JPH0918061A - Manufacture of thermoelectric conversion material - Google Patents

Manufacture of thermoelectric conversion material

Info

Publication number
JPH0918061A
JPH0918061A JP7186448A JP18644895A JPH0918061A JP H0918061 A JPH0918061 A JP H0918061A JP 7186448 A JP7186448 A JP 7186448A JP 18644895 A JP18644895 A JP 18644895A JP H0918061 A JPH0918061 A JP H0918061A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
ingot
pressure
conversion material
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7186448A
Other languages
Japanese (ja)
Inventor
Hitoshi Owada
仁 大和田
Keiichi Miura
啓一 三浦
Kazufumi Nakamura
和史 中村
Hirotaka Senba
裕隆 仙波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Chichibu Onoda Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Onoda Cement Corp filed Critical Chichibu Onoda Cement Corp
Priority to JP7186448A priority Critical patent/JPH0918061A/en
Publication of JPH0918061A publication Critical patent/JPH0918061A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE: To manufacture an alloy thermoelectric conversion element, which has a remarkably high processing yield at the time of machining and has stably a high performance index. CONSTITUTION: In an alloy ingot, which is produced by a fusing method and contains two kinds or more of elements selected from among elements of Bi, Te, Se and Sb as its main components, or by a fusing method and contains any one or more kinds of elements selected from among elements of Bi, Te, Se and Sb, the alloy, or an arbitrary shaped material cut out from the alloy ingot, without being ground, is burned by an uniaxial pressing method at a pressure of about 3000kg/cm<2> or higher.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、熱電変換材料の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thermoelectric conversion material.

【0002】[0002]

【従来の技術】Bi−Te系合金は、室温付近で高い熱
電特性を有する材料として知られている。この熱電特性
は結晶軸に対して異方性を示すので、この異方性を十分
発現させた熱電変換材料の製造方法が検討されており、
例えば、Bi、Te等の金属を不活性ガスを満たしたア
ンプル中で溶融し、温度勾配を利用して一方向凝固させ
た合金塊、即ち溶製材と呼ばれる凝固材を作製すること
により性能指数が2.7×10-3-1を越える高い熱電
変換特性を得られることが知られている。尚、性能指数
は次式で表されるパラメ−タ−で、この指数が高いもの
ほど良好な熱電変換特性を示す。 性能指数=(熱起電力)2×(電気伝導度)/(熱伝導
度)
2. Description of the Related Art Bi-Te based alloys are known as materials having high thermoelectric properties near room temperature. Since this thermoelectric property exhibits anisotropy with respect to the crystal axis, a method for producing a thermoelectric conversion material that sufficiently expresses this anisotropy has been studied,
For example, when a metal such as Bi or Te is melted in an ampoule filled with an inert gas and unidirectionally solidified by utilizing a temperature gradient, that is, a solidified material called an ingot material is produced to obtain a figure of merit. It is known that high thermoelectric conversion characteristics exceeding 2.7 × 10 -3 K -1 can be obtained. The figure of merit is a parameter expressed by the following equation. The higher the figure of merit, the better the thermoelectric conversion characteristics. Performance index = (Thermoelectromotive force) 2 × (Electrical conductivity) / (Thermal conductivity)

【0003】この溶製材の各結晶子間は主に原子間力に
よって結合している為、実用部材を作製する上で必要な
機械加工に十分耐え得る強度を備えた材料が得難く、加
工歩留まりが著しく低い。又、溶製材から作製した熱電
素子は温度及び湿度の影響で抵抗値や熱電特性が変化し
易く、更に、長期の使用に於いて耐久性が劣るという問
題がある。
Since the crystallites of this ingot are mainly bonded by atomic force, it is difficult to obtain a material having a strength sufficient to withstand the mechanical processing required for producing a practical member, and the processing yield is high. Is extremely low. Further, the thermoelectric element made of the ingot material has a problem that the resistance value and the thermoelectric characteristic are likely to change due to the influence of temperature and humidity, and further, the durability is deteriorated in long-term use.

【0004】これらの問題点を回避した方法として、溶
製材を粉砕、分級して得た粉体をホットプレス装置によ
り熱間加圧を行って焼結体を製造することも試みられて
いる。一般にホットプレスによる焼結は、難焼結材に対
しても高緻密化を達成出来、同時に粒成長も抑制するこ
とができるので強度低下を来すことなく焼結体を作製す
ることができる。また一軸性の加圧により焼結体結晶が
加圧方向に垂直な方位に配向し易い傾向にある。
As a method for avoiding these problems, it has been attempted to manufacture a sintered body by hot pressing a powder obtained by crushing and classifying a molten material with a hot press machine. In general, sintering by hot pressing can achieve high densification even for a difficult-to-sinter material, and at the same time can suppress grain growth, so that a sintered body can be manufactured without lowering strength. Further, the uniaxial pressure tends to cause the sintered crystal to be oriented in a direction perpendicular to the pressure direction.

【0005】しかし、この方法では、粉砕、分級時に金
属粒子が酸化され易く、このような粒子を焼結した焼結
体は熱電特性が著しく低下する。又、一般に、ホットプ
レス装置で発生可能な圧力では、Bi−Te系合金焼結
体中の結晶を一定方向に完全に配向させることはでき
ず、残存する低特性方位の結晶の影響を受けて焼結体の
性能指数は2.2〜2.4×10-3-1程度の低いもの
しか得ることができない。
However, according to this method, the metal particles are easily oxidized at the time of pulverization and classification, and the sintered body obtained by sintering such particles remarkably deteriorates the thermoelectric properties. Further, generally, with the pressure that can be generated by the hot pressing apparatus, the crystals in the Bi-Te based alloy sintered body cannot be perfectly oriented in a certain direction, and are affected by the remaining crystals of low characteristic orientation. The figure of merit of the sintered body can only be as low as about 2.2 to 2.4 × 10 −3 K −1 .

【0006】[0006]

【発明が解決しようとする課題】このように、従来試み
られてきた何れの製造方法に於いても、高い性能指数を
安定して保持できる熱電変換材料を高い製造歩留まりで
得るのは極めて困難であった。
As described above, it is extremely difficult to obtain a thermoelectric conversion material capable of stably maintaining a high figure of merit with a high production yield in any of the production methods that have been tried so far. there were.

【0007】[0007]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべくその熱電特性については、材料の化学組成
のみならず、結晶方位による影響が大きいことに着目
し、また加工歩留まりについては材料強度や結晶の結合
状態との関連性に着目し、更に材料組成の変質について
はその要因を排除する観点から鋭意検討を行った。その
結果、溶融法によって作製した合金塊を粉砕することな
く一定方向へ高圧力で加圧焼結することにより機械加工
時の歩留まりが飛躍的に向上し、かつ優れた性能指数を
安定して保持できる耐久性に優れた熱電変換材料を容易
に製造することができることを見出し、本発明を完成す
るに至った。
In order to solve the above-mentioned problems, the inventors of the present invention have focused on not only the chemical composition of the material but also the crystal orientation, which has a great influence on the thermoelectric properties. Focused on the relationship between the material strength and the bonding state of crystals, and further studied the alteration of the material composition from the viewpoint of eliminating the factors. As a result, the yield during machining is dramatically improved by pressing and sintering the alloy ingot produced by the melting method at a high pressure in a certain direction without crushing, and the excellent figure of merit is stably maintained. The inventors have found that a thermoelectric conversion material having excellent durability can be easily manufactured, and have completed the present invention.

