JPH09186930A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPH09186930A
JPH09186930A JP8000635A JP63596A JPH09186930A JP H09186930 A JPH09186930 A JP H09186930A JP 8000635 A JP8000635 A JP 8000635A JP 63596 A JP63596 A JP 63596A JP H09186930 A JPH09186930 A JP H09186930A
Authority
JP
Japan
Prior art keywords
zoom lens
focal length
transmittance
exposure
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8000635A
Other languages
Japanese (ja)
Other versions
JP3727994B2 (en
Inventor
Kyoji Tamura
恭二 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP00063596A priority Critical patent/JP3727994B2/en
Publication of JPH09186930A publication Critical patent/JPH09186930A/en
Application granted granted Critical
Publication of JP3727994B2 publication Critical patent/JP3727994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To keep an optimum exposure state even when a focus of a zoom lens is changed by controlling a transmittivity of a transmittivity variable filter in response to the focus of the zoom lens detected by a long distance detection means. SOLUTION: An exposure change due to an object change is detected from a video signal of a camera signal processing means 16 with an exposure control means of a microcomputerg. Based on a detection signal, exposure control parameters by diaphragm mechanism means 5, an electronic shutter controlling a storage time of an image pickup element 12, an exposure control parameter of an AGC gain of a CSD/AGC means are selected and a control arithmetic step for correction amount for each parameter is decided to conduct exposure control, then a prescribed exposure state is always maintained even when a focus of zoom lens 1 is fluctuated and an F-value is change. On the other hand, in response to the focus of the lens 1 detected by a focus means 4, the transmittivity of the filter 9 is made variable to operate correction amount of a surrounding luminous quantity at each focus of the lens 1. The transmittivity of the filter means 9 is controlled by the correction value to correct reduction in the surrounding luminous quantity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は撮像装置の技術分
野、特に露出制御手段を有する撮像装置の技術分野に属
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of imaging devices, and more particularly to the technical field of imaging devices having exposure control means.

【0002】[0002]

【従来の技術】従来の撮像装置の構成、動作について図
11のブロック図を参照して以下に説明する。
2. Description of the Related Art The structure and operation of a conventional image pickup apparatus will be described below with reference to the block diagram of FIG.

【0003】図11に示す撮像装置の構成は、1は被写
体の結像用レンズ群であり焦点距離が可変できるズーム
レンズ、2はズームレンズ1の焦点距離を可変するため
のズームレンズ駆動モーター、3はズームレンズ駆動モ
ーター2を駆動するためのズームレンズ駆動手段、4は
ズームレンズ1の焦点距離を検出する焦点距離検出手
段、5は入射光量を制御する絞り羽根構造の絞り機構手
段、6は絞り機構手段5を駆動するIGメーター等の絞
り機構駆動モーター、7は絞り機構駆動モーター6を駆
動するための絞り機構駆動手段、8は絞り機構手段5の
絞り状態を検出する絞り状態検出手段である。
The structure of the image pickup apparatus shown in FIG. 11 is as follows: 1 is a lens group for forming an image of a subject and has a variable focal length, 2 is a zoom lens drive motor for varying the focal length of the zoom lens 1, 3 is a zoom lens driving means for driving the zoom lens driving motor 2, 4 is a focal length detecting means for detecting the focal length of the zoom lens 1, 5 is a diaphragm mechanism means of a diaphragm blade structure for controlling the amount of incident light, and 6 is A diaphragm mechanism drive motor such as an IG meter for driving the diaphragm mechanism means 7, 7 is a diaphragm mechanism drive means for driving the diaphragm mechanism drive motor 6, and 8 is a diaphragm state detection means for detecting the diaphragm state of the diaphragm mechanism means 5. is there.

【0004】12は入射した光を光電変換する撮像素
子、13は撮像素子12を制御し光電変換された信号を
読み出すとともに、信号の蓄積時間を制御するいわゆる
電子シャッター機能を制御する撮像素子制御回路、14
は撮像素子12で光電変換された信号をサンプリング
し、信号を電気的に増幅するオートゲインコントロール
(以下、AGCと記す)を行うCDS/AGC手段、1
5はCDS/AGC手段14の出力であるアナログ信号
をデジタル信号に変換するアナログ−デジタル変換(以
下、A/D変換と記す)手段、16はガンマー補正、色
分離、色差マトリクス等の処理を施した後、同期信号を
加え標準テレビジョン信号を生成するカメラ信号処理手
段、17はカメラ信号処理手段16の出力信号をデジタ
ル信号状態からアナログ信号に変換するデジタル−アナ
ログ変換(以下、D/A変換と記す)手段、18は撮影
している映像をモニターするための電子ビューファイン
ダー(以下、EVFと記す)、19はズームレンズ1の
焦点距離を撮影者の意図に応じて可変するためのテレ、
ワイドのトリガー信号や露出状態を保持するAEロック
動作を行うためのトリガー信号を入力するキー入力手段
である。
Reference numeral 12 is an image pickup element for photoelectrically converting incident light, and 13 is an image pickup element control circuit for controlling the image pickup element 12 to read out a photoelectrically converted signal and for controlling a so-called electronic shutter function for controlling a signal accumulation time. , 14
Is a CDS / AGC means for performing automatic gain control (hereinafter referred to as AGC) for sampling a signal photoelectrically converted by the image sensor 12 and electrically amplifying the signal, 1
Reference numeral 5 is an analog-digital conversion (hereinafter referred to as A / D conversion) means for converting an analog signal output from the CDS / AGC means 14 into a digital signal, and 16 is processing such as gamma correction, color separation, and color difference matrix. After that, a camera signal processing means for adding a synchronizing signal to generate a standard television signal, and a digital-analog conversion 17 for converting an output signal of the camera signal processing means 16 from a digital signal state to an analog signal (hereinafter referred to as D / A conversion). 18) is an electronic viewfinder (hereinafter referred to as EVF) for monitoring the image being photographed, 19 is a telephoto for changing the focal length of the zoom lens 1 according to the photographer's intention,
It is a key input means for inputting a wide trigger signal and a trigger signal for performing an AE lock operation for holding the exposure state.

【0005】21はキー入力手段19の信号を検出しズ
ームレンズの焦点距離を制御する手段や、絞り機構5、
撮像素子12の電子シャッター機能、CDS/AGC手
段14のAGCを制御して露出を制御する露出制御手段
を備えたマイクロコンピューターである。
Reference numeral 21 denotes means for detecting a signal from the key input means 19 to control the focal length of the zoom lens, diaphragm mechanism 5,
The microcomputer is provided with an exposure control means for controlling the exposure by controlling the electronic shutter function of the image sensor 12 and the AGC of the CDS / AGC means 14.

【0006】上記構成を備えた撮像装置において、様々
な場所、様々な状況下で簡単な撮影で最適な映像が得ら
れることを可能とするために、前記カメラ信号処理手段
16の映像信号より被写体の明るさの変化を検出し、前
記マイクロコンピュータ21の露出制御手段において前
記検出信号に応じて絞り機構手段5、撮像素子12の蓄
積時間を制御する電子シャッター、CDS/AGC手段
14のAGCゲイン等の露出制御パラメーターの選択及
び各パラメーターの補正量を決定し、常に安定した最適
な露出になるように制御を行う。
In the image pickup apparatus having the above-mentioned structure, in order to obtain an optimum image by simple photographing in various places and under various conditions, the object is detected from the image signal of the camera signal processing means 16. Of the aperture of the CDS / AGC unit 14 by detecting the change in the brightness of the image pickup device and controlling the storage time of the diaphragm mechanism unit 5 and the image pickup device 12 according to the detection signal in the exposure control unit of the microcomputer 21. The exposure control parameters are selected and the correction amount of each parameter is determined, and control is performed so that stable and optimum exposure is always obtained.

【0007】例えば前記マイクロコンピュータ21の露
出制御手段が図12に示す制御フローチャート及び図1
3のプログラム線図のように制御が行われる場合、屋外
などの十分な照度下での撮影(図13に示すエリアB)
では図12の制御フローチャートに従ってAGCゲイン
は最低ゲインに固定し、露出データ検出ステップS12
1で検出した信号に応じた絞り機構手段5の制御量を制
御値演算ステップS127で求める。
For example, the exposure control means of the microcomputer 21 is a control flowchart shown in FIG. 12 and FIG.
When the control is performed as shown in the program diagram in Fig. 3, shooting under sufficient illuminance such as outdoors (area B shown in Fig. 13)
Then, the AGC gain is fixed to the minimum gain according to the control flowchart of FIG. 12, and the exposure data detection step S12
The control amount of the diaphragm mechanism means 5 corresponding to the signal detected in 1 is obtained in the control value calculation step S127.

