JPH09187775A - Hard-to-disintegrate magnesia ph adjustor for improving water quality and bottom quality - Google Patents

Hard-to-disintegrate magnesia ph adjustor for improving water quality and bottom quality

Info

Publication number
JPH09187775A
JPH09187775A JP8000244A JP24496A JPH09187775A JP H09187775 A JPH09187775 A JP H09187775A JP 8000244 A JP8000244 A JP 8000244A JP 24496 A JP24496 A JP 24496A JP H09187775 A JPH09187775 A JP H09187775A
Authority
JP
Japan
Prior art keywords
magnesia
water
adjuster
water quality
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8000244A
Other languages
Japanese (ja)
Inventor
Akira Kaneyasu
彰 兼安
Nobuyuki Nishino
伸幸 西野
Satoshi Aramatsu
智 新松
Kunio Watanabe
国男 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Chemical Industries Co Ltd
Original Assignee
Ube Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Chemical Industries Co Ltd filed Critical Ube Chemical Industries Co Ltd
Priority to JP8000244A priority Critical patent/JPH09187775A/en
Priority to TW085100123A priority patent/TW432016B/en
Priority to AU70455/96A priority patent/AU7045596A/en
Priority to KR1019970000053A priority patent/KR100213518B1/en
Publication of JPH09187775A publication Critical patent/JPH09187775A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Abstract

PROBLEM TO BE SOLVED: To improve the inhabitation environment for fish and aqueous organisms by forming a pH adjustor of specified several kinds of magnesia materials and constituting so that the powdering rate after the pH adjustor is mixed in water and the specified time has passed may be at most a set %. SOLUTION: A hard-to-disintegrate magnesia pH adjustor for improving the water quality and bottom quality is composed of one or two kinds or more of magnesia materials. The powdering rate after putting the pH adjustor into water and one hour having passed is specified as 10% or less. The bulk density of the pH adjustor is set beyond 2.3g/cm<3> . A magnesium oxide material heated up to 1000 deg.C or over can be used. Also a formed material or a crushed material of a powdery raw material formed by heating natural magnesia ores at the decomposition temperature or over can be used. The pH can be increased by 0.5% or more by scattering the material all over a zone to be improved at the rate of 1kg per 1m<2> . Also the pH can be increased by 0.5 by adding the material at the rate of 50g per 1m<3> . Also the pH can be increased by 0.5 or more by applying water of SV=1 or more into a filled layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内海、内湾、湖
沼、河川及び飼育水槽等の水質並びに底質のpHを1回
の散布または充填により、長期間にわたりアルカリに維
持する事により、魚類及び水性生物の生息環境の改善を
はかることを目的とした苦土系pH調整剤に関するもの
である。
TECHNICAL FIELD The present invention relates to fish and fish by keeping the pH of water in the inland sea, inner bay, lakes, rivers and breeding aquariums, etc. The present invention relates to a magnesia-based pH adjusting agent for improving the habitat of aquatic organisms.

【0002】[0002]

【従来の技術】近年、後背地に大きな汚濁源を有する内
海、内湾、湖沼、河川等の閉鎖性水域は、流入する汚濁
負荷が大きい上に汚濁物質が蓄積しやすいため、富栄養
化が進み、水質及び底質の汚濁が進んでいる。特に瀬戸
内海や伊勢湾のような閉鎖性水域では流入したリン及び
窒素が停滞し、赤潮が発生することにより漁業被害を起
こす等、漁業環境に多大な影響を与えている。また琵琶
湖を代表とする飲料水の取水源となっている湖沼では、
淡水赤潮やアオコが異常に発生し、これによって上水道
施設のろ過障害や異臭の問題を生じている。河川におい
ては、生活排水や工場排水等の流入により富栄養化し、
水質並びに底質が悪化して、悪臭を放ったり、水性生物
が生存できない環境となっている。これに対処するた
め、水質汚濁防止法、瀬戸内海環境保全特別措置法、湖
沼に係わる窒素およびリンの排水規制等が制定実施され
ている。また、酸性河川と呼ばれる、酸性温泉水の河川
への流入により、水質のpHが極端に低pH化し、生物
が生活できない環境下になっているところもある。
2. Description of the Related Art In recent years, in closed water areas such as inland seas, inland bays, lakes and marshes, which have large pollution sources in the hinterland, inflowing pollution load is large and pollutants are easily accumulated. , Water and bottom sediment is becoming more polluted. In particular, in the closed waters such as the Seto Inland Sea and Ise Bay, phosphorus and nitrogen that have flowed in are stagnant, and red tides cause damage to the fishing industry, which has a great impact on the fishing environment. In addition, in lakes that are the source of drinking water represented by Lake Biwa,
Abnormal occurrence of freshwater red tide and blue-green alga causes problems of filtration failure and offensive odor in water supply facilities. In rivers, eutrophication occurs due to inflow of domestic wastewater and factory wastewater,
The water quality and bottom quality are deteriorated, giving off a foul odor and making it impossible for aquatic organisms to survive. In order to deal with this, the Water Pollution Control Law, Seto Inland Sea Environmental Conservation Special Measures Law, and drainage regulations for nitrogen and phosphorus related to lakes and marshes have been established and implemented. Moreover, due to the inflow of acidic hot spring water into rivers called acidic rivers, the pH of the water quality is extremely lowered, and there are places where living things cannot live.

【0003】養殖場では、赤潮や貧酸素水塊の発生に起
因して、底質から有毒な硫化水素が発生し、このために
養殖魚の大量へい死による被害が報告されている。
[0003] In the farm, poisonous hydrogen sulfide is generated from the bottom sediment due to the generation of red tide and oxygen-deficient water mass, and it has been reported that a large amount of cultured fish is killed.

【0004】魚類や水性生物の養殖業においては、陸上
等に設置した水槽等内で卵を人口的に孵化させ、そこで
一定の大きさに育つまで飼育し、その後他の養殖場に移
して市場へ出荷するまで養殖している。また水族館等の
水槽においては、魚類や水性生物を1年中飼育してい
る。これら飼育水槽においては、生物の成長のために与
える餌の残り(残餌)や生物からの排泄物等が堆積する
ことにより硝酸イオン等が蓄積し、水質及び底質の悪化
を招き、特にpHの低下が問題となっていた。
In the aquaculture industry for fish and aquatic organisms, eggs are artificially hatched in an aquarium or the like installed on land or the like, bred until they grow to a certain size, and then moved to another farm to be marketed. It is cultivated until it is shipped to. In addition, fish and aquatic organisms are bred all year round in aquariums and other aquariums. In these breeding aquariums, nitrate ions, etc. accumulate due to the accumulation of food residue (remaining food) and excrement from organisms that are provided for the growth of organisms, which leads to deterioration of water quality and sediment quality, and especially pH. Was a problem.

【0005】このpHの低下は飼育生物へ直接影響を与
え、結果として飼育生物の成長が遅くなり、飼育期間中
にへい死する率が高くなり、また水揚げする際の歩留り
低下等をまねき、養殖業者は大きな被害を被っていた。
This decrease in pH directly affects the breeding organisms, resulting in slow growth of the breeding organisms, a high death rate during the breeding period, and a decrease in the yield when landing, leading to aquaculture. Was suffering a lot of damage.

【0006】飼育水槽としては循環式水槽と流水式水槽
の二種類が挙げられ、前者は水をポンプを用いて循環さ
せる方式で、後者は水をオ−バ−フロ−させて絶えず新
しい水を入れ替えている方式の水槽である。
There are two types of breeding water tanks, a circulating water tank and a running water tank. The former is a system in which water is circulated by using a pump, and the latter constantly overflows water to generate new water. It is an aquarium that has been replaced.

【0007】前者の循環式水槽においては、pH低下の
対策として、従来は新しい水と入れ換えるか、pHを上
げるためにpH調整剤として生石灰、消石灰、サンゴ砂
及びかき殻等が充填され使用されていたが、従来の方法
では安定して水質・底質のpHをアルカリに維持するこ
とはできなかった。これは従来の生石灰及び消石灰のp
H調整剤では、水を循環する間に同調整剤が崩壊して粉
化し、循環式水槽内の水質を汚濁する原因となっていた
ためである。また通常の海水のpHが8.2前後である
のに対し、サンゴ砂及びかき殻の主成分が炭酸カルシウ
ムのため、これらpH調整剤ではpH8まで水のpHを
あげることが難しかった。
In the former circulation type water tank, as a measure against pH decrease, it is conventionally used by replacing with fresh water or by filling quick lime, slaked lime, coral sand, and oyster shell as a pH adjusting agent in order to raise the pH. However, it was not possible to stably maintain the pH of water / sediment at an alkaline level by the conventional method. This is p of conventional quick lime and slaked lime
This is because with the H regulator, the regulator was disintegrated and pulverized while circulating water, which was a cause of polluting the water quality in the circulating water tank. Further, while the pH of ordinary seawater is around 8.2, it is difficult to raise the pH of water to pH 8 with these pH adjusters because the main components of coral sand and oyster shells are calcium carbonate.

【0008】後者の流水式水槽においては、特に底部に
生息する生き物を飼育する場合、飼育水のpHは絶えず
新しい水が入れ替わっているため正常のpHを維持した
が、同水槽底部は残餌及び排泄物等が堆積し、これが原
因で底質が悪化した。このためpH低下の問題が生じて
いた。このpH低下の対策として前者と同じ従来のpH
調整剤が使用されてきたが、絶えず系外へ流れ出る水流
があるため、従来の水中に投入後崩壊する調整剤はこの
水流により系外に排出された。このため長期間安定して
底質のpHをアルカリ(例えば海水ではpH8.1)に
維持することができなかった。
[0008] In the latter type of running water tank, especially when breeding creatures inhabiting the bottom, the pH of the breeding water was maintained at a normal pH because new water was constantly replaced, but the bottom of the aquarium kept residual food and Excreta, etc. were accumulated, which caused deterioration of bottom sediment. Therefore, there has been a problem of pH decrease. As a measure against this pH drop, the same conventional pH as the former
Although the regulator has been used, since there is a water stream constantly flowing out of the system, the regulator that is conventionally disintegrated after being poured into water is discharged out of the system by this water stream. For this reason, it was not possible to stably maintain the pH of the sediment at an alkali (for example, seawater at pH 8.1) for a long period of time.

【0009】更に付け加えると、循環式飼育水槽では、
pH低下対策として、新しい水と入れ替える方法がある
が、水族館等に敷設された水槽の場合には沖合の海水が
必要となり、頻繁に入れ替えるには多額の費用がかかっ
てしまう。またpHを上げる方法として使用されている
生石灰及び消石灰等の石灰系調整剤は強アルカリであ
り、魚類及び水性生物の生息環境への悪影響が大きい。
また、水中の炭酸ガスとの反応により炭酸カルシウムが
生成し、調整剤の表面を被覆するためpHを上げる期間
が非常に短い。このため、pHを上げるため絶えず調整
剤を追加投入する必要があった。更に、生成した炭酸カ
ルシウム等の化合物が堆積する等の問題が生じていた。
In addition, in the circulation-type aquarium,
There is a method of replacing with new water as a measure for lowering the pH, but in the case of an aquarium laid in an aquarium, offshore seawater is required, and frequent replacement requires a large amount of money. In addition, lime-based regulators such as quick lime and slaked lime used as a method for increasing pH are strong alkalis, and have a great adverse effect on the habitat of fish and aquatic organisms.
Further, calcium carbonate is generated by the reaction with carbon dioxide gas in water and coats the surface of the regulator, so that the period for raising the pH is very short. For this reason, it was necessary to constantly add an adjusting agent in order to raise the pH. Further, there has been a problem that the produced compound such as calcium carbonate is deposited.

【0010】また流水式飼育水槽では、サンゴ砂及びか
き殻等は主成分が炭酸カルシウムで構成されており、水
中の燐酸イオン等との反応により表面に沈殿物を生成す
るため、pHを上げることのできる期間が非常に短いこ
とと、pHは7.8〜7.9が限界で、天然海水の8.
1〜8.3まで回復することはできない等の問題があっ
た。更には従来の生石灰及び消石灰のpH調整剤では、
水を循環する間に崩壊して粉化し、循環水槽内の水質を
汚濁化し、飼育生物への環境悪化等が問題となってい
た。加えて、流水式水槽で底部に生息する生き物を飼育
する場合、底質の悪化によるpHの低下が細菌やウイル
スの増加を招き、水槽内の生き物が発病し、歩留りの低
下を招いていた。
In a running-water-type rearing tank, coral sand, oyster shells, etc. are composed mainly of calcium carbonate, and a pH is raised because a precipitate is formed on the surface by reaction with phosphate ions in water. The period of time during which it can be treated is very short, and the pH is limited to 7.8-7.9.
There was a problem that it could not recover from 1 to 8.3. Furthermore, in the conventional pH adjusting agents for quick lime and slaked lime,
During the circulation of water, the water was disintegrated and pulverized, the water quality in the circulating water tank was polluted, and the environmental deterioration of the breeding organisms became a problem. In addition, when a creature living at the bottom is kept in a running water aquarium, a decrease in pH due to deterioration of the sediment causes an increase in bacteria and viruses, and the creature in the aquarium becomes ill, resulting in a decrease in yield.

【0011】更に、内海、内湾、湖沼、河川等におい
て、底部及び水質の改質をはかる目的で上述の従来のp
H調整剤を水中へ投入した場合、投入後即座に崩壊し粉
状となって底部に散在するため、暴風時に底部が洗われ
ることなどにより投入区域以外へ流出し、目標域を改質
することが損なわれることとなり、再度pH調整剤の散
布が必要になるなど、経済的問題を生じていた。また、
従来のpH調整剤である生石灰、消石灰、サンゴ砂、か
き殻及び石灰石等の石灰系材料は、内海、内湾、湖沼、
河川等の水質内に溶存した硫酸イオンにより容易に難溶
解性の石膏(硫酸カルシウム)を形成し、これが同調整
剤の表面を被覆した。このため、pH調整剤の効果が失
われることとなり、長期間に渡ってpH調整することが
不可能であった。従って、一度の散布で長期間に渡って
低pH水を高pH化することの可能な材料の登場が待た
れていた。
Further, in the inland sea, inland bay, lakes, rivers, etc., the above-mentioned conventional p is used for the purpose of improving the bottom and water quality.
When the H-conditioning agent is poured into water, it immediately disintegrates and becomes powdery and scattered at the bottom. Therefore, when the storm blows, the bottom is washed out and flows out of the feeding area to modify the target area. Therefore, the economical problem was caused such that it was necessary to spray the pH adjusting agent again. Also,
Lime-based materials such as quick lime, slaked lime, coral sand, oyster shell and limestone, which are conventional pH adjusters, are used for inland sea, inner bay, lakes,
Sulfate ions dissolved in the water of rivers easily formed hardly soluble gypsum (calcium sulfate), which covered the surface of the regulator. Therefore, the effect of the pH adjuster is lost, and it is impossible to adjust the pH for a long period of time. Therefore, the appearance of a material capable of raising the pH of low-pH water to a high pH over a long period of time by spraying once has been awaited.