【0008】即ち、この発明は溶融過程を経て凝固する
ことにより生成したBi、Te、Se、Sbの何れか2
種以上を成分とする合金塊、若しくは溶融過程を経て凝
固することにより生成したBi、Te、Se、Sbの何
れか1種以上を主成分とし残部成分が周期律表3A〜7
A族、8族、1B〜4B族、及び7B族から選択された
硼素及び炭素を除く1種以上からなる少なくとも2種の
金属を含む合金塊に於いて、該合金塊、又は該合金塊よ
り切り出した成形物を粉砕することなく一軸加圧焼結す
ることを特徴とする熱電変換材料の製造方法である。
That is, according to the present invention, any one of Bi, Te, Se, and Sb produced by solidifying through a melting process is used.
An alloy lump containing at least one kind of component, or at least one of Bi, Te, Se, and Sb produced by solidifying through a melting process as a main component and the remaining component as a periodic table 3A to 7
In an alloy lump containing at least two metals selected from Group A, Group 8, 1B to 4B, and 7B except for boron and carbon, the alloy lump, or from the alloy lump It is a method for producing a thermoelectric conversion material, which comprises uniaxially pressure-sintering a cut molded product without crushing it.

【0009】この発明に於ける合金は、複数種の金属を
混合したものや、これに非金属元素を含むものであっ
て、その組織は固溶体、共晶、金属間化合物の何れか、
或いはそれらが混合したものである。本発明が対象とす
る合金の具体的な成分は熱電変換特性を得ることができ
る材料成分であれば何れのものでも良いが、その代表的
なものとしてはBi、Te、Se、Sbの中の何れか2
種からなる成分系、例えば公知のBi−Te系、Sb−
Te系、Bi−Se系、Bi−Sb系等の二成分系合金
があり、更にこのような二成分系合金に第三番目の成分
をBi、Te、Se、Sbの中から非含有のもの1種を
選んで加えた三成分系合金、或いはBi−Te−Se−
Sbの四成分系合金も同様の熱電特性を有することが出
来るので本発明の対象となる。
The alloy according to the present invention is a mixture of a plurality of kinds of metals, or a nonmetal element contained in the alloy, the structure of which is solid solution, eutectic or intermetallic compound,
Alternatively, they are a mixture. The specific component of the alloy targeted by the present invention may be any material component as long as it can obtain thermoelectric conversion characteristics. Typical examples thereof are Bi, Te, Se and Sb. Either 2
Seed-based component systems, such as the well-known Bi-Te system, Sb-
There are binary alloys such as Te-based, Bi-Se-based, Bi-Sb-based, etc., and such binary alloys do not contain the third component from Bi, Te, Se, Sb. One component selected and added as a ternary alloy, or Bi-Te-Se-
Sb quaternary alloys can also have similar thermoelectric properties and are therefore the subject of the present invention.

【0010】又、Bi、Te、Se、Sbの各成分、若
しくはそのうち2種以上の成分からなるものは、周期律
表3A〜7A族、8族、1B〜4B族、及び7B族から
選択された硼素及び炭素を除く1種以上の成分、即ちS
c、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、
Tb、Dy、Ho、Er、Tm、Yb、Lu、Ti、Z
r、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、
Ru、Os、Co、Rh、Ir、Ni、Pd、Pt、Cu、A
g、Au、Zn、Cd、Hg、Al、Ga、In、Tl、、S
i、Ge、Sn、Pb、、F、Cl、Br、I等の成分と
合金を形成する場合に於いても、該合金に含まれるB
i、Te、Se、Sbの成分量の合計が概ね90重量%
程度かそれ以上の場合は一般に比較的良好な熱電変換特
性を有することが出来るので、この場合も本発明の対象
となる。
Further, each component of Bi, Te, Se and Sb, or a component composed of two or more of them is selected from the groups 3A to 7A, 8 group, 1B to 4B group and 7B group of the periodic table. One or more components other than boron and carbon, ie S
c, Y, La, Ce, Pr, Nd, Sm, Eu, Gd,
Tb, Dy, Ho, Er, Tm, Yb, Lu, Ti, Z
r, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe,
Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, A
g, Au, Zn, Cd, Hg, Al, Ga, In, Tl, S
Even when alloying with components such as i, Ge, Sn, Pb, F, Cl, Br and I, B contained in the alloy is included.
The total amount of i, Te, Se, and Sb components is approximately 90% by weight.
In the case of a degree or more, generally, it is possible to have relatively good thermoelectric conversion characteristics, and this case is also an object of the present invention.

【0011】この発明の合金塊は、通常、前記成分の各
金属単体、前記成分の2種以上からなる合金、その他加
熱溶融処理により前記成分からなる金属乃至合金を生成
し得る組成物、また特に、ド−パントと称される不純物
準位を形成し半導体としての性状を付与させる為のCu
I、HgBr2、HgCl2、HgI2、CuF2、SbI
3、BiI3等の化合物、などの成分源より適宜選択した
ものを、石英アンプル中に入れ電気炉にておよそ700
℃で溶融し、次いで冷却凝固させて作製する。ここで溶
融物の凝固に際しては、溶融物の上下端等に一定の温度
勾配を保ったまま冷却する一方向凝固等の操作によって
一定方向に結晶を配向させた合金塊を作製する。より好
ましくは、凝固物に対し帯域溶融法による処理を行い、
純度や配向性をより高めた合金塊を作製するのが良い。
The alloy ingot of the present invention is usually a simple substance of each metal of the above components, an alloy of two or more of the above components, and a composition capable of forming a metal or an alloy of the above components by heat melting treatment, and more particularly, , Cu for forming an impurity level called a dopant and imparting properties as a semiconductor
I, HgBr 2 , HgCl 2 , HgI 2 , CuF 2 , SbI
3 , 700, BiI 3 and other compounds, which are appropriately selected from the component sources, are placed in a quartz ampoule and heated in an electric furnace for approximately 700
It is prepared by melting at 0 ° C and then cooling and solidifying. Here, in solidifying the melt, an alloy ingot in which crystals are oriented in a certain direction is produced by an operation such as unidirectional solidification in which cooling is performed while maintaining a constant temperature gradient at the upper and lower ends of the melt. More preferably, the solidified product is treated by the zone melting method,
It is preferable to produce an alloy ingot having higher purity and orientation.

【0012】このようにして作製した合金塊、若しくは
該合金塊より所望の形状に切り出した成形物を何れも粉
砕せずに、加圧方向が合金の結晶配向方向に対し水平方
向でも良いが望ましくは垂直方向となるよう熱間加圧装
置内に設置し、一軸加圧、即ち被焼成物に対し一方向へ
の圧力を加え、若しくは同軸上で互いに180゜の方向
となる二方向からの圧力を加え、焼結する。
It is desirable that the pressing direction be horizontal to the crystal orientation direction of the alloy without crushing any of the alloy ingot thus produced or the molded product cut out from the alloy ingot into a desired shape. Is installed in the hot pressurizer so that it is in the vertical direction, and uniaxial pressure is applied, that is, pressure is applied in one direction to the material to be fired, or pressure from two directions that are coaxial with each other at 180 °. And sinter.

【0013】加圧焼結の圧力は、3000Kg/cm2
以上の圧力をかけて焼結すると焼結前の結晶配向状態を
保ったままで機械加工に十分耐え得る高強度の焼結体を
製造することが出来る。ここで加圧力を増加させると機
械的強度を一層高めることができるが、該圧力値に満た
ない場合は十分な強度の焼結体が得られない。このよう
な圧力は、通常のホットプレス装置では得ることが出来
ず、ピストンシリンダー型、フラットベルト型、ガード
ル型、ブリッジマン型、キュービックアンビル型等の超
高圧加熱装置を用いる。
The pressure of pressure sintering is 3000 Kg / cm 2
When the above pressure is applied to sinter, it is possible to manufacture a high-strength sintered body that can sufficiently withstand mechanical processing while maintaining the crystal orientation state before sintering. The mechanical strength can be further increased by increasing the applied pressure here, but if the pressure value is not reached, a sintered body having sufficient strength cannot be obtained. Such pressure cannot be obtained by an ordinary hot press device, and an ultrahigh pressure heating device such as a piston cylinder type, a flat belt type, a girdle type, a Bridgman type, or a cubic anvil type is used.

【0014】加圧焼結の温度は、300℃以上500℃
以下が望ましい。300℃未満では緻密化が十分進行せ
ず高強度な焼結体を得るのが困難となり、500℃を越
える温度では合金の融解が起こり易くなるので好ましく
ない。
The temperature of pressure sintering is 300 ° C. or higher and 500 ° C.
The following is desirable. If it is less than 300 ° C, densification does not proceed sufficiently and it becomes difficult to obtain a high-strength sintered body, and if it exceeds 500 ° C, melting of the alloy is likely to occur, which is not preferable.

【0015】加圧焼結は、大気中や減圧真空下で行うこ
ともできるが、材料表面から酸化が生じたり、高蒸気圧
成分が揮発したりすることがあるので、雰囲気を不活性
ガス及び窒素ガスの中から選択した1種又は2種以上の
ガスとすることが望ましい。
The pressure sintering can be carried out in the atmosphere or under a reduced pressure vacuum, but since the surface of the material may be oxidized or a high vapor pressure component may be volatilized, the atmosphere should be kept under an inert gas atmosphere. It is desirable to use one gas or two or more gases selected from nitrogen gas.

【0016】[0016]

【作用】この発明の製造方法に於いては粉砕工程を経な
いので、表面積が大きく、表面エネルギーが高くなるが
故により酸化され易くなる粉体状態を回避でき、酸化物
生成による性状低下を十分防ぐことが出来る。
In the production method of the present invention, since the pulverization step is not performed, it is possible to avoid the powder state in which the surface area is large and the surface energy is high, so that the powder state is easily oxidized, and the deterioration of the property due to the oxide formation is sufficiently performed. Can be prevented.

【0017】又、一軸加圧焼結は、一定方向への熱間加
圧により、配向性を有する結晶状態の溶製材をその配向
状態を保ち続けた焼結体にすることができるのに加え、
結晶の配向状態を一層完全なものにし、優れた熱電特性
を示すことが出来る。更に加圧と焼結が同時に行われる
ことにより各結晶を極めて強固に結合させ、高緻密で高
強度の焼結体を形成する。この強度は熱電変換素子とし
ての部材作製に対して必須的に実施される機械加工にも
十分耐えうる材料強度となる他、力学的耐久性を向上さ
せることに寄与する。
In the uniaxial pressure sintering, in addition to hot pressing in a certain direction, a crystalline ingot having an orientation can be made into a sintered body in which the orientation is maintained. ,
The crystal orientation can be made more perfect and excellent thermoelectric properties can be exhibited. Further, the pressurization and the sintering are performed at the same time, so that the respective crystals are bonded very strongly to form a highly dense and high-strength sintered body. This strength is a material strength that can sufficiently withstand the mechanical processing that is essential to the production of a member as a thermoelectric conversion element, and contributes to the improvement of mechanical durability.

【0018】[0018]

【実施例】以下、本発明に基づく実施例、及び本発明の
範囲から外れる比較例を合わせて記す。 [実施例1] 何れも純度99.99%のBi、Te、
Sb、Seの粉末をそれぞれ484.75g、468.
60g、31.39g、15.26g及び、n型ドーパ
ントであるHgBr2を1.15g秤量して混合したも
のをアルゴン雰囲気の石英アンプル中に密封した。これ
を電気炉中に設置し、700℃で溶融、攪拌した後、該
アンプルの上端と下端との間に5℃/cmの温度勾配を
保ちながら室温近傍まで冷却凝固し、n型溶製材を作製
した。この溶製材から、20×25×6mmの直方体を
切り出し、この直方体成形物を結晶配向方向と垂直な方
向へ一方向圧力がかかるよう、アルゴン雰囲気中、35
0℃、3000Kg/cm2の条件でピストンシリンダ
ー型超高圧加熱装置により加圧焼結を行うことでn型焼
結体を作製した。
EXAMPLES Hereinafter, examples according to the present invention and comparative examples outside the scope of the present invention will be described together. [Example 1] Bi, Te, and
Powders of Sb and Se were respectively 484.75 g, 468.
A mixture of 60 g, 31.39 g, 15.26 g and 1.15 g of HgBr 2 as an n-type dopant was weighed and mixed, and the mixture was sealed in a quartz ampoule in an argon atmosphere. This was placed in an electric furnace, melted and stirred at 700 ° C., and then cooled and solidified to near room temperature while maintaining a temperature gradient of 5 ° C./cm between the upper and lower ends of the ampoule, to obtain an n-type ingot material. It was made. A 20 × 25 × 6 mm rectangular parallelepiped is cut out from this ingot, and this rectangular parallelepiped molded product is subjected to a unidirectional pressure in a direction perpendicular to the crystal orientation direction in an argon atmosphere at 35 ° C.
An n-type sintered body was produced by performing pressure sintering with a piston-cylinder type ultra-high pressure heating device under conditions of 0 ° C. and 3000 Kg / cm 2 .

【0019】この焼結体の性能指数をこの焼結体から切
り出した4×4×20mmの試料ついて直流4端子法で
測定した電気伝導度、同様に切出した4×4×4mmの
試料について石英を標準として相対法で測定した熱伝導
度、及び熱起電力の各値から計算したところ、2.9×
10-3-1であった。又、この焼結体20個について各
々Ni無電解メッキを行った後、厚さ0.7mmのダイ
ヤモンドホイールで、周速2600m/min、切り込
み量30μmの条件で、平面研削盤により横断面が2×
2mmである直方体形状になるように加工した。加工後
の焼結体についてクラック(亀裂)やチッピング(欠け
や脱粒)の発生状況及びメッキの皮覆状態を調べたが、
何れの焼結体もクラックやチッピングが発生しておら
ず、またメッキも全く剥離しておらず、加工歩留まりは
100%であった。
Regarding the figure of merit of this sintered body, the electrical conductivity of the sample of 4 × 4 × 20 mm cut out from this sintered body was measured by the direct current 4-terminal method. Similarly, the sample of 4 × 4 × 4 mm cut out was quartz. Was calculated from the values of the thermal conductivity and the thermoelectromotive force measured by the relative method using the standard as 2.9 ×
It was 10 -3 K -1 . Further, after performing Ni electroless plating on each of the 20 sintered bodies, a cross section of 2 was obtained by a surface grinding machine with a diamond wheel having a thickness of 0.7 mm, a peripheral speed of 2600 m / min, and a cut amount of 30 μm. ×
It processed so that it might become a rectangular parallelepiped shape which is 2 mm. We investigated the occurrence of cracks and chipping (chips and shattering) and the plating covering state of the sintered body after processing.
No crack or chipping was generated in any of the sintered bodies, and the plating was not peeled at all, and the processing yield was 100%.

【0020】[実施例2] 何れも純度99.99%の
Bi、Te、Sb、Seの粉末をそれぞれ484.75
g、468.60g、31.39g、15.26g秤量
して混合したものをアルゴン雰囲気の石英アンプル中に
密封した。これを電気炉中に設置し、700℃で溶融、
攪拌した後、該アンプルの上端と下端との間に5℃/c
mの温度勾配を保ちながら室温近傍まで冷却し、p型溶
製材を作製した。この溶製材から、20×25×6mm
の直方体成形物を合計60個切り出し、この成形物を結
晶配向方向と垂直な方向へ一方向圧力がかかるよう、何
れもアルゴン雰囲気中、8000Kg/cm2の加圧条
件にて温度をそれぞれ300℃、400℃、500℃と
して個々にピストンシリンダー型超高圧加熱装置により
加圧焼結を行い、焼結温度が異なる3種類のp型焼結体
各20個を作製した。
[Embodiment 2] In each case, powders of Bi, Te, Sb and Se having a purity of 99.99% are respectively 484.75.
g, 468.60 g, 31.39 g, 15.26 g, and weighed and mixed. The mixture was sealed in a quartz ampoule under an argon atmosphere. It was placed in an electric furnace and melted at 700 ° C.
After stirring, 5 ° C / c between the upper and lower ends of the ampoule
Cooling to near room temperature while maintaining the temperature gradient of m, a p-type ingot was produced. From this ingot, 20 x 25 x 6 mm
A total of 60 rectangular parallelepiped molded products were cut out, and the temperature was 300 ° C. in an argon atmosphere under a pressurizing condition of 8000 Kg / cm 2 so that a pressure in one direction was applied in a direction perpendicular to the crystal orientation direction. , 400 ° C., and 500 ° C. were individually pressure-sintered by a piston-cylinder type ultra-high pressure heating device to produce 20 p-type sintered bodies of each of three types having different sintering temperatures.

【0021】これらの3種類の焼結体の性能指数を前記
実施例1と同様の方法で測定したところ、何れも3.0
×10-3-1であった。又、前記実施例1と同様の条
件、方法にて、これらの焼結体にNi無電解メッキを行
った後、平面研削盤で横断面が2×2mmである直方体
形状になるように加工した。加工後の各焼結体について
クラックやチッピングの発生状況及びメッキの皮覆状態
を調べたが、クラックやチッピングは全ての焼結体とも
発生していなかったが、300℃及び400℃で焼結し
た焼結体各1個に於いてメッキの一部剥離が見られ、こ
れらの焼結体の加工歩留まりは何れも95%であった。
尚、500℃での焼結体はメッキの剥離は全く見られず
加工歩留まりは100%であった。
The performance indexes of these three kinds of sintered bodies were measured by the same method as in Example 1, and all 3.0
It was × 10 -3 K -1 . Further, Ni electroless plating was performed on these sintered bodies under the same conditions and method as in Example 1, and then processed by a surface grinder to have a rectangular parallelepiped shape having a cross section of 2 × 2 mm. . The occurrence of cracks and chippings and the covering state of the plating were examined for each sintered body after processing. No cracks or chippings were found in all the sintered bodies, but sintering was performed at 300 ° C and 400 ° C. A partial peeling of the plating was observed in each of the sintered bodies, and the processing yields of these sintered bodies were all 95%.
In the sintered body at 500 ° C., peeling of the plating was not observed at all, and the processing yield was 100%.

【0022】[実施例3] 何れも純度99.99%の
Bi、Te、Sb、Seの粉末をそれぞれ484.75
g、468.60g、31.39g、15.26g及
び、n型ドーパントであるHgBr2を1.15g秤量
して混合したものをアルゴン雰囲気の石英アンプル中に
密封した。これを実施例1と同様の方法で溶融凝固させ
た後、ブリッジマン・ストックバーガー炉を用いた帯域
溶融法によって不純物の除去及び結晶の配向性の向上を
行い、n型溶製材を作製した。この溶製材から、20×
25×6mmの直方体を切り出し、この成形物を結晶配
向方向と垂直な方向へ一方向の圧力がかかるよう、アル
ゴン雰囲気中、380℃、6000Kg/cm2の条件
でピストンシリンダー型超高圧加熱装置により加圧焼結
を行うことでn型の焼結体を作製した。
[Embodiment 3] Each of powders of Bi, Te, Sb, and Se having a purity of 99.99% is 484.75.
g, 468.60 g, 31.39 g, 15.26 g, and 1.15 g of n-type dopant HgBr 2 were weighed and mixed, and the mixture was sealed in a quartz ampoule in an argon atmosphere. This was melted and solidified in the same manner as in Example 1, and impurities were removed and crystal orientation was improved by a zone melting method using a Bridgman-Stockburger furnace to produce an n-type ingot material. 20 × from this ingot
A 25 × 6 mm rectangular parallelepiped is cut out, and this molded product is applied with a piston-cylinder type ultra-high pressure heating device in an argon atmosphere under the conditions of 380 ° C. and 6000 Kg / cm 2 so that pressure is applied in one direction perpendicular to the crystal orientation direction. An n-type sintered body was produced by performing pressure sintering.

【0023】この焼結体の性能指数を実施例1と同様の
方法で測定したところ、3.1×10-3-1であった。
この焼結体20個について各々Ni無電解メッキを行っ
た後、厚さ0.7mmのダイヤモンドホイールで、周速
2600m/min、切り込み量30μmの条件で、平
面研削盤により横断面が2×2mmである直方体形状に
なるように加工した。加工後の焼結体についてクラック
やチッピングの発生状況及びメッキの皮覆状態を調べた
が、クラックやチッピングは全く発生せず、メッキの剥
離も全くなく、加工歩留まりは100%であった。
The performance index of this sintered body was measured by the same method as in Example 1 and found to be 3.1 × 10 -3 K -1 .
After performing Ni electroless plating on each of the 20 sintered bodies, a cross section of 2 × 2 mm was obtained by a surface grinding machine under the conditions of a peripheral speed of 2600 m / min and a cutting depth of 30 μm using a diamond wheel having a thickness of 0.7 mm. Was processed into a rectangular parallelepiped shape. When the sintered body after processing was examined for cracks and chippings and the covering state of the plating, cracks and chippings did not occur at all, plating did not peel off at all, and the processing yield was 100%.

【0024】更に、これと同様の条件、方法で作製した
焼結体について、切り込み量のみを5、10、20、4
0、50μmの各値とし、他の条件は前記と同様にして
行った切り込み量の変化に対する加工歩留まりを調べ
た。その結果、何れの切り込み量でも、クラックやチッ
ピングは発生せず、かつメッキの剥離も無く、加工歩留
まりは全て100%であった。
Further, with respect to the sintered body produced under the same conditions and method as described above, only the cut amount was 5, 10, 20, 4
The values were 0 and 50 μm, and other conditions were the same as above, and the processing yield was examined with respect to changes in the depth of cut. As a result, cracks and chippings did not occur at any cutting depth, and plating was not peeled off, and the processing yields were all 100%.

【0025】又、ここで作製したn型の焼結体から、4
×4×20mmの直方体を切り出し、その両端面にリー
ド線を半田付けし、温度40℃、相対湿度93%の恒温
恒湿槽中で1分毎に極性を反転させつつ2Aの電流を印
加し続け耐久性試験を行ったところ、試験開始からの経
過時間が2000時間後も図1に示すように比抵抗(Ω
cm)の変化は殆ど見られず、安定した性状を示した。
From the n-type sintered body produced here, 4
A 4x20mm rectangular parallelepiped is cut out, and a lead wire is soldered to both end faces of the rectangular parallelepiped, and a current of 2A is applied while inverting the polarity every minute in a constant temperature and humidity chamber at a temperature of 40 ° C and a relative humidity of 93%. When a durability test was continuously performed, the specific resistance (Ω
The change in cm) was hardly seen, and stable properties were exhibited.

【0026】[0026]

【図1】FIG.

【0027】[実施例4] 何れも純度99.99%の
Bi、Te、Sb、Seの粉末をそれぞれ484.75
g、468.60g、31.39g、15.26g秤量
して混合したものをアルゴン雰囲気の石英アンプル中に
密封した。これを前記実施例3と同様の手順で、帯域溶
融法により不純物の除去及び結晶の配向性の向上を行っ
たp型溶製材を作製した。この溶製材から、20×25
×6mmの直方体を切り出し、この成形物を結晶配向方
向と垂直な方向へ一方向の圧力がかかるよう、アルゴン
雰囲気中、380℃、6000Kg/cm2の条件でピ
ストンシリンダー型超高圧加熱装置により加圧焼結し、
p型焼結体を得た。
[Embodiment 4] Each of powders of Bi, Te, Sb, and Se having a purity of 99.99% was 484.75.
g, 468.60 g, 31.39 g, 15.26 g, and weighed and mixed. The mixture was sealed in a quartz ampoule under an argon atmosphere. In the same procedure as in Example 3, a p-type ingot was prepared by removing impurities and improving the crystal orientation by the zone melting method. 20 x 25 from this ingot
A rectangular parallelepiped of 6 mm is cut out, and this molded product is heated by a piston cylinder type ultra-high pressure heating device under an argon atmosphere at 380 ° C. and 6000 Kg / cm 2 so that a pressure in one direction is applied in a direction perpendicular to the crystal orientation direction. Pressure sintering,
A p-type sintered body was obtained.

【0028】この焼結体の性能指数を実施例1と同様の
方法で測定したところ、3.1×10-3-1であった。
又、実施例1と同様の条件、方法にて、この焼結体にN
i無電解メッキを行った後、平面研削盤で横断面が2×
2mmである直方体形状になるように加工した。加工後
の焼結体についてクラックやチッピングの発生状況及び
メッキの皮覆状態を調べたが、クラックやチッピングは
全く発生せず、メッキの剥離も全くなく、加工歩留まり
は100%であった。
When the performance index of this sintered body was measured by the same method as in Example 1, it was 3.1 × 10 -3 K -1 .
Moreover, under the same conditions and method as in Example 1, the sintered body was N
i After electroless plating, the cross section is 2 × with a surface grinder
It processed so that it might become a rectangular parallelepiped shape which is 2 mm. When the sintered body after processing was examined for cracks and chippings and the covering state of the plating, cracks and chippings did not occur at all, plating did not peel off at all, and the processing yield was 100%.

【0029】[実施例5] 何れも純度99.99%の
Bi、Te、Sb、Seの粉末をそれぞれ484.75
g、468.60g、31.39g、15.26g秤量
して混合したものをアルゴン雰囲気の石英アンプル中に
密封した。これを電気炉中に設置し、700℃で溶融、
攪拌した後、該アンプルの上端と下端との間に5℃/c
mの温度勾配を保ちながら室温近傍まで冷却し、p型溶
製材を作製した。この溶製材から、20×25×6mm
の直方体成形物を合計40個切り出し、この成形物を結
晶配向方向と垂直な方向へ一方向の圧力がかかるよう、
何れもアルゴン雰囲気中、400℃で、圧力のみ300
0Kg/cm2と10000Kg/cm2の2通りの条件
とし、個々の条件にてピストンシリンダー型超高圧加熱
装置により加圧焼結を行い、焼結圧力が異なる2種類の
p型焼結体各20個を作製した。
[Embodiment 5] In each case, powders of Bi, Te, Sb and Se having a purity of 99.99% are respectively 484.75.
g, 468.60 g, 31.39 g, 15.26 g, and weighed and mixed. The mixture was sealed in a quartz ampoule under an argon atmosphere. It was placed in an electric furnace and melted at 700 ° C.
After stirring, 5 ° C / c between the upper and lower ends of the ampoule
Cooling to near room temperature while maintaining the temperature gradient of m, a p-type ingot was produced. From this ingot, 20 x 25 x 6 mm
A total of 40 rectangular parallelepiped molded articles are cut out, and the molded article is pressed in one direction in a direction perpendicular to the crystal orientation direction.
All are 400 degrees Celsius in argon atmosphere, only pressure is 300
The condition of the two types of 0 kg / cm 2 and 10000 kg / cm 2, subjected to pressure sintering by the piston cylinder-type ultrahigh pressure heating apparatus at individual condition, sintering pressures of two different p-type sintered bodies each 20 pieces were produced.

【0030】これらの焼結体の性能指数を実施例1と同
様の方法で測定したところ、何れも3.0×10-3-1
であった。この焼結体20個について各々Ni無電解メ
ッキを行った後、厚さ0.7mmのダイヤモンドホイー
ルで、周速2600m/min、切り込み量30μmの
条件で、平面研削盤により横断面が2×2mmである直
方体形状になるように加工した。加工後の焼結体につい
てクラックやチッピングの発生状況及びメッキの皮覆状
態を調べたが、全ての焼結体についてメッキの剥離は無
かったが、3000Kg/cm2の焼結体については2
個のみがチッピングが見られ、加工歩留まりは90%で
あった。10000Kg/cm2の焼結体についてはク
ラックやチッピングとも全く問題なく加工歩留まりは1
00%であった。
The performance indexes of these sintered bodies were measured by the same method as in Example 1. All were 3.0 × 10 -3 K -1.
Met. After performing Ni electroless plating on each of the 20 sintered bodies, a cross section of 2 × 2 mm was obtained by a surface grinding machine under the conditions of a peripheral speed of 2600 m / min and a cutting depth of 30 μm using a diamond wheel having a thickness of 0.7 mm. Was processed into a rectangular parallelepiped shape. The state of cracks and chippings and the state of plating covering of the sintered body after processing were examined. No peeling of the plating was observed in all the sintered bodies, but 2 was found in the sintered body of 3000 kg / cm 2.
Only one piece showed chipping, and the processing yield was 90%. With respect to the sintered body of 10000 Kg / cm 2 , there was no problem with cracking or chipping, and the processing yield was 1
00%.

【0031】[実施例6] 何れも純度99.99%の
Bi、Te、Sb、Seの粉末をそれぞれ484.75
g、468.60g、31.39g、15.26g秤量
して混合したものをアルゴン雰囲気の石英アンプル中に
密封した。これを電気炉中に設置し、700℃で溶融、
攪拌した後、該アンプルの上端と下端との間に5℃/c
mの温度勾配を保ちながら室温近傍まで冷却し、p型溶
製材を作製した。この溶製材から、20×25×6mm
の直方体を切り出し、この成形物を結晶配向方向と垂直
な方向へ一方向圧力がかかるよう、何れも400℃、8
000Kg/cm2にて、雰囲気を窒素ガス、窒素−ア
ルゴン混合ガス(体積比約1:1)、ヘリウムガスの各
条件でそれぞれピストンシリンダー型超高圧加熱装置に
より加圧焼結し、焼結雰囲気の異なる3種類のp型焼結
体を作製した。これらの焼結体の性能指数を測定したと
ころ、何れも3.0×10-3-1であった。
[Embodiment 6] Powders of Bi, Te, Sb, and Se having a purity of 99.99% are respectively 484.75.
g, 468.60 g, 31.39 g, 15.26 g, and weighed and mixed. The mixture was sealed in a quartz ampoule under an argon atmosphere. It was placed in an electric furnace and melted at 700 ° C.
After stirring, 5 ° C / c between the upper and lower ends of the ampoule
Cooling to near room temperature while maintaining the temperature gradient of m, a p-type ingot was produced. From this ingot, 20 x 25 x 6 mm
Cut out a rectangular parallelepiped, and apply a unidirectional pressure to this molded product in a direction perpendicular to the crystal orientation direction.
At 000 Kg / cm 2 , the atmosphere is nitrogen gas, nitrogen-argon mixed gas (volume ratio about 1: 1), and helium gas are pressure-sintered by a piston-cylinder type ultra-high pressure heating device, and a sintering atmosphere is obtained. Three different types of p-type sintered bodies were prepared. When the figure of merit of these sintered bodies was measured, they were all 3.0 × 10 −3 K −1 .

【0032】[実施例7] 何れも純度99.99%の
Bi、Teの粉末をそれぞれ529.20g、478.
02g、及びn型ドーパントであるSbI3とHgBr2
とをそれぞれ0.6g、0.55g秤量し混合したもの
をアルゴン雰囲気の石英アンプル中に密封した。これを
電気炉中に設置し、700℃で溶融、攪拌した後、該ア
ンプルの上端と下端との間に5℃/cmの温度勾配を保
ちながら室温近傍まで冷却し、n型溶製材を作製した。
この溶製材から、20×25×6mmの直方体を切り出
し、この直方体成形物を結晶配向方向と垂直な方向へ一
方向圧力がかかるよう、アルゴン雰囲気中、350℃、
3000Kg/cm2の条件でピストンシリンダー型超
高圧加熱装置により加圧焼結を行うことでn型焼結体を
作製した。この焼結体の性能指数を測定したところ2.
8×10-3-1となった。また、この焼結体20個につ
いて実施例1と同様の条件、方法にて加工歩留まりを調
べたところ、加工歩留まりは100%であった。
[Embodiment 7] 529.20 g of Bi and Te powders having a purity of 99.99% and 478.
02g, and SbI 3 and HgBr 2 which are n-type dopants
0.6 g and 0.55 g of and were weighed and mixed, and the mixture was sealed in a quartz ampoule in an argon atmosphere. This was placed in an electric furnace, melted and stirred at 700 ° C., and then cooled to near room temperature while maintaining a temperature gradient of 5 ° C./cm between the upper and lower ends of the ampoule to produce an n-type ingot material. did.
A rectangular parallelepiped having a size of 20 × 25 × 6 mm was cut out from this ingot, and the rectangular parallelepiped molded product was subjected to unidirectional pressure in a direction perpendicular to the crystal orientation direction at 350 ° C. in an argon atmosphere,
An n-type sintered body was produced by performing pressure sintering with a piston-cylinder type ultra-high pressure heating device under the condition of 3000 kg / cm 2 . When the figure of merit of this sintered body was measured, 2.
It became 8 × 10 −3 K −1 . Further, when the processing yield was examined for the 20 sintered bodies under the same conditions and methods as in Example 1, the processing yield was 100%.

【0033】[実施例8] 実施例1と同様の方法でn
型溶製材を作製した。この溶製材から20×25×6m
mの直方体を切り出し、この直方体成形物を結晶配向方
向と平行な方向へ一方向の圧力が加わるよう、アルゴン
雰囲気中380℃、3500Kg/cm2の条件でピス
トンシリンダー型超高圧加熱装置により加圧焼結を行う
ことでn型焼結体を作製した。この焼結体について、実
施例1と同様の条件、方法にて加工歩留まりを調べたと
ころ、加工歩留まりは100%であった。
[Embodiment 8] In the same manner as in Embodiment 1, n
A mold ingot was produced. 20 × 25 × 6m from this ingot
m rectangular parallelepiped is cut out, and this rectangular parallelepiped shaped product is pressed by a piston cylinder type ultra-high pressure heating device in an argon atmosphere at 380 ° C. and 3500 Kg / cm 2 so that pressure in one direction is applied in a direction parallel to the crystal orientation direction. An n-type sintered body was produced by performing sintering. When the processing yield of this sintered body was examined under the same conditions and methods as in Example 1, the processing yield was 100%.

【0034】[実施例9] 何れも純度99.99%の
Bi、Teの粉末をそれぞれ529.20g、478.
02g、及びn型ドーパントであるSbI3とHgBr2
とをそれぞれ0.6g、0.55g秤量し混合したもの
をアルゴン雰囲気の石英アンプル中に密封した。これを
電気炉中に設置し、700℃で溶融、攪拌した後、該ア
ンプルの上端と下端との間に5℃/cmの温度勾配を保
ちながら室温近傍まで冷却し、n型溶製材を作製した。
この溶製材から、直径6mmの円柱を切り出し、この円
柱成形物を結晶配向方向と垂直な方向へ一方向の圧力が
加わるよう、320℃、50000Kg/cm2にて、
フラットベルト型超高圧加熱装置により加圧焼結を行
い、n型焼結体を作製した。
[Embodiment 9] 52.20 g of Bi and Te powders having a purity of 99.99% and 478.
02g, and SbI 3 and HgBr 2 which are n-type dopants
0.6 g and 0.55 g of and were weighed and mixed, and the mixture was sealed in a quartz ampoule in an argon atmosphere. This was placed in an electric furnace, melted and stirred at 700 ° C., and then cooled to near room temperature while maintaining a temperature gradient of 5 ° C./cm between the upper and lower ends of the ampoule to produce an n-type ingot material. did.
From this ingot, a cylinder with a diameter of 6 mm was cut out, and this cylinder molded product was subjected to unidirectional pressure in a direction perpendicular to the crystal orientation direction at 320 ° C. and 50000 Kg / cm 2 ,
Pressure sintering was performed with a flat belt type ultra-high pressure heating device to produce an n-type sintered body.

【0035】この焼結体20個について各々Ni無電解
メッキを行った後、厚さ0.7mmのダイヤモンドホイ
ールで、周速2600m/min、切り込み量30μm
の条件で、平面研削盤により横断面が2×2mm形状に
なるように加工した。加工後の焼結体についてクラック
(亀裂)やチッピング(欠けや脱粒)の発生状況及びメ
ッキの皮覆状態を調べたが、何れの焼結体もクラックや
チッピング、及びメッキの剥離は全く見られず、加工歩
留まりは100%であった。
After electroless plating of Ni on each of the 20 sintered bodies, a diamond wheel having a thickness of 0.7 mm was used to produce a peripheral speed of 2600 m / min and a cutting depth of 30 μm.
Under the above conditions, the cross-section was processed by a surface grinder so as to have a 2 × 2 mm shape. We investigated the occurrence of cracks and chippings (chips and shattering) and the coating state of the plated sintered bodies, and found that all of the sintered bodies did not show cracks, chippings, or peeling of the plating. The processing yield was 100%.

【0036】[比較例1] 実施例1と同様の方法でn
型溶製材を作製した。この溶製材の性能指数は2.9×
10-3-1となった。又、この溶製材を加圧焼結するこ
となく、結晶成長方向と直角をなす方向に厚さ4mmの
円盤形状物20個を切出し、これにNi無電解メッキを
行った後、実施例1と同様の条件にて、平面研削盤で横
断面が2×2mmである直方体形状になるように加工し
た。加工後の形状物についてクラックやチッピングの発
生状況及びメッキの皮覆状態を調べた。クラック又はチ
ッピングの何れか一方及び両方が発生したものは合計1
2個あり、加工歩留まりは40%以下であった。
[Comparative Example 1] In the same manner as in Example 1, n
A mold ingot was produced. Performance index of this ingot is 2.9x
It became 10 -3 K -1 . Further, without pressing and sintering this ingot, 20 disc-shaped objects having a thickness of 4 mm were cut out in a direction perpendicular to the crystal growth direction and subjected to Ni electroless plating, and then, as in Example 1. Under the same conditions, it was processed by a surface grinder to have a rectangular parallelepiped shape having a cross section of 2 × 2 mm. The state of cracks and chippings and the state of plating covering were investigated for the shape after processing. Total of 1 if either or both cracks and chippings occurred
There were two pieces, and the processing yield was 40% or less.

【0037】[比較例2] 実施例2と同様の方法でp
型溶製材を作製した。この溶製材の性能指数は3.0×
10-3-1となった。この溶製材を加圧焼結することな
く、比較例1と同様の条件、方法で20個の未焼結試料
について加工歩留まりを調べたところ、チッピングやク
ラックが11個の試料で見られ加工歩留まりは45%で
あった。
[Comparative Example 2] In the same manner as in Example 2, p
A mold ingot was produced. The figure of merit of this ingot is 3.0 x
It became 10 -3 K -1 . When the processing yield of 20 unsintered samples was examined under the same conditions and method as in Comparative Example 1 without pressurizing and sintering this ingot, chipping and cracks were found in 11 samples, and the processing yield was Was 45%.

【0038】[比較例3] 実施例3と同様の方法でn
型溶製材を作製した。この溶製材を加圧焼結することな
く、比較例1と同様の条件、方法で加工歩留まりを調べ
たところ50%となった。また、この溶製材から、4×
4×20mmの直方体を切り出し、その両端面にリード
線を半田付けし、温度40℃、相対湿度93%の恒温恒
湿槽中で1分毎に極性を反転させつつ2Aの電流を印加
し続け耐久性試験を行ったところ、図2に示すように試
験開始からの経過時間が300時間迄におよそ15%の
比抵抗(Ωcm)の増加が見られ、雰囲気からの水分吸
湿による材料の劣化が確認された。
Comparative Example 3 In the same manner as in Example 3, n
A mold ingot was produced. When the processing yield was examined under the same conditions and methods as in Comparative Example 1 without pressurizing and sintering this ingot, it was 50%. Also, from this ingot, 4x
Cut out a 4 × 20 mm rectangular parallelepiped, solder lead wires to both ends of it, and continue applying a current of 2 A while reversing the polarity every minute in a constant temperature and humidity chamber at a temperature of 40 ° C. and a relative humidity of 93%. When a durability test was performed, as shown in FIG. 2, an increase in specific resistance (Ωcm) of about 15% was observed by the time elapsed from the start of the test up to 300 hours, and deterioration of the material due to moisture absorption from the atmosphere was observed. confirmed.

【0039】[0039]

【図2】FIG. 2

【0040】[比較例4] 実施例4と同様の方法でp
型溶製材を作製した。この溶製材を加圧焼結することな
く、比較例1と同様の条件、方法で20個の未焼結試料
について加工歩留まりを調べたところ、加工歩留まりは
55%となった。
[Comparative Example 4] In the same manner as in Example 4, p
A mold ingot was produced. When the processing yield of 20 unsintered samples was examined under the same conditions and method as in Comparative Example 1 without press-sintering this ingot, the processing yield was 55%.

【0041】[比較例5] 実施例5と同様の方法でp
型溶製材を作製した。この溶製材から、20×25×6
mmの直方体成形物を20個切り出し、この成形物を結
晶配向方向と垂直な方向へ一方向の圧力がかかるよう、
何れもアルゴン雰囲気中、400℃、300Kg/cm
2の条件でホットプレス装置により加圧焼結を行うこと
でn型焼結体を作製した。この焼結体を、実施例1と同
様の条件、方法にて加工歩留まりを調べたところ、クラ
ックやチッピングによる損傷を起こしたものが11個、
クラックやチッピングは見られなかったもののメッキの
剥離が見られたものが4個であり、加工歩留まりは25
%と極めて低いものになった。
[Comparative Example 5] In the same manner as in Example 5, p
A mold ingot was produced. From this ingot, 20 x 25 x 6
20 pieces of rectangular parallelepiped molded product of mm are cut out, and the molded product is pressed in one direction in a direction perpendicular to the crystal orientation direction.
Both are 400 ° C and 300 Kg / cm in an argon atmosphere.
An n-type sintered body was produced by performing pressure sintering with a hot press machine under the condition of 2 . When the processing yield of this sintered body was examined under the same conditions and method as in Example 1, 11 pieces were found to be damaged by cracks or chippings.
No cracks or chippings were found, but there were four with peeling of the plating, and the processing yield was 25.
It became a very low percentage.

【0042】[比較例6] 実施例3と同様の方法でn
型溶製材を作製した。この溶製材を空気中で乳鉢にて粉
砕し、ステンレス篩で75μm以上150μm未満の粒
度の粒子になるよう分級した。この粒子を窒化硼素膜で
シールドした黒鉛製モールド中に充填し、実施例3と同
様の条件で加圧焼結を行い、n型焼結体を作製した。こ
の焼結体の性能指数は2.3×10-3-1であり、焼結
前の溶製材の性能指数の値(3.1×10-3-1)と比
べ、約26%低下した。
[Comparative Example 6] In the same manner as in Example 3, n
A mold ingot was produced. This ingot was ground in a mortar in the air and classified with a stainless sieve into particles having a particle size of 75 μm or more and less than 150 μm. The particles were filled in a graphite mold shielded with a boron nitride film and pressure-sintered under the same conditions as in Example 3 to produce an n-type sintered body. The figure of merit of this sintered body is 2.3 × 10 -3 K -1, which is about 26% of the figure of merit of the ingot before sintering (3.1 × 10 -3 K -1 ). Fell.

【0043】[0043]

【発明の効果】この発明の製造方法によれば、従来不可
能であった高い熱電特性を有する熱電変換材料を優れた
製造得率で得ることができる。特に、加工工程に於ける
大幅な歩留まり向上は、生産コストのみならず原料コス
トの著しい低減をもたらすことができる。又、本製造方
法は、優れた耐久性の熱電変換材料が得られるので、熱
電冷却、熱電発電、温度センサー等への活用に際して望
まれている、より長寿命で安定した性状を示す熱電変換
素子の製造に極めて適する。更に、これまで著しく困難
であった高性能な小型素子の製造に対しても十分適用で
きる可能性があり、例えば微少な空間で高精度の温度制
御を必要とする分野、即ち、光通信用レーザーダイオー
ドの温度調節等の用途に於いても、既知の焼結体素子と
比較して、より精密な温度制御を可能とする小型素子を
製造することができる。
According to the manufacturing method of the present invention, it is possible to obtain a thermoelectric conversion material having a high thermoelectric property, which has heretofore been impossible, with an excellent manufacturing yield. In particular, a large yield improvement in the processing process can bring about not only a production cost but also a material cost reduction. In addition, since the present manufacturing method can obtain a thermoelectric conversion material having excellent durability, a thermoelectric conversion element having a longer life and stable properties, which is desired for use in thermoelectric cooling, thermoelectric power generation, temperature sensors, etc. Very suitable for the production of Furthermore, it may be sufficiently applicable to the production of high-performance small elements, which has been extremely difficult until now. For example, a field requiring highly accurate temperature control in a minute space, that is, a laser for optical communication. Also in applications such as temperature control of a diode, it is possible to manufacture a small element that enables more precise temperature control as compared with a known sintered body element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で製造した熱電変換材料の耐久性につい
ての説明図である。
FIG. 1 is an explanatory diagram of durability of a thermoelectric conversion material manufactured by the present invention.

【図2】本発明を用いずに従来の方法で製造した熱電変
換材料の耐久性についての説明図である。
FIG. 2 is an explanatory diagram of durability of a thermoelectric conversion material manufactured by a conventional method without using the present invention.

フロントページの続き (72)発明者 仙波 裕隆 千葉県佐倉市大作2丁目4番2号 秩父小 野田株式会社中央研究所内Front page continuation (72) Inventor Hirotaka Senba 2-4 Daisaku, Sakura City, Chiba Prefecture Chichibu Onoda Central Research Institute, Inc.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 溶融過程を経て凝固することにより生成
したBi、Te、Se、Sbの何れか2種以上を成分と
する合金塊、若しくは溶融過程を経て凝固することによ
り生成したBi、Te、Se、Sbの何れか1種以上を
主成分とし残部成分が周期律表3A〜7A族、8族、1
B〜4B族、及び7B族から選択された硼素及び炭素を
除く1種以上からなる少なくとも2種の金属を含む合金
塊に於いて、該合金塊、又は該合金塊より切り出した成
形物を粉砕することなく一軸加圧焼結することを特徴と
する熱電変換材料の製造方法。
1. An alloy lump containing any two or more of Bi, Te, Se, and Sb, which are produced by solidifying through a melting process, or Bi, Te, which is produced by solidifying through a melting process. The main component is at least one of Se and Sb, and the remaining components are periodic groups 3A to 7A, 8 and 1
In an alloy lump containing at least two kinds of metals selected from the group B to 4B and 7B except for boron and carbon, crushing the alloy lump or a molded product cut out from the alloy lump. A method for producing a thermoelectric conversion material, which comprises performing uniaxial pressure sintering without performing.
【請求項2】 加圧焼結の圧力が約3000Kg/cm
2以上であることを特徴とする請求項1記載の熱電変換
材料の製造方法。
2. The pressure for pressure sintering is about 3000 Kg / cm.
It is 2 or more, The manufacturing method of the thermoelectric conversion material of Claim 1 characterized by the above-mentioned.
【請求項3】 加圧焼結の温度が300℃以上500℃
以下であることを特徴とする請求項1記載の熱電変換材
料の製造方法。
3. The pressure sintering temperature is 300 ° C. or higher and 500 ° C.
It is the following, The manufacturing method of the thermoelectric conversion material of Claim 1 characterized by the following.
【請求項4】 加圧焼結の雰囲気が不活性ガス及び窒素
ガスの中から選択された1種又は2種以上のガスからな
ることを特徴とする請求項1記載の熱電変換材料の製造
方法。
4. The method for producing a thermoelectric conversion material according to claim 1, wherein the pressure sintering atmosphere is composed of one or more gases selected from an inert gas and a nitrogen gas. .
【請求項5】 凝固が一方向凝固であることを特徴とす
る請求項1記載の熱電変換材料の製造方法。
5. The method for producing a thermoelectric conversion material according to claim 1, wherein the solidification is unidirectional solidification.
【請求項6】 凝固後に帯域溶融処理を行うことを特徴
とする請求項1記載の熱電変換材料の製造方法。
6. The method for producing a thermoelectric conversion material according to claim 1, wherein zone melting treatment is performed after solidification.
JP7186448A 1995-06-29 1995-06-29 Manufacture of thermoelectric conversion material Pending JPH0918061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7186448A JPH0918061A (en) 1995-06-29 1995-06-29 Manufacture of thermoelectric conversion material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7186448A JPH0918061A (en) 1995-06-29 1995-06-29 Manufacture of thermoelectric conversion material

Publications (1)

Publication Number Publication Date
JPH0918061A true JPH0918061A (en) 1997-01-17

Family

ID=16188639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7186448A Pending JPH0918061A (en) 1995-06-29 1995-06-29 Manufacture of thermoelectric conversion material

Country Status (1)

Country Link
JP (1) JPH0918061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220053503A (en) * 2020-10-22 2022-04-29 브이메모리 주식회사 Thermoelectric material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220053503A (en) * 2020-10-22 2022-04-29 브이메모리 주식회사 Thermoelectric material

Similar Documents

Publication Publication Date Title
CN100448045C (en) Thermoelectric material, thermoelectric element and thermoelectric module, and method for manufacturing same
CN111477736B (en) Bismuth telluride-based thermoelectric material and preparation method thereof
CN106571422B (en) Bismuth telluride-based N-type thermoelectric material and preparation method thereof
WO2007034632A1 (en) Thermo-electric converting material and process for producing the same
WO1990016086A1 (en) Thermoelectric semiconductor material and method of producing the same
JP4854215B2 (en) Thermoelectric material and manufacturing method thereof
WO2001017034A1 (en) Process for producing thermoelectric material and thermoelectric material thereof
WO2013047474A1 (en) Sintered body, sintered body for thermoelectric conversion element, thermoelectric conversion element, and thermoelectric conversion module
Lee et al. Effect of heat treatment on the thermoelectric properties of Bismuth–Antimony–Telluride prepared by mechanical deformation and mechanical alloying
WO1999054941A1 (en) Method of manufacturing sintered body for thermoelectric conversion element, sintered body for thermoelectric conversion element and thermoelectric conversion element using it
JP4467584B2 (en) Thermoelectric material manufacturing method
JP3929880B2 (en) Thermoelectric material
JPH0918061A (en) Manufacture of thermoelectric conversion material
CN112002796B (en) Rapid preparation of high-performance Bi easy to cut2Te3Method for producing thermoelectric material
JP2003298122A (en) Method of manufacturing thermoelectric conversion material
JP3979290B2 (en) Thermoelectric material and manufacturing method thereof
JP4666841B2 (en) Method for manufacturing thermoelectric material
JP3605366B2 (en) Thermoelectric element manufacturing method, thermoelectric element and thermoelectric module manufactured using the same
JP5353213B2 (en) Thermoelectric material, method for producing thermoelectric material
JP4671553B2 (en) Thermoelectric semiconductor manufacturing method
JP7494567B2 (en) Cr-Si sintered body
JP3580783B2 (en) Thermoelectric element manufacturing method and thermoelectric element
JP6192015B2 (en) Compact for thermoelectric conversion material, sintered compact, and manufacturing method thereof
JPH03201577A (en) Manufacture of bi-sb-ti-se thermoelectric semiconductor material
JPH09172205A (en) Manufacture of thermoelectric material