【0008】被写体の明るさが暗くなり絞り状態検出手
段8で検出する絞り機構手段5の絞り状態が解放状態
(図13に示すエリアA)になり、絞り機構手段5で制
御できなくなると絞り機構手段5を開放状態に固定し、
被写体の明るさに応じたAGCゲインの制御量を制御値
演算ステップS125で求める。
When the brightness of the subject becomes dark and the diaphragm state of the diaphragm mechanism means 5 detected by the diaphragm state detection means 8 becomes the released state (area A shown in FIG. 13) and the diaphragm mechanism means 5 cannot control the diaphragm mechanism. Fix the means 5 in the open state,
The control amount of the AGC gain according to the brightness of the subject is calculated in the control value calculation step S125.

【0009】このようにして得られた各パラメーターの
制御値を制御値出力ステップS128で出力し、制御値
を更新することで常に被写体の明るさに追従して最適な
露出状態になる制御を行う。これにより被写体の明るさ
が変化しても撮影者の手を煩わすこと無く、自動で最適
な露出制御を行う自動露出制御手段が可能になる。
The control value of each parameter obtained in this way is output in the control value output step S128, and the control value is updated so that the brightness of the subject is always followed to achieve the optimum exposure state. . As a result, even if the brightness of the subject changes, it is possible to provide automatic exposure control means for automatically performing optimum exposure control without bothering the photographer.

【0010】しかし前述した自動露出制御手段では常に
ズームレンズ1から入射してくる被写体の明るさに応じ
て露出状態を制御しているために、主被写体の明るさが
変化していなくてもズームレンズ1による焦点距離の変
動や主被写体の移動等により周辺被写体の明るさが変化
すると露出制御状態も変化する。その為、主被写体の露
出状態が最適になっていても周辺被写体の明るさが変化
すると露出制御状態が変化し、結果的に主被写体の露出
状態が不適性になる問題がある。
However, since the above-mentioned automatic exposure control means always controls the exposure state according to the brightness of the subject coming from the zoom lens 1, the zoom is performed even if the brightness of the main subject does not change. When the brightness of the surrounding subject changes due to the change of the focal length by the lens 1 or the movement of the main subject, the exposure control state also changes. Therefore, even if the exposure state of the main subject is optimal, if the brightness of the surrounding subject changes, the exposure control state changes, and as a result, the exposure state of the main subject becomes unsuitable.

【0011】このような撮影状況に対応するために従来
より最適な露出制御状態を保持する露出状態保持手段で
ある、いわゆるAEロック手段が考案されている。AE
ロック手段の動作は撮影者がモニター手段であるEVF
18の画面を確認しながら保持したい露出状態の時、キ
ー入力手段19のAEロックキーからトリガー信号を入
力することで、該トリガー信号をマイクロコンピュータ
ー21で検出し、図12に示す制御フローチャートに従
って、制御値演算ステップS129でトリガー信号が入
力した時点の絞り機構手段5、撮像素子12の蓄積時間
を制御する電子シャッター、CDS/AGC回路14の
AGCゲインの各露出制御パラメーターの補正量を保持
することで行われる。
In order to deal with such a photographing situation, so-called AE lock means, which is an exposure state holding means for holding an optimum exposure control state, has been conventionally devised. AE
The operation of the lock means is an EVF which is a monitor means by the photographer.
When the exposure state is desired to be held while checking the screen of 18, the trigger signal is detected by the microcomputer 21 by inputting a trigger signal from the AE lock key of the key input means 19, and according to the control flowchart shown in FIG. Hold the correction amount of each exposure control parameter of the aperture mechanism unit 5, the electronic shutter that controls the accumulation time of the image sensor 12, the AGC gain of the CDS / AGC circuit 14 when the trigger signal is input in the control value calculation step S129. Done in.

【0012】前記AEロック手段は主被写体と周辺被写
体との明るさの差が大きく、自動制御手段では主被写体
の露出状態が最適にならない時、例えば逆光での人物撮
影の場合、背景の明るい部分に影響され人物の露出人物
の露出状態が暗く沈む、いわゆる黒つぶれになったり、
逆にスポットライト光で照らされた人物撮影のように過
順光の場合に人物の露出状態が明るくなり過ぎてしま
う、いわゆる白飛びになったりする撮影状況において、
ズームレンズ1の焦点距離を変化させて主被写体をズー
ムアップすることで周辺被写体の明るさの影響をなく
し、主被写体の露出状態が最適になったところでAEロ
ック動作を行い、その後、ズームレンズの焦点距離を戻
し、撮影者の意図する画郭に合わせて撮影を開始するよ
うな撮影方法がある。
The AE lock means has a large difference in brightness between the main subject and the surrounding subject, and when the exposure state of the main subject is not optimal by the automatic control means, for example, in the case of photographing a person against backlight, the bright part of the background People's exposure is affected by, and the exposure state of the person becomes darker, so-called black shadow,
Conversely, in a shooting situation where the exposure state of the person becomes too bright in the case of over-forward light, such as when shooting a person illuminated by a spotlight light, so-called overexposure,
By changing the focal length of the zoom lens 1 to zoom up the main subject, the influence of the brightness of the peripheral subject is eliminated, and the AE lock operation is performed when the exposure state of the main subject is optimal. There is a shooting method in which the focal length is returned and shooting is started in accordance with the image frame intended by the photographer.

【0013】[0013]

【発明が解決しようとする課題】しかしながら上述のよ
うにAEロック手段を用いるにも係わらず、ズームレン
ズ1からの入射光量が一定で、入射光量を制限する絞り
機構手段5が一定状態であっても、ズームレンズによっ
ては焦点距離によりレンズのF値が変化するものがある
ために撮像素子12の撮像素子面に入射する光量が変動
し、最適な状態でAEロック動作を行ってもズームレン
ズの焦点距離を変化させるとAEロック動作を行った時
点の露出状態から変化し、最適な露出状態が保たれない
問題がある。
However, even though the AE lock means is used as described above, the amount of incident light from the zoom lens 1 is constant and the diaphragm mechanism means 5 for limiting the amount of incident light is in a constant state. However, depending on the zoom lens, the F value of the lens changes depending on the focal length, so the amount of light incident on the image sensor surface of the image sensor 12 fluctuates, and even if the AE lock operation is performed in an optimum state, the zoom lens When the focal length is changed, it changes from the exposure state at the time of performing the AE lock operation, and there is a problem that the optimum exposure state cannot be maintained.

【0014】また一般的に結像用レンズはコンパクト性
と収差等の性能とのバランスを考慮して設計されるため
十分に性能を満足するレンズばかりではない。その中で
開口効率もコンパクト性とのバランスで設計され、実用
上支障の無い範囲で小さくしているため斜めから入射し
てくる光はケラレが起こり、撮像素子12の撮像素子面
に入射する光量が撮像素子の中心部分の光量よりも周辺
部分の光量が落ちる、いわゆる周辺光量落ちの問題が生
じる。更に開口効率は焦点距離によって影響されるため
ズームレンズでは焦点距離が変化すると周辺光量落ちも
変化する。その為AEロック動作を行わない通常の自動
露出制御手段においても画面全体を平均した露出状態は
適正になるように制御されるが、周辺光量落ちによりシ
ェーディングが生じ、均一の明るさの被写体を撮影して
も中心部分の露出状態はオーバーぎみに、周辺部分の露
出状態はアンダーぎみになる現象が起こり、更にズーム
レンズ1の焦点距離を変化させるとシェーディング状態
が変化するため、安定した露出状態の映像が得られない
問題がある。
Further, since the image forming lens is generally designed in consideration of the balance between compactness and performance such as aberration, not only the lens sufficiently satisfying the performance is required. Among them, the aperture efficiency is designed in balance with compactness, and it is made small within a range that does not hinder practical use, so that light that enters obliquely causes vignetting and the amount of light that enters the image sensor surface of the image sensor 12. However, there is a problem of so-called peripheral light amount drop, in which the light amount of the peripheral portion is lower than the light amount of the central portion of the image sensor. Further, since the aperture efficiency is influenced by the focal length, the peripheral light amount drop also changes in the zoom lens when the focal length changes. Therefore, even with a normal automatic exposure control means that does not perform the AE lock operation, the average exposure state of the entire screen is controlled to be appropriate, but shading occurs due to peripheral light drop, and a subject of uniform brightness is photographed. Even if the central part is overexposed and the peripheral part is underexposed, the shading condition changes when the focal length of the zoom lens 1 is changed. There is a problem that images cannot be obtained.

