JP3947912B2 - Image signal processing device - Google Patents

Image signal processing device Download PDF

Info

Publication number
JP3947912B2
JP3947912B2 JP2002015099A JP2002015099A JP3947912B2 JP 3947912 B2 JP3947912 B2 JP 3947912B2 JP 2002015099 A JP2002015099 A JP 2002015099A JP 2002015099 A JP2002015099 A JP 2002015099A JP 3947912 B2 JP3947912 B2 JP 3947912B2
Authority
JP
Japan
Prior art keywords
noise reduction
image signal
processing
noise
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002015099A
Other languages
Japanese (ja)
Other versions
JP2003219210A (en
Inventor
健吉 林
和彦 竹村
浩一 坂本
雅也 田丸
雅彦 杉本
寛和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2002015099A priority Critical patent/JP3947912B2/en
Publication of JP2003219210A publication Critical patent/JP2003219210A/en
Application granted granted Critical
Publication of JP3947912B2 publication Critical patent/JP3947912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Picture Signal Circuits (AREA)
  • Studio Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はデジタルカメラ等に好適な画像信号処理装置に係り、特に撮像素子を介して取得される画像信号のノイズを低減するとともに高画質化を達成する画像信号処理技術に関する。
【0002】
【従来の技術】
近年、デジタルカメラ等に搭載される撮像素子の高画素化、高感度化に伴うS/N劣化のため、撮像した画像に含まれる撮像系のランダムノイズによる画質低下が問題となっている。この問題の解決策として、従来、撮像系から得られる画像信号に対してローパスフィルタを使用したり、メディアンフィルタを用いることによってノイズを除去する方法が提案されている(特開平4−235472号公報)。
【0003】
【発明が解決しようとする課題】
しかしながら、ノイズを低減するためのローパスフィルタやメディアンフィルタは演算規模が大きくなるため、LSIなどによってハード化する際に回路規模が大きくなり、コストアップの要因になる。
【0004】
また、デジタルカメラでは撮影感度や撮影モードに依存してノイズの発生程度は異なるため、それに応じてノイズ低減フィルタの特性を最適化することが望ましい。しかし、これを実現するためには、特性の異なる複数のフィルタを用意する必要があり、コストアップの要因となる。
【0005】
本発明はこのような事情に鑑みてなされたもので、ノイズの発生程度に応じてノイズ低減処理を適切に行い、良好な画像信号を生成するとともに、このようなノイズ低減の処理を小規模な回路構成で実現し、コストアップを最小限に抑えることができる画像信号処理装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
前記目的を達成するために本発明に係る画像信号処理装置は、光学像を電気信号に変換する撮像手段と、前記撮像手段から出力される電気信号からデジタル信号形式の画像信号を生成する画像信号生成手段と、前記生成された画像信号のノイズ成分を低減させるノイズ低減手段と、前記ノイズ低減手段から出力された画像信号を前記ノイズ低減手段に再入力させる信号伝送手段と、前記ノイズ低減手段によるノイズ低減処理の回数を設定する回数設定手段と、前記設定された回数に従って前記ノイズ低減手段によるノイズ低減処理の実行動作を制御する制御手段と、を備え、前記回数設定手段は、一つの画面を複数のエリアに区分けし、エリア毎にノイズ低減処理の回数を変えて設定することを特徴としている。
【0007】
本発明によれば、被写体の光学像は撮像手段によって光電変換され、電気信号として出力される。撮像手段の出力信号は画像信号生成手段に送られ、ここで輝度・色差信号形式その他の所定方式のデジタル画像信号に変換される。画像信号生成手段で生成した画像信号はノイズ低減手段に入力され、ノイズ成分の低減が図られる。ノイズ低減手段によってノイズ低減された画像信号は、信号伝送手段を介して再度同じノイズ低減手段に入力可能であり、ノイズ低減処理を繰り返し行うことができる。ノイズ低減処理の回数は回数設定手段によって任意に設定することができ、設定された回数に基づいて制御手段はノイズ低減処理の実行/非実行を切り替える制御を行う。
【0008】
このように、一つのノイズ低減手段によるノイズ低減処理回数を可変とし、その回数を制御する構成にしたので、多様なノイズ除去特性を実現することができ、回路構成の簡素化を達成できる。
【0009】
本発明の一態様によれば、上記構成に加えて、撮影時の条件に関する情報を取得する条件情報取得手段を備え、前記回数設定手段は、前記条件情報取得手段で取得した条件情報に基づいてノイズ低減処理の回数を決定することを特徴としている。
【0010】
条件情報には、撮影感度、露光時間、撮影モードなどノイズの発生程度に関係する各種の情報が含まれ、少なくとも一つの情報内容(好ましくは複数の情報内容)が取得される。この条件情報に基づいてノイズ低減処理回数を制御することにより、ノイズの発生程度に応じた効果的なノイズ低減が可能となり、画質保持とノイズ低減を両立した良好な画像信号を生成することができる。
【0011】
また、本発明の画像信号処理装置においては、ノイズ低減手段としてローパスフィルタ又はメディアンフィルタなどの非線形フィルタとして機能し得る最小単位の構成から成るフィルタを用いる態様が好ましい。最小限の構成で処理回数を制御することにより、多様なフィルタ特性を実現できるため、回路構成の一層の簡素化を達成でき、LSIなどハード化する際のコストアップを最小限に抑えることができる。
【0012】
【発明の実施の形態】
以下添付図面に従って本発明に係る画像信号処理装置の好ましい実施の形態について説明する。
【0013】
図1は本発明の実施形態に係る画像信号処理装置のブロック図である。この画像信号処理装置10は、例えばデジタルカメラに適用される。撮像部12の光学系14は撮影レンズ、絞り及びシャッター機構を含み、光学系14を通過した光は撮像素子16に入射される。撮像素子16にはCCDイメージセンサやCMOSイメージセンサで代表される固体撮像デバイスが用いられる。
【0014】
撮像素子16の受光面は多数のフォトセンサが平面的に配列されており、ベイヤー配列Gその他の所定のカラーフィルター配列構造を備えている。光学系14を介して撮像素子16の受光面に結像された被写体の光学像は、各フォトセンサによって入射光量に応じた量の信号電荷に変換される。各フォトセンサに蓄積された信号電荷は、図示せぬドライバ回路から与えられるパルスに基づいて信号電荷に応じた電圧信号(撮像信号)として順次読み出される。
【0015】
撮像素子16から出力された信号は撮像処理部18に送られる。撮像処理部18はサンプリングホールド回路、色分離回路、ゲイン調整回路、A/D変換器等を含み、入力された撮像信号は撮像処理部18において相関二重サンプリング(CDS)処理並びにR,G,Bの各色信号に分離処理され、各色信号の信号レベルの調整(プリホワイトバランス処理)が行われ、デジタル信号に変換された後、画像信号処理部20に送られる。
【0016】
撮像系の感度は、ISO100〜ISO800相当の範囲内で可変であり、ユーザが所望の撮影感度を選択できる。操作部22には撮影感度を選択するための操作手段が含まれ、ユーザによって指定された撮影感度に従って制御回路24は撮像処理部18におけるゲインを設定する。
【0017】
また、制御回路24は、撮像処理部18を介して受入した撮像信号に基づいて自動露出(AE)演算を行い、その演算結果に従って絞り及び撮像素子16の電荷蓄積時間(露光時間)を制御する。
【0018】
操作部22は上述した撮影感度を選択するための手段の他、カメラの動作モードを選択するための手段、撮影開始の指示を入力するレリーズボタン、メニュー項目の選択操作(カーソル移動操作)や再生画像のコマ送り/コマ戻しの指示を入力する十字方向キー、選択項目の確定(登録)や動作の実行を指示する実行キー、選択項目など所望の対象の消去や指示のキャンセルを行うためのキャンセルキーなど、ユーザが各種の指示を入力するための操作手段を含む。操作部22からの指示信号は制御回路24に入力され、制御回路24は受入した指示信号に基づいて対応する回路の動作を制御する。