【0012】上記問題点にかんがみ、本発明者らは鋭意
検討した結果、上記内海、内湾、湖沼、河川及び飼育水
槽等の水質並びに底質のpHを1回の散布または充填に
より、長期間にわたりアルカリに維持する事により、魚
類及び水性生物の生息環境の改善をはかる苦土系pH調
整剤を開発するに至った。
In view of the above problems, the inventors of the present invention have made diligent studies, and as a result, by spraying or filling the water quality and bottom sediment pH of the above-mentioned inland sea, inland bay, lake, river and breeding aquarium once for a long period of time. We have developed a magnesia-based pH adjuster that can improve the habitat of fish and aquatic organisms by maintaining it at an alkaline level.

【0013】[0013]

【課題を解決するための手段】上記問題点を解決するた
めの本発明は、 苦土系の1種または2種以上の材料によって構成さ
れ、水中に投入後1時間経過後の粉化率が10%以下で
あることを特徴とする苦土系pH調整剤であり、好まし
くは2.3g/cm3 を越えた嵩密度であり、上記苦土
系材料が1000℃以上で加熱した酸化マグネシウム系
材料であり、天然産苦土系鉱石を分解温度以上で加熱
処理した材料であり、更には主としてマグネシウム化
合物からなる粉粒体原料の成形物またその破砕物である
こと特徴とし、加えて被改質区域1m2当たり1kg以上
本調整剤を散布することによりpHを0.5以上上げる
ことが、被改質水1m3当たり50g以上投入すること
によりpHを0.5以上上げることが、更に本調整剤
からなる充填層をSV=1以上の通水によりpHを0.
5以上上げることが可能な水質並びに底質改良用の難崩
壊性苦土系pH調整剤である。
DISCLOSURE OF THE INVENTION The present invention for solving the above-mentioned problems is composed of one or more materials of magnesia type, and has a pulverization rate 1 hour after being placed in water. A magnesia-based pH adjuster characterized by being 10% or less, preferably having a bulk density of more than 2.3 g / cm 3 , and the magnesium-oxide-based magnesia-based material obtained by heating the above-mentioned magnesia-based material at 1000 ° C. or more. The material is a material obtained by heat-treating a naturally occurring magnesia-based ore at a decomposition temperature or higher, and is further characterized by being a molded product of a granular material mainly composed of a magnesium compound or a crushed product thereof. 1 kg or more per 1 m 2 of quality zone The pH can be raised by 0.5 or more by spraying the modifier, and the pH can be raised by 0.5 or more by adding 50 g or more per 1 m 3 of the water to be reformed. SV = 0 pH by more than passing water.
It is a hard-to-disintegrate magnesia-based pH adjuster for improving water quality and sediment that can be increased by 5 or more.

【0014】本発明の難崩壊性苦土系pH調整剤は、水
中に投入しても即座に崩壊して粉化することがないた
め、使用時に水質並びに底質を汚濁することがない。ま
た石灰系とは異なり苦土系は水中に溶解した硫酸イオン
等と反応しても難溶解性物質を形成することがないた
め、長期間に渡ってアルカリ性を維持することが可能で
あり、飼育生物等に対して住みよい環境をもたらせるこ
とが可能となる。
The hard-to-disintegrate magnesium-based pH adjusting agent of the present invention does not immediately disintegrate and powder even when added to water, and therefore does not pollute the water quality and the bottom material during use. Also, unlike the lime type, the magnesia type does not form a hardly soluble substance even when it reacts with sulfate ions etc. dissolved in water, so it is possible to maintain alkalinity for a long period of time. It becomes possible to provide a living environment for living things.

【0015】以下、本発明について詳細な記述を行う。
本発明である苦土系材料としては、酸化マグネシウム、
水酸化マグネシウム、炭酸マグネシウム等の1種または
2種以上のマグネシウム含有物質材料が挙げられる。
The present invention will be described in detail below.
Magnesium oxide, which is the present invention, is magnesium oxide,
Examples include one or more magnesium-containing material materials such as magnesium hydroxide and magnesium carbonate.

【0016】酸化マグネシウムとしては、天然に産する
ブル−サイト(水滑石)、マグネサイト(菱苦土鉱)を
加熱分解させた天然産焼結マグネシアクリンカ−及び電
気ア−クにより一度融点以上に溶解させた後、凝固させ
た天然産電融マグネシア、又は海水、苦汁及びかん水等
のマグネシウム含有水溶液に石灰乳等のアルカリ原料を
添加することに得られる合成水酸化マグネシウムを加熱
・分解させて酸化マグネシウムの焼結体(合成焼結マグ
ネシアクリンカ−)或いは電融品(合成電融マグネシ
ア)を挙げることができる。
Magnesium oxide is once heated to a melting point or higher by a naturally occurring sintered magnesia clinker obtained by thermally decomposing brucite (hydrotalcite) and magnesite (rhydromethorite) which are naturally produced, and an electric arc. After melting, solidified natural fused magnesia or synthetic magnesium hydroxide obtained by adding alkaline raw material such as lime milk to magnesium-containing aqueous solution such as seawater, bitter juice and brackish water is heated and decomposed to be oxidized. Examples thereof include a sintered body of magnesium (synthetic sintered magnesia clinker) or an electromelted product (synthetic fused magnesia).

【0017】更に天然産苦土系鉱石である主として水酸
化マグネシウムからなるブル−サイトを分解温度350
℃以上の加熱温度で、或いは主として炭酸マグネシウム
からなるマグネサイトを分解温度900℃以上の加熱温
度で処理した通常軽焼マグネシアと呼ばれる酸化マグネ
シウム系材料も含まれる。これら材料は、主構成鉱物は
ペリクレ−ス(酸化マグネシウム結晶)であるが、通常
内部に未分解のマグネサイトやブル−サイトが含まれて
いる。しかしながら、これらは本発明の苦土系pH調整
剤としての機能をなんら損ねることなく、本発明の難溶
解性苦土系pH調整剤として適用できるものである。
Furthermore, brucite, which is a naturally occurring magnesia-based ore, mainly made of magnesium hydroxide, is decomposed at a decomposition temperature of 350.
Also included is a magnesium oxide-based material usually called light-burning magnesia, which is obtained by treating magnesite mainly composed of magnesium carbonate at a heating temperature of ℃ or higher or at a decomposition temperature of 900 ℃ or higher. The main constituent mineral of these materials is periclase (magnesium oxide crystal), but usually contains undecomposed magnesite and brucite. However, these can be applied as the hardly soluble magnesia-based pH adjuster of the present invention without impairing the function as the magnesia-based pH adjuster of the present invention.

【0018】加えて、上記天然産苦土系鉱石をそのまま
使用することも可能である。
In addition, it is possible to use the natural magnesia-based ore as it is.

【0019】また、天然に産するドロマイト及び同加熱
処理したドロマイトクリンカ−、或いは合成ドロマイト
と一般的に呼ばれる水酸化マグネシウムと消石灰を混合
後、加熱処理したもの等も挙げられる。
Further, naturally-occurring dolomite, the same heat-treated dolomite clinker, or a mixture of magnesium hydroxide and slaked lime, which are generally called synthetic dolomite, and heat-treated, etc. may be mentioned.

【0020】これら苦土系材料の内、好ましくは100
0℃以上の温度で加熱し、焼結又は電融させた酸化マグ
ネシウム系材料であることが望ましい。これら酸化マグ
ネシウム系材料は、材料当たりのMgO含有量が高いた
め、単位面積或いは単位容積当たりの投入量が少なくて
すみ、より経済的な材料であると考えられる。この10
00℃以上の温度で加熱し、焼結又は電融させた酸化マ
グネシウム系材料としては、上記天然産焼結マグネシア
クリンカ−、天然産電融マグネシア、合成焼結マグネシ
アクリンカ−並びに合成電融マグネシア等が挙げられ
る。
Of these magnesia-based materials, preferably 100
It is desirable to use a magnesium oxide-based material that is heated at a temperature of 0 ° C. or higher and sintered or electrofused. Since these magnesium oxide-based materials have a high MgO content per material, the input amount per unit area or unit volume is small, and it is considered to be a more economical material. This 10
Examples of the magnesium oxide-based material which is heated at a temperature of 00 ° C. or higher and sintered or electrofused include the above-mentioned naturally-produced sintered magnesia clinker, naturally-produced electro-fused magnesia, synthetic sintered magnesia clinker and synthetic electro-fused magnesia. Is mentioned.

【0021】更には、水酸化マグネシウム及び酸化マグ
ネシウム等の粉粒体を成形した造粒物及びその破砕物も
挙げることができる。場合によっては、成形時にバイン
ダ−を加えることも可能である。
Further, a granulated product obtained by molding a powder or granular material such as magnesium hydroxide or magnesium oxide, and a crushed product thereof can also be mentioned. In some cases, it is possible to add a binder during molding.

【0022】更に本材料は、好ましくは1mm以上の大き
さであることが望ましい。底質の改良において、粒子径
の大きい方が沈みやすく、また底質がヘドロ状の場合に
はヘドロ内部に埋没しやすいため底質の改質効果が向上
するのみならず、本材料が低質内に埋もれることによっ
て水に流されにくくなるからである。
Further, it is desirable that the present material preferably has a size of 1 mm or more. In the improvement of bottom sediment, the larger the particle size is, the easier it is to sink, and when the bottom sediment is sludge-like, it is easy to be buried inside the sludge. It is because it becomes difficult to be washed away by being buried in the water.

【0023】本発明である苦土系pH調整剤の内、成形
直後の造粒物の嵩密度と崩壊性は密接に関係し、嵩密度
が高いほど崩壊性は失われる。このため、水中投入後に
同材料の崩壊を抑えるには、2.3g/cm3 を越える嵩密
度であることが好ましい。嵩密度が2.3g/cm3 以下で
あると、水中投入直後に材料が崩壊しやすくなり、長期
間に渡ってpH調整する効果を失うためである。これ
は、本材料を前述の流水式飼育水槽や流れの早い水域に
投入した場合、その流れによって系外に排出されること
が一つの原因と挙げられる。
Among the magnesium-based pH adjusters of the present invention, the bulk density of the granulated product immediately after molding is closely related to the disintegration property, and the higher the bulk density, the more the disintegration property is lost. Therefore, in order to prevent the material from collapsing after being poured into water, it is preferable that the bulk density is more than 2.3 g / cm 3 . This is because if the bulk density is 2.3 g / cm 3 or less, the material is likely to collapse immediately after being poured into water, and the effect of adjusting the pH is lost for a long period of time. One of the reasons for this is that when this material is put into the above-mentioned running water breeding aquarium or a water area with a fast flow, it is discharged out of the system by the flow.

【0024】本発明の苦土系pH調整剤は、水中に投入
した後、1時間経過した時点での粉化率が10%以下で
あることが肝要である。ここでいう粉化率とは、水中に
投入し1時間経過した材料において、崩壊によって生じ
た投入前の粒径より小さな粒子の発生率について示した
ものである。従って、この値が小さい方が、崩壊しにく
いことを意味する。粉化率が10%を越えると、材料の
比表面積が増加するためpH調整機能が増加するが、材
料が早く溶解消滅し、長期間に渡ってpH調整する効果
を失うこととなる。したがって再度pH調整剤を投入す
る必要となり、経済的問題を生じる。
It is important that the magnesia-based pH adjusting agent of the present invention has a pulverization rate of 10% or less at the time when 1 hour has elapsed after being put into water. The pulverization rate as used herein refers to the rate of generation of particles smaller than the particle size before the addition, which is caused by disintegration, in the material that has been placed in water for 1 hour. Therefore, the smaller this value is, the more difficult it is to collapse. When the pulverization rate exceeds 10%, the specific surface area of the material increases, so that the pH adjusting function increases, but the material dissolves and disappears quickly, and the effect of adjusting the pH is lost for a long period of time. Therefore, it is necessary to add the pH adjusting agent again, which causes an economic problem.

【0025】本発明の苦土系pH調整剤は、改質が目的
の水質並びに底質の被改質区域当たり1m2当たり、1kg
以上散布されることが好ましい。散布量が1kg未満だ
と、pH調整能力が小さいため、高pH化が不十分とな
る。
The magnesia-based pH adjusting agent of the present invention contains 1 kg per 1 m 2 of water to be reformed and the area to be reformed of the bottom sediment.
It is preferable that the above-mentioned spraying is performed. If the amount of spraying is less than 1 kg, the pH adjustment capability is small, and thus the increase in pH becomes insufficient.

【0026】また、貯水式水槽等のように系外との連絡
がなく、水のpHを0.5以上高pH化する場合には、
改質を要する水1m3当たり、本調整剤を50g以上投入
することが好ましい。投入量が50g未満であると、高
pH化が不十分となる。また、本調整剤を充填層あるい
はそれを構成する材料の一部として使用する場合、SV
(通水速度)が1以上の通水速度で被改質水を通水する
ことが好ましい。SVが1未満では、通水後のpHはあ
まり変わらなく、非経済的である。
Further, when there is no communication with the outside of the system and the pH of water is increased to 0.5 or more, such as in a water storage tank,
It is preferable to add 50 g or more of the present modifier to 1 m 3 of water that requires modification. If the amount added is less than 50 g, the increase in pH will be insufficient. In addition, when the present regulator is used as a filling layer or a part of the material constituting the filling layer, SV
It is preferable to pass the water to be reformed at a water flow rate of 1 or more. When the SV is less than 1, the pH after passing water does not change so much and it is uneconomical.

【0027】[0027]

【実施例】以下、実施例によって詳細な説明を行う。
尚、実施例に記載の測定項目は以下の方法により求め
た。
EXAMPLES Hereinafter, detailed description will be given with reference to examples.
The measurement items described in the examples were obtained by the following methods.

【0028】(嵩密度)日本学術振興会第124委員会
試験法分科会において決定された”学振法2マグネシア
クリンカ−の見掛け気孔率、見掛け比重及び嵩比重の測
定方法”(1981年版 耐火物手帳、 耐火物技術協
会発行)に準じて行い、下記計算式を用いて嵩密度を求
めた。
(Bulk Density) “Gakushin-shin 2 Method for Measuring Apparent Porosity, Apparent Specific Gravity and Bulk Specific Gravity of Magnesia Clinker” determined by the 124th Committee Test Method Subcommittee of the Japan Society for the Promotion of Science (1981, Refractories) The volume density was calculated by using the following calculation formula.

【0029】[0029]

【数1】 [Equation 1]

【0030】(水中投入1時間経過後の粉化率)試料の
最小粒径とほぼ同じ開き目の金属製カゴに試料を入れ、
水中にカゴごとゆっくり投入し、1持間経過後カゴごと
取り出し、カゴに残った試料を乾燥し、試料の乾燥後重
量を測定した。試験前の重量と乾燥後重量との差を、粉
化により試料から剥離した量、即ち水中投入による粉化
量とした。その差(重量減少量)を試験前の重量で除算
した値を粉化率(%)とした。
(Powdering rate after 1 hour from the introduction into water) The sample was put in a metal basket having an opening of the same size as the minimum particle size of the sample.
The basket was slowly put into water, the basket was taken out after a lapse of one holding period, the sample remaining in the basket was dried, and the weight of the sample after drying was measured. The difference between the weight before the test and the weight after drying was taken as the amount peeled from the sample by pulverization, that is, the amount pulverized by pouring in water. The value obtained by dividing the difference (weight reduction amount) by the weight before the test was defined as the pulverization rate (%).

【0031】実施例1〜5 本発明のpH調整剤である5種類の苦土系材料を準備
し、これらを海水に1時間浸した。表1に、主構成物質
名、嵩密度、MgO含有率、材料の粒径及び粉化率を示
す。
Examples 1 to 5 Five types of magnesia-based materials, which are the pH adjusters of the present invention, were prepared and immersed in seawater for 1 hour. Table 1 shows main constituent substance names, bulk densities, MgO contents, material particle sizes and pulverization rates.

【0032】[0032]

【表1】 [Table 1]

【0033】比較例1及び2 非苦土系材料である生石灰及び焼結カルシアクリンカ−
を、実施例1〜5と同じく海水に1時間浸した。その結
果を表2に示す。
Comparative Examples 1 and 2 Quick lime and sintered calcia clinker which are non-magnesium type materials
Was immersed in seawater for 1 hour as in Examples 1 to 5. Table 2 shows the results.

【0034】本結果より、実施例1〜5の苦土系材料は
水中に投入後、1時間経過後の粉化率が比較例1及び2
と比較して非常に少なく、崩壊して粉状となりにくいこ
とが判明した。
From these results, the powders of the magnesia-based materials of Examples 1 to 5 had a pulverization rate of 1 hour after being placed in water, and Comparative Examples 1 and 2
It was found that the amount was very small as compared with, and it was difficult to disintegrate into powder.

【0035】[0035]

【表2】 [Table 2]

【0036】実施例6 水温20℃の海水2l(pH7.5)を入れたガラス製
ビ−カ−にpH調整剤として本発明の苦土系材料(温度
2000℃で加熱処理(焼結)させた合成焼結マグネシ
アクリンカ−(MgO含有率98%、嵩密度3.4g/cm
3 、粒径1〜4.75mm))を、また比較試料として従
来のpH調整剤である炭酸カルシウムを主成分とするか
き殻(粒径1〜10mm)を200gそれぞれ入れ、10
日間海水のpHを測定した。海水のpHの推移を図1に
示す。本結果より、従来のpH調整剤であるかき殻を投
入した海水のpHは10日間経過しても7.9前後であ
ったが、本発明である苦土系材料を投入した場合、投入
後約30分でpH8を越え、1日後にはpH9.5を越
え、3日目以降pH10前後を推移した。本発明による
pH調整剤が従来のpH調整剤であるかき殻と比較し
て、優れたpH上昇能力を示し、また維持可能であるこ
とが確認された。
Example 6 A glass beaker containing 2 liters of seawater (pH 7.5) at a water temperature of 20 ° C. was used as a pH adjusting agent for the magnesium-based material of the present invention (heat treatment (sintering) at a temperature of 2000 ° C.). Synthetic sintered magnesia clinker (MgO content 98%, bulk density 3.4 g / cm
3 , particle size 1 to 4.75 mm)), and as a comparative sample, 200 g of shredded husks (particle size 1 to 10 mm) containing calcium carbonate as a main component, which is a conventional pH adjuster, respectively, are added.
The pH of seawater was measured daily. The change in pH of seawater is shown in FIG. From this result, the pH of the seawater in which the conventional pH adjuster, oyster shell, was added was around 7.9 even after 10 days, but when the magnesia-based material of the present invention was added, It exceeded pH 8 in about 30 minutes, exceeded pH 9.5 one day later, and remained around pH 10 after the third day. It was confirmed that the pH adjuster according to the present invention has an excellent ability to raise pH and can be maintained as compared with the conventional pH adjuster, that is, oyster shell.

【0037】実施例7及び比較例3〜4 面積18m2、高さ0.6mの海水を入れたコンコリ−ト
水槽で以下に示す3種類の条件で、ヒラメを312尾放
流し、67日間飼育した。(1)実施例7:底部に砂及
び実施例6と同じ本発明の苦土系pH調整剤500kgを
散布。(2)比較例3:底部に何もまかなく、コンクリ
−ト面そのままで行った。(3)比較例4:底部に砂の
みをまいた。実験結果を表3に示す。その結果、本発明
の苦土系材料を用いた実験結果では、他の本苦土系材料
を投入しなかった水槽よりへい死数が少なく、歩留りが
向上しており、本材料による生物への生育等への効果が
認められた。
Example 7 and Comparative Examples 3 to 312 312 flounders were released under the following three conditions in a concentrate tank containing 18 m 2 of area and 0.6 m in height of seawater, and raised for 67 days. did. (1) Example 7: Sand and 500 kg of the same magnesia-based pH adjusting agent of the present invention as in Example 6 were sprayed on the bottom. (2) Comparative Example 3: The test was carried out with the concrete surface as it was without any damage on the bottom. (3) Comparative Example 4: Only the bottom was sanded. Table 3 shows the experimental results. As a result, in the experimental results using the magnesia-based material of the present invention, the number of mortality was smaller than that of the water tank in which other magnesia-based materials were not added, and the yield was improved. Etc., was confirmed to be effective.

【0038】[0038]

【表3】 [Table 3]

【0039】実施例8 ガラス製カラム(直径24mm、長さ300mm)に実施例
1の材料を50g(容量25cm3 )充填し、SV=10
の通水速度で海水(pH8.0)を30日間連続通水
し、カラム通過後の海水のpHを測定した。その結果を
図2に示す。処理後の海水のpHは、処理前の海水より
常に0.7前後高い値を示した。カラム内の材料の崩壊
は認められなかった。
Example 8 A glass column (diameter 24 mm, length 300 mm) was packed with 50 g (volume 25 cm 3 ) of the material of Example 1 and SV = 10.
Seawater (pH 8.0) was continuously flowed for 30 days at the water flow rate of, and the pH of the seawater after passing through the column was measured. The result is shown in FIG. The pH of seawater after the treatment always showed a value around 0.7 higher than that of the seawater before the treatment. No collapse of the material in the column was observed.

【0040】比較例5 比較例1の材料について、実施例8における実験と同様
の方法で通水実験を行った。生石灰は、通水直後に急激
な発熱反応を呈す一方、pH11以上の強アルカリの海
水がカラムから排出された。生石灰は、崩壊し粉状とな
り、カラムより系外へ排出した。このため実験は開始後
30分で終了した。
Comparative Example 5 With respect to the material of Comparative Example 1, a water flow experiment was conducted in the same manner as the experiment in Example 8. Quick lime exhibited a rapid exothermic reaction immediately after passing water, while strong alkaline seawater having a pH of 11 or more was discharged from the column. The quicklime disintegrated into powder and was discharged from the column out of the system. Therefore, the experiment was completed 30 minutes after the start.

【0041】実施例8及び比較例5の結果より、実施例
8の本苦土系材料が従来のpH調整剤である生石灰より
難崩壊性を有することが示され、また生石灰のように強
アルカリの水を生成しないことも確認された。
From the results of Example 8 and Comparative Example 5, it was shown that the present magnesia-based material of Example 8 is more resistant to disintegration than quick lime, which is a conventional pH adjuster, and it has a strong alkalinity like quick lime. It was also confirmed that no water was produced.

【0042】実施例9 温度70℃、pH1の強酸性水2lを70℃に保温した
温浴槽内の3lガラス製ビ−カ−にいれ、これに実施例
1及び8で使用した苦土系材料1kg(容量0.5l)を
投入し、底部に堆積した材料の上部の水を、材料が動か
ない程度の撹拌力で上部の水を撹拌しながらpHを測定
した。
Example 9 2 l of strongly acidic water having a temperature of 70 ° C and pH 1 was placed in a 3l glass beaker in a warm bath kept at 70 ° C, and the magnesia-based material used in Examples 1 and 8 was added thereto. 1 kg (volume 0.5 l) was charged, and the pH of the water deposited on the bottom of the material was measured while stirring the water on the top with a stirring force such that the material did not move.

【0043】比較例6 実施例9と同じpH1の強酸性水及び実験方法で、粒径
1〜9.52mmの石灰石1kg(容量0.5l)を投入
し、pHを測定した。
Comparative Example 6 Using the same strongly acidic water of pH 1 as in Example 9 and the experimental method, 1 kg (volume 0.5 l) of limestone having a particle size of 1 to 9.52 mm was added and the pH was measured.

【0044】実施例9及び比較例6のpHの推移を図3
に示す。本発明の材料の場合、投入後急激に水は高pH
化し、1時間後にはpH3を越え、6時間でpH7を越
えたが、比較例6の石灰石は投入後pH2.0程度まで
上がったが、その後変動せず強酸性水を維持した。本苦
土系材料が強酸性水の高pH化に対しても効果があるの
が認められた。
The changes in pH of Example 9 and Comparative Example 6 are shown in FIG.
Shown in In the case of the material of the present invention, water has a high pH rapidly after being charged.
After 1 hour, the pH exceeded 3 and pH exceeded 6 after 6 hours. The limestone of Comparative Example 6 increased to about pH 2.0 after being charged, but after that, it did not change and maintained strong acidic water. It was confirmed that the magnesia-based material is also effective for increasing the pH of strongly acidic water.

【0045】実施例10 天然産苦土系鉱石であるマグネサイトを、温度950℃
で加熱処理し常温に冷却後、破砕し粒径1〜4.75mm
に篩分けした。本苦土系材料について、実施例1〜5と
同じ方法で評価した結果を表4に、また水温20℃、p
H7.9の海水1lに対し、本材料30gを投入し、実
施例9と同じ方法でpHを測定した結果を図4に示す。
Example 10 Magnesite, which is a naturally occurring magnesia-based ore, was heated at a temperature of 950 ° C.
After heat treatment and cooling to room temperature, it is crushed to a particle size of 1-4.75 mm
Screened. The results of evaluation of this magnesia-based material in the same manner as in Examples 1 to 5 are shown in Table 4, and the water temperature was 20 ° C. and p
30 g of this material was added to 1 liter of H7.9 seawater, and the pH was measured by the same method as in Example 9. The results are shown in FIG.

【0046】実施例11 粒径9.52mm以上のマグネサイト鉱石を電気炉を用い
て温度900℃で30分間保持して仮焼し、常温に冷却
後、粉砕して0.1mm以下の粉末にした。得られた仮焼
物を粉末X線回折法のより構成鉱物を同定したところ、
ペリクレ−ス(酸化マグネシウム)以外に未分解のマグ
ネサイト(炭酸マグネシウム)が認められた。この粉末
を圧力392MPaで円柱状成形物にし、これを破砕し
て粒径1〜4.75mmの破砕物を得た。本破砕物につい
て、前述実施例10と同じ評価方法で試験した結果を表
4に示す。また、実施例10と同様に海水へ投入後のp
Hを測定したところ、実験開始直後の1時間までは実施
例10のpHの上がる速度より若干低かったが、その後
はほとんど同じpH値が示された。
Example 11 Magnesite ore having a grain size of 9.52 mm or more is calcined by using an electric furnace at a temperature of 900 ° C. for 30 minutes, calcined, cooled to room temperature, and ground to a powder of 0.1 mm or less. did. When the constituent minerals of the obtained calcined product were identified by powder X-ray diffraction method,
In addition to periclase (magnesium oxide), undecomposed magnesite (magnesium carbonate) was found. The powder was made into a columnar molded product at a pressure of 392 MPa, and this was crushed to obtain a crushed product having a particle size of 1 to 4.75 mm. Table 4 shows the results of testing the crushed product by the same evaluation method as in Example 10. Also, as in Example 10, p after being added to seawater
When H was measured, it was slightly lower than the rate of increase in pH of Example 10 until 1 hour immediately after the start of the experiment, but thereafter, almost the same pH value was shown.

【0047】実施例10及び11より、天然産苦土系鉱
石を分解温度以上の温度で加熱処理した場合において
も、水中に投入しても崩壊することなく、水を高pH化
する効果のあることが認められた。
From Examples 10 and 11, even when a natural magnesia-based ore is heat-treated at a temperature of decomposition temperature or higher, it does not disintegrate even if it is put into water, and it has an effect of increasing the pH of water. Was confirmed.

【0048】[0048]

【表4】 [Table 4]

【0049】実施例12 水酸化マグネシウム粉末を圧力588MPaで成形し、
破砕後1〜4.75mmに篩分けし嵩密度2.4g/cm3
材料を得た。本材料のMgO含有率、粉化率を表5に、
また水温25℃、pH7.6の海水1lに対し、本材料
20gを投入したところ、崩壊して分散することなく海
水のpHは上がっていった。図5にpHの推移を示す。
Example 12 Magnesium hydroxide powder was molded under a pressure of 588 MPa,
After crushing, it was sieved to 1 to 4.75 mm to obtain a material having a bulk density of 2.4 g / cm 3 . Table 5 shows the MgO content and pulverization rate of this material.
When 20 g of this material was added to 1 liter of seawater having a water temperature of 25 ° C. and a pH of 7.6, the pH of the seawater increased without disintegrating and dispersing. The transition of pH is shown in FIG.

【0050】実施例13 水酸化マグネシウム粉末にマグネシウム塩を3%添加
し、均一混合後圧力196MPaで成形し、破砕し粒径
1〜4.75mmの嵩密度1.8g/cm3 の苦土系材料を得
た。これを30℃で30日間放置した。本材料のMgO
含有率、粉化率を実施例12と同じく表5に示す。更に
実施例12の場合と同じく、水温20℃、pH7.6の
海水1lに対し、本材料20gを投入して、pHを測定
した。海水のpHは投入直後急激に高pH化し、2時間
後にはpH9まで達した後、その後は非常にゆるやかな
上昇カ−ブを描いた。海水へ投入後の本材料の崩壊は観
察されなかった。
Example 13 3% of magnesium salt was added to magnesium hydroxide powder, homogeneously mixed, molded at a pressure of 196 MPa, crushed and crushed to obtain a bulk density of 1.8 g / cm 3 having a particle diameter of 1 to 4.75 mm and a magnesia system. Got the material. This was left at 30 ° C. for 30 days. MgO of this material
The content rate and the pulverization rate are shown in Table 5 as in Example 12. Furthermore, as in Example 12, 20 g of this material was added to 1 liter of seawater having a water temperature of 20 ° C. and a pH of 7.6, and the pH was measured. The pH of the seawater suddenly increased to high immediately after the addition, reached pH 9 after 2 hours, and thereafter, a very gentle rising curve was drawn. No disintegration of this material was observed after it was placed in seawater.

【0051】実施例12及び13より、主として水酸化
マグネシウムからなる造粒物においても、水中に投入
後、崩壊することなく、水を高pH化する効果があるこ
とも認められた。
From Examples 12 and 13, it was also confirmed that even a granulated product mainly composed of magnesium hydroxide has an effect of increasing the pH of water without disintegrating after being poured into water.

【0052】[0052]

【表5】 [Table 5]

【0053】[0053]

【発明の効果】以上のように、低pH化した水質並びに
底質に本発明の難崩壊性苦土系pH調整剤を投与した場
合、従来の石灰系pH調整剤より水中に投入しても崩壊
しにくく、長期に渡って高pH化する効果のあることが
認められた。また従来の石灰系pH調整剤よりもpH調
整能力に優れることが判明した。更には、本材料の投入
により、養殖している生物の歩留り等も向上することが
認められた。したがって、魚類及び水性生物の生息環境
の改善に関して、従来のpH調整剤より更に効率的にp
H調整することが可能であることが認められた。
As described above, when the hardly-disintegrating magnesia-based pH adjusting agent of the present invention is administered to water and sediment having a lowered pH, it can be poured into water rather than the conventional lime-based pH adjusting agent. It was found that it is difficult to disintegrate and has the effect of increasing the pH for a long period of time. It was also found that the pH adjusting ability was superior to that of the conventional lime-based pH adjusting agent. Furthermore, it was confirmed that the addition of this material improves the yield and the like of the organisms cultivated. Therefore, in improving the habitat of fish and aquatic organisms, p is more efficient than conventional pH adjusters.
It was recognized that it is possible to adjust H.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は、本発明の実施例6におけるpH推移
の経時変化を示す線図である。
FIG. 1 is a diagram showing a change over time in pH transition in Example 6 of the present invention.

【図2】 図2は、本発明の実施例8におけるpH推移
の経時変化を示す線図である。
FIG. 2 is a diagram showing a change with time of pH transition in Example 8 of the present invention.

【図3】 図3は、本発明の実施例9及び比較例6にお
けるpH推移の経時変化を示す線図である。
FIG. 3 is a diagram showing a change with time of pH transition in Example 9 of the present invention and Comparative Example 6.

【図4】 図4は、本発明の実施例10におけるpH推
移の経時変化を示す線図である。
FIG. 4 is a diagram showing a change with time of pH transition in Example 10 of the present invention.

【図5】 図5は、本発明の実施例12におけるpH推
移の経時変化を示す線図である。
FIG. 5 is a diagram showing a change with time of pH transition in Example 12 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 国男 山口県宇部市大字小串1985番地 宇部化学 工業株式会社 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kunio Watanabe 1985, Kozugushi, Ube City, Yamaguchi Prefecture Ube Chemical Industry Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 苦土系材料の1種または2種以上の材料
によって構成され、水中投入1時間経過後の粉化率が1
0%以下であることを特徴とする水質並びに底質改良用
の難崩壊性苦土系pH調整剤。
1. A powder composed of one or two or more materials of a magnesia type material, and having a pulverization rate of 1 hour after being placed in water for 1 hour.
A non-disintegrating magnesia-based pH adjuster for improving water quality and bottom sediment, which is 0% or less.
【請求項2】 pH調整剤の嵩密度が2.3g/cm3 を越
えることを特徴とする請求項1記載の水質並びに底質改
良用の難崩壊性苦土系pH調整剤。
2. The hardly-disintegrating magnesia-based pH adjusting agent for improving water quality and bottom sediment according to claim 1, wherein the pH adjusting agent has a bulk density of more than 2.3 g / cm 3 .
【請求項3】 苦土系材料が1000℃以上で加熱した
酸化マグネシウム系材料の1種または2種以上の材料で
ある請求項1又は2記載の水質並びに底質改良用の難崩
壊性苦土系pH調整剤。
3. The hard-to-disintegrate magnesia for improving water quality and bottom sediment according to claim 1 or 2, wherein the magnesia-based material is one or more magnesium oxide-based materials heated at 1000 ° C. or higher. System pH adjuster.
【請求項4】 苦土系材料が天然産苦土系鉱石を分解温
度以上で加熱処理した材料である請求項1〜3記載の水
質並びに底質改良用の難崩壊性苦土系pH調整剤。
4. The hardly-disintegrating magnesia-based pH adjusting agent for improving water quality and bottom sediment according to claim 1, wherein the magnesia-based material is a material obtained by heat-treating naturally occurring magnesia-based ore at a decomposition temperature or higher. .
【請求項5】 苦土系材料がマグネシウム系化合物粉粒
体の成形物またはその破砕物である請求項1〜4記載の
水質並びに底質改良用の難崩壊性苦土系pH調整剤。
5. The hardly-disintegrating magnesia-based pH adjuster for improving water quality and bottom sediment according to claim 1, wherein the magnesia-based material is a molded product of magnesium-based compound powder or a crushed product thereof.
【請求項6】 高pH化する被改質区域1m2当たり、p
H調整剤を1kg以上投入することにより、pHを改質前
のpHより0.5以上上げることが可能であることを特
徴とする請求項1〜5記載の水質並びに底質改良用の難
崩壊性苦土系pH調整剤。
6. A reforming target area 1 m 2 per a high pH reduction, p
The pH of the pre-reforming pH can be increased by 0.5 or more by adding 1 kg or more of the H-adjusting agent, and the water-resistant and bottom sediment-improving disintegration according to claim 1-5. Magnesium based pH adjuster.
【請求項7】 高pH化する被改質水1m3当たり、pH
調整剤を50g以上散布することにより、pHを改質前
のpHより0.5以上上げることが可能であることを特
徴とする請求項1〜5記載の水質並びに底質改良用の難
崩壊性苦土系pH調整剤。
7. The pH per m 3 of the water to be reformed for increasing the pH
The disintegration property for improving water quality and bottom sediment according to claim 1, wherein the pH can be increased by 0.5 or more from the pH before reforming by spraying 50 g or more of the regulator. Magnesium-based pH adjuster.
【請求項8】 pH調整剤から構成される充填層にSV
=1以上で通水することにより、pHを改質前のpHよ
り0.5以上上げることが可能であることを特徴とする
請求項1〜5記載の水質並びに底質改良用の難崩壊性苦
土系pH調整剤。
8. An SV in a packed bed composed of a pH adjusting agent.
It is possible to raise the pH by 0.5 or more than the pH before the reforming by passing water at a rate of = 1 or more. Magnesium-based pH adjuster.
JP8000244A 1996-01-05 1996-01-05 Hard-to-disintegrate magnesia ph adjustor for improving water quality and bottom quality Pending JPH09187775A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8000244A JPH09187775A (en) 1996-01-05 1996-01-05 Hard-to-disintegrate magnesia ph adjustor for improving water quality and bottom quality
TW085100123A TW432016B (en) 1996-01-05 1996-01-06 Hardly degradative magnesia type pH regulator for modifying the water quality and bottom sediment
AU70455/96A AU7045596A (en) 1996-01-05 1996-10-29 Hardly degradable magnesium compound-based pH adjuster for improving water quality and bottom sediment quality
KR1019970000053A KR100213518B1 (en) 1996-01-05 1997-01-04 Hardly degradable magnesium compound-based ph adjuster for improving water quality and bottom sediment quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8000244A JPH09187775A (en) 1996-01-05 1996-01-05 Hard-to-disintegrate magnesia ph adjustor for improving water quality and bottom quality

Publications (1)

Publication Number Publication Date
JPH09187775A true JPH09187775A (en) 1997-07-22

Family

ID=11468549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8000244A Pending JPH09187775A (en) 1996-01-05 1996-01-05 Hard-to-disintegrate magnesia ph adjustor for improving water quality and bottom quality

Country Status (4)

Country Link
JP (1) JPH09187775A (en)
KR (1) KR100213518B1 (en)
AU (1) AU7045596A (en)
TW (1) TW432016B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036336A1 (en) * 1999-11-15 2001-05-25 Green Turtle Technologies Ltd. DEVICE FOR INCREASING pH OF AN AQUEOUS STREAM
JP2008239516A (en) * 2007-03-26 2008-10-09 Hiroto Maeda Method for preventing red tide from developing
JP2011144158A (en) * 2009-08-26 2011-07-28 Kankyo Magnecia Co Ltd Aquatic plant germination inhibitor
JP2018122224A (en) * 2017-01-31 2018-08-09 国立大学法人東北大学 Processing method for acidic hot spring water or acidic mine drainage and sediment produced by the same method
CN109607971A (en) * 2019-01-16 2019-04-12 湖南农业大学 Acid wastewater in mine ecological treatment system and processing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU706136B2 (en) * 1996-01-05 1999-06-10 Ube Material Industries Ltd Granular magnesium compound-based modifier for water quality and bottom sediment quality
KR100317889B1 (en) * 1999-04-07 2001-12-22 최병용 Agent for preventing red-tide

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48104345A (en) * 1972-04-14 1973-12-27
JPS4966564A (en) * 1972-10-27 1974-06-27
JPS52104478A (en) * 1976-02-17 1977-09-01 Nippon Kaisui Kakou Kk Ph regulating agents and manufacture
JPS5710386A (en) * 1980-06-19 1982-01-19 Ebara Infilco Co Ltd Removing method of dissolved substance and suspended substance in water
JPS5869782A (en) * 1981-10-19 1983-04-26 九州耐火煉瓦株式会社 Indefinite form refractories
JPS5891784A (en) * 1981-11-25 1983-05-31 Matsushita Electric Ind Co Ltd Agent and method for neutralizing acidic dew condensate
JPS5826967B2 (en) * 1978-08-22 1983-06-06 協和化学工業株式会社 Method for producing magnesium hydroxide or hydrotalcite compound granules with excellent water resistance
JPS61261244A (en) * 1985-05-15 1986-11-19 新日本化学工業株式会社 Magnesia clinker and manufacture
US4747958A (en) * 1987-07-20 1988-05-31 Eberhardt Thomas E Method and apparatus for treating bodies of water
JPS63283793A (en) * 1987-05-16 1988-11-21 Hasu:Kk Modifying agent for water quality
US4822579A (en) * 1986-09-08 1989-04-18 Deutsche Perlite Gmbh Device for the deacidification of water
JPH02187104A (en) * 1989-01-13 1990-07-23 Mizusawa Ind Chem Ltd Waste water treatment agent
JPH03247508A (en) * 1990-02-22 1991-11-05 Sobuekuree Kk Production of light-burned magnesite
JPH05169069A (en) * 1991-12-25 1993-07-09 Hokkaido Kyodo Sekkai Kk Method for regulating ph of water using shell quick lime

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48104345A (en) * 1972-04-14 1973-12-27
JPS4966564A (en) * 1972-10-27 1974-06-27
JPS52104478A (en) * 1976-02-17 1977-09-01 Nippon Kaisui Kakou Kk Ph regulating agents and manufacture
JPS5826967B2 (en) * 1978-08-22 1983-06-06 協和化学工業株式会社 Method for producing magnesium hydroxide or hydrotalcite compound granules with excellent water resistance
JPS5710386A (en) * 1980-06-19 1982-01-19 Ebara Infilco Co Ltd Removing method of dissolved substance and suspended substance in water
JPS5869782A (en) * 1981-10-19 1983-04-26 九州耐火煉瓦株式会社 Indefinite form refractories
JPS5891784A (en) * 1981-11-25 1983-05-31 Matsushita Electric Ind Co Ltd Agent and method for neutralizing acidic dew condensate
JPS61261244A (en) * 1985-05-15 1986-11-19 新日本化学工業株式会社 Magnesia clinker and manufacture
US4822579A (en) * 1986-09-08 1989-04-18 Deutsche Perlite Gmbh Device for the deacidification of water
JPS63283793A (en) * 1987-05-16 1988-11-21 Hasu:Kk Modifying agent for water quality
US4747958A (en) * 1987-07-20 1988-05-31 Eberhardt Thomas E Method and apparatus for treating bodies of water
JPH02187104A (en) * 1989-01-13 1990-07-23 Mizusawa Ind Chem Ltd Waste water treatment agent
JPH03247508A (en) * 1990-02-22 1991-11-05 Sobuekuree Kk Production of light-burned magnesite
JPH05169069A (en) * 1991-12-25 1993-07-09 Hokkaido Kyodo Sekkai Kk Method for regulating ph of water using shell quick lime

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036336A1 (en) * 1999-11-15 2001-05-25 Green Turtle Technologies Ltd. DEVICE FOR INCREASING pH OF AN AQUEOUS STREAM
GB2371541A (en) * 1999-11-15 2002-07-31 Green Turtle Technologies Ltd Device for increasing pH of an aqueous stream
GB2371541B (en) * 1999-11-15 2003-12-10 Green Turtle Technologies Ltd Device for increasing pH of an aqueous stream
US7378016B2 (en) 1999-11-15 2008-05-27 Green Turtle Americas Ltd. Device for increasing pH of an aqueous stream
JP2008239516A (en) * 2007-03-26 2008-10-09 Hiroto Maeda Method for preventing red tide from developing
JP2011144158A (en) * 2009-08-26 2011-07-28 Kankyo Magnecia Co Ltd Aquatic plant germination inhibitor
JP2018122224A (en) * 2017-01-31 2018-08-09 国立大学法人東北大学 Processing method for acidic hot spring water or acidic mine drainage and sediment produced by the same method
CN109607971A (en) * 2019-01-16 2019-04-12 湖南农业大学 Acid wastewater in mine ecological treatment system and processing method

Also Published As

Publication number Publication date
KR100213518B1 (en) 1999-08-02
KR970059106A (en) 1997-08-12
AU7045596A (en) 1997-07-10
TW432016B (en) 2001-05-01

Similar Documents

Publication Publication Date Title
JP4403095B2 (en) Water environment conservation materials and methods of use
JP2011050934A (en) Solid matter for water purification and marine resource growth
JPH09187775A (en) Hard-to-disintegrate magnesia ph adjustor for improving water quality and bottom quality
JP6469410B2 (en) Materials for supplying nutrients to algae and systems for supplying nutrients to algae
KR100220652B1 (en) Magnesia type modifier of water quality and bottom material
JPH09271786A (en) Ph regulator containing magnesia based material which is not solidified in water
JPH11180808A (en) Agent for preventing occurrence of alga or proliferation of microorganism and its use
JP6864452B2 (en) Material for promoting algae growth
KR100732732B1 (en) Method for stabilization treatment of steel making slag, stabilized steel making slag, and material and method for environmental preservation of water area using said slag
JP6991726B2 (en) Materials for promoting algae growth
JP3256857B2 (en) Environmental purification structure
AU706136B2 (en) Granular magnesium compound-based modifier for water quality and bottom sediment quality
JP6812182B2 (en) Material for promoting algae growth
JPH11319815A (en) Water quality improving mass and production of water quality improving mass
JP2001121161A (en) Round stone for improving water quality and bottom quality
JPH09239375A (en) Granular magnesium based improving agent for water quality and bottom material quality
JP2719716B2 (en) Granules for water quality and sediment improvement with self-disintegration
JP2006325515A (en) Method for producing ocean block
US7309438B2 (en) Mitigation of environmental pollution
KR100578311B1 (en) Manufacturing method of artificial aquatic plants using the force
KR100443661B1 (en) an artificial reef easy to be implantation of the aquatic plant
KR101661643B1 (en) Agent for preventing germination of aquatic plants
JP2013063036A (en) Method for raising aquatic animals, and method for removing nitrate-nitrogen
JP7442971B2 (en) Slag molded bodies and environmental repair materials
JP2004091277A (en) Sintered compact, alkaline water preparation unit, bacteria-containing water preparation apparatus, deodorization plant, concrete product and method for manufacturing the same