JPH09188543A - Eu2+ containing blue color emission glass - Google Patents

Eu2+ containing blue color emission glass

Info

Publication number
JPH09188543A
JPH09188543A JP35296695A JP35296695A JPH09188543A JP H09188543 A JPH09188543 A JP H09188543A JP 35296695 A JP35296695 A JP 35296695A JP 35296695 A JP35296695 A JP 35296695A JP H09188543 A JPH09188543 A JP H09188543A
Authority
JP
Japan
Prior art keywords
mol
glass
proportion
20mol
blue light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35296695A
Other languages
Japanese (ja)
Inventor
Kenei Kiyuu
建栄 邱
Kazuyuki Hirao
一之 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagaku Gijutsu Shinko Jigyodan
Original Assignee
Kagaku Gijutsu Shinko Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagaku Gijutsu Shinko Jigyodan filed Critical Kagaku Gijutsu Shinko Jigyodan
Priority to JP35296695A priority Critical patent/JPH09188543A/en
Publication of JPH09188543A publication Critical patent/JPH09188543A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a transparent glass capable of emitting blue color at high efficiency by excitation with radiation rays such as ultraviolet rays or X-rays. SOLUTION: This glass has a halide- or a halogen phosphate-based glass composition and contains Eu<2+> ion in <=50mol% based on the total of positive ions. In the case of a halide-based glass composition, the ratios of positive ions are as follows: Eu<2+> , 0.001=50mol%; Al<3+> , 10-60mol%; one or more selected from Mg<2+> , Ca<2+> , Sr<2+> and Ba<2+> , 8-70mol%; one or more selected from Y<3+> , La<3+> , Gd<3+> and Yb<3+> , 0-30mol%; Hf<4+> , 0-20mol%; one or more selected from Li<+> , Na<+> and K<+> , 0-20mol%; and the ratios of negative ions are as follows: Cl<-> , 0-20mol%; F<-> , 80-100mol%. In the case of halogen phosphate-based glass composition, the rations of positive ions are as follows: Eu<2+> , 0.001-50mol%; Al<3+> , 10-60mol%; P<5+> , 0.1-80mol%; one or more selected from Mg<2+> , Ca<2+> , Sr<2+> and Ba<2+> , 8-70mol%; one or more selected from Y<3+> , La<3+> , Gd<3+> and Yb<3+> , 0-30mol%, hf<4+> , 0-20mol%; one or more selected from Li<+> , Na<+> and K<+> , 0-20mol%, and the ratios of negative ions are as follows: O<2-> , 1-95mol%, Cl<-> , 0-20mol%; F<-> , 5-99mol%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、紫外線レーザ,X線等
の放射線ビーム位置の確認,モード形状のパターン識
別,空間分布状態に用いられる光ディテクター,光パワ
ーメータ−用素子,イメージ表示センサー,紫外から青
色までの波長可変レーザ等として使用され、Eu2+含有
青色発光ガラスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultraviolet laser, confirmation of the position of a radiation beam such as an X-ray, pattern identification of mode shapes, an optical detector used for spatial distribution, an element for an optical power meter, an image display sensor, The present invention relates to a Eu 2+ -containing blue light-emitting glass used as a wavelength tunable laser from ultraviolet to blue.

【0002】[0002]

【従来の技術及びその問題点】光情報技術の発展にとっ
て、紫外から青色までの波長可変レーザの開発,紫外光
や、X線等の放射線ビームの可視化変換表示,検出等が
重要になってきている。紫外域の固体波長変換レーザに
関して、近年、300nm付近の波長域のものとしてC
3+−YLF,Ce3+−LSAF等の結晶材料が開発さ
れ、実用段階に向かった研究が進められている。Ce3+
−YLF,Ce3+−LSAF等の場合、大きな寸法で良
質な結晶材料の作製が非常に困難である。また、青色域
の波長変換レーザに関しては、依然としてほとんど研究
されていない状況である。
2. Description of the Related Art For the development of optical information technology, development of a wavelength tunable laser from ultraviolet to blue, visualization conversion display and detection of ultraviolet light and radiation beams such as X-rays have become important. There is. Regarding the solid-state wavelength conversion laser in the ultraviolet region, in recent years, C has been used as a wavelength region around 300 nm.
Crystal materials such as e 3+ -YLF and Ce 3+ -LSAF have been developed, and research toward the practical stage is under way. Ce 3+
In the case of -YLF, Ce 3+ -LSAF, etc., it is very difficult to produce a good quality crystalline material with a large size. In addition, there is still little research on blue wavelength conversion lasers.

【0003】紫外光やX線等の放射線ビームの可視化変
換表示や検出等では、Sr0.96Mg0.81Al5.440.02
10:Eu2+,Gd22 S:Tb3+,BaFCl:E
2+等の多結晶蛍光体が使用されている。しかし、これ
ら多結晶蛍光体の作製プロセスは、非常に困難である。
たとえば、Gd22 S:Tb3+蛍光体の製造にあたっ
ては、全部で10以上の工程を必要とし、生産所要時間
が長く、コストが非常に高くなる。また、後処理段階で
蛍光強度を向上させるため、粉砕及び分級を行い、可能
な限り適切な粒径に揃えなければならないので、収率が
非常に悪くなる。
Sr 0.96 Mg 0.81 Al 5.44 B 0.02 is used for visualization conversion display and detection of radiation beams such as ultraviolet light and X-rays.
O 10 : Eu 2+ , Gd 2 O 2 S: Tb 3+ , BaFCl: E
Polycrystalline phosphors such as u 2+ have been used. However, the manufacturing process of these polycrystalline phosphors is very difficult.
For example, in manufacturing the Gd 2 O 2 S: Tb 3+ phosphor, 10 or more steps are required in total, the production time is long, and the cost is very high. Further, in order to improve the fluorescence intensity in the post-treatment stage, it is necessary to carry out pulverization and classification to make the particle size as appropriate as possible, so that the yield becomes very poor.

【0004】また、蛍光体の使用方法として、蛍光面を
形成するために基板上に蛍光体を粉末状態で沈着又は塗
布する方法が採用されている。この場合、蛍光体粉末が
多面体形状を持つことから、蛍光面に凹凸が生じ、均一
な膜とするためには高精度の制御工程が必要となる。し
かも、均一な膜の形成がほとんど不可能である。また、
粉末粒子相互の充填が比較的粗であるとこ、面が凹凸状
であること等のために、発光した光の散乱が起こり、解
像度の向上に限界がある。本発明は、このような問題や
欠点を解消すべく案出されたものであり、実用的な耐久
性及び機械的強度をもち、発光効率が高い青色発光を可
能とし、可視域で透明なEu2+含有青色発光ガラスを提
供することを目的とする。
As a method of using the phosphor, a method of depositing or applying the phosphor in a powder state on a substrate to form a phosphor screen is adopted. In this case, since the phosphor powder has a polyhedral shape, unevenness is generated on the phosphor surface, and a highly accurate control step is required to form a uniform film. Moreover, it is almost impossible to form a uniform film. Also,
Due to the relatively coarse filling of the powder particles with each other and the uneven surface, scattering of the emitted light occurs and there is a limit to improving the resolution. The present invention has been devised to solve such problems and drawbacks, has practical durability and mechanical strength, enables blue light emission with high luminous efficiency, and is transparent in the visible region. An object is to provide a 2 + -containing blue light-emitting glass.

【0005】[0005]

【課題を解決するための手段】本発明のEu2+含有青色
発光ガラスは、その目的を達成するため、全陽イオンに
対する比率で50モル%以下のEu2+イオンを含むハロ
ゲン化物系又はハロゲン燐酸塩系のガラス組成をもち、
紫外線又は放射線照射により青色発光することを特徴と
する。ハロゲン化物系ガラス組成では、陽イオンの割合
がEu2+0.001〜50モル%,Al3+10〜60モ
ル%,Mg2+,Ca2+,Sr2+及びBa2+の少なくとも
1種8〜70モル%,Y3+,La3+,Gd3+及びYb3+
の少なくとも1種0〜30モル%,Hf4+0〜20モル
%,Li+ ,Na+ 及びK+ の少なくとも1種0〜20
モル%であり、陰イオンの割合がCl- 0〜20モル
%,F- 80〜100モル%である。
In order to achieve the object, the Eu 2+ -containing blue light-emitting glass of the present invention comprises a halide-based or halogen-based compound containing Eu 2+ ions in an amount of 50 mol% or less based on all cations. Has a phosphate-based glass composition,
It is characterized in that it emits blue light when irradiated with ultraviolet rays or radiation. In the halide-based glass composition, the proportion of cations is Eu 2+ 0.001 to 50 mol%, Al 3+ 10 to 60 mol%, Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ . Species 8-70 mol%, Y 3+ , La 3+ , Gd 3+ and Yb 3+
0-30 mol% of Hf 4+, 0-20 mol% of Hf 4+, 0-20 of at least one of Li + , Na + and K +
Mol%, and the proportions of anions are Cl - 0 to 20 mol% and F - 80 to 100 mol%.

【0006】ハロゲン燐酸塩ガラス組成では、陽イオン
の割合がEu2+0.001〜50モル%,Al3+10〜
60モル%,P5+0.1〜80モル%,Ma2+,C
2+,Sr2+及びBa2+の少なくとも1種8〜70モル
%,Y3+,La3+,Gd3+及びYb3+の少なくとも1種
0〜30モル%,Hf4+0〜20モル%,Li+ ,Na
+及びK+ の少なくとも1種0〜20モル%であり、陰
イオンの割合がO2-1〜95モル%,Cl- 0〜20モ
ル%,F- 5〜99モル%である。この青色発光ガラス
は、不活性雰囲気又は還元性雰囲気で溶融し、必要に応
じて板状,ロッド状,ファイバー状に成形することによ
って製造される。
In the halogen phosphate glass composition, the proportion of cations is Eu 2+ 0.001 to 50 mol%, Al 3+ 10
60 mol%, P 5+ 0.1 to 80 mol%, Ma 2+ , C
at least one of a 2+ , Sr 2+ and Ba 2+ 8 to 70 mol%, at least one of Y 3+ , La 3+ , Gd 3+ and Yb 3+ 0 to 30 mol%, Hf 4+ 0 ~ 20 mol%, Li + , Na
At least one of + and K + is 0 to 20 mol%, and the proportion of anions is O 2 to 1 to 95 mol%, Cl − to 0 to 20 mol%, and F − to 5 to 99 mol%. This blue light emitting glass is manufactured by melting in an inert atmosphere or a reducing atmosphere and, if necessary, shaping it into a plate shape, a rod shape, or a fiber shape.