【0019】
撮像処理部18から画像信号処理部20に入力された撮像信号は、画像信号処理部20において輝度信号(Y信号)及び色差信号(Cr,Cb 信号)など所定の信号形式に従った画像信号に変換される。画像信号処理部20で生成された画像信号は、セレクタ26を介してノイズ低減回路28に入力される。なお、輝度信号及び色差信号の両方をノイズ低減処理する態様に限定されず、画像信号処理部20において生成された画像信号の一部(例えば、輝度信号のみ又は色差信号のみ)をノイズ低減処理してもよい。
【0020】
セレクタ26はノイズ低減回路28に送る信号を選択的に切り替える手段であり、制御回路24からの指令に従って動作する。
【0021】
ノイズ低減回路28には、例えば、ローパスフィルタの最小単位である2画素平均フィルタ、或いはノイズ除去に有効とされる非線形フィルタであるメディアンフィルタの最小単位である3画素メディアンフィルタ(図2参照)などが用いられる。
【0022】
2画素平均フィルタは、入力される2画素のデータ(隣接する2画素分のデータ)の加算平均値を出力データとして出力するフィルタである。3画素メディアンフィルタは、図2に示すように、入力される3画素のデータを最小値、中央値、最大値の3値に並べ替え、そのうちの中央値を出力データとして出力するフィルタである。なお、ノイズ低減回路28の構成は、上記の例に限定されず、3×3の9画素メディアンフィルタなど、種々のフィルタを適用できる。
【0023】
図1に示したように、ノイズ低減回路28から出力された信号はメモリ30に記憶され、再びセレクタ26を介してノイズ低減回路28に入力される。制御回路24は中央演算処理装置(CPU)を含み、所定のプログラムに基づいてノイズ低減回路28によるノイズ低減処理の回数を制御するとともに、セレクタ26の切替制御を行う。
【0024】
ノイズ低減処理の回数は、カメラ撮影時の各種条件(感度、露光時間、撮影モードなど)により可変される。例えば、撮影感度ISO100相当のときは、低感度であり画像信号のノイズの程度は小さいので処理回数は0回(ノイズ低減処理を実施しない)とし、高感度になるについてノイズの程度が大きくなるので、ISO400相当は3回、ISO800相当は5回という具合に処理回数をノイズの程度に応じて制御する。
【0025】
制御回路24は、ノイズ低減処理回数の制御手段として機能するとともに、デジタルカメラ全体の制御部として機能し、光学系14のオートフォーカス(AF)制御、自動露出(AE)制御、画像信号の処理制御、画像信号の記録制御、記録メディアの読み書き制御、液晶ディスプレイ(LCD)で代表される表示装置の表示制御などを行う。
【0026】
次に、上記の如く構成された画像信号処理装置10の動作について説明する。
図3は本実施形態に係る画像信号処理装置10の処理手順を示すフローチャートである。同図に示したように、処理がスタートすると、まず、制御回路24は撮影時の条件情報を取得する(ステップS110)。ここでは、選択されている撮影モード、撮影感度、並びに露光時間の情報など各種の条件情報を取得する。
【0027】
次いで、取得した条件情報に基づいてノイズ低減処理回数を設定する(ステップS120)。最適な処理回数は、使用するノイズ低減回路の構成や撮像素子の性能(サイズや特性)など、実際の機器に依存して異なる。具体的な機器の構成を考慮して処理回数の決定プログラムが設計される。
【0028】
共通の傾向としては、▲1▼撮影感度を上げたときには処理回数を多くする。▲2▼夜景撮影モードの場合には処理回数を多くする。▲3▼明るさが暗い場合(露光時間が長い場合)は処理回数を多くする。すなわち、ノイズが多くなると予想される状況についてノイズ低減処理回数を多く設定する。
【0029】
ステップS120の後は、ノイズ低減処理の回数をカウントしながらノイズ低減処理を実施し、処理回数分を実行したか否かの判断を行う(ステップS130)。設定された処理回数を実行し終えていない場合にはノイズ低減処理を繰り返し、設定された処理回数を実行し終えたら処理を終了する。
【0030】
こうして、設定された処理回数分のノイズ低減処理を経た画像信号は、以後、輪郭補正、ガンマ補正、色補正など必要な信号処理を経て表示装置に出力され、或いは記録メディアに記録される。
【0031】
図4乃至図8は、2画素平均フィルタの特性を示すグラフであり、図4は処理回数1回の特性を示し、図5〜図8はそれぞれ処理回数2〜5回の特性を示す。
これらの図面から明らかなように、処理回数を変更するだけで多様なフィルタ特性を実現することができ、処理回数を多く設定するほど高周波成分の低減効果が高まり、ノイズ除去作用も大きくなる。
【0032】
上記実施の形態では、一つの画面についてノイズ低減処理の回数を設定したが、一つの画面を複数のエリアに区分けし、エリア毎にノイズ低減処理の回数を変えて設定してもよい。例えば、ストロボを使用した撮影では画面の中央部が明るく、周囲は暗くなるため、明るさのレベルで分割されたエリアに応じてノイズ低減処理の回数を変えることによって一層良好な画像が得られる。
【0033】
【発明の効果】
以上説明したように本発明によれば、同じノイズ低減処理手段によるノイズ低減処理の処理回数を可変とし、必要に応じてその処理回数を制御することで多様なフィルタ特性を実現するようにしたので、回路構成の簡素化を達成でき、LSIなどハード化を低コストで実現できる。また、本発明によれば、撮影時の条件情報に基づき、ノイズの発生程度に応じて処理回数を増減調整して最適なフィルタ特性を実現するようにしたので、良好な画質を保持しつつノイズ成分を効果的に除去した画像信号を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る画像信号処理装置のブロック図
【図2】3画素メディアンフィルタの処理手順を示す説明図
【図3】本実施形態に係る画像信号処理装置の処理手順を示すフローチャート
【図4】2画素平均フィルタの特性(処理回数1回)を示すグラフ
【図5】2画素平均フィルタを2回使用した場合の特性を示すグラフ
【図6】2画素平均フィルタを3回使用した場合の特性を示すグラフ
【図7】2画素平均フィルタを4回使用した場合の特性を示すグラフ
【図8】2画素平均フィルタを5回使用した場合の特性を示すグラフ
【符号の説明】
10…画像信号処理装置、16…撮像素子、18…撮像処理部、20…画像信号処理部、22…操作部、24…制御回路、26…セレクタ、28…ノイズ低減回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an image signal processing apparatus suitable for a digital camera or the like, and more particularly to an image signal processing technique for reducing noise in an image signal acquired via an image sensor and achieving high image quality.
[0002]
[Prior art]
In recent years, image quality deterioration due to random noise of an imaging system included in a captured image has become a problem due to S / N degradation accompanying an increase in the number of pixels and sensitivity of an imaging element mounted on a digital camera or the like. As a solution to this problem, conventionally, a method of removing noise by using a low-pass filter or a median filter for an image signal obtained from an imaging system has been proposed (Japanese Patent Laid-Open No. 4-235472). ).
[0003]
[Problems to be solved by the invention]
However, since the low-pass filter and median filter for reducing noise have a large calculation scale, the circuit scale becomes large when hardware is built by LSI or the like, resulting in a cost increase.
[0004]