【0015】本発明は、ズームレンズの焦点距離を変化
させても、最適な露出状態を保持することが可能な撮像
装置を提供することを目的とする。
An object of the present invention is to provide an image pickup apparatus capable of maintaining an optimum exposure state even if the focal length of a zoom lens is changed.

【0016】[0016]

【課題を解決するための手段】このため、本発明に係る
撮像装置は、 (1)被写体の結像用レンズ群であり焦点距離が可変で
きるズームレンズと、該ズームレンズより入射した光を
光電変換する撮像素子と、前記ズームレンズの光路上に
設けられた前記撮像素子に入射する光の透過率を変化さ
せる透過率可変フィルター手段と、前記撮像素子で光電
変換された信号に処理を施しテレビジョン信号となる映
像信号を生成する信号処理手段と、前記ズームレンズの
焦点距離を検出する焦点距離検出手段と、制御手段とを
備えた撮像装置であって、前記制御手段は、前記焦点距
離検出手段で検出した前記ズームレンズの焦点距離に応
じて前記透過率可変フィルター手段の光透過率を制御す
ることを特徴とする撮像装置。
For this reason, the image pickup apparatus according to the present invention comprises: (1) a zoom lens which is a lens group for forming an image of a subject and has a variable focal length, and a light incident from the zoom lens. An image pickup device for conversion, a transmittance variable filter unit provided on the optical path of the zoom lens for changing the transmittance of light incident on the image pickup device, and a television which processes a signal photoelectrically converted by the image pickup device. An image pickup apparatus comprising: a signal processing unit that generates a video signal that is a John signal; a focal length detecting unit that detects the focal length of the zoom lens; and a controlling unit, wherein the controlling unit detects the focal length. An image pickup apparatus, wherein the light transmittance of the transmittance variable filter means is controlled according to the focal length of the zoom lens detected by the means.

【0017】(2)被写体の結像用レンズ群であり焦点
距離が可変できるズームレンズと、該ズームレンズより
入射した光を光電変換する撮像素子と、前記ズームレン
ズの光路上に設けられた前記撮像素子に入射する光の透
過率を変化させる透過率可変フィルター手段と、前記撮
像素子で光電変換された信号に処理を施しテレビジョン
信号となる映像信号を生成する信号処理手段と、前記ズ
ームレンズの焦点距離を検出する焦点距離検出手段と、
前記映像信号に応じて露出状態を制御する露出制御手段
と、該露出制御手段の露出状態を保持する露出状態保持
手段と、前記ズームレンズの焦点距離に応じて露出状態
を補正するF値補正手段を備えた撮像装置であって、前
記露出状態保持手段で保持動作を行っている場合に、前
記焦点距離検出手段で検出した前記ズームレンズの焦点
距離に応じて、前記F値補正手段で前記透過率可変フィ
ルター手段の光透過率を制御して露出状態を補正するこ
とを特徴とする撮像装置。
(2) A zoom lens which is a lens group for forming an image of a subject and whose focal length is variable, an image pickup element for photoelectrically converting light incident from the zoom lens, and the above-mentioned optical path provided on the zoom lens. Transmittance variable filter means for changing the transmittance of light incident on the image sensor, signal processing means for processing a signal photoelectrically converted by the image sensor to generate a video signal to be a television signal, and the zoom lens Focal length detection means for detecting the focal length of
Exposure control means for controlling the exposure state according to the video signal, exposure state holding means for holding the exposure state of the exposure control means, and F value correction means for correcting the exposure state according to the focal length of the zoom lens. In the case where the exposure state holding means is performing a holding operation, the F-value correction means performs the transmission according to the focal length of the zoom lens detected by the focal length detection means. An image pickup apparatus, characterized in that the exposure state is corrected by controlling the light transmittance of the variable rate filter means.

【0018】(3)前記信号処理手段は映像信号を電気
的に増幅するオートゲインコントロール手段を有し、前
記露出制御手段で制御している露出状態を前記露出状態
保持手段で保持する動作を行っている場合に、前記焦点
距離検出手段で検出した前記ズームレンズの焦点距離に
応じて、前記F値補正手段で前記透過率可変フィルター
手段の光透過率と前記オートゲインコントロール手段の
ゲインを制御して露出状態を補正することを特徴とする
前記(2)記載の撮像装置。
(3) The signal processing means has an automatic gain control means for electrically amplifying a video signal, and performs an operation of holding the exposure state controlled by the exposure control means by the exposure state holding means. In this case, the F value correcting means controls the light transmittance of the transmittance variable filter means and the gain of the automatic gain control means in accordance with the focal length of the zoom lens detected by the focal length detecting means. The image pickup apparatus according to (2) above, wherein the image pickup apparatus corrects the exposure state.

【0019】によって、前記の目的を達成するものであ
る。
By the above, the above-mentioned object is achieved.

【0020】[0020]

【発明の実施の形態】本発明に係わる撮像装置は、ズー
ムレンズの焦点距離の変化によるF値の変動や周辺光量
落ちによる露出状態の変化を補正する手段を備えたこと
を特徴とする構成によって、前記目的を達成しようとす
るものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An image pickup apparatus according to the present invention is provided with a means for correcting a change in F-number due to a change in focal length of a zoom lens and a change in exposure state due to a drop in peripheral light amount. It is intended to achieve the above object.

【0021】そして、上記の構成により、ズームレンズ
の焦点距離を変化させても、最適な露出状態を保持する
ことができる露出制御が可能となり、焦点距離を変化さ
せて撮影者の意図する画郭に合わせた撮影が行え、様々
な被写体や撮影状況に応じた最適な映像を提供すること
ができる。
With the above arrangement, even if the focal length of the zoom lens is changed, it becomes possible to control the exposure so that the optimum exposure state can be maintained. By changing the focal length, the image frame intended by the photographer can be obtained. It is possible to provide the optimum video according to various subjects and shooting conditions.

【0022】[0022]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0023】(第1の実施例)図1は、本発明の第1の
実施例の構成を表すブロック図である。従来例と同符号
1〜8,12〜19で示した部分は従来と同様の機能を
有するものであり、映像信号を処理する過程は同様であ
る。
(First Embodiment) FIG. 1 is a block diagram showing the configuration of the first embodiment of the present invention. The parts denoted by the same reference numerals 1 to 8 and 12 to 19 as in the conventional example have the same functions as in the conventional example, and the process of processing the video signal is the same.

【0024】本実施例では、入射光の光透過率を変化さ
せる透過率可変フィルター手段9、透過率可変フィルタ
ー手段9を駆動する透過率可変フィルター駆動手段1
0、透過率可変フィルター手段9の光透過率を検出する
透過率検出手段11が追加され、ズームレンズの焦点距
離によって変化する周辺光量落ちによる露出状態を補正
する露出補正手段が追加された露出制御手段を備えたマ
イクロコンピューター20が本実施例の特徴ある構成で
ある。
In this embodiment, the transmittance variable filter means 9 for changing the light transmittance of incident light and the transmittance variable filter driving means 1 for driving the transmittance variable filter means 9 are used.
0, the transmittance detecting means 11 for detecting the light transmittance of the variable transmittance filter means 9 is added, and the exposure control means for correcting the exposure state due to the peripheral light amount drop which changes according to the focal length of the zoom lens is added. The microcomputer 20 provided with the means is a characteristic configuration of this embodiment.

【0025】次に本実施例の特徴である露出制御手段の
動作について、図2に示す制御フローチャートを参照し
て説明する。
Next, the operation of the exposure control means, which is a feature of this embodiment, will be described with reference to the control flow chart shown in FIG.