【0007】[0007]

【実施の形態】本発明に従った青色発光ガラスは、ハロ
ゲン化物系又はハロゲン燐酸塩系をベースにするが、何
れの系でもEu2+を必須との活性イオンとして含有して
いる。Eu2+の含有量は、ガラスを構成するガラスを構
成する全陽イオンに対し0.001〜50モル%の範囲
に調整される。Eu2+濃度が0.001モル%未満で
は、放射線の照射により発する蛍光の強度が弱い。逆
に、50モル%を超える濃度では濃度消光が発生し、蛍
光強度が落ちるばかりでなく、ガラスが結晶化し易く成
形特性も劣化する。発光効率と成形特性を総合的に判断
すると、Eu2+の濃度が0.05〜10モル%の範囲に
あることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The blue light-emitting glass according to the present invention is based on a halide system or a halogen phosphate system, and any system contains Eu 2+ as an essential active ion. The content of Eu 2+ is adjusted in the range of 0.001 to 50 mol% with respect to all the cations constituting the glass. When the Eu 2+ concentration is less than 0.001 mol%, the intensity of fluorescence emitted by irradiation with radiation is weak. On the contrary, when the concentration exceeds 50 mol%, concentration quenching occurs, and not only the fluorescence intensity is lowered, but also the glass is easily crystallized and the molding characteristics are deteriorated. When the luminous efficiency and the molding characteristics are comprehensively judged, the concentration of Eu 2+ is preferably in the range of 0.05 to 10 mol%.

【0008】ハロゲン化物系ガラスは、ガラス形成陽イ
オンとしてAl3+を10〜60モル%含有する。Al3+
濃度が10モル%未満又は60モル%を超えると、ガラ
スが結晶化し易くなる。Al3+の含有量は、20〜40
モル%の範囲が好ましい。ガラスの網目構造を補完する
作用を呈する二価の修飾イオンとして、Mg2+,C
2+,Sr2+及びBa2+の少なくとも1種を8〜70モ
ル%,好ましくは8〜60モル%含む。これら二価修飾
イオンの濃度が8モル%未満又は70モル%を超える
と、ガラスが結晶化し易くなる。ガラスの網目構造を補
完する作用を呈する三価の修飾イオンとしては、Y3+
La3+,Gd3+及びYb3+の少なくとも1種を0〜30
モル%,好ましくは0〜25モル%含む。これら三価修
飾イオンの濃度が30モル%を超えると、ガラスが結晶
化し易くなる。
The halide glass contains 10 to 60 mol% of Al 3+ as a glass forming cation. Al 3+
If the concentration is less than 10 mol% or more than 60 mol%, the glass tends to crystallize. The content of Al 3+ is 20 to 40
A range of mol% is preferred. Mg 2+ , C is used as a divalent modifying ion that acts to complement the network structure of glass.
It contains at least one of a 2+ , Sr 2+ and Ba 2+ in an amount of 8 to 70 mol%, preferably 8 to 60 mol%. If the concentration of these divalent modifying ions is less than 8 mol% or more than 70 mol%, the glass tends to crystallize. Examples of trivalent modifying ions that have the effect of complementing the network structure of glass include Y 3+ ,
At least one of La 3+ , Gd 3+ and Yb 3+ is contained in an amount of 0 to 30.
Mol%, preferably 0 to 25 mol%. If the concentration of these trivalent modifying ions exceeds 30 mol%, the glass tends to crystallize.

【0009】ガラスの網目形成陽イオンとして、0〜2
0モル%,好ましくは0〜15モル%のHf4+を含む。
Hf4+の濃度が20モル%を超えると、ガラスが結晶化
し易くなる。ガラスの網目構造を補完する一価の修飾イ
オンとしては、Li+ ,Na+ 及びK+ の少なくとも1
種を0〜20モル%,好ましくは0〜10モル%含む。
一価修飾イオンの濃度が20モル%を超えると、ガラス
が結晶化し易くなる。他方、ガラス中に含まれる陰イオ
ンの割合は、Cl- 0〜20モル%,F- 80〜100
モル%に設定される。少量のCl- 添加によってガラス
の結晶化に対する安定性を上げることができるが、Cl
- の濃度が20モル%を超えるとガラスの化学的耐久性
が劣化し、またガラスが結晶化し易くなる。Cl- の好
ましい濃度範囲は0〜10モル%,F- の好ましい濃度
範囲は90〜100モル%である。
As the glass network forming cations, 0-2
It contains 0 mol%, preferably 0 to 15 mol% Hf 4+ .
If the concentration of Hf 4+ exceeds 20 mol%, the glass tends to crystallize. At least one of Li + , Na + and K + is used as a monovalent modifying ion that complements the network structure of glass.
The seed is contained in an amount of 0 to 20 mol%, preferably 0 to 10 mol%.
If the concentration of the monovalent modifying ion exceeds 20 mol%, the glass tends to crystallize. On the other hand, the proportion of anions contained in the glass is Cl 0 to 20 mol%, F 80 to 100.
Set to mol%. The addition of a small amount of Cl can increase the stability of the glass against crystallization.
If the concentration of-exceeds 20 mol%, the chemical durability of the glass deteriorates and the glass tends to crystallize. The preferable concentration range of Cl is 0 to 10 mol%, and the preferable concentration range of F is 90 to 100 mol%.

【0010】ハロゲン燐酸塩系では、前述した各種陽イ
オンの濃度に加え、P5+を0.1〜80モル%,好まし
くは5〜60モル%含有させることにより、ガラスの成
形性が改善される。P5+濃度が0.1モル%未満では、
ガラスの成形性を改善する効果が不十分である。逆に8
0モル%を超えるP5+濃度では、ガラスの化学的耐久性
が劣化する。ハロゲン燐酸塩系における陰イオンの割合
は、O2-1〜95モル%(好ましくは1〜50モル
%),Cl- 0〜20モル%(好ましくは0〜10モル
%),F- 5〜99モル%(好ましくは40〜99モル
%)の範囲に調整される。O2-は、ガラスの成形性及び
結晶化に対する安定性の向上に有効である。しかし、O
2-濃度が95モル%を超えると発光効率が悪くなり、1
モル%未満のO2-濃度では、ガラスの成形性を改善する
効果が不十分である。Cl- は発光効率の向上に有効で
あるが、その濃度が20モル%を超えると、ガラスが結
晶化し易くなる。F- は発光効率の向上に有効である
が、その濃度が5モル%未満では発光効率が悪くなる。
In the halogen phosphate system, the glass formability is improved by containing P 5+ in an amount of 0.1 to 80 mol%, preferably 5 to 60 mol% in addition to the above-mentioned various cation concentrations. It When the P 5+ concentration is less than 0.1 mol%,
The effect of improving the formability of glass is insufficient. Conversely 8
At a P 5+ concentration exceeding 0 mol%, the chemical durability of the glass deteriorates. The proportion of anions in the halogen phosphate system is O 2 1 to 95 mol% (preferably 1 to 50 mol%), Cl 0 to 20 mol% (preferably 0 to 10 mol%), F 5 to It is adjusted in the range of 99 mol% (preferably 40 to 99 mol%). O 2− is effective in improving the moldability of glass and the stability against crystallization. But O
2-When the concentration exceeds 95 mol%, the luminous efficiency is deteriorated and 1
If the O 2- concentration is less than mol%, the effect of improving the moldability of glass is insufficient. Cl is effective in improving the luminous efficiency, but if its concentration exceeds 20 mol%, the glass tends to crystallize. F is effective in improving the luminous efficiency, but if its concentration is less than 5 mol%, the luminous efficiency becomes poor.

【0011】本発明に従ったEu2+含有青色発光ガラス
は、Eu23 ,EuF3 等のEu3+含有原料を用いて
ガラスを作製する場合、還元剤をバッチに添加して溶
融,成形する。場合によっては、還元性雰囲気中で溶融
し、成形する必要がある。Eu2+含有原料を使用する場
合でも、不活性雰囲気又は還元性雰囲気で溶融し、成形
することが好ましい。ガラス中にEu3+が残存すると、
たとえば394nmに強い吸収が発生すると共に、Eu
3+に起因する赤色発光が610nm付近に発生し、25
0nmの紫外線の励起時に青色発光がみられなくなる。
このEu2+含有青色発光ガラスは、優れたガラス成形能
をもち、容易に結晶化することなく、板状,ロッド状,
ファイバー状等の形状に成形できる。更に、マトリック
スの非線形光学効果が小さく、誘導断面積が大きいの
で、優れた青色発光効率が呈せられる。
The Eu 2 + -containing blue light-emitting glass according to the present invention is prepared by using a Eu 3 + -containing raw material such as Eu 2 O 3 or EuF 3 to prepare a glass and adding a reducing agent to a batch to melt the glass. Mold. In some cases, it is necessary to melt and mold in a reducing atmosphere. Even when the Eu 2+ -containing raw material is used, it is preferable to melt and mold in an inert atmosphere or a reducing atmosphere. If Eu 3+ remains in the glass,
For example, strong absorption occurs at 394 nm and Eu
Red emission due to 3+ is generated near 610 nm, and
No blue luminescence is observed upon excitation with 0 nm ultraviolet light.
This Eu 2+ -containing blue light-emitting glass has an excellent glass-forming ability and does not easily crystallize into a plate-like, rod-like,
It can be formed into a fiber shape. Further, since the matrix has a small non-linear optical effect and a large induction cross-sectional area, excellent blue light emission efficiency is exhibited.

【0012】[0012]

【実施例】【Example】

実施例1:陽イオンの割合がEu2+0.8モル%,Al
3+18.8モル%,Ca2+19.3モル%,Sr2+
7.8モル%,Ba2+7.7モル%,P5+27.9モル
%で、陰イオンの割合がO2-36モル%,F- 64モル
%の組成をもつガラスとなるように、高純度のEuF
3 ,AlF3 ,MgF2 ,CaF2 ,SrF2 ,BaF
2 及びAl(PO33 原料を使用し、N2 充填のグロ
ーブボックス中で秤量,混合した。配合物をグラシカー
ボンルツボに入れ、N2 +5体積%H2 雰囲気中で10
00℃で1時間溶融し、融液をガラス遷移温度Tg 近傍
に保持した後、ルツボごと冷却した。
Example 1: Proportion of cation is Eu 2+ 0.8 mol%, Al
3+ 18.8 mol%, Ca 2+ 19.3 mol%, Sr 2 + 1
7.8 mol%, Ba 2+ 7.7 mol%, P 5+ 27.9 mol% and anion ratio of O 2 − 36 mol%, F 64 mol% of the composition of the glass. And high-purity EuF
3 , AlF 3 , MgF 2 , CaF 2 , SrF 2 , BaF
2 and Al (PO 3 ) 3 raw materials were used and weighed and mixed in a glove box filled with N 2 . The mixture was placed in a glassy carbon crucible and the mixture was placed in an atmosphere of N 2 + 5% by volume H 2 for 10 minutes.
After melting at 00 ° C. for 1 hour and maintaining the melt near the glass transition temperature T g , the entire crucible was cooled.

【0013】得られたガラスを研磨し、紫外励起蛍光及
びX線励起蛍光を測定した。キセノンランプから分光し
た250nmの紫外光で励起したとき、図1の蛍光スペ
クトルにみられるように440nmに強い青色発光が観
測された。なお、500nmのピークは、250nmの
励起光の2倍光であり、測定系からのものである。図1
の発光ピーク440nmをモニターして励起発光スペク
トルを測定した結果を図2に示す。また、X線励起によ
っても、同様な青色発光が観測された。以上の結果か
ら、本実施例で得られたガラスは、200〜400nm
の幅広い範囲の光に対して青色発光することが確認され
た。
The obtained glass was polished, and ultraviolet excitation fluorescence and X-ray excitation fluorescence were measured. When excited with 250 nm ultraviolet light dispersed from a xenon lamp, strong blue emission at 440 nm was observed as seen in the fluorescence spectrum of FIG. The peak at 500 nm is twice the excitation light at 250 nm, and is from the measurement system. FIG.
FIG. 2 shows the results of measuring the excitation emission spectrum by monitoring the emission peak of 440 nm of. Also, similar blue emission was observed by X-ray excitation. From the above results, the glass obtained in this example is 200 to 400 nm.
It was confirmed to emit blue light in a wide range of light.

【0014】実施例2:陽イオンの割合がEu2+0.1
モル%,Al3+35モル%,Mg2+10モル%,Ca2+
20モル%,Sr2+10モル%,Ba2+10モル%,Y
3+14.9モル%で、陰イオンの割合がF- 100モル
%の組成をもつガラスとなるように、高純度のEuF
2 ,AlF3 ,CaF2 ,SrF2 ,BaF2 及びYF
3 原料を使用し、N2 充填のグローブボックス中で秤
量,混合した。配合物をグラシカーボンルツボに入れ、
2 雰囲気中で1000℃で1時間溶融し、融液をガラ
ス遷移温度Tg 近傍に保持した後、ルツボごと冷却し
た。得られたガラスを研磨し、紫外励起蛍光を測定し
た。キセノンランプから分光した250nmの紫外光で
励起したとき、図3の蛍光スペクトルにみられるように
360nmにEu2+のf−f遷移に起因する発光の外
に、400nmにEu2+のfd−f遷移に起因する強い
青色発光が観測された。
Example 2: The proportion of cations is Eu 2+ 0.1.
Mol%, Al 3+ 35 mol%, Mg 2+ 10 mol%, Ca 2+
20 mol%, Sr 2+ 10 mol%, Ba 2+ 10 mol%, Y
EuF of high purity to obtain a glass having a composition of 3 + 14.9 mol% and an anion ratio of F - 100 mol%.
2 , AlF 3 , CaF 2 , SrF 2 , BaF 2 and YF
The three raw materials were used and weighed and mixed in a glove box filled with N 2 . Put the compound in a glassy carbon crucible,
After melting in an N 2 atmosphere at 1000 ° C. for 1 hour and maintaining the melt near the glass transition temperature T g , the whole crucible was cooled. The obtained glass was polished and the ultraviolet excitation fluorescence was measured. When excited with ultraviolet light of 250nm separated from a xenon lamp, outside light emission due to f-f transition of Eu 2+ to 360nm as seen in the fluorescence spectrum of FIG. 3, the 400nm of Eu 2+: fd - a Strong blue emission due to the f transition was observed.

【0015】実施例3:陽イオンの割合がEu2+1モル
%,Al3+30モル%,Mg2+10モル%,Ca2+20
モル%,Sr2+10モル%,Ba2+10モル%,Y3+
0モル%,Gd3+2モル%,La3+2モル%,Hf4+
モル%で、陰イオンの割合がCl- 10モル%,F-
0モル%の組成をもつガラスとなるように、高純度のE
uF2 ,AlF3 ,MgF2 ,CaF2 ,SrF2 ,B
aF2 ,YF3 ,GdF3 ,LaF3 ,HfF4 ,Ba
Cl2 原料を使用し、N2 充填のグローブボックス中で
秤量,混合した。配合物をグラシカーボンルツボに入
れ、N2 +5体積%H2 雰囲気中で1000℃で1時間
溶融し、融液をガラス遷移温度Tg 近傍に保持した後、
ルツボごと冷却した。得られたガラスを研磨し、紫外励
起蛍光を測定した。キセノンランプから分光した250
nmの紫外光で励起したとき、410nmに強い青色発
光が観測された。
Example 3: The proportion of cations is Eu 2+ 1 mol%, Al 3+ 30 mol%, Mg 2+ 10 mol%, Ca 2+ 20
Mol%, Sr 2+ 10 mol%, Ba 2+ 10 mol%, Y 3 + 1
0 mol%, Gd 3+ 2 mol%, La 3+ 2 mol%, Hf 4+ 5
Mol%, anion ratio of Cl - 10 mol%, F - 9
To obtain a glass having a composition of 0 mol%, high purity E
uF 2 , AlF 3 , MgF 2 , CaF 2 , SrF 2 , B
aF 2 , YF 3 , GdF 3 , LaF 3 , HfF 4 , Ba
A Cl 2 raw material was used and weighed and mixed in a glove box filled with N 2 . The compound was put into a glassy carbon crucible and melted at 1000 ° C. for 1 hour in an atmosphere of N 2 + 5% by volume H 2 , and the melt was kept near the glass transition temperature T g .
The crucible was cooled. The obtained glass was polished and the ultraviolet excitation fluorescence was measured. 250 dispersed from a xenon lamp
A strong blue emission at 410 nm was observed upon excitation with UV light of nm.

【0016】実施例4:陽イオンの割合がEu2+29.
3モル%,Al3+22.2モル%,Mg2+3.5モル
%,Ca2+11モル%,Sr2+7.3モル%,P5+
6.7モル%で、陰イオンの割合がO2-36モル%,F
- 64モル%の組成をもつガラスとなるように、高純度
のEuF2 ,AlF3 ,MgF2 ,CaF2 ,SrF
2 ,Al(PO33 原料を使用し、N2 充填のグロー
ブボックス中で秤量,混合した。配合物をグラシカーボ
ンルツボに入れ、N2 雰囲気中で1100℃で1時間溶
融し、融液を室温まで急冷した。得られたガラスを研磨
し、紫外励起蛍光を測定した。キセノンランプから分光
した250nmの紫外光で励起したとき、450nmに
強い青色発光が観測された。
Example 4: The proportion of cations is Eu 2+ 29.
3 mol%, Al 3+ 22.2 mol%, Mg 2+ 3.5 mol%, Ca 2+ 11 mol%, Sr 2+ 7.3 mol%, P 5+ 2
6.7 mol%, the proportion of anions is O 2-36 mol%, F
- so that the glass having a composition of 64 mol%, EuF 2 of high purity, AlF 3, MgF 2, CaF 2, SrF
2 , Al (PO 3 ) 3 raw material was used, and weighed and mixed in a glove box filled with N 2 . The blend was placed in a glassy carbon crucible, melted at 1100 ° C. for 1 hour in N 2 atmosphere, and the melt was quenched to room temperature. The obtained glass was polished and the ultraviolet excitation fluorescence was measured. When excited with 250 nm ultraviolet light dispersed from a xenon lamp, strong blue emission was observed at 450 nm.

【0017】実施例5:陽イオンの割合がEu2+0.2
モル%,Al3+22.9モル%,Ca2+7.2モル%,
Sr2+18.4モル%,B2+15.7モル%,Na+
2.6モル%,P 5+33モル%で、陰イオンの割合がO
2-47.2モル%,Cl- 2.8モル%,F- 50モル
%の組成をもつガラスとなるように、高純度のEuF
2 ,AlF3,CaF2 ,SrF2 ,NaF,BaCl2
,Al(PO33 原料を使用し、N2 充填のグロー
ブボックス中で秤量,混合した。配合物をグラシカーボ
ンルツボに入れ、N2 雰囲気中で1000℃で1時間溶
融し、融液を室温まで急冷した。得られたガラスを研磨
し、紫外励起蛍光を測定した。キセノンランプから分光
した250nmの紫外光で励起したとき、450nmに
強い青色発光が観測された。
Example 5: The proportion of cations is Eu2+0.2
Mol%, Al3+22.9 mol%, Ca2+7.2 mol%,
Sr2+18.4 mol%, B2+15.7 mol%, Na+ 
2.6 mol%, P 5+33 mol%, the proportion of anions is O
2-47.2 mol%, Cl- 2.8 mol%, F- 50 mol
% Of high purity EuF
Two , AlFThree, CaFTwo , SrFTwo , NaF, BaClTwo
 , Al (POThree )Three Using raw materials, NTwo Filling glow
Weighed and mixed in a box. Formulation with a glica
Put in a crucible, NTwo Melt at 1000 ° C for 1 hour in atmosphere
After melting, the melt was rapidly cooled to room temperature. Polish the resulting glass
Then, the ultraviolet excitation fluorescence was measured. Spectral from xenon lamp
When excited by 250 nm UV light,
Strong blue emission was observed.

【0018】実施例6:陽イオンの割合がEu2+0.2
モル%,Al3+38.8モル%,Ca2+19.4モル
%,Sr2+9.6モル%,B2+9.7モル%,Li+
4.9モル%,Na+ 4.9モル%,P5+2.9モル%
で、陰イオンの割合がO2-4モル%,F- 96モル%の
組成をもつガラスとなるように、高純度のEuF2 ,A
lF3 ,CaF2 ,SrF2 ,BaF2 ,LiF,Na
F,Al(PO33 原料を使用し、N2 充填のグロー
ブボックス中で秤量,混合した。配合物をグラシカーボ
ンルツボに入れ、N2 +50体積%H2 雰囲気中で11
00℃で1時間溶融し、融液を室温まで急冷した。得ら
れたガラスを研磨し、紫外励起蛍光を測定した。キセノ
ンランプから分光した250nmの紫外光で励起したと
き、420nmに強い青色発光が観測された。
Example 6: The proportion of cations is Eu 2+ 0.2.
Mol%, Al 3+ 38.8 mol%, Ca 2+ 19.4 mol%, Sr 2+ 9.6 mol%, B 2+ 9.7 mol%, Li +
4.9 mol%, Na + 4.9 mol%, P 5 + 2.9 mol%
In order to obtain a glass having a composition in which the proportion of anions is O 2 −4 mol% and F 96 mol%, high-purity EuF 2 , A
1F 3 , CaF 2 , SrF 2 , BaF 2 , LiF, Na
F, Al (PO 3 ) 3 raw materials were used and weighed and mixed in a glove box filled with N 2 . The mixture was placed in a glassy carbon crucible and the mixture was placed in an atmosphere of N 2 + 50% by volume H 2 for 11
It was melted at 00 ° C. for 1 hour and the melt was quenched to room temperature. The obtained glass was polished and the ultraviolet excitation fluorescence was measured. When excited with 250 nm ultraviolet light dispersed from a xenon lamp, strong blue emission was observed at 420 nm.

【0019】実施例7:陽イオンの割合がEu2+0.4
モル%,Al3+16.9モル%,Ba2+8.1モル%,
+ 8.5モル%,P5+66.1モル%で、陰イオンの
割合がO2-89.2モル%,F- 10.8モル%の組成
をもつガラスとなるように、高純度のEuF2 ,AlF
3 ,BaF2 ,KF,KPO3 ,Ba(PO33 ,A
l(PO33 原料を使用し、N2 充填のグローブボッ
クス中で秤量,混合した。配合物をグラシカーボンルツ
ボに入れ、N2 +50体積%H2 雰囲気中で1200℃
で1時間溶融し、融液を室温まで急冷した。得られたガ
ラスを研磨し、紫外励起蛍光を測定した。キセノンラン
プから分光した250nmの紫外光で励起したとき、4
50nmに強い青色発光が観測された。
Example 7: The proportion of cations is Eu 2+ 0.4
Mol%, Al 3+ 16.9 mol%, Ba 2+ 8.1 mol%,
To obtain a glass having a composition of K + 8.5 mol%, P 5+ 66.1 mol% and anion ratios of O 2 − 89.2 mol% and F 10.8 mol%, Purity EuF 2 , AlF
3 , BaF 2 , KF, KPO 3 , Ba (PO 3 ) 3 , A
1 (PO 3 ) 3 raw material was used and weighed and mixed in a glove box filled with N 2 . Put the compound in a glassy carbon crucible and 1200 ° C. in N 2 + 50% by volume H 2 atmosphere.
It was melted for 1 hour and the melt was quenched to room temperature. The obtained glass was polished and the ultraviolet excitation fluorescence was measured. 4 when excited by 250 nm UV light dispersed from a xenon lamp
Strong blue emission at 50 nm was observed.

【0020】[0020]

【発明の効果】以上に説明したように、本発明のEu2+
含有青色発光ガラスは、マトリックスの非線形光学効果
が小さく、誘導断面積が大きいので、優れた青色発光効
率を呈し、紫外線,X線等の放射線照射によって360
〜480nmに蛍光を発する。また、優れたガラス成形
能をもち、容易に結晶化することなく板状,ロッド状,
ファイバー状等の適宜の形状に成形することができ、紫
外線レーザ,X線等の放射線ビーム位置の確認,モード
形状のパターン識別,空間分布状態に用いられる光ディ
スク,光パワーメータ用素子,イメージ表示センサー,
紫外から青色までの波長可変レーザ等として使用され
る。
As described above, the Eu 2+ of the present invention is
The contained blue light-emitting glass has a small nonlinear optical effect of the matrix and a large induction cross-sectional area, and thus exhibits excellent blue light-emission efficiency, and can be exposed to radiation such as ultraviolet rays and X-rays in 360 °.
Fluoresces at ~ 480 nm. In addition, it has excellent glass-forming ability, and it can easily be crystallized without being crystallized.
It can be molded into an appropriate shape such as fiber, and can be used to check the position of the radiation beam such as an ultraviolet laser and X-rays, pattern identification of mode shapes, optical disks used for spatial distribution, optical power meter elements, image display sensors. ,
It is used as a wavelength tunable laser from ultraviolet to blue.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1のガラスを250nmの紫外線励起
したときの蛍光スペクトル
FIG. 1 is a fluorescence spectrum of the glass of Example 1 excited by ultraviolet rays of 250 nm.

【図2】 実施例1のガラスのピーク蛍光発光をモニタ
ーして測定した励起スペクトル
FIG. 2 Excitation spectrum measured by monitoring peak fluorescence emission of the glass of Example 1

【図3】 実施例2のガラスを250nmの紫外線励起
したときの蛍光スペクトル
FIG. 3 is a fluorescence spectrum of the glass of Example 2 excited by 250 nm ultraviolet light.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 全陽イオンに対する比率で50モル%以
下のEu2+イオンを含むハロゲン化物系又はハロゲン燐
酸塩系のガラス組成をもち、紫外線又は放射線照射によ
り青色発光することを特徴とするEu2+含有青色発光ガ
ラス。
1. An Eu characterized in that it has a halide-based or halogen-phosphate-based glass composition containing Eu 2+ ions in an amount of 50 mol% or less based on all cations, and emits blue light when irradiated with ultraviolet rays or radiation. 2+ containing blue light emitting glass.
【請求項2】 ハロゲン化物系ガラス組成を構成する陽
イオンの割合がEu2+0.001〜50モル%,Al3+
10〜60モル%,Mg2+,Ca2+,Sr2+及びBa2+
の少なくとも1種8〜70モル%,Y3+,La3+,Gd
3+及びYb3+の少なくとも1種0〜30モル%,Hf4+
0〜20モル%,Li+ ,Na+ 及びK+ の少なくとも
1種0〜20モル%であり、陰イオンの割合がCl-
〜20モル%,F- 80〜100モル%である請求項1
記載のEu2+含有青色発光ガラス。
2. The proportion of cations constituting the halide glass composition is Eu 2+ 0.001 to 50 mol%, Al 3+
10-60 mol%, Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+
At least one of 8 to 70 mol%, Y 3+ , La 3+ , Gd
At least one of 3+ and Yb 3+ , 0 to 30 mol%, Hf 4+
0 to 20 mol%, at least one of Li + , Na + and K + is 0 to 20 mol%, and the proportion of anions is Cl 0.
20 mol% and F - 80 to 100 mol%.
The blue light-emitting glass containing Eu 2+ described above.
【請求項3】 ハロゲン燐酸塩ガラス組成を構成する陽
イオンの割合がEu2+0.001〜50モル%,Al3+
10〜60モル%,P5+0.1〜80モル%,Ma2+
Ca2+,Sr2+及びBa2+の少なくとも1種8〜70モ
ル%,Y3+,La3+,Gd3+及びYb3+の少なくとも1
種0〜30モル%,Hf4+0〜20モル%,Li+ ,N
+ 及びK+ の少なくとも1種0〜20モル%であり、
陰イオンの割合がO2-1〜95モル%,Cl- 0〜20
モル%,F- 5〜99モル%である請求項1記載のEu
2+含有青色発光ガラス。
3. The proportion of cations constituting the halogen phosphate glass composition is Eu 2+ 0.001 to 50 mol%, Al 3+
10-60 mol%, P 5+ 0.1-80 mol%, Ma 2+ ,
At least one of Ca 2+ , Sr 2+ and Ba 2+ 8 to 70 mol%, at least 1 of Y 3+ , La 3+ , Gd 3+ and Yb 3+
Seed 0 to 30 mol%, Hf 4+ 0 to 20 mol%, Li + , N
at least one of a + and K + is 0 to 20 mol%,
The proportion of anions is O 2 −1 to 95 mol%, Cl 0 to 20
The Eu according to claim 1, wherein the Eu content is F -5 to 99 mol%.
2+ containing blue light emitting glass.
JP35296695A 1995-12-30 1995-12-30 Eu2+ containing blue color emission glass Pending JPH09188543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35296695A JPH09188543A (en) 1995-12-30 1995-12-30 Eu2+ containing blue color emission glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35296695A JPH09188543A (en) 1995-12-30 1995-12-30 Eu2+ containing blue color emission glass

Publications (1)

Publication Number Publication Date
JPH09188543A true JPH09188543A (en) 1997-07-22

Family

ID=18427673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35296695A Pending JPH09188543A (en) 1995-12-30 1995-12-30 Eu2+ containing blue color emission glass

Country Status (1)

Country Link
JP (1) JPH09188543A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0985644A1 (en) * 1998-09-08 2000-03-15 Kabushiki Kaisha Ohara Thermal shock resistant luminescent glass
WO2005028590A1 (en) * 2003-09-24 2005-03-31 Hitachi Chemical Co., Ltd. Glass scintillator
JP2020197533A (en) * 2015-07-19 2020-12-10 エーエフオー リサーチ,インク Fluorine resistant, radiation resistant glass systems for detecting radiation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0985644A1 (en) * 1998-09-08 2000-03-15 Kabushiki Kaisha Ohara Thermal shock resistant luminescent glass
US6300264B1 (en) 1998-09-08 2001-10-09 Kabushiki Kaisha Ohara Luminous glass
WO2005028590A1 (en) * 2003-09-24 2005-03-31 Hitachi Chemical Co., Ltd. Glass scintillator
JPWO2005028590A1 (en) * 2003-09-24 2007-10-04 日立化成工業株式会社 Glass scintillator
JP4640176B2 (en) * 2003-09-24 2011-03-02 日立化成工業株式会社 Glass scintillator
JP2020197533A (en) * 2015-07-19 2020-12-10 エーエフオー リサーチ,インク Fluorine resistant, radiation resistant glass systems for detecting radiation

Similar Documents

Publication Publication Date Title
JP4179641B2 (en) Fluorophosphate fluorescent glass containing Tb or Eu
Qiu et al. Photostimulated luminescence in Eu 2+-doped fluoroaluminate glasses
US7577318B2 (en) Wavelength conversion layers with embedded crystallites
Karki et al. Physical, optical and luminescence properties of the Dy3+ doped barium borophosphate glasses
JPH09221336A (en) Stimulated phosphor glass composition
Zhu et al. Photoluminescence of Dy3+ and Sm3+: SiO2–Al2O3–LiF–CaF2 glasses
Damdee et al. Physical and photoluminescence investigations of Eu3+ doped gadolinium borate scintillating glass
Luo et al. Germanate-based oxyfluoride transparent glass-ceramic embedded with Tm3+: Ca2YbF7 nanocrystals for high-performance optical thermometer
JPH09188543A (en) Eu2+ containing blue color emission glass
Kumar et al. Probing into structural and spectroscopic properties of Dy3+ doped and Eu3+/Dy3+ co-doped bismuth phosphate (BiPO4) glass ceramics with different modifier fluorides
Anjaiah et al. Concentration dependent luminescence and energy transfer properties of samarium doped LLSZFB glasses
US7070916B2 (en) Radiation image conversion panel and production method thereof
Jarucha et al. Radioluminescence and photoluminescence properties of Sm3+ doped gadolinium aluminum sodium phosphate oxyfluoride scintillating glass
Kothan et al. Luminescence and energy transfer properties of Gd3+ and Dy3+ in borosilicate glasses for tunable emission materials
CN114920460B (en) Diphase quantum dot microcrystalline glass and preparation method and application thereof
JP2004245713A (en) Radiation image conversion panel and manufacturing method for the radiation image conversion panel
Schweizer et al. New developments in X-ray storage phosphors
JPH0986958A (en) Glass material for converting wavelength
JPH04117B2 (en)
KR0154423B1 (en) A laser glass
JP3366365B2 (en) Infrared-visible wavelength up-conversion material
JP3879629B2 (en) Radiation image conversion panel and method for manufacturing radiation image conversion panel
JPH06340873A (en) Alkali halide fluorescencer, radiation image conversion panel using the same, and radiation image conversion method using radiation image conversion panel
JPH09208947A (en) Up-conversion phosphor and its production
Shalaev et al. Photostimulation Redshift for BaFBr: Eu2+ with Alkali Doping

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A02 Decision of refusal

Effective date: 20060411

Free format text: JAPANESE INTERMEDIATE CODE: A02