Further, since the degree of noise generation varies depending on the shooting sensitivity and shooting mode in a digital camera, it is desirable to optimize the characteristics of the noise reduction filter accordingly. However, in order to realize this, it is necessary to prepare a plurality of filters having different characteristics, which causes an increase in cost.
[0005]
The present invention has been made in view of such circumstances, and appropriately performs noise reduction processing according to the degree of noise generation, generates a good image signal, and performs such noise reduction processing on a small scale. An object of the present invention is to provide an image signal processing device that can be realized with a circuit configuration and can minimize cost increase.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, an image signal processing apparatus according to the present invention includes an imaging unit that converts an optical image into an electrical signal, and an image signal that generates an image signal in a digital signal format from the electrical signal output from the imaging unit. A generation unit; a noise reduction unit that reduces a noise component of the generated image signal; a signal transmission unit that re-inputs the image signal output from the noise reduction unit to the noise reduction unit; and the noise reduction unit. A frequency setting means for setting the number of times of noise reduction processing; and a control means for controlling an execution operation of the noise reduction processing by the noise reduction means according to the set number of times, wherein the frequency setting means displays one screen. It is characterized in that it is divided into a plurality of areas and the number of noise reduction processes is changed for each area .
[0007]
According to the present invention, an optical image of a subject is photoelectrically converted by an imaging unit and output as an electrical signal. The output signal of the image pickup means is sent to the image signal generation means, where it is converted into a digital image signal of a predetermined method such as a luminance / color difference signal format. The image signal generated by the image signal generation means is input to the noise reduction means, and noise components are reduced. The image signal whose noise has been reduced by the noise reduction means can be input again to the same noise reduction means via the signal transmission means, and the noise reduction processing can be repeated. The number of times of noise reduction processing can be arbitrarily set by the number of times setting means, and the control means performs control to switch execution / non-execution of noise reduction processing based on the set number of times.
[0008]
As described above, since the number of times of noise reduction processing by one noise reduction unit is made variable and the number of times is controlled, various noise removal characteristics can be realized, and the circuit configuration can be simplified.
[0009]
According to an aspect of the present invention, in addition to the above-described configuration, the information processing apparatus includes a condition information acquisition unit that acquires information related to conditions at the time of shooting, and the number setting unit is based on the condition information acquired by the condition information acquisition unit. It is characterized in that the number of noise reduction processes is determined.
[0010]
The condition information includes various types of information related to the degree of noise generation such as shooting sensitivity, exposure time, and shooting mode, and at least one information content (preferably a plurality of information contents) is acquired. By controlling the number of times of noise reduction processing based on this condition information, it is possible to effectively reduce noise according to the degree of noise generation, and it is possible to generate a good image signal that maintains both image quality maintenance and noise reduction. .
[0011]
In the image signal processing apparatus of the present invention, it is preferable that a filter having a minimum unit configuration that can function as a nonlinear filter such as a low-pass filter or a median filter is used as the noise reduction means. Various filter characteristics can be realized by controlling the number of processings with the minimum configuration, so that the circuit configuration can be further simplified, and the cost of hardware such as LSI can be minimized. .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of an image signal processing apparatus according to the present invention will be described below with reference to the accompanying drawings.
[0013]
FIG. 1 is a block diagram of an image signal processing apparatus according to an embodiment of the present invention. The image signal processing apparatus 10 is applied to, for example, a digital camera. The optical system 14 of the imaging unit 12 includes a photographic lens, a diaphragm, and a shutter mechanism, and light that has passed through the optical system 14 is incident on the imaging device 16. A solid-state imaging device represented by a CCD image sensor or a CMOS image sensor is used for the imaging element 16.
[0014]
A large number of photosensors are arranged in a plane on the light receiving surface of the image pickup device 16, and has a Bayer array G and other predetermined color filter array structures. The optical image of the subject formed on the light receiving surface of the image sensor 16 via the optical system 14 is converted into signal charges of an amount corresponding to the amount of incident light by each photosensor. The signal charge accumulated in each photosensor is sequentially read out as a voltage signal (imaging signal) corresponding to the signal charge based on a pulse supplied from a driver circuit (not shown).
[0015]
A signal output from the imaging element 16 is sent to the imaging processing unit 18. The imaging processing unit 18 includes a sampling hold circuit, a color separation circuit, a gain adjustment circuit, an A / D converter, and the like, and the input imaging signal is subjected to correlated double sampling (CDS) processing and R, G, and the like in the imaging processing unit 18. Each color signal of B is subjected to separation processing, signal level adjustment (pre-white balance processing) of each color signal is performed, converted into a digital signal, and then sent to the image signal processing unit 20.
[0016]
The sensitivity of the imaging system is variable within a range corresponding to ISO 100 to ISO 800, and the user can select a desired imaging sensitivity. The operation unit 22 includes an operation unit for selecting a photographing sensitivity, and the control circuit 24 sets a gain in the imaging processing unit 18 according to the photographing sensitivity designated by the user.
[0017]
The control circuit 24 performs an automatic exposure (AE) calculation based on the imaging signal received via the imaging processing unit 18, and controls the charge accumulation time (exposure time) of the diaphragm and the image sensor 16 according to the calculation result. .
[0018]
In addition to the above-described means for selecting the photographing sensitivity, the operation unit 22 is a means for selecting an operation mode of the camera, a release button for inputting a photographing start instruction, a menu item selection operation (cursor movement operation), and playback. A cross-direction key for inputting an instruction for frame advance / reverse of an image, an execution key for instructing selection (registration) or execution of an operation, a selection item, etc., or a cancellation for canceling an instruction. It includes operation means for the user to input various instructions such as keys. The instruction signal from the operation unit 22 is input to the control circuit 24, and the control circuit 24 controls the operation of the corresponding circuit based on the received instruction signal.
[0019]
The imaging signal input from the imaging processing unit 18 to the image signal processing unit 20 is converted into an image signal according to a predetermined signal format such as a luminance signal (Y signal) and a color difference signal (Cr, Cb signal) in the image signal processing unit 20. Converted. The image signal generated by the image signal processing unit 20 is input to the noise reduction circuit 28 via the selector 26. Note that the present invention is not limited to a mode in which both the luminance signal and the color difference signal are subjected to noise reduction processing, and a part of the image signal generated by the image signal processing unit 20 (for example, only the luminance signal or only the color difference signal) is subjected to noise reduction processing. May be.
[0020]
The selector 26 is means for selectively switching a signal to be sent to the noise reduction circuit 28, and operates according to a command from the control circuit 24.
[0021]
The noise reduction circuit 28 includes, for example, a two-pixel average filter which is a minimum unit of a low-pass filter, or a three-pixel median filter which is a minimum unit of a median filter which is a non-linear filter effective for noise removal (see FIG. 2). Is used.
[0022]
The two-pixel average filter is a filter that outputs an addition average value of input two-pixel data (data for two adjacent pixels) as output data. As shown in FIG. 2, the three-pixel median filter is a filter that rearranges input three-pixel data into three values of a minimum value, a median value, and a maximum value, and outputs the median value as output data. The configuration of the noise reduction circuit 28 is not limited to the above example, and various filters such as a 3 × 3 9-pixel median filter can be applied.
[0023]
As shown in FIG. 1, the signal output from the noise reduction circuit 28 is stored in the memory 30 and is input to the noise reduction circuit 28 via the selector 26 again. The control circuit 24 includes a central processing unit (CPU), controls the number of noise reduction processes by the noise reduction circuit 28 based on a predetermined program, and controls the switching of the selector 26.
[0024]
The number of times of noise reduction processing is variable depending on various conditions (sensitivity, exposure time, shooting mode, etc.) at the time of camera shooting. For example, when the photographing sensitivity is equivalent to ISO 100, the sensitivity is low and the level of noise in the image signal is small. Therefore, the number of times of processing is 0 (no noise reduction processing is performed), and the level of noise increases as the sensitivity increases. The number of processing is controlled according to the degree of noise, such as 3 times for ISO 400, 5 times for ISO 800, and so on.
[0025]
The control circuit 24 functions as a control unit for the number of times of noise reduction processing, and also functions as a control unit for the entire digital camera, and performs autofocus (AF) control, automatic exposure (AE) control, and image signal processing control of the optical system 14. Further, image signal recording control, recording medium read / write control, display control represented by a liquid crystal display (LCD), and the like are performed.
[0026]
Next, the operation of the image signal processing apparatus 10 configured as described above will be described.
FIG. 3 is a flowchart showing a processing procedure of the image signal processing apparatus 10 according to the present embodiment. As shown in the figure, when the process starts, first, the control circuit 24 acquires condition information at the time of photographing (step S110). Here, various condition information such as information on the selected shooting mode, shooting sensitivity, and exposure time is acquired.
[0027]
Next, the number of times of noise reduction processing is set based on the acquired condition information (step S120). The optimum number of processes varies depending on the actual device such as the configuration of the noise reduction circuit to be used and the performance (size and characteristics) of the image sensor. A program for determining the number of processing times is designed in consideration of a specific device configuration.
[0028]
As a common tendency, (1) the number of processing is increased when the photographing sensitivity is increased. (2) Increase the number of processes in the night scene shooting mode. (3) When the brightness is dark (when the exposure time is long), the number of processes is increased. That is, a large number of noise reduction processes is set for a situation where noise is expected to increase.
[0029]
After step S120, noise reduction processing is performed while counting the number of times of noise reduction processing, and it is determined whether or not the number of processing times has been executed (step S130). When the set number of processes has not been executed, the noise reduction process is repeated, and when the set number of processes has been executed, the process ends.
[0030]
Thus, the image signal that has been subjected to the noise reduction processing for the set number of processing times is thereafter output to the display device through necessary signal processing such as contour correction, gamma correction, and color correction, or recorded on a recording medium.
[0031]
4 to 8 are graphs showing the characteristics of the two-pixel average filter. FIG. 4 shows the characteristics of the number of times of processing, and FIGS. 5 to 8 show the characteristics of the number of times of processing of 2 to 5, respectively.
As is apparent from these drawings, various filter characteristics can be realized simply by changing the number of times of processing. The higher the number of times of processing, the higher the effect of reducing high-frequency components and the greater the noise removal effect.
[0032]
In the above embodiment, the number of times of noise reduction processing is set for one screen. However, one screen may be divided into a plurality of areas, and the number of times of noise reduction processing may be changed for each area. For example, when shooting using a strobe, the center of the screen is bright and the surroundings are dark. Therefore, a better image can be obtained by changing the number of times of noise reduction processing according to the area divided by the brightness level.
[0033]
【The invention's effect】
As described above, according to the present invention, the number of times of noise reduction processing by the same noise reduction processing means is variable, and various filter characteristics are realized by controlling the number of times of processing as necessary. Therefore, simplification of the circuit configuration can be achieved, and hardware such as LSI can be realized at low cost. In addition, according to the present invention, the optimum filter characteristics are realized by adjusting the number of times of processing according to the degree of noise generation based on the condition information at the time of shooting, so that noise can be maintained while maintaining good image quality. An image signal from which components are effectively removed can be obtained.
[Brief description of the drawings]
FIG. 1 is a block diagram of an image signal processing apparatus according to an embodiment of the present invention. FIG. 2 is an explanatory diagram showing a processing procedure of a three-pixel median filter. FIG. 4 is a graph showing the characteristics of the two-pixel average filter (the number of times of processing is one). FIG. 5 is a graph showing the characteristics when the two-pixel average filter is used twice. Graph showing the characteristics when used twice. Fig. 7 Graph showing the characteristics when using the two-pixel average filter four times. Fig. 8 Graph showing the characteristics when using the two-pixel average filter five times. Explanation】
DESCRIPTION OF SYMBOLS 10 ... Image signal processing apparatus, 16 ... Imaging device, 18 ... Imaging process part, 20 ... Image signal processing part, 22 ... Operation part, 24 ... Control circuit, 26 ... Selector, 28 ... Noise reduction circuit

Claims (3)

光学像を電気信号に変換する撮像手段と、
前記撮像手段から出力される電気信号からデジタル信号形式の画像信号を生成する画像信号生成手段と、
前記生成された画像信号のノイズ成分を低減させるノイズ低減手段と、前記ノイズ低減手段から出力された画像信号を前記ノイズ低減手段に再入力させる信号伝送手段と、
前記ノイズ低減手段によるノイズ低減処理の回数を設定する回数設定手段と、
前記設定された回数に従って前記ノイズ低減手段によるノイズ低減処理の実行動作を制御する制御手段と、
を備え
前記回数設定手段は、一つの画面を複数のエリアに区分けし、エリア毎にノイズ低減処理の回数を変えて設定することを特徴とする画像信号処理装置。
Imaging means for converting an optical image into an electrical signal;
Image signal generating means for generating an image signal in a digital signal format from an electrical signal output from the imaging means;
Noise reduction means for reducing noise components of the generated image signal, signal transmission means for re-inputting the image signal output from the noise reduction means to the noise reduction means,
Number setting means for setting the number of times of noise reduction processing by the noise reducing means;
Control means for controlling an execution operation of noise reduction processing by the noise reduction means according to the set number of times;
Equipped with a,
The number-of-times setting means divides one screen into a plurality of areas, and sets the number of times of noise reduction processing for each area .
撮影時の条件に関する情報を取得する条件情報取得手段を備え、前記回数設定手段は、前記条件情報取得手段で取得した条件情報に基づいてノイズ低減処理の回数を決定することを特徴とする請求項1に記載の画像信号処理装置。  The apparatus according to claim 1, further comprising condition information acquisition means for acquiring information related to conditions at the time of shooting, wherein the number setting means determines the number of times of noise reduction processing based on the condition information acquired by the condition information acquisition means. The image signal processing apparatus according to 1. 前記ノイズ低減手段は、ローパスフィルタ又はメディアンフィルタなどの非線形フィルタとして機能し得る最小単位の構成から成るフィルタであることを特徴とする請求項1又は2に記載の画像信号処理装置。  The image signal processing apparatus according to claim 1, wherein the noise reduction unit is a filter having a minimum unit configuration that can function as a nonlinear filter such as a low-pass filter or a median filter.
JP2002015099A 2002-01-24 2002-01-24 Image signal processing device Expired - Fee Related JP3947912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002015099A JP3947912B2 (en) 2002-01-24 2002-01-24 Image signal processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002015099A JP3947912B2 (en) 2002-01-24 2002-01-24 Image signal processing device