【0026】一般的にズームレンズは焦点距離がテレ側
になるほどF値が大きくなり、一定光量がズームレンズ
1に入射しても撮像素子12の撮像素子面に入射する光
量はテレ側になるほど落ちることになる。しかし従来と
同様にマイクロコンピューターの露出制御手段によりカ
メラ信号処理手段16の映像信号より被写体の変化によ
る露出の変化を検出し、該検出信号を基に絞り機構手段
5、撮像素子12の蓄積時間を制御する電子シャッタ
ー、CSD/AGC手段14のAGCゲインの露出制御
パラメーターの選択及び各パラメーターの補正量を前記
説明した図13に示すプログラム線図に従って制御値演
算ステップS104,S106で決定し、露出制御を行
うことでズームレンズ1の焦点距離が変動してF値が変
化しても常に一定の露出状態を保つことができる。
Generally, in a zoom lens, the F value increases as the focal length becomes closer to the telephoto side, and even if a constant amount of light enters the zoom lens 1, the amount of light incident on the image pickup device surface of the image pickup device 12 decreases toward the telephoto side. It will be. However, as in the conventional case, the exposure control means of the microcomputer detects the change in exposure due to the change of the subject from the video signal of the camera signal processing means 16, and based on the detected signal, the accumulation time of the diaphragm mechanism means 5 and the image pickup device 12 is determined. The electronic shutter to be controlled, the selection of the exposure control parameter of the AGC gain of the CSD / AGC means 14, and the correction amount of each parameter are determined in the control value calculation steps S104 and S106 according to the program diagram shown in FIG. By performing the above, it is possible to always maintain a constant exposure state even if the focal length of the zoom lens 1 changes and the F value changes.

【0027】しかし前記露出制御手段だけでは画面全体
を平均した露出状態は適正になるように制御されるが、
図3に示す(a)のように撮像素子面に入射する光量は
周辺部分ほど下がる周辺光量落ちによりシェーディング
が生じ、図3に示す(b)のように均一の明るさの被写
体を撮影しても中心部分の露出状態はオーバーぎみに、
周辺部分の露出状態はアンダーぎみになる現象は防げな
い。更に前記現象はズームレンズ1の焦点距離によって
も変化する。この周辺光量落ちを周辺光量補正ステップ
S108で補正する。
However, although the exposure control means alone controls the exposure state in which the entire screen is averaged,
As shown in (a) of FIG. 3, the amount of light incident on the image sensor surface decreases toward the peripheral portion, and shading occurs due to the fall of peripheral light amount, and as shown in (b) of FIG. 3, a subject having uniform brightness is photographed. Also, the exposed state of the center part is over-exposed,
It is not possible to prevent the phenomenon that the exposed state of the peripheral part becomes underexposed. Furthermore, the phenomenon also changes depending on the focal length of the zoom lens 1. The peripheral light amount drop is corrected in the peripheral light amount correction step S108.

【0028】周辺光量補正ステップS108では、焦点
距離検出手段4により検出したズームレンズ1の焦点距
離に応じて、透過率可変フィルター手段9の光透過率を
可変してズームレンズ1の各焦点距離における周辺光量
落ちを補正するための補正量を演算する。透過率可変フ
ィルター手段9は図4に示すように複数のエリアに分割
し、各エリア毎に光透過率を制御できるもので、ここで
は4分割した例が示してある。
In the peripheral light amount correction step S108, the light transmittance of the variable transmittance filter unit 9 is varied according to the focal length of the zoom lens 1 detected by the focal length detecting unit 4 to change the light transmittance at each focal length of the zoom lens 1. A correction amount for correcting the peripheral light drop is calculated. The variable transmittance filter means 9 is divided into a plurality of areas as shown in FIG. 4, and the light transmittance can be controlled for each area. Here, an example in which it is divided into four is shown.

【0029】周辺光量補正ステップS108では、図5
に示すように前記ズームレンズ1の各焦点距離に応じて
周辺光量落ちを補正する透過率可変フィルター手段9の
各エリアの光透過率データを予め設定したルックアップ
テーブル(以下、LUTと記す)を備え、焦点距離検出
手段4より検出したズームレンズ1の焦点距離に応じて
前記LUTより補正データを選択し、該選択された補正
値により透過率可変フィルター手段9の光透過率を制御
することで周辺光量落ちが補正される。
In step S108 for correcting the amount of peripheral light, FIG.
As shown in, a look-up table (hereinafter referred to as LUT) in which the light transmittance data of each area of the variable transmittance filter unit 9 for correcting the peripheral light amount drop according to each focal length of the zoom lens 1 is set in advance is shown. Compensation data is selected from the LUT according to the focal length of the zoom lens 1 detected by the focal length detection unit 4, and the light transmittance of the transmittance variable filter unit 9 is controlled by the selected correction value. The peripheral light falloff is corrected.

【0030】(第2の実施例)以下、本発明の第2の実
施例を図面を参照して説明する。
(Second Embodiment) A second embodiment of the present invention will be described below with reference to the drawings.

【0031】本発明の第2の実施例の構成を示すブロッ
ク図は図1に示す第1の実施例の構成を示すブロック図
と同様であり図1を参照する。なお、第2の実施例はマ
イクロコンピュータ20の内部処理が異なりズームレン
ズの焦点距離によるF値の変動による露出の変化を補正
するF値補正手段が追加された露出制御手段を備えてい
る。
The block diagram showing the configuration of the second embodiment of the present invention is similar to the block diagram showing the configuration of the first embodiment shown in FIG. 1, and reference is made to FIG. The second embodiment differs from the internal processing of the microcomputer 20 and is provided with an exposure control means in which an F value correction means for correcting the change in exposure due to the change in F value due to the focal length of the zoom lens is added.

【0032】一般的にズームは焦点距離がテレ側になる
ほどF値が大きくなり、一定光量がズームレンズ1に入
射しても撮像素子12の撮像素子面に入射する光量はテ
レ側になるほど落ちることになる。
Generally, in zooming, the F value increases as the focal length becomes closer to the telephoto side, and even if a constant amount of light enters the zoom lens 1, the amount of light incident on the image pickup device surface of the image pickup device 12 decreases toward the telephoto side. become.

【0033】例えばズームレンズの焦点距離に対するF
値の特性が図6に示すのような場合、ワイド端での撮
像素子12の撮像素子面に入射する光量を100%とす
ると焦点距離に対する撮像素子12に入射する光量は図
7に示すのように変化する。図6に示すようにワイド
端のF値がF1.4でテレ端のF値がF2.8であれば
テレ端での撮像素子面の光量はワイド端の約1/4にな
る。またAEロック手段により絞り機構手段5の絞り状
態がF2の状態で固定されている場合のズームレンズ1
の焦点距離に対するF値の変化は図6に示すの様にな
り、その時の撮像素子12の撮像素子面に入射する光量
は図7に示すのようなる。このように焦点距離に対す
るF値の変化は絞り機構手段5の絞り状態によっても異
なる。
For example, F with respect to the focal length of the zoom lens
In the case where the value characteristic is as shown in FIG. 6, assuming that the amount of light incident on the image sensor surface of the image sensor 12 at the wide end is 100%, the amount of light incident on the image sensor 12 with respect to the focal length is as shown in FIG. Changes to. As shown in FIG. 6, when the F value at the wide end is F1.4 and the F value at the tele end is F2.8, the light amount on the image pickup element surface at the tele end is about ¼ of that at the wide end. Further, the zoom lens 1 when the aperture state of the aperture mechanism unit 5 is fixed at F2 by the AE lock unit
The change in the F value with respect to the focal length is as shown in FIG. 6, and the amount of light incident on the image sensor surface of the image sensor 12 at that time is as shown in FIG. As described above, the change of the F value with respect to the focal length also differs depending on the diaphragm state of the diaphragm mechanism means 5.

【0034】本実施例のマイクロコンピュータ20の備
えたF値補正手段は、前述したズームレンズ1の焦点距
離に対するF値の変化に対する撮像素子面の光量の変化
を透過率可変フィルター手段9を用いて補正する構成で
あり、焦点距離が変化しても撮像素子面に入射する光が
一定になるように透過率可変フィルター手段9の光透過
率を可変して補正する。
The F value correcting means provided in the microcomputer 20 of this embodiment uses the variable transmittance filter means 9 for the change of the light amount of the image pickup element surface with respect to the change of the F value with respect to the focal length of the zoom lens 1 described above. The correction is performed, and the light transmittance of the transmittance variable filter unit 9 is changed and corrected so that the light incident on the image pickup element surface becomes constant even if the focal length changes.

【0035】F値補正手段にはそのため補正データを格
納したルックアップテーブル(以下、LUTと記す)を
備えている。このLUTのデータは撮像素子12の撮像
素子面に入射する光量が一定になるために必要な補正量
であり、前述したように絞り機構手段5の絞り状態によ
って補正量が異なるため絞り状態に応じて複数のテーブ
ルを備えている。
For this reason, the F value correcting means is provided with a look-up table (hereinafter referred to as LUT) which stores correction data. The data of this LUT is a correction amount necessary for keeping the amount of light incident on the image sensor surface of the image sensor 12 constant, and as described above, the correction amount varies depending on the diaphragm state of the diaphragm mechanism means 5, so that it depends on the diaphragm state. It has multiple tables.

【0036】図8に図6に示すような特性を持ったズー
ムレンズの場合のF値補正手段のLUTの代表的なテー
ブルを示す。
FIG. 8 shows a typical table of the LUT of the F value correction means in the case of the zoom lens having the characteristics shown in FIG.

【0037】次に本実施例の特徴であるAEロック手段
の動作について図9の制御フローチャートを参照して説
明する。
Next, the operation of the AE lock means, which is a feature of this embodiment, will be described with reference to the control flowchart of FIG.

【0038】通常は従来と同様にマイクロコンピュータ
ー20の露出制御手段によりカメラ信号処理手段16の
映像信号より被写体の変化による露出の変化を検出し、
該検出信号を基に絞り機構手段5、撮像素子12の蓄積
時間を制御する電子シャッター、CSD/AGC手段1
4のAGCゲインの露出制御パラメーターの選択及び各
パラメーターの補正量を図13に示すプログラム線図に
従って制御値演算ステップS205,S207で決定
し、常に安定した最適な露出になるように制御を行う。
この時、透過率可変フィルター手段9の光透過率は所定
の透過率に固定されている。ここでは第1の実施例のよ
うに複数のエリアに分割するのではなく全域同じ光透過
率で制御されるもので、例えば光透過率を25%に固定
するものとする。なお前記透過率可変フィルター手段9
の光透過率は透過率検出手段により検出し、一定の透過
率になるようにマイクロコンピューター20で制御され
る。
Normally, as in the conventional case, the exposure control means of the microcomputer 20 detects the change in exposure due to the change of the subject from the video signal of the camera signal processing means 16,
A diaphragm mechanism means 5, an electronic shutter for controlling the storage time of the image sensor 12, and a CSD / AGC means 1 based on the detection signal.
The selection of the exposure control parameter of AGC gain of No. 4 and the correction amount of each parameter are determined in the control value calculation steps S205 and S207 according to the program diagram shown in FIG. 13, and the control is performed so that the exposure is always stable and optimal.
At this time, the light transmittance of the variable transmittance filter means 9 is fixed at a predetermined transmittance. Here, instead of being divided into a plurality of areas as in the first embodiment, it is controlled with the same light transmittance over the entire area. For example, the light transmittance is fixed at 25%. The variable transmittance filter means 9
The light transmittance of is detected by the transmittance detecting means, and is controlled by the microcomputer 20 so that the light transmittance becomes constant.

【0039】次に、撮影者が適正になった露出状態を保
持したい時にキー入力手段19からAEロック要求のト
リガー信号を入力することでAEロック動作を行う。前
記トリガー信号をマイクロコンピューター20で検出
し、AEロックキー判別ステップS202でキー情報を
判別してAEロック動作要求の場合は制御値演算ステッ
プS210でその時点の絞り機構手段5、電子シャッタ
ー、AGCゲインの各露出制御パラメーターの制御値を
保持することで行われる。
Next, when the photographer wants to maintain the proper exposure state, the AE lock operation is performed by inputting the trigger signal of the AE lock request from the key input means 19. When the trigger signal is detected by the microcomputer 20, the key information is discriminated in the AE lock key discrimination step S202, and in the case of the AE lock operation request, in the control value calculation step S210, the aperture mechanism means 5, the electronic shutter, the AGC gain at that time. It is carried out by holding the control value of each exposure control parameter.

【0040】この時、AEロック動作した時点の絞り機
構手段5の絞り状態を絞り状態検出手段8により検出
し、またズームレンズ1の焦点距離を焦点距離検出手段
4により検出し、F値補正データ選択ステップS211
で前記検出した絞り機構手段5の絞り状態に対応したL
UTを選択し、該選択したLUTより前記検出したズー
ムレンズ1の焦点距離に対応したF値補正データを選択
し、基準データとする。
At this time, the diaphragm state of the diaphragm mechanism means 5 at the time of the AE lock operation is detected by the diaphragm state detecting means 8, and the focal length of the zoom lens 1 is detected by the focal length detecting means 4 to obtain the F value correction data. Selection step S211
L corresponding to the diaphragm state of the diaphragm mechanism means 5 detected in
The UT is selected, and the F-number correction data corresponding to the detected focal length of the zoom lens 1 is selected from the selected LUT and used as reference data.

【0041】次にズームレンズ1の焦点距離が変化した
時、その時の焦点距離を検出し、F値補正データ選択ス
テップS211で基準データを演算した時に選択したL
UTより焦点距離に対応したF値補正データを選択す
る。F値補正量演算ステップS214では前記選択した
F値補正データと前記基準データとを比較し、ズームレ
ンズの焦点距離が変化してF値が変動したことによる撮
像素子12の撮像素子面の光量の変化を一定にするのに
必要な補正量を求める。例えば絞り機構手段がF1.4
の状態でAEロック動作した場合、選択されるLUTは
図8に示すLUT1であり、ズームレンズ1の焦点距離
が図8に示すLUT1のの状態の場合、F値補正デー
タ選択ステップS211では基準データとして+6dB
が選択される。焦点距離が図8に示すLUT1のの状
態に変化した場合はF値補正データとして+12dBが
選択され、F値補正量演算ステップS214で F値補正量=(現在のF値補正データ−基準データ) が演算され、AEロック動作時の撮像素子12の撮像素
子面の入射光量を一定にするために必要な補正量+6d
Bが求められる。この補正量により透過率演算ステップ
S215で透過率可変フィルター手段9の光透過率制御
のためのデータに変換する。ここではF値補正量が+6
dBであるためAEロック動作前の自動露出制御状態の
透過率可変フィルター手段9の光透過率が25%に固定
している場合、補正後の透過率可変フィルター手段9の
光透過率は50%に制御することにより撮像素子面に入
射する光量が一定に保たれる。
Next, when the focal length of the zoom lens 1 changes, the focal length at that time is detected and L selected when the reference data is calculated in the F value correction data selection step S211.
The F value correction data corresponding to the focal length is selected from the UT. In the F value correction amount calculation step S214, the selected F value correction data and the reference data are compared, and the amount of light on the image sensor surface of the image sensor 12 due to the change of the focal length of the zoom lens and the change of the F value is detected. Find the amount of correction needed to keep the change constant. For example, the diaphragm mechanism means F1.4
When the AE lock operation is performed in this state, the selected LUT is the LUT1 shown in FIG. 8, and in the state where the focal length of the zoom lens 1 is the LUT1 shown in FIG. As +6 dB
Is selected. When the focal length changes to the state of LUT1 shown in FIG. 8, +12 dB is selected as the F value correction data, and in the F value correction amount calculation step S214, the F value correction amount = (current F value correction data−reference data). Is calculated, and a correction amount required to keep the amount of incident light on the image sensor surface of the image sensor 12 during the AE lock operation constant + 6d
B is required. Based on this correction amount, it is converted into data for controlling the light transmittance of the variable transmittance filter means 9 in the transmittance calculation step S215. Here, the F value correction amount is +6
Since the value is dB, if the light transmittance of the variable transmittance filter means 9 in the automatic exposure control state before the AE lock operation is fixed at 25%, the corrected light transmittance of the variable transmittance filter means 9 is 50%. The amount of light incident on the surface of the image sensor is kept constant by controlling the above.

【0042】逆にズームレンズ1の焦点距離が図8に示
すLUT1のの状態に変化した場合、F値補正データ
として0dBが選択され、その時必要な補正量が−6d
Bとなり、透過率可変フィルター手段9の光透過率を1
2.5%に制御することで補正される。
Conversely, when the focal length of the zoom lens 1 changes to the state of the LUT 1 shown in FIG. 8, 0 dB is selected as the F value correction data, and the necessary correction amount is -6d.
B, and the light transmittance of the variable transmittance filter means 9 is 1
It is corrected by controlling to 2.5%.

【0043】またAEロック動作時の絞り機構手段5の
絞り状態がF2であれば図8に示すLUT2のデータテ
ーブルから補正値を演算すれば良い。
If the aperture state of the aperture mechanism means 5 during the AE lock operation is F2, the correction value may be calculated from the data table of LUT2 shown in FIG.

【0044】このようにAEロック動作時の絞り機構手
段5の絞り状態とズームレンズ1の焦点距離に応じて必
要な補正量を予め備え、焦点距離の変化に応じて透過率
可変フィルター手段9の光透過率を制御して撮像素子1
2の撮像素子面に入射する光量が一定になるように補正
を行う。
As described above, a necessary correction amount is provided in advance according to the diaphragm state of the diaphragm mechanism means 5 and the focal length of the zoom lens 1 during the AE lock operation, and the transmittance variable filter means 9 of the variable transmittance filter means 9 corresponds to the change of the focal length. Image sensor 1 by controlling light transmittance
The correction is performed so that the amount of light incident on the image pickup element surface of No. 2 becomes constant.

【0045】(第3の実施例)本発明の第3の実施例は
第1の実施例の構成と同様であり、マイクロコンピュー
ター20の内部処理が異なるだけである。図1を参照し
て説明する。
(Third Embodiment) The third embodiment of the present invention has the same configuration as that of the first embodiment except that the internal processing of the microcomputer 20 is different. This will be described with reference to FIG.

【0046】前記の第2の実施例では透過率可変フィル
ター手段9だけを用いて、ズームレンズ1の焦点距離の
変化に応じて透過率可変フィルター手段9の光透過率を
制御して撮像素子12の撮像素子面に入射する光量だけ
が一定になるように補正を行う構成を説明したが、透過
率可変フィルター手段9だけでズームレンズ1の焦点距
離があらゆる状態でAEロック動作を行っても充分にF
値補正を行うためには、AEロック動作を行っていない
自動露出制御状態の時の透過率可変フィルター手段9の
光透過率を低く設定する必要がある。
In the second embodiment described above, only the variable transmittance filter means 9 is used, and the light transmittance of the variable transmittance filter means 9 is controlled according to the change of the focal length of the zoom lens 1, and the image pickup device 12 is controlled. Although the configuration has been described in which correction is performed so that only the amount of light incident on the image pickup element surface becomes constant, the AE lock operation is sufficient even if the focal length of the zoom lens 1 is in any state only with the variable transmittance filter means 9. To F
In order to perform the value correction, it is necessary to set the light transmittance of the variable transmittance filter means 9 to be low in the automatic exposure control state where the AE lock operation is not performed.

【0047】例えば自動露出制御状態時に透過率可変フ
ィルター手段9の光透過率を100%に設定している
と、テレ側でAEロックしてワイド側に焦点距離を変化
させた場合は撮像素子面の光量がアップするため透過率
可変フィルター手段9の光透過率を下げることにより補
正することが可能であるが、逆にワイド側でAEロック
してテレ側に焦点距離を変化させた場合は撮像素子面の
光量がダウンするために透過率可変フィルターの光透過
率を更に上げる必要があるがAEロック動作前の透過率
可変フィルター手段9の光透過率の設定が100%に設
定してあると補正することが不可能である。従って第2
の実施例では自動露出制御状態の時の透過率可変フィル
ター手段9の光透過率を25%に下げて設定することに
より前述した不具合を補っている。しかしながら通常の
自動露出制御時に透過率可変フィルター手段9の透過率
を下げた状態で用いることにより低照度時にはS/N比
が悪くなる問題がある。
For example, when the light transmittance of the variable transmittance filter means 9 is set to 100% in the automatic exposure control state, when the AE lock is set on the tele side and the focal length is changed to the wide side, the image pickup element surface is displayed. Since the amount of light is increased, it is possible to correct it by lowering the light transmittance of the variable transmittance filter means 9. However, when AE lock is performed on the wide side and the focal length is changed to the tele side, the image is captured. It is necessary to further increase the light transmittance of the variable transmittance filter because the amount of light on the element surface is reduced, but it is assumed that the variable transmittance of the variable transmittance filter means 9 before the AE lock operation is set to 100%. It is impossible to correct. Therefore the second
In the second embodiment, the above-mentioned problem is compensated by setting the light transmittance of the variable transmittance filter means 9 in the automatic exposure control state to 25%. However, there is a problem that the S / N ratio is deteriorated when the illuminance is low by using the transmittance variable filter means 9 with the transmittance lowered during normal automatic exposure control.

【0048】本発明の第3の実施例ではズームレンズ1
の焦点距離の変化に応じて透過率可変フィルター手段9
の光透過率とCDS/AGC手段14のAGCゲインを
制御して撮像素子12の撮像素子面に入射する光量が一
定になるように補正を行う構成である。
In the third embodiment of the present invention, the zoom lens 1
The variable transmittance filter means 9 according to the change of the focal length of the
Of the CDS / AGC means 14 and the AGC gain of the CDS / AGC means 14 are controlled to perform correction so that the amount of light incident on the image sensor surface of the image sensor 12 becomes constant.

【0049】次に第3の実施例のF値補正手段の動作に
ついて説明する。
Next, the operation of the F value correcting means of the third embodiment will be described.

【0050】第3の実施例の露出制御は図10に示す制
御フローチャートに従って行われるが、自動露出制御手
段では透過率可変フィルター手段9の光透過率を100
%に固定することが異なるだけでそれ以外の処理は第2
の実施例と同様である。またAEロック動作時のF値補
正手段もF値補正量演算ステップS314までの処理は
第2の実施例と同様であり透過率/AGCゲイン演算ス
テップSA315が異なるだけである。
The exposure control of the third embodiment is performed according to the control flow chart shown in FIG. 10, but the automatic exposure control means sets the light transmittance of the variable transmittance filter means 9 to 100.
The only difference is that it is fixed to%, and other processing is the second
This is the same as the embodiment. Also, the F value correction means during the AE lock operation is the same as the second embodiment in the processing up to the F value correction amount calculation step S314, and only the transmittance / AGC gain calculation step SA315 is different.

【0051】第3の実施例の透過率/AGCゲイン演算
ステップS315では、F値補正量演算ステップS31
4で演算した補正量がプラスゲインの補正量である場合
は、前記補正量に応じたCDS/AGC手段14のAG
Cゲインの制御データに変換し、前記補正量がマイナス
ゲインの補正量である場合は、前記補正量に応じた透過
率可変フィルター手段9の光透過率の制御データに変換
する。
In the transmittance / AGC gain calculation step S315 of the third embodiment, the F value correction amount calculation step S31 is performed.
When the correction amount calculated in step 4 is a positive gain correction amount, the AG of the CDS / AGC means 14 according to the correction amount is added.
If the correction amount is a negative gain correction amount, it is converted into the light transmittance control data of the variable transmittance filter unit 9 according to the correction amount.

【0052】例えば絞り機構手段がF1.4の状態でA
Eロック動作した場合、選択されるLUTは図8に示す
LUT1であり、ズームレンズ1の焦点距離が図8に示
すLUT1のの状態の場合、F値補正データ選択ステ
ップS311では+6dBが選択され、基準データとし
て用いる。焦点距離が図8に示すLUT1のの状態に
変化した場合はF値補正データとして+12dBが選択
され、F値補正量演算ステップS314でF値補正量が
演算され、AEロック動作時の撮像素子12の撮像素子
面の入射光量を一定にするために必要な補正量+6dB
が求められる。この場合の補正量はプラスゲインの補正
であるためこの補正量に応じてCSD/AGC手段14
のAGCゲインをAEロック動作した時点のAGCゲイ
ン設定値から6dBアップするための制御データに変換
する。
For example, when the diaphragm mechanism means is F1.4, A
When the E-lock operation is performed, the selected LUT is the LUT1 shown in FIG. 8. In the state where the focal length of the zoom lens 1 is the LUT1 shown in FIG. 8, +6 dB is selected in the F value correction data selection step S311. Used as reference data. When the focal length changes to the state of LUT1 shown in FIG. 8, +12 dB is selected as the F value correction data, the F value correction amount is calculated in the F value correction amount calculation step S314, and the image sensor 12 during the AE lock operation is selected. Correction amount required to keep the amount of incident light on the image sensor surface of +6 dB
Is required. Since the correction amount in this case is the correction of the positive gain, the CSD / AGC means 14 is adjusted according to the correction amount.
The AGC gain is converted into control data for increasing the AGC gain setting value at the time of the AE lock operation by 6 dB.

【0053】逆にズームレンズ1の焦点距離が図8に示
すLUT1のの状態に変化した場合、F値補正データ
として0dBが選択され、その時必要な補正量は−6d
Bとなり、マイナスゲインの補正量であるためこの補正
量に応じて透過率可変フィルータ手段9の光透過率制御
のためのデータに変換する。ここでは自動露出制御状態
の透過率可変フィルター手段9の光透過率を100%に
固定しているので、補正後の透過率可変フィルター手段
9の光透過率は50%に制御することにより撮像素子面
に入射する光量が一定に保たれる。
Conversely, when the focal length of the zoom lens 1 changes to the state of the LUT 1 shown in FIG. 8, 0 dB is selected as the F value correction data, and the necessary correction amount is -6d.
Since this is B, which is a correction amount of a negative gain, it is converted into data for controlling the light transmittance of the variable transmittance filter router 9 according to this correction amount. Here, since the light transmittance of the variable transmittance filter means 9 in the automatic exposure control state is fixed to 100%, the light transmittance of the variable transmittance filter means 9 after correction is controlled to 50% to thereby obtain an image sensor. The amount of light incident on the surface is kept constant.

【0054】このように第3の実施例では、F値補正の
補正量に応じて、補正するパラメーターを透過率可変フ
ィルター手段9の光透過率か、CDS/AGC手段のA
GCゲインのどちらかを選択して撮像素子12の撮像素
子面に入射する光量が一定になるように補正を行う。
As described above, in the third embodiment, the parameter to be corrected according to the correction amount of the F value correction is the light transmittance of the variable transmittance filter means 9 or the A of the CDS / AGC means.
One of the GC gains is selected and correction is performed so that the amount of light incident on the image sensor surface of the image sensor 12 becomes constant.

【0055】[0055]

【発明の効果】以上説明したように、本出願に係わる第
1の発明によれば、焦点距離検出手段で検出したズーム
レンズの焦点距離に応じて透過率可変フィルター手段の
光透過率を制御することにより、焦点距離によって変化
する周辺光量落ちを補正することが可能となり、常に最
適な露出状態が保たれた映像が得られる撮像装置を提供
することができるという効果が得られる。
As described above, according to the first invention of the present application, the light transmittance of the variable transmittance filter means is controlled according to the focal length of the zoom lens detected by the focal length detecting means. As a result, it is possible to correct the peripheral light amount drop that changes depending on the focal length, and it is possible to provide an image pickup apparatus that can obtain an image in which an optimal exposure state is always maintained.

【0056】また、本出願に係る第2の発明によれば、
露出制御手段で制御している露出状態を露出状態保持手
段で保持する保持動作を行った場合に、焦点距離検出手
段で検出したズームレンズの焦点距離に応じて透過率可
変フィルター手段の光透過率を制御することにより、ズ
ームレンズのF値変動による撮像素子面に入射する光量
変化を補正することが可能となり、ズームレンズの焦点
距離が変化しても露出状態保持動作を行った時点の最適
な露出状態が保たれ、撮影者の意図通りの映像が得られ
る撮像装置を提供できるという効果が得られる。
According to the second invention of the present application,
When the holding operation of holding the exposure state controlled by the exposure control means by the exposure state holding means is performed, the light transmittance of the transmittance variable filter means according to the focal length of the zoom lens detected by the focal length detection means. It is possible to correct a change in the amount of light incident on the image pickup element surface due to a change in the F-number of the zoom lens, and it is possible to adjust the optimum value at the time of performing the exposure state maintaining operation even if the focal length of the zoom lens changes. It is possible to provide an effect that it is possible to provide an image pickup apparatus in which an exposed state is maintained and an image as intended by a photographer can be obtained.

【0057】また、本出願に係る第3の発明によれば、
露出制御手段で制御している露出状態を露出状態保持手
段で保持する保持動作を行った場合に、焦点距離検出手
段で検出したズームレンズの焦点距離に応じて透過率可
変フィルター手段の光透過率とCDS/AGC手段のA
GCゲインを制御することにより、映像のS/N比を劣
化させることなくズームレンズのF値変動による撮像素
子面に入射する光量変換を補正することが可能となり、
ズームレンズの焦点距離が変化しても露出状態保持動作
を行った時点の最適な露出状態が保たれ、撮影者の意図
通りの映像が得られる撮像装置を提供できるという効果
がある。
According to the third invention of the present application,
When the holding operation of holding the exposure state controlled by the exposure control means by the exposure state holding means is performed, the light transmittance of the transmittance variable filter means according to the focal length of the zoom lens detected by the focal length detection means. And CDS / AGC means A
By controlling the GC gain, it becomes possible to correct the conversion of the amount of light incident on the image pickup element surface due to the F value variation of the zoom lens without deteriorating the S / N ratio of the image.
Even if the focal length of the zoom lens changes, the optimum exposure state at the time of performing the exposure state holding operation is maintained, and it is possible to provide an image pickup apparatus that can obtain an image as intended by the photographer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施例の構成を示すブロック
FIG. 1 is a block diagram showing a configuration of a first exemplary embodiment of the present invention.

【図2】 第1の実施例の露出制御手段の制御フローチ
ャート
FIG. 2 is a control flowchart of the exposure control means of the first embodiment.

【図3】 周辺光量落ち現象を説明する概念図FIG. 3 is a conceptual diagram for explaining a peripheral light drop phenomenon.

【図4】 第1の実施例の透過率可変フィルター手段FIG. 4 is a transmittance variable filter means according to the first embodiment.

【図5】 本発明の第1の実施例のルックアップテーブ
FIG. 5 is a lookup table according to the first embodiment of the present invention.

【図6】 ズームレンズの焦点距離に対するF値の特性
を示す図
FIG. 6 is a diagram showing characteristics of an F value with respect to a focal length of a zoom lens.

【図7】 ズームレンズの焦点距離に対する明るさの変
化を示す図
FIG. 7 is a diagram showing a change in brightness with respect to a focal length of a zoom lens.

【図8】 本発明の第2,第3の実施例のルックアップ
テーブル
FIG. 8 is a lookup table according to second and third embodiments of the present invention.

【図9】 第2の実施例の露出制御手段の制御フローチ
ャート
FIG. 9 is a control flow chart of the exposure control means of the second embodiment.

【図10】 第3の実施例の露出制御手段の制御フロー
チャート
FIG. 10 is a control flow chart of the exposure control means of the third embodiment.

【図11】 従来例の構成を示すブロック図FIG. 11 is a block diagram showing a configuration of a conventional example.

【図12】 従来例の露出制御手段の制御フローチャー
FIG. 12 is a control flowchart of an exposure control unit of a conventional example.

【図13】 自動露出制御手段のプログラム線図FIG. 13 is a program diagram of automatic exposure control means.

【符号の説明】[Explanation of symbols]

1 被写体結像用ズームレンズ 2 ズームレンズ駆動モーター 3 ズームモーター駆動手段 4 焦点距離検出手段 5 絞り機構手段 6 絞り機構駆動モーター 7 絞り機構駆動手段 8 絞り状態検出手段 9 透過率可変フィルター手段 10 透過率可変フィルター駆動手段 11 透過率検出手段 12 撮像素子 13 撮像素子駆動手段 14 CDS/AGC手段 15 アナログ−デジタル変換手段 16 カメラ信号処理手段 17 デジタル−アナログ変換手段 18 モニター用電子ビューファインダー 19 キー入力手段 20 本発明の実施例のマイクロコンピューター 21 従来例のマイクロコンピューター DESCRIPTION OF SYMBOLS 1 Object imaging zoom lens 2 Zoom lens drive motor 3 Zoom motor drive means 4 Focal length detection means 5 Aperture mechanism means 6 Aperture mechanism drive motor 7 Aperture mechanism drive means 8 Aperture state detection means 9 Transmittance variable filter means 10 Transmittance Variable filter driving means 11 Transmittance detecting means 12 Image sensor 13 Image sensor driving means 14 CDS / AGC means 15 Analog-digital converting means 16 Camera signal processing means 17 Digital-analog converting means 18 Monitor electronic viewfinder 19 Key input means 20 Microcomputer of Embodiment of Present Invention 21 Microcomputer of Conventional Example

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被写体の結像用レンズ群であり焦点距離
が可変できるズームレンズと、該ズームレンズより入射
した光を光電変換する撮像素子と、前記ズームレンズの
光路上に設けられた前記撮像素子に入射する光の透過率
を変化させる透過率可変フィルター手段と、前記撮像素
子で光電変換された信号に処理を施しテレビジョン信号
となる映像信号を生成する信号処理手段と、前記ズーム
レンズの焦点距離を検出する焦点距離検出手段と、制御
手段とを備えた撮像装置であって、 前記制御手段は、前記焦点距離検出手段で検出した前記
ズームレンズの焦点距離に応じて前記透過率可変フィル
ター手段の光透過率を制御することを特徴とする撮像装
置。
1. A zoom lens, which is a lens group for imaging a subject and has a variable focal length, an image pickup device for photoelectrically converting light incident from the zoom lens, and the image pickup provided on an optical path of the zoom lens. A variable transmittance filter means for changing the transmittance of light incident on the element, a signal processing means for processing a signal photoelectrically converted by the image sensor to generate a video signal to be a television signal, and a zoom lens of the zoom lens. An image pickup apparatus comprising: a focal length detecting means for detecting a focal length; and a controlling means, wherein the controlling means has the variable transmittance filter according to the focal length of the zoom lens detected by the focal length detecting means. An image pickup device, characterized in that the light transmittance of the means is controlled.
【請求項2】 被写体の結像用レンズ群であり焦点距離
が可変できるズームレンズと、該ズームレンズより入射
した光を光電変換する撮像素子と、前記ズームレンズの
光路上に設けられた前記撮像素子に入射する光の透過率
を変化させる透過率可変フィルター手段と、前記撮像素
子で光電変換された信号に処理を施しテレビジョン信号
となる映像信号を生成する信号処理手段と、前記ズーム
レンズの焦点距離を検出する焦点距離検出手段と、前記
映像信号に応じて露出状態を制御する露出制御手段と、
該露出制御手段の露出状態を保持する露出状態保持手段
と、前記ズームレンズの焦点距離に応じて露出状態を補
正するF値補正手段を備えた撮像装置であって、 前記露出状態保持手段で保持動作を行っている場合に、
前記焦点距離検出手段で検出した前記ズームレンズの焦
点距離に応じて、前記F値補正手段で前記透過率可変フ
ィルター手段の光透過率を制御して露出状態を補正する
ことを特徴とする撮像装置。
2. A zoom lens, which is a lens group for imaging a subject and has a variable focal length, an image pickup device for photoelectrically converting light incident from the zoom lens, and the image pickup provided on the optical path of the zoom lens. A variable transmittance filter means for changing the transmittance of light incident on the element, a signal processing means for processing a signal photoelectrically converted by the image sensor to generate a video signal to be a television signal, and a zoom lens of the zoom lens. Focal length detection means for detecting the focal length, exposure control means for controlling the exposure state according to the video signal,
An image pickup apparatus comprising: an exposure state holding means for holding the exposure state of the exposure control means; and an F value correction means for correcting the exposure state according to the focal length of the zoom lens, wherein the exposure state holding means holds the exposure state. If you are doing
An image pickup apparatus characterized in that the F value correcting means controls the light transmittance of the transmittance variable filter means according to the focal length of the zoom lens detected by the focal length detecting means to correct the exposure state. .
【請求項3】 前記信号処理手段は映像信号を電気的に
増幅するオートゲインコントロール手段を有し、前記露
出制御手段で制御している露出状態を前記露出状態保持
手段で保持する動作を行っている場合に、前記焦点距離
検出手段で検出した前記ズームレンズの焦点距離に応じ
て、前記F値補正手段で前記透過率可変フィルター手段
の光透過率と前記オートゲインコントロール手段のゲイ
ンを制御して露出状態を補正することを特徴とする請求
項2記載の撮像装置。
3. The signal processing means has an automatic gain control means for electrically amplifying a video signal, and performs an operation of holding the exposure state controlled by the exposure control means by the exposure state holding means. In this case, the F value correcting means controls the light transmittance of the transmittance variable filter means and the gain of the automatic gain control means according to the focal length of the zoom lens detected by the focal length detecting means. The image pickup apparatus according to claim 2, wherein the exposure state is corrected.
JP00063596A 1996-01-08 1996-01-08 Imaging apparatus and control method thereof Expired - Fee Related JP3727994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00063596A JP3727994B2 (en) 1996-01-08 1996-01-08 Imaging apparatus and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00063596A JP3727994B2 (en) 1996-01-08 1996-01-08 Imaging apparatus and control method thereof

Publications (2)

Publication Number Publication Date
JPH09186930A true JPH09186930A (en) 1997-07-15
JP3727994B2 JP3727994B2 (en) 2005-12-21

Family

ID=11479189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00063596A Expired - Fee Related JP3727994B2 (en) 1996-01-08 1996-01-08 Imaging apparatus and control method thereof

Country Status (1)

Country Link
JP (1) JP3727994B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004056331A (en) * 2002-07-18 2004-02-19 Canon Inc Image pickup device
JP2006343584A (en) * 2005-06-09 2006-12-21 Pentax Corp Exposure correcting apparatus and method therefor
JP2007514368A (en) * 2003-12-11 2007-05-31 ソニー エリクソン モバイル コミュニケーションズ, エービー Mobile device having camera / speaker integrated device
US7295241B2 (en) 2001-12-27 2007-11-13 Fujifilm Corporation Image capturing apparatus, image capturing method, and computer-readable medium storing a program for an image capturing apparatus
JP2012050010A (en) * 2010-08-30 2012-03-08 Canon Inc Imaging apparatus and control method for the same
KR101375697B1 (en) * 2010-09-10 2014-03-19 캐논 가부시끼가이샤 Imaging apparatus and method for controlling the same
JP2020134547A (en) * 2019-02-13 2020-08-31 キヤノン株式会社 Imaging apparatus, lens device, camera system, and control method of imaging apparatus
JP2020134546A (en) * 2019-02-13 2020-08-31 キヤノン株式会社 Imaging apparatus, lens device, camera system, and control method of imaging apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7295241B2 (en) 2001-12-27 2007-11-13 Fujifilm Corporation Image capturing apparatus, image capturing method, and computer-readable medium storing a program for an image capturing apparatus
JP2004056331A (en) * 2002-07-18 2004-02-19 Canon Inc Image pickup device
JP2007514368A (en) * 2003-12-11 2007-05-31 ソニー エリクソン モバイル コミュニケーションズ, エービー Mobile device having camera / speaker integrated device
JP2006343584A (en) * 2005-06-09 2006-12-21 Pentax Corp Exposure correcting apparatus and method therefor
JP2012050010A (en) * 2010-08-30 2012-03-08 Canon Inc Imaging apparatus and control method for the same
US8995826B2 (en) 2010-08-30 2015-03-31 Canon Kabushiki Kaisha Image capturing apparatus and control method of the image capturing apparatus
KR101375697B1 (en) * 2010-09-10 2014-03-19 캐논 가부시끼가이샤 Imaging apparatus and method for controlling the same
JP2020134547A (en) * 2019-02-13 2020-08-31 キヤノン株式会社 Imaging apparatus, lens device, camera system, and control method of imaging apparatus
JP2020134546A (en) * 2019-02-13 2020-08-31 キヤノン株式会社 Imaging apparatus, lens device, camera system, and control method of imaging apparatus

Also Published As

Publication number Publication date
JP3727994B2 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
US6618091B1 (en) Image pickup apparatus having image signal state adjusting means a response characteristic of which is controlled in accordance with image magnification rate
US7859589B2 (en) Imaging apparatus, and exposure control apparatus, method, and program
US6707500B1 (en) Image pickup apparatus with correction of held exposure parameters and lens spherical aberration correction
JP3727994B2 (en) Imaging apparatus and control method thereof
JP3571813B2 (en) Imaging device
JPH08256288A (en) Image pickup device
JP2765642B2 (en) Exposure control device for video camera
JP2527592B2 (en) Imaging device
JP2872833B2 (en) Video camera
JP3376156B2 (en) Imaging device
JP3947912B2 (en) Image signal processing device
JP3100815B2 (en) Camera white balance control method
JP3530712B2 (en) Imaging device
JP3566387B2 (en) Imaging device
JP3701172B2 (en) Camera exposure control method
JP2002271688A (en) Television camera
JPH09186922A (en) Image pickup device
JP3382481B2 (en) Imaging device
JP2596324B2 (en) Backlight correction device and imaging device using the same
JPH09205653A (en) Image pickup device
JPH09219815A (en) Image pickup device
JPH09186916A (en) Image pickup device
JP2860996B2 (en) Imaging device
JP2785526B2 (en) Exposure control device for video camera
JPH06197269A (en) Image pickup device and exposure controller

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees