tube, so the evaporator pressure fluctuates as shown in FIG. 3 depending on the hot water outlet temperature. On the other hand, when the non-condensable gas is present in the system, the non-condensable gas is dispersedly present in the low pressure part of the evaporator, the absorber and the condenser during the heating operation. The evaporator pressure in this state is the saturated vapor pressure plus the partial pressure of the gas, and the presence of the non-condensable gas results in an increase in the evaporator pressure. As shown in FIG. 2, the evaporator pressure increases in proportion to the amount of noncondensable gas.

【0006】本発明は上記の課題を達成するために、吸
収液を加熱する高温再生器と、該高温再生器に接続され
て気液分離する分離器と、内装した蒸発器伝熱管上で液
冷媒を蒸発させて蒸発器伝熱管内の熱媒体を冷却する蒸
発器と、前記分離器と蒸発器を冷暖切換弁を介して連通
する配管と、を含んで構成された吸収式冷温水機の制御
方法において、前記冷暖切換弁が開かれた暖房運転時
に、予め蒸発器伝熱管出口における熱媒体温度に対応す
る不凝縮性ガスがない場合の蒸発器圧力を設定してお
き、前記蒸発器伝熱管出口における熱媒体温度Taを検
出し、検出された熱媒体温度Taに応じて前記設定され
た蒸発器圧力Pevaを算出し、蒸発器圧力Paを検出し、
蒸発器圧力Pevaと蒸発器圧力Paの差に基づいて循環系
統内の不凝縮性ガスの量が許容範囲内にあるかどうかを
判断することを特徴とする。
In order to achieve the above object, the present invention provides a high temperature regenerator for heating an absorbing liquid, a separator connected to the high temperature regenerator for gas / liquid separation, and a liquid on an evaporator heat transfer tube installed therein. An evaporator that evaporates the refrigerant to cool the heat medium in the evaporator heat transfer tube, and a pipe that connects the separator and the evaporator via a cooling / heating switching valve, and an absorption type chiller / heater In the control method, during heating operation in which the cooling / heating switching valve is opened, the evaporator pressure in the case where there is no noncondensable gas corresponding to the heat medium temperature at the evaporator heat transfer tube outlet is set in advance, and the evaporator transfer is performed. The heat medium temperature Ta at the heat pipe outlet is detected, the set evaporator pressure Peva is calculated according to the detected heat medium temperature Ta, and the evaporator pressure Pa is detected,
It is characterized in that whether or not the amount of the non-condensable gas in the circulation system is within the allowable range is determined based on the difference between the evaporator pressure Peva and the evaporator pressure Pa.

【0007】循環系統内の不凝縮性ガスの量が許容範囲
内にあるかどうかを判断するために、蒸発器圧力Peva
と蒸発器圧力Paの差(Pa−Peva)が予め設定された
値ΔPよりも大きいかどうかを判定し、Pa−Peva>Δ
Pのとき、警報表示を行うようにしてもよい。
To determine if the amount of non-condensable gas in the circulation system is within an acceptable range, the evaporator pressure Peva
And the evaporator pressure Pa (Pa-Peva) is greater than a preset value ΔP, and Pa-Peva> Δ
When P, an alarm may be displayed.

【0008】上記の課題はまた、吸収液を加熱する高温
再生器と、該高温再生器に接続されて気液分離する分離
器と、内装した蒸発器伝熱管上で液冷媒を蒸発させて蒸
発器伝熱管内の熱媒体を冷却する蒸発器と、前記分離器
と蒸発器を冷暖切換弁を介して連通する配管と、を含ん
で構成された吸収式冷温水機の制御方法において、前記
冷暖切換弁が開かれた暖房運転時に、予め蒸発器伝熱管
出口における熱媒体温度に対応する不凝縮性ガスがない
場合の高温再生器温度Tbを設定しておき、前記蒸発器
伝熱管出口における熱媒体温度Taを検出し、検出され
た熱媒体温度Taに応じて前記設定された高温再生器温
度Tbを算出し、高温再生器温度Tcを検出し、高温再生
器温度Tcと高温再生器温度Tbの差に基づいて循環系統
内の不凝縮性ガスの量が許容範囲内にあるかどうかを判
断するようにした吸収式冷温水機の制御方法によっても
達成される。
The above-mentioned problem is also solved by evaporating a liquid refrigerant on a high-temperature regenerator for heating the absorbing liquid, a separator connected to the high-temperature regenerator for gas-liquid separation, and evaporating a liquid refrigerant on an evaporator heat transfer tube installed therein. In the method for controlling an absorption chiller-heater configured to include an evaporator that cools a heat medium in a heat exchanger tube, and a pipe that connects the separator and the evaporator via a heating / cooling switching valve, During the heating operation in which the switching valve is opened, the high temperature regenerator temperature Tb when there is no noncondensable gas corresponding to the heat medium temperature at the evaporator heat transfer tube outlet is set in advance, and the heat at the evaporator heat transfer tube outlet is set. The medium temperature Ta is detected, the set high temperature regenerator temperature Tb is calculated according to the detected heat medium temperature Ta, the high temperature regenerator temperature Tc is detected, and the high temperature regenerator temperature Tc and the high temperature regenerator temperature Tb are detected. Of the noncondensable gas in the circulation system based on the difference between There is also achieved by a control method for the determination as to whether it is within the allowable range absorption chiller.

【0009】循環系統内の不凝縮性ガスの量が許容範囲
内にあるかどうかを、高温再生器温度Tcと高温再生器
温度Tbの差(Tc−Tb)が予め設定された値ΔTより
も大きいかどうかによって判定し、(Tc−Tb)>ΔT
のとき、警報表示を行うようにしてもよい。
Whether or not the amount of non-condensable gas in the circulation system is within the allowable range is determined by comparing the difference (Tc-Tb) between the high temperature regenerator temperature Tc and the high temperature regenerator temperature Tb with a preset value ΔT. It is judged by whether it is large, (Tc-Tb)> ΔT
At this time, an alarm may be displayed.

【0010】[0010]

【発明の実施の形態】以下、図1を参照して本発明の第
1の実施例を説明する。図1に示す吸収式冷温水機は、
希溶液を加熱する高温再生器1と、高温再生器1の上方
に配置され高温再生器1に上昇管26で接続されて希溶
液を冷媒蒸気と中間濃溶液に分離する分離器2と、内装
した冷媒蒸気コイルの一端を分離器2の気相部に接続し
た低温再生器3と、冷却水コイルを内装し低温再生器3
に内装された冷媒蒸気コイルの他端が接続された凝縮器
4と、凝縮器4に液冷媒管15で接続された蒸発器5
と、蒸発器5に内装された蒸発器伝熱管16と、蒸発器
5に冷媒蒸気通路で連通された吸収器6と、吸収器6底
部に希溶液管22を介して吸い込み側を接続させた溶液
循環ポンプ9と、溶液循環ポンプ9の吐出側に希溶液管
23を介して被加熱流体入り側を接続させた低温溶液熱
交換器8と、低温溶液熱交換器8の被加熱流体出側に希
溶液管24を介して被加熱流体入り側を接続させた高温
溶液熱交換器7と、高温溶液熱交換器7の被加熱流体出
側と高温再生器1を接続する希溶液管25と、前記分離
器2と蒸発器5を冷暖切換弁10を介して接続する暖房
管17と、分離器2の液相部と高温溶液熱交換器7の加
熱流体入側を接続する中間濃溶液管18と、高温溶液熱
交換器7の加熱流体出側と低温再生器3を連通する中間
濃溶液管19と、低温再生器3と低温溶液熱交換器8の
加熱流体入側を接続する濃溶液管20と、低温溶液熱交
換器8の加熱流体出側と吸収器6の上部を接続する濃溶
液管21と、蒸発器伝熱管16の温水出口温度Taを計
測、出力する温水出口温度センサ11と、蒸発器5の圧
力Paを検出、出力する蒸発器圧力センサ12と、温水
出口温度センサ11と蒸発器圧力センサ12の出力に基
づいて蒸発器圧力が適正な範囲内にあるかどうかを判断
するコントローラ13と、コントローラ13の出力に応
じて警報を発する警報発信手段14とを含んで構成され
ている。
DETAILED DESCRIPTION OF THE INVENTION A first embodiment of the present invention will be described below with reference to FIG. The absorption chiller-heater shown in FIG.
A high temperature regenerator 1 for heating the dilute solution, a separator 2 arranged above the high temperature regenerator 1 and connected to the high temperature regenerator 1 by a rising pipe 26 for separating the dilute solution into a refrigerant vapor and an intermediate concentrated solution, and an interior The low temperature regenerator 3 in which one end of the refrigerant vapor coil is connected to the gas phase part of the separator 2 and the cooling water coil is incorporated.
A condenser 4 to which the other end of a refrigerant vapor coil installed inside is connected, and an evaporator 5 connected to the condenser 4 by a liquid refrigerant pipe 15.
An evaporator heat transfer tube 16 installed in the evaporator 5, an absorber 6 communicating with the evaporator 5 through a refrigerant vapor passage, and a suction solution side connected to the bottom of the absorber 6 via a dilute solution pipe 22. The solution circulation pump 9, a low temperature solution heat exchanger 8 in which the heated fluid inlet side is connected to the discharge side of the solution circulation pump 9 via a dilute solution pipe 23, and the heated fluid outlet side of the low temperature solution heat exchanger 8. A high temperature solution heat exchanger 7 connected to the heated fluid inlet side via a dilute solution pipe 24; and a dilute solution pipe 25 connecting the heated fluid outlet side of the high temperature solution heat exchanger 7 to the high temperature regenerator 1. A heating pipe 17 connecting the separator 2 and the evaporator 5 via a heating / cooling switching valve 10, and an intermediate concentrated solution pipe connecting the liquid phase portion of the separator 2 and the heating fluid inlet side of the high temperature solution heat exchanger 7. 18, an intermediate concentrated solution pipe 19 that connects the low temperature regenerator 3 and the heating fluid outlet side of the high temperature solution heat exchanger 7, A concentrated solution pipe 20 connecting the heating fluid inlet side of the temperature regenerator 3 and the low temperature solution heat exchanger 8 and a concentrated solution pipe 21 connecting the heating fluid outlet side of the low temperature solution heat exchanger 8 and the upper part of the absorber 6. , A hot water outlet temperature sensor 11 for measuring and outputting the hot water outlet temperature Ta of the evaporator heat transfer tube 16, an evaporator pressure sensor 12 for detecting and outputting the pressure Pa of the evaporator 5, a hot water outlet temperature sensor 11 and an evaporator pressure The controller 13 includes a controller 13 that determines whether the evaporator pressure is within an appropriate range based on the output of the sensor 12, and an alarm issuing unit 14 that issues an alarm according to the output of the controller 13.

【0011】上記構成の吸収式冷温水機は、暖房運転
時、次のように運転される。冷暖切換弁10が開かれ
る。高温再生器1で加熱された希溶液は上昇管26を経
て分離器2に上昇し、分離器2から冷媒蒸気と中間濃溶
液が混合された気液混合状態にて冷暖切換弁10、暖房
管17を経て蒸発器5に流入する。蒸発器5に流入した
冷媒蒸気は、蒸発器伝熱管16内を流れる熱媒体である
温水に熱を与え、自身は凝縮して液冷媒(水)となる。
液冷媒は蒸発器5に流入した中間濃溶液に混合されて希
溶液となり、溶液循環ポンプ9により加圧され、低温溶
液熱交換器8、高温溶液熱交換器7を経て高温再生器1
に送られ、上記サイクルが繰り返される。蒸発器伝熱管
16内を流れる温水は冷媒蒸気の熱によって加熱されて
高温となり、暖房負荷に導かれて放熱する。
The absorption chiller-heater having the above structure is operated as follows during heating operation. The cooling / heating switching valve 10 is opened. The dilute solution heated in the high temperature regenerator 1 rises to the separator 2 via the rising pipe 26, and in the gas-liquid mixed state in which the refrigerant vapor and the intermediate concentrated solution are mixed from the separator 2, the heating / cooling switching valve 10 and the heating pipe. It flows into the evaporator 5 via 17. The refrigerant vapor flowing into the evaporator 5 gives heat to the hot water that is the heat medium flowing through the evaporator heat transfer tube 16, and condenses itself to become a liquid refrigerant (water).
The liquid refrigerant is mixed with the intermediate concentrated solution flowing into the evaporator 5 to form a dilute solution, which is pressurized by the solution circulation pump 9 and passed through the low temperature solution heat exchanger 8 and the high temperature solution heat exchanger 7 to obtain the high temperature regenerator 1.
And the above cycle is repeated. The hot water flowing in the evaporator heat transfer tube 16 is heated by the heat of the refrigerant vapor to reach a high temperature, is guided to the heating load and radiates heat.

【0012】コントローラ13には、温水出口温度Ta
に対して許容される蒸発器圧力Paを示す関数が格納さ
れており、図4に示されているように、蒸発器圧力セン
サ12の出力(蒸発器圧力Pa)が温水出口温度センサ
11の出力(温水出口温度Ta)に対して許容される圧
力の範囲内にあるかどうかを判断する。蒸発器圧力セン
サ12の出力Paが許容される蒸発器圧力よりも高い場
合、コントローラ13は警報発信手段14に対し、警報
発信を指示する信号を出力する。警報発信を指示する信
号を受信した警報発信手段14は、所定の方法(音声、
あるいは表示等の点滅、あるいは印字出力)で警報を行
い、運転者に報知する。図4に実線で示す機内真空状態
は、温水出口温度に対して予め設定された通常運転状態
(不凝縮性ガスが存在しない状態)で維持すべき蒸発器
圧力Pevaを示し、この圧力よりも実際の圧力が高い場
合は、不凝縮性ガスが存在していることになる。図で
は、蒸発器圧力センサ12の出力Paと通常運転状態の
圧力Pevaの差(Pa−Peva)がΔPより大きいとき、
警報が発信される。ΔPの値は各吸収冷温水機の特性に
応じて設定する必要がある。図5に制御手順のフローチ
ャートを示す。
The controller 13 has a hot water outlet temperature Ta.
Is stored, and the output of the evaporator pressure sensor 12 (evaporator pressure Pa) is the output of the hot water outlet temperature sensor 11 as shown in FIG. It is determined whether or not the pressure is within the range of allowable pressure with respect to (hot water outlet temperature Ta). When the output Pa of the evaporator pressure sensor 12 is higher than the allowable evaporator pressure, the controller 13 outputs a signal instructing the alarm transmission means 14 to transmit an alarm. The alarm transmitting means 14 that has received the signal for instructing the alarm transmission uses a predetermined method (voice,
Alternatively, the driver is notified by issuing an alarm by blinking the display or the like, or printing output. The in-machine vacuum state shown by the solid line in FIG. 4 indicates the evaporator pressure Peva that should be maintained in the normal operating state (state in which no non-condensable gas does not exist) that is preset for the hot water outlet temperature, and is actually higher than this pressure. If the pressure is high, then non-condensable gas is present. In the figure, when the difference (Pa−Peva) between the output Pa of the evaporator pressure sensor 12 and the pressure Peva in the normal operation state is larger than ΔP,
An alarm is sent. The value of ΔP needs to be set according to the characteristics of each absorption chiller-heater. FIG. 5 shows a flowchart of the control procedure.

【0013】本実施例によれば、暖房運転時であって
も、冷媒循環系統内の不凝縮性ガスが許容範囲を超えて
いることを直ちに知ることができ、真空引き等、必要な
処置を行えるので、装置内部表面の腐食の進行を防止で
きる。
According to the present embodiment, even during heating operation, it can be immediately known that the non-condensable gas in the refrigerant circulation system exceeds the allowable range, and necessary measures such as evacuation can be taken. Since this can be done, the progress of corrosion on the inner surface of the device can be prevented.

【0014】図6により、本発明の第2の実施例を説明
する。図6に示す吸収冷温水機が前記図1に示す吸収式
冷温水機と異なるのは、高温再生器1の内部温度Tcを
検出する高温再生器温度センサ27が設けられ、コント
ローラ13に蒸発器圧力センサ12の出力に代えて高温
再生器温度センサ27の出力が入力されるようになって
いることと、コントローラ13は高温再生器温度センサ
27の出力と温水出口温度センサ11の出力に基づいて
不凝縮性ガス量を判断するように構成されている点であ
る。他の構成は図1に示す吸収式冷温水機と同じである
ので、説明は省略する。
A second embodiment of the present invention will be described with reference to FIG. The absorption chiller-heater shown in FIG. 6 differs from the absorption chiller-heater shown in FIG. 1 in that a high-temperature regenerator temperature sensor 27 for detecting the internal temperature Tc of the high-temperature regenerator 1 is provided, and the controller 13 has an evaporator. Instead of the output of the pressure sensor 12, the output of the high temperature regenerator temperature sensor 27 is input, and the controller 13 is based on the output of the high temperature regenerator temperature sensor 27 and the output of the hot water outlet temperature sensor 11. It is configured to determine the amount of non-condensable gas. The other structure is the same as that of the absorption chiller-heater shown in FIG.

【0015】暖房運転において、機内に不凝縮性ガスが
なく真空の場合、高温再生器1と蒸発器5の圧力バラン
スは、次の式で表される。 Phge=Peva+ΔP ……(1) ここで、 Phge:高温再生器の飽和蒸気圧 Peva:蒸発器の飽和蒸気圧 ΔPL:高温再生器から蒸発器に向かう流路の圧損 (1)式において、Peva、ΔPLは温水出口温度Taに
より決まるから、Phgeは温水出口温度Taの関数とな
る。また、高温再生器温度TcはPhgeと溶液濃度から決
まる。暖房運転においては、高温再生器における溶液濃
度はほとんど変動しないから、高温再生器温度TcはPh
geで決まることになり、つまり、温水出口温度Taの関
数となる。
In the heating operation, when there is no non-condensable gas in the machine and it is in vacuum, the pressure balance between the high temperature regenerator 1 and the evaporator 5 is expressed by the following equation. Phge = Peva + ΔP (1) Here, Phge: Saturated vapor pressure of the high temperature regenerator Peva: Saturated vapor pressure of the evaporator ΔPL: Pressure loss in the flow path from the high temperature regenerator to the evaporator Peva in the equation (1), Since ΔPL is determined by the hot water outlet temperature Ta, Phge is a function of the hot water outlet temperature Ta. The high temperature regenerator temperature Tc is determined by Phge and the solution concentration. In heating operation, the solution concentration in the high temperature regenerator hardly changes, so the high temperature regenerator temperature Tc is Ph.
It is determined by ge, that is, it is a function of the hot water outlet temperature Ta.

【0016】一方機内に不凝縮性ガスが存在する場合、
この不凝縮性ガスは暖房運転において低圧部である蒸発
器、吸収器、凝縮器に分散して存在する。この状態にお
ける蒸発器の圧力は、上記のPevaに蒸発器における不
凝縮性ガスの分圧Pgを加えた値となり、その結果、Ph
geは下記(2)式で算出される。 Phge=Peva+Pg+ΔP ……(2) (1),(2)式から明らかなように、不凝縮性ガスの
存在によりPhgeが上昇することになり、圧力の上昇は
温度の上昇となることから、不凝縮性ガスの存在を高温
再生器温度Tcの上昇によって把握することが可能とな
る。上述のことを図で示すと、図7、図8のようにな
る。図7は、温水出口温度Ta一定時の機内不凝縮性ガ
ス量と高温再生器温度Tcの関係を示し、図8は温水出
口温度Taと高温再生器温度Tcの関係を機内ガス量ゼロ
と機内ガス量Aで比較したものである。実際には、温水
出口温度Taと高温再生器温度Tcを検出し、コントロー
ラ13が、検出された高温再生器温度Tcが図9に示す
警報作動領域に入っているか入っていないかを判断す
る。機内ガス量ゼロの場合の高温再生器温度Tbを温水
出口温度に対応させて予め設定しておき、検出された温
水出口温度Taに基づいて機内ガス量ゼロの場合の高温
再生器温度Tbを算出する。算出された高温再生器温度
Tbと検出された高温再生器温度Tcの差(Tc−Tb=T
d)を求め、次いでTdとΔTを比較して高温再生器温度
Tcが図9に示す警報作動領域に入っているかどうかを
判断する。検出された高温再生器温度Tcが図9に示す
警報作動領域に入っていると判断されたら、コントロー
ラ13から警報発信手段14に警報表示を指示する信号
が出力され、警報発信手段14が真空引きの必要性を知
らせる警報を、音声、あるいは点滅灯、あるいは印字出
力で表示する。
On the other hand, when non-condensable gas is present in the machine,
This non-condensable gas is dispersedly present in the low pressure part of the evaporator, the absorber and the condenser in the heating operation. The pressure of the evaporator in this state is a value obtained by adding the partial pressure Pg of the non-condensable gas in the evaporator to the above Peva, and as a result, Ph
ge is calculated by the following equation (2). Phge = Peva + Pg + ΔP (2) As is clear from the equations (1) and (2), the presence of the non-condensable gas causes an increase in Phge, and an increase in pressure results in an increase in temperature. The presence of the condensable gas can be grasped by the rise of the high temperature regenerator temperature Tc. The above is illustrated in FIGS. 7 and 8. FIG. 7 shows the relationship between the in-machine non-condensable gas amount and the high temperature regenerator temperature Tc when the hot water outlet temperature Ta is constant, and FIG. 8 shows the relationship between the hot water outlet temperature Ta and the high temperature regenerator temperature Tc when the in-machine gas amount is zero and This is a comparison with the gas amount A. Actually, the hot water outlet temperature Ta and the high temperature regenerator temperature Tc are detected, and the controller 13 determines whether or not the detected high temperature regenerator temperature Tc is within the alarm operation area shown in FIG. The high temperature regenerator temperature Tb when the in-machine gas amount is zero is set in advance corresponding to the hot water outlet temperature, and the high temperature regenerator temperature Tb when the in-machine gas amount is zero is calculated based on the detected hot water outlet temperature Ta. To do. The difference between the calculated high temperature regenerator temperature Tb and the detected high temperature regenerator temperature Tc (Tc-Tb = T
d) is obtained, and then Td is compared with ΔT to determine whether or not the high temperature regenerator temperature Tc is within the alarm operating range shown in FIG. When it is determined that the detected high temperature regenerator temperature Tc is within the alarm operating area shown in FIG. 9, the controller 13 outputs a signal for instructing the alarm display means 14 to display an alarm, and the alarm transmission means 14 is evacuated. The alarm indicating the necessity of is displayed by voice, blinking light, or printed output.

【0017】図では、高温再生器温度センサ27の出力
Tcが通常運転状態(不凝縮性ガス量ゼロの状態)の温
度よりもΔT以上高いとき、警報が発信される。ΔTの
値は各吸収冷温水機の特性に応じて設定する必要があ
る。図10に上述の制御手順のフローチャートを示す。
ΔTで管理する代わりに、図8に示すように、高温再生
器温度と温水出口温度を用いて不凝縮性ガス量の程度を
判断し、不凝縮性ガス量が予め定めたガス量Aをこえた
とき、警報を発信するようにしてもよい。
In the figure, an alarm is issued when the output Tc of the high temperature regenerator temperature sensor 27 is higher than the temperature in the normal operating state (state where the amount of non-condensable gas is zero) by ΔT or more. The value of ΔT needs to be set according to the characteristics of each absorption chiller-heater. FIG. 10 shows a flowchart of the above control procedure.
Instead of managing with ΔT, as shown in FIG. 8, the degree of the noncondensable gas amount is judged using the high temperature regenerator temperature and the hot water outlet temperature, and the noncondensable gas amount exceeds the predetermined gas amount A. You may make it send out an alarm when it starts.

【0018】本実施例においても、前記第1の実施例の
場合と同様に、暖房運転時であっても、冷媒循環系統内
の不凝縮性ガスが許容範囲を超えていることを直ちに知
ることができ、真空引き等、必要な処置を行えるので、
装置内部表面の腐食の進行を防止できる。
Also in this embodiment, as in the case of the first embodiment, it should be immediately known that the non-condensable gas in the refrigerant circulation system exceeds the allowable range even during the heating operation. Since it is possible to perform necessary measures such as vacuuming,
It is possible to prevent the corrosion of the inner surface of the device.

【0019】[0019]

【発明の効果】本発明によれば、暖房運転時の機内真空
状態を監視できることから、機外りーくによる内部腐食
を最小限に押さえることが可能となり、機器の信頼性を
向上させた。
According to the present invention, since the in-machine vacuum state during heating operation can be monitored, it is possible to minimize the internal corrosion due to the outside of the machine, and the reliability of the equipment is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用される吸収式冷温水機の例を示す
系統図である。
FIG. 1 is a system diagram showing an example of an absorption chiller-heater to which the present invention is applied.

【図2】蒸発器圧力と機内の不凝縮性ガス量の関係を示
す概念図である。
FIG. 2 is a conceptual diagram showing the relationship between evaporator pressure and the amount of non-condensable gas in the machine.

【図3】蒸発器圧力と温水出口温度の関係を示す概念図
である。
FIG. 3 is a conceptual diagram showing the relationship between evaporator pressure and hot water outlet temperature.

【図4】蒸発器圧力と温水出口温度と警報領域の関係を
示す概念図である。
FIG. 4 is a conceptual diagram showing a relationship among an evaporator pressure, a hot water outlet temperature, and an alarm area.

【図5】本発明の第1の実施例を示すフローチャートで
ある。
FIG. 5 is a flowchart showing a first embodiment of the present invention.

【図6】本発明が適用される吸収式冷温水機の他の例を
示す系統図である。
FIG. 6 is a system diagram showing another example of an absorption chiller-heater to which the present invention is applied.

【図7】高温再生器温度と機内の不凝縮性ガス量の関係
を示す概念図である。
FIG. 7 is a conceptual diagram showing the relationship between the temperature of the high temperature regenerator and the amount of non-condensable gas in the machine.

【図8】高温再生器温度と温水出口温度の関係を示す概
念図である。
FIG. 8 is a conceptual diagram showing the relationship between the high temperature regenerator temperature and the hot water outlet temperature.

【図9】高温再生器温度と温水出口温度と警報領域の関
係を示す概念図である。
FIG. 9 is a conceptual diagram showing a relationship among a high temperature regenerator temperature, a hot water outlet temperature and an alarm area.

【図10】本発明の第2の実施例を示すフローチャート
である。
FIG. 10 is a flowchart showing a second embodiment of the present invention.

【図11】吸収式冷温水機の例を示す系統図である。FIG. 11 is a system diagram showing an example of an absorption chiller-heater.

【符号の説明】[Explanation of symbols]

1 高温再生器 2 分離器 3 低温再生器 4 凝縮器 5 蒸発器 6 吸収器 7 高温溶液熱交換器 8 低温溶液
熱交換器 9 溶液循環ポンプ 10 冷暖切
換弁 11 温水出口温度センサ 12 蒸発器
圧力センサ 13 コントローラ 14 警報発
信手段 15 液冷媒管 16 蒸発器
伝熱管 17 暖房管 18,19
中間濃溶液管 20,21 濃溶液管 22,23,
24,25 希溶液管 26 上昇管 27 高温再
生器温度センサ
1 High Temperature Regenerator 2 Separator 3 Low Temperature Regenerator 4 Condenser 5 Evaporator 6 Absorber 7 High Temperature Solution Heat Exchanger 8 Low Temperature Solution Heat Exchanger 9 Solution Circulation Pump 10 Cooling / heating Switching Valve 11 Hot Water Outlet Temperature Sensor 12 Evaporator Pressure Sensor 13 Controller 14 Alarm Transmitting Means 15 Liquid Refrigerant Pipe 16 Evaporator Heat Transfer Pipe 17 Heating Pipe 18, 19
Intermediate concentrated solution pipe 20,21 Concentrated solution pipe 22,23,
24,25 Dilute solution pipe 26 Rise pipe 27 High temperature regenerator temperature sensor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 吸収液を加熱する高温再生器と、該高温
再生器に接続されて気液分離する分離器と、内装した蒸
発器伝熱管上で液冷媒を蒸発させて蒸発器伝熱管内の熱
媒体を冷却する蒸発器と、前記分離器と蒸発器を冷暖切
換弁を介して連通する配管と、を含んで構成された吸収
式冷温水機の制御方法において、前記冷暖切換弁が開か
れた暖房運転時に、予め蒸発器伝熱管出口における熱媒
体温度に対応する不凝縮性ガスがない場合の蒸発器圧力
を設定しておき、前記蒸発器伝熱管出口における熱媒体
温度Taを検出し、検出された熱媒体温度Taに応じて
前記設定された蒸発器圧力Pevaを算出し、蒸発器圧力
Paを検出し、蒸発器圧力Pevaと蒸発器圧力Paの差に
基づいて循環系統内の不凝縮性ガスの量が許容範囲内に
あるかどうかを判断することを特徴とする吸収式冷温水
機の制御方法。
1. A high temperature regenerator for heating an absorbing liquid, a separator connected to the high temperature regenerator for gas-liquid separation, and an evaporator heat transfer tube for evaporating a liquid refrigerant on an evaporator heat transfer tube installed therein. In the method for controlling an absorption chiller-heater configured to include an evaporator that cools the heat medium, and a pipe that connects the separator and the evaporator via a cooling / heating switching valve, the cooling / heating switching valve is opened. During the heating operation performed, the evaporator pressure is set in advance when there is no non-condensable gas corresponding to the heat medium temperature at the evaporator heat transfer tube outlet, and the heat medium temperature Ta at the evaporator heat transfer tube outlet is detected. The calculated evaporator pressure Peva is calculated according to the detected heat medium temperature Ta, the evaporator pressure Pa is detected, and the failure in the circulation system is detected based on the difference between the evaporator pressure Peva and the evaporator pressure Pa. Determine if the amount of condensable gas is within acceptable limits The method of an absorption chiller-heater is characterized and.
【請求項2】 吸収液を加熱する高温再生器と、該高温
再生器に接続されて気液分離する分離器と、内装した蒸
発器伝熱管上で液冷媒を蒸発させて蒸発器伝熱管内の熱
媒体を冷却する蒸発器と、前記分離器と蒸発器を冷暖切
換弁を介して連通する配管と、を含んで構成された吸収
式冷温水機の制御方法において、前記冷暖切換弁が開か
れた暖房運転時に、予め蒸発器伝熱管出口における熱媒
体温度に対応する不凝縮性ガスがない場合の蒸発器圧力
を設定しておき、前記蒸発器伝熱管出口における熱媒体
温度Taを検出し、検出された熱媒体温度Taに応じて
前記設定された蒸発器圧力Pevaを算出し、蒸発器圧力
Paを検出し、蒸発器圧力Pevaと蒸発器圧力Paの差
(Pa−Peva)が予め設定された値ΔPよりも大きいか
どうかを判定し、Pa−Peva>ΔPのとき、警報表示を
行うことを特徴とする吸収式冷温水機の制御方法。
2. A high-temperature regenerator for heating the absorbing liquid, a separator connected to the high-temperature regenerator for gas-liquid separation, and an evaporator heat transfer tube in which the liquid refrigerant is evaporated to evaporate the liquid refrigerant. In the method for controlling an absorption chiller-heater configured to include an evaporator that cools the heat medium, and a pipe that connects the separator and the evaporator via a cooling / heating switching valve, the cooling / heating switching valve is opened. During the heating operation performed, the evaporator pressure is set in advance when there is no non-condensable gas corresponding to the heat medium temperature at the evaporator heat transfer tube outlet, and the heat medium temperature Ta at the evaporator heat transfer tube outlet is detected. The calculated evaporator pressure Peva is calculated according to the detected heat medium temperature Ta, the evaporator pressure Pa is detected, and the difference (Pa-Peva) between the evaporator pressure Peva and the evaporator pressure Pa is preset. It is determined whether it is larger than the determined value ΔP, and Pa-Peva> A method for controlling an absorption chiller-heater characterized by displaying an alarm when ΔP.
【請求項3】 吸収液を加熱する高温再生器と、該高温
再生器に接続されて気液分離する分離器と、内装した蒸
発器伝熱管上で液冷媒を蒸発させて蒸発器伝熱管内の熱
媒体を冷却する蒸発器と、前記分離器と蒸発器を冷暖切
換弁を介して連通する配管と、を含んで構成された吸収
式冷温水機の制御方法において、前記冷暖切換弁が開か
れた暖房運転時に、予め蒸発器伝熱管出口における熱媒
体温度に対応する不凝縮性ガスがない場合の高温再生器
温度Tbを設定しておき、前記蒸発器伝熱管出口におけ
る熱媒体温度Taを検出し、検出された熱媒体温度Ta
に応じて前記設定された高温再生器温度Tbを算出し、
高温再生器温度Tcを検出し、高温再生器温度Tcと高温
再生器温度Tbの差に基づいて循環系統内の不凝縮性ガ
スの量が許容範囲内にあるかどうかを判断することを特
徴とする吸収式冷温水機の制御方法。
3. A high temperature regenerator for heating the absorbing liquid, a separator connected to the high temperature regenerator for separating gas and liquid, and an evaporator heat transfer tube for evaporating a liquid refrigerant on an evaporator heat transfer tube installed therein. In the method for controlling an absorption chiller-heater configured to include an evaporator that cools the heat medium, and a pipe that connects the separator and the evaporator via a cooling / heating switching valve, the cooling / heating switching valve is opened. During the heating operation performed, the high temperature regenerator temperature Tb in the case where there is no noncondensable gas corresponding to the heat medium temperature at the evaporator heat transfer tube outlet is set in advance, and the heat medium temperature Ta at the evaporator heat transfer tube outlet is set. Detected and detected heat medium temperature Ta
Calculating the set high temperature regenerator temperature Tb according to
The high temperature regenerator temperature Tc is detected, and it is determined whether or not the amount of non-condensable gas in the circulation system is within an allowable range based on the difference between the high temperature regenerator temperature Tc and the high temperature regenerator temperature Tb. Control method for absorption type water heater and chiller.
【請求項4】 吸収液を加熱する高温再生器と、該高温
再生器に接続されて気液分離する分離器と、内装した蒸
発器伝熱管上で液冷媒を蒸発させて蒸発器伝熱管内の熱
媒体を冷却する蒸発器と、前記分離器と蒸発器を冷暖切
換弁を介して連通する配管と、を含んで構成された吸収
式冷温水機の制御方法において、前記冷暖切換弁が開か
れた暖房運転時に、予め蒸発器伝熱管出口における熱媒
体温度に対応する不凝縮性ガスがない場合の高温再生器
温度Tbを設定しておき、前記蒸発器伝熱管出口におけ
る熱媒体温度Taを検出し、検出された熱媒体温度Ta
に応じて前記設定された高温再生器温度Tbを算出し、
高温再生器温度Tcを検出し、高温再生器温度Tcと高温
再生器温度Tbの差(Tc−Tb)が予め設定された値Δ
Tよりも大きいかどうかを判定し、(Tc−Tb)>ΔT
のとき、警報表示を行うことを特徴とする吸収式冷温水
機の制御方法。
4. A high-temperature regenerator for heating the absorbing liquid, a separator connected to the high-temperature regenerator for separating gas and liquid, and an evaporator heat transfer tube for evaporating a liquid refrigerant on an evaporator heat transfer tube installed therein. In the method for controlling an absorption chiller-heater configured to include an evaporator that cools the heat medium, and a pipe that connects the separator and the evaporator via a cooling / heating switching valve, the cooling / heating switching valve is opened. During the heating operation performed, the high temperature regenerator temperature Tb in the case where there is no noncondensable gas corresponding to the heat medium temperature at the evaporator heat transfer tube outlet is set in advance, and the heat medium temperature Ta at the evaporator heat transfer tube outlet is set. Detected and detected heat medium temperature Ta
Calculating the set high temperature regenerator temperature Tb according to
The high temperature regenerator temperature Tc is detected, and the difference (Tc-Tb) between the high temperature regenerator temperature Tc and the high temperature regenerator temperature Tb is a preset value Δ.
It is determined whether or not it is larger than T, and (Tc-Tb)> ΔT
A method for controlling an absorption chiller-heater characterized by displaying an alarm at the time.
JP8001244A 1996-01-09 1996-01-09 Method for controlling absorbed chiller heater Pending JPH09189458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8001244A JPH09189458A (en) 1996-01-09 1996-01-09 Method for controlling absorbed chiller heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8001244A JPH09189458A (en) 1996-01-09 1996-01-09 Method for controlling absorbed chiller heater

Publications (1)

Publication Number Publication Date
JPH09189458A true JPH09189458A (en) 1997-07-22

Family

ID=11496048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8001244A Pending JPH09189458A (en) 1996-01-09 1996-01-09 Method for controlling absorbed chiller heater

Country Status (1)

Country Link
JP (1) JPH09189458A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058208A (en) * 2007-09-03 2009-03-19 Yazaki Corp Absorption type water cooler/heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058208A (en) * 2007-09-03 2009-03-19 Yazaki Corp Absorption type water cooler/heater

Similar Documents

Publication Publication Date Title
JP2008544198A (en) Apparatus and method for cooling device control
JP5252796B2 (en) Absorption type water heater
CN110595119A (en) Liquid return processing device of compressor and air conditioner
US20030145614A1 (en) Refrigerating device
JP2003279186A (en) Absorption type refrigerator and method for controlling same
US6550272B2 (en) Absorption chiller/absorption chiller-heater having safety device
JPH09189458A (en) Method for controlling absorbed chiller heater
EP1205718B1 (en) Absorption chiller/absorption chiller-heater having safety device
JP4922872B2 (en) Absorption type water heater
JP3448680B2 (en) Absorption air conditioner
JPH09318188A (en) Method of controlling absorption cold/hot water generator
JP2001041614A (en) Absorption refrigerating machine
JP3731132B2 (en) Absorption refrigerator crystallization prevention method
JP2747348B2 (en) Absorption chiller / heater controller
JPS6138788B2 (en)
JP3195086B2 (en) Absorption refrigerator
JP3330681B2 (en) Non-condensable gas fully automatic exhaust system for absorption chiller / heater / refrigerator
JP2010276265A (en) Absorption type refrigerating device
JP3615353B2 (en) Operation control method for air conditioner
JP3427285B2 (en) Absorption chiller / heater
JP2771597B2 (en) Automatic bleeding device for absorption refrigerator
JP3021474B2 (en) Non-condensable gas discharge device of absorption refrigerator
JP2508755Y2 (en) Absorption type heat pump
JP3203039B2 (en) Absorption refrigerator
JP2019190709A (en) Absorptive refrigerator