Publications (2)

Publication Number Publication Date
JP2003219210A JP2003219210A (en) 2003-07-31
JP3947912B2 true JP3947912B2 (en) 2007-07-25

Family

ID=27651600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002015099A Expired - Fee Related JP3947912B2 (en) 2002-01-24 2002-01-24 Image signal processing device

Country Status (1)

Country Link
JP (1) JP3947912B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4318553B2 (en) 2004-01-23 2009-08-26 三洋電機株式会社 Image signal processing device
JP4702088B2 (en) * 2005-03-31 2011-06-15 カシオ計算機株式会社 Image signal noise reduction method, noise reduction apparatus, and imaging apparatus
JP4998009B2 (en) * 2007-02-26 2012-08-15 株式会社ニコン Image processing apparatus and imaging apparatus
JP5476725B2 (en) * 2009-01-30 2014-04-23 株式会社ニコン Electronic camera
US8368803B2 (en) * 2009-09-10 2013-02-05 Seiko Epson Corporation Setting exposure attributes for capturing calibration images

Also Published As

Publication number Publication date
JP2003219210A (en) 2003-07-31

Similar Documents

Publication Publication Date Title
US7176962B2 (en) Digital camera and digital processing system for correcting motion blur using spatial frequency
KR100819804B1 (en) Photographing apparatus
JP4943721B2 (en) Color noise removal method for image data and imaging apparatus using the method
JP4210021B2 (en) Image signal processing apparatus and image signal processing method
JP2001103366A (en) Camera
JP2006310969A (en) Imaging apparatus
JP4196588B2 (en) Imaging apparatus and method, recording medium, and program
JP2005210215A (en) Image pickup device and method of processing noise in motion image
JP4462092B2 (en) Electronic camera and imaging control program
JP2008053931A (en) Imaging apparatus
JP2006345388A (en) Imaging apparatus
US20060197866A1 (en) Image taking apparatus
JP4033456B2 (en) Digital camera
JP3947912B2 (en) Image signal processing device
JP2007013270A (en) Imaging apparatus
JP2006253970A (en) Imaging apparatus, shading correction data generating method, and program
JP4279562B2 (en) Control method for solid-state imaging device
JP4468601B2 (en) Electronic camera
JP4335648B2 (en) Digital camera and imaging method of digital camera
JP6900577B2 (en) Image processing equipment and programs
JP2005210216A (en) Image pickup device and method of processing noise in motion image
JP2004048562A (en) Noise reduction circuit and imaging apparatus
JP2004343177A (en) Imaging apparatus
JP2007295260A (en) Image processing method and digital camera
JP2004140793A (en) Digital camera with charge accumulation time program mounted thereon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070404

R150 Certificate of patent or registration of utility model

Ref document number: 3947912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees