JPH0917923A - Heat condition sheet - Google Patents

Heat condition sheet

Info

Publication number
JPH0917923A
JPH0917923A JP8086398A JP8639896A JPH0917923A JP H0917923 A JPH0917923 A JP H0917923A JP 8086398 A JP8086398 A JP 8086398A JP 8639896 A JP8639896 A JP 8639896A JP H0917923 A JPH0917923 A JP H0917923A
Authority
JP
Japan
Prior art keywords
heat
silicone gel
gel layer
cal
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8086398A
Other languages
Japanese (ja)
Inventor
Koji Nishizawa
孝治 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP8086398A priority Critical patent/JPH0917923A/en
Publication of JPH0917923A publication Critical patent/JPH0917923A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat conduction sheet which does not damage a semiconductor element during fixing, realizes good contact between a heat sink body which is a heat dissipation material and a semiconductor element and brings about effective heat conduction and good heat dissipation effect. SOLUTION: The title heat conduction sheet is provided with a silicone gel layer 2 whose heat conductivity is 1×10<-3> to 5×10<-3> cal/cm.sec. deg.C and consistency is 10 to 80 in both sides of a supporter 1 whose heat conductivity is 1×10<-4> cal/cm.sec. deg.C or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、コンピュータ、ワ
ードプロセッサ、特にはノート型やラップトップ型の情
報処理機器における、IC、LSI、CPUなどの半導
体素子と放熱部材とを効率よく接続するのに有用な、熱
伝導シートに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is useful for efficiently connecting semiconductor elements such as ICs, LSIs and CPUs to heat dissipation members in computers, word processors, and particularly notebook or laptop type information processing equipment. It relates to a heat conductive sheet.

【0002】[0002]

【従来の技術】近年、コンピュータやワードプロセッサ
等の情報処理機器は、携帯用仕様の薄型サイズのものが
好まれるようになってきた。このタイプの情報処理機器
でも最近は半導体素子の消費電力が2Wを超えるものが
出現している。このように消費電力の大きい半導体素子
では、何らかの放熱手段を講じなければ、半導体素子の
性能に悪影響を及ぼす。そこで、従来は放熱部材とし
てヒートシンク体を直接半導体素子に当接させる方法、
ヒートシンク体と半導体素子の天面との間にグリース
を塗布する方法、ヒートシンク体と半導体素子の天面
との間に放熱性のゴムシートを挟む方法等が採用されて
いた。
2. Description of the Related Art In recent years, information processing equipment such as computers and word processors have come to be preferred to be portable and thin. In this type of information processing equipment, recently, a semiconductor element having a power consumption of more than 2 W has appeared. In such a semiconductor device with high power consumption, the performance of the semiconductor device is adversely affected unless some heat dissipation means is provided. Therefore, conventionally, a method of directly contacting a heat sink body with a semiconductor element as a heat dissipation member,
A method of applying grease between the heat sink body and the top surface of the semiconductor element, a method of sandwiching a heat radiation rubber sheet between the heat sink body and the top surface of the semiconductor element, and the like have been adopted.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記の方
法では取り付けの際に半導体素子を損傷するおそれがあ
るほか、ヒートシンク体も半導体素子も剛体であるため
点接触となって効率的な熱伝導が行われず良好な放熱効
果が得られない。の方法は温度差によるグリースの粘
度変化や塗布装置の制御状態などの影響によりグリース
の塗布状態にムラを生じ、しかもヒートシンク体側から
強い力で押さえ付けないと効率のよい放熱ができない。
の方法はヒートシンク体側からゴムシートを強い力で
押さえ付けるようにしないと、ゴムシートと半導体素子
の天面とが点接触となってと同様に良好な放熱効果が
得られない。したがって、本発明の目的は、取り付けの
際に半導体素子を損傷するおそれがなく、放熱部材であ
るヒートシンク体と半導体素子との間の接触がよく、効
率的な熱伝導と良好な放熱効果の得られる、熱伝導シー
トを提供するにある。
However, in the above method, the semiconductor element may be damaged during mounting, and since the heat sink body and the semiconductor element are rigid bodies, point contact is made and efficient heat conduction is achieved. No heat dissipation effect is obtained. This method causes unevenness in the grease application state due to changes in grease viscosity due to temperature differences and the control state of the coating device, and efficient heat dissipation cannot be achieved unless the heat sink body side is pressed down with a strong force.
In this method, unless the rubber sheet is pressed down with a strong force from the side of the heat sink, a good heat radiation effect cannot be obtained as if the rubber sheet and the top surface of the semiconductor element are in point contact. Therefore, an object of the present invention is to prevent the semiconductor element from being damaged at the time of mounting, to ensure good contact between the heat sink body which is a heat dissipation member and the semiconductor element, and to obtain efficient heat conduction and good heat dissipation effect. And to provide a heat conductive sheet.

【0004】[0004]

【課題を解決するための手段】本発明の熱伝導シート
は、熱伝導率が1× 10-4cal/cm・sec・℃以上の支持体の
両面に、熱伝導率が1×10-3〜5× 10-3cal/cm・sec・℃
で稠度が10〜80であるシリコーンゲル層を設けてなるも
のであり、このシリコーンゲル層が0.05〜 1.0mmの厚さ
であること、またシリコーンゲル層の表面にはプラスチ
ックフィルムがラミネートされてなることを好適とす
る。この熱伝導シートは、支持体が貼着性、取扱い性を
改善すると共に熱伝導性の向上に直接寄与し、シリコー
ンゲル層が半導体素子やヒートシンク体との密着性を高
め、効率的な熱伝導と良好な放熱効果を付与する。
The heat conductive sheet of the present invention has a heat conductivity of 1 × 10 −3 on both sides of a support having a heat conductivity of 1 × 10 −4 cal / cm · sec · ° C. or more. ~ 5 × 10 -3 cal / cm ・ sec ・ ℃
And a silicone gel layer having a consistency of 10 to 80 is provided, the silicone gel layer having a thickness of 0.05 to 1.0 mm, and a plastic film laminated on the surface of the silicone gel layer. That is preferable. In this heat conductive sheet, the support body improves the adhesiveness and handleability and directly contributes to the improvement of the heat conductivity, and the silicone gel layer enhances the adhesiveness to the semiconductor element and the heat sink body, and the efficient heat conduction is achieved. And give a good heat dissipation effect.

【0005】[0005]

【発明の実施の形態】以下、本発明の詳細を例示した図
1に基づいてさらに詳細に説明する。図1(a)、
(b)はそれぞれ本発明の熱伝導シートの異なる実施態
様を示す縦断面図で、図1(a)は熱伝導率が1× 10
-4cal/cm・sec・℃以上の支持体1の両面に、熱伝導率が
1×10-3〜5× 10-3cal/cm・sec・℃で稠度が10〜80であ
るシリコーンゲル層2を、好ましくは0.05〜 1.0mmの厚
さで設けたものであり、図1(b)は図1(a)で示し
た熱伝導シートのシリコーンゲル層2のそれぞれの表面
に、さらにセパレータとしてのプラスチックフィルム3
をラミネートしたものである。なお、ここでいう稠度と
は、JIS K 2220に準拠して温度25℃の不混和状態での試
料中に 1/4円すいを5秒間侵入させたときに達した深さ
を、mmの10倍の値で表した数値である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to FIG. FIG. 1 (a),
(B) is a longitudinal sectional view showing different embodiments of the heat conductive sheet of the present invention, and FIG. 1 (a) shows a heat conductivity of 1 × 10 5.
Silicone gel with thermal conductivity of 1 × 10 −3 to 5 × 10 −3 cal / cm · sec · ° C and a consistency of 10 to 80 on both sides of the support 1 of -4 cal / cm · sec · ° C or higher. The layer 2 is provided preferably with a thickness of 0.05 to 1.0 mm, and FIG. 1 (b) shows a separator on each surface of the silicone gel layer 2 of the heat conductive sheet shown in FIG. 1 (a). Plastic film 3 as
Are laminated. The consistency referred to here is the depth reached when a 1/4 cone is penetrated into a sample in an immiscible state at a temperature of 25 ° C for 5 seconds in accordance with JIS K 2220, and is 10 times the mm. It is a numerical value represented by the value of.

【0006】この熱伝導シートは、例えば、前記支持
体1の両面にシリコーンゲルを塗布して、その層2を形
成した後、この上にプラスチックフィルム3をラミネー
トする方法、プラスチックフィルム3の片面に未硬化
のシリコーンゲルを塗布して、その層2を表面に有する
ラミネートフィルムを作製した後、このラミネートフィ
ルムによりシリコーンゲル層2を挟むように前記支持体
1の両面にラミネートする方法、前記支持体1とプラ
スチックフィルム3のそれぞれの片面にシリコーンゲル
を塗布し、その層2を順方向としてラミネートし、さら
に必要に応じて、表面に露出しているシリコーンゲル層
2にプラスチックフィルム3をラミネートする方法等に
よって得ることができる。
This heat-conducting sheet is formed, for example, by coating silicone gel on both sides of the support 1 to form a layer 2 thereof, and then laminating a plastic film 3 thereon, one side of the plastic film 3 being laminated. A method of applying an uncured silicone gel to prepare a laminate film having the layer 2 on the surface, and then laminating the silicone gel layer 2 on both sides of the support 1 with the laminate film, 1 and plastic film 3 are coated on one side with silicone gel, the layer 2 is laminated in the forward direction, and if necessary, the plastic film 3 is laminated on the silicone gel layer 2 exposed on the surface. Etc. can be obtained.

【0007】上記したように、本発明の熱伝導シートで
使用される支持体1には、熱伝導率が1× 10-4cal/cm・
sec・℃以上のものが用いられるが、この支持体1は剛体
または弾性体からなるものが好ましい。なお、熱伝導率
が1× 10-3cal/cm・sec・℃未満のものは熱抵抗が高くな
るので、厚さを 0.5mm以下にすることが好ましい。この
ような支持体を構成する材料としては、アルミニウム、
銅、鉄、ステンレスなどの金属箔(シート)、熱伝導率
が3×10-4〜8× 10-4cal/cm・sec・℃のポリイミド、ポ
リエステルなどのプラスチックのシートまたはフィル
ム、熱伝導率が4×10-4〜8× 10-4cal/cm・sec・℃のシ
リコーンゴム、熱伝導率が 2.5×10-4のポリウレタンな
どのエラストマーシートまたはフィルム、これらの同種
または異種のシートまたはフィルムの積層物などが挙げ
られる。これらの内、銅はアルミニウムに比べて酸化し
易く、延伸して箔状にした場合に外部からの応力の影響
で皺を生じ易く、この皺が点接触による熱伝導率の低下
に結びつく不利があり、鉄やステンレスは切断や切削等
の加工性が悪く、軽量化の点でも劣っている。
As described above, the support 1 used in the heat conductive sheet of the present invention has a thermal conductivity of 1 × 10 -4 cal / cm.
A substrate having a temperature of sec · ° C or higher is used, but the support 1 is preferably made of a rigid body or an elastic body. A material having a thermal conductivity of less than 1 × 10 −3 cal / cm · sec · ° C. has a high thermal resistance, so the thickness is preferably 0.5 mm or less. As a material constituting such a support, aluminum,
Metal foil (sheet) of copper, iron, stainless steel, etc., thermal conductivity of 3 × 10 -4 to 8 × 10 -4 cal / cm ・ sec ・ ° C polyimide or polyester plastic sheet or film, thermal conductivity Of 4 × 10 −4 to 8 × 10 −4 cal / cm · sec · ° C. silicone rubber, polyurethane or other elastomeric sheet or film having a thermal conductivity of 2.5 × 10 −4 , these same or different types of sheets or films And the like. Among these, copper is more likely to be oxidized than aluminum, and when drawn into a foil shape, wrinkles are likely to occur due to the effect of external stress, and this wrinkle has the disadvantage of reducing the thermal conductivity due to point contact. However, iron and stainless steel have poor workability such as cutting and cutting, and are inferior in terms of weight reduction.

【0008】このような欠点がなく経済性をも考慮した
好適なものとして、アルミニウム箔、アルミナ粉末、酸
化チタン粉末などの熱伝導性粉末をシリコーンゴムに混
入して形成した、熱伝導率が1×10-3〜5× 10-3cal/c
m・sec・℃の範囲の高熱伝導性のシリコーンゴムシートが
ある。これらの支持体の厚さは、アルミニウム箔で 0.0
25〜0.10mm、高熱伝導性のシリコーンゴムシートで 0.2
〜 1.0mmのものが好ましく、一般に厚さが 1.0mmを超え
るとカットしにくくなり、0.01mm未満ではシリコーンゲ
ルを接着成形する際の取扱い性が低下して皺変形が生じ
易くなるので、0.01〜 1.0mmにすることが好ましい。
As a suitable material which does not have such drawbacks and is economically effective, a heat conductive powder formed by mixing a heat conductive powder such as aluminum foil, alumina powder, and titanium oxide powder into silicone rubber has a thermal conductivity of 1 × 10 -3 to 5 × 10 -3 cal / c
There is a silicone rubber sheet with high thermal conductivity in the range of m / sec / ° C. The thickness of these supports is 0.0
25 ~ 0.10mm, 0.2 with high thermal conductive silicone rubber sheet
~ 1.0 mm is preferable, and generally, if the thickness exceeds 1.0 mm, it becomes difficult to cut, and if it is less than 0.01 mm, the handling property at the time of adhesive molding the silicone gel is deteriorated and wrinkle deformation easily occurs, so 0.01 ~ It is preferably 1.0 mm.

【0009】上記支持体1の両面を被覆するシリコーン
ゲル層2は、シリコーンゲル単体では熱伝導性に劣るた
め、例えば、粘度が1〜20Pの範囲のビニル基含有オル
ガノポリシロキサン 100重量部当り、アルミナ粉末、酸
化チタン粉末などの金属粉末や窒化ホウ素粉末などの熱
伝導性粉末を50〜 500重量部の割合で配合したものが好
ましい。粘度が20Pを超えるビニル基含有オルガノポリ
シロキサンに、熱伝導性粉末を配合すると、粘度が上昇
して流動性が低下してしまって、シリコーンゲル層を形
成する際の作業性が低下する。また上記ビニル基含有オ
ルガノポリシロキサンへの熱伝導性粉末の配合量が、50
重量部未満では熱伝導率が1× 10-3cal/cm・sec・℃未満
となり、 500重量部を超えると稠度が10未満となるほ
か、粘度が上昇して流動性が低下し、シリコーンゲル層
を形成する際の作業性が低下する。
The silicone gel layer 2 covering both sides of the support 1 is inferior in thermal conductivity to the silicone gel alone, and therefore, for example, per 100 parts by weight of vinyl group-containing organopolysiloxane having a viscosity of 1 to 20 P, A metal powder such as an alumina powder or a titanium oxide powder or a thermally conductive powder such as a boron nitride powder is preferably blended at a ratio of 50 to 500 parts by weight. When a thermally conductive powder is blended with a vinyl group-containing organopolysiloxane having a viscosity of more than 20 P, the viscosity is increased and the fluidity is lowered, so that the workability in forming the silicone gel layer is lowered. Further, the compounding amount of the heat conductive powder to the vinyl group-containing organopolysiloxane is 50
If it is less than 1 part by weight, the thermal conductivity will be less than 1 × 10 -3 cal / cm · sec · ° C, and if it exceeds 500 parts by weight, the consistency will be less than 10, and the viscosity will increase and the fluidity will decrease, resulting in Workability in forming the layer is reduced.

【0010】このように、シリコーンゲル層2はシリコ
ーンゲル単体に熱伝導性粉末を混入して形成すること
で、熱伝導率が1×10-3〜5× 10-3cal/cm・sec・℃で稠
度が10〜80のものにすることができる。熱伝導率が1×
10-3cal/cm・sec・℃未満では効率的な熱伝導が得られ
ず、5×10-3cal/cm・sec・℃を超えるまで熱伝導性粉末
を混入すると、稠度が10未満の硬い層となり、放熱部材
表面の凹凸に対し密着追随性が悪く、接触熱抵抗が増大
し、同様に効率的な熱伝導が得られなくなる。シリコー
ンゲル層の稠度は熱伝導性粉末の混入により80を超える
ことができず、10未満では半導体素子天面や放熱部材表
面の凹凸が吸収できないので密着性が悪くなる。
As described above, the silicone gel layer 2 is formed by mixing the thermally conductive powder into the silicone gel alone, so that the thermal conductivity is 1 × 10 −3 to 5 × 10 −3 cal / cm · sec · It can have a consistency of 10-80 at ° C. 1x thermal conductivity
10 -3 cal / cm · is less than sec · ° C. is not obtained efficient heat transfer, the incorporation of thermally conductive powder until more than 5 × 10 -3 cal / cm · sec · ℃, consistency of less than 10 It becomes a hard layer, the adhesion followability is poor with respect to the irregularities on the surface of the heat dissipation member, the contact heat resistance increases, and similarly, efficient heat conduction cannot be obtained. The consistency of the silicone gel layer cannot exceed 80 due to the mixing of the thermally conductive powder, and if it is less than 10, the unevenness on the top surface of the semiconductor element or the surface of the heat dissipation member cannot be absorbed, resulting in poor adhesion.

【0011】シリコーンゲル層の厚さは、0.05〜 1.0m
m、特には0.25mm前後であることが好ましく(後述する
図4参照)、これが0.05mm未満では半導体素子天面や放
熱部材であるヒートシンク体の凹凸が吸収できにくいの
で密着性が悪くなり易く、逆に1.0mmを超えると、シリ
コーンゲル層の熱抵抗が高くなり、密着性と熱抵抗のバ
ランスが悪くなり、放熱特性が悪化するようになる。こ
のようにして得られたシリコーンゲル層は独特の粘着性
を帯びているため、半導体素子天面やヒートシンク体に
容易に密着する。本発明の熱伝導シートは、シリコーン
ゲル層の表面にキャリアまたはダストプロテクタとして
のプラスチックフィルムをラミネートしておくのが好ま
しく、これを芯材に巻き取って巻体として保管すること
で、シリコーンゲル層の粘着性に伴う埃などの付着を防
止し、使用の直前にプラスチックフィルムを剥離し、必
要な長さを切り取って使用することができる。
The thickness of the silicone gel layer is 0.05 to 1.0 m
m, especially about 0.25 mm is preferable (see FIG. 4 described later), and if it is less than 0.05 mm, it is difficult to absorb the unevenness of the top surface of the semiconductor element or the heat sink that is the heat dissipation member, so the adhesion tends to deteriorate, On the other hand, when it exceeds 1.0 mm, the heat resistance of the silicone gel layer becomes high, the balance between the adhesiveness and the heat resistance becomes poor, and the heat dissipation characteristics deteriorate. Since the silicone gel layer thus obtained has a unique adhesive property, it easily adheres to the top surface of the semiconductor element and the heat sink body. In the heat conductive sheet of the present invention, it is preferable to laminate a plastic film as a carrier or a dust protector on the surface of the silicone gel layer, and the silicone gel layer can be stored by winding this on a core material and storing it as a roll. It is possible to prevent the adhesion of dust and the like due to the adhesiveness, peel off the plastic film immediately before use, and cut out the required length for use.

【0012】図2は本発明の熱伝導シートの製造工程の
一例を示す概略説明図である。長尺のアルミニウム箔か
らなる支持体11(実線による)を巻取り機12から巻き戻
して、その表面に吹き付け装置13でシランカップリング
剤14を吹き付けた後、乾燥炉15に導入して乾燥し、塗布
装置16で同じ面に未硬化のシリコーンゲル17を塗布して
シリコーンゲル層を形成する。これを硬化装置18に導入
して硬化させた後、その表面にラミネータ19で(巻取り
機20からの)プラスチックフィルム21をラミネートし、
中間品22として巻取り機23に巻き取る。得られた中間品
22(以下、鎖線による)は反転して巻取り機12に装着
し、前記と同様の作業を繰り返し、プラスチックフィル
ム21をラミネートすると、図1(b)に示したのと同様
の熱伝導シートが得られる。これをスリッタ24で所定の
幅にスリットし、カッタ25で所定の長さに切断し、巻取
り機26に製品27として巻き取る。
FIG. 2 is a schematic explanatory view showing an example of a manufacturing process of the heat conductive sheet of the present invention. The support 11 (indicated by a solid line) made of a long aluminum foil is rewound from the winder 12, and the silane coupling agent 14 is sprayed onto the surface of the support 11 by the spraying device 13, and then introduced into the drying furnace 15 and dried. The uncured silicone gel 17 is applied to the same surface by the application device 16 to form a silicone gel layer. After introducing this into the curing device 18 and curing it, a plastic film 21 (from the winder 20) is laminated on the surface with a laminator 19,
The intermediate product 22 is wound on the winder 23. Obtained intermediate product
22 (hereinafter referred to as a chain line) is reversed and mounted on the winder 12, and the same work as above is repeated to laminate the plastic film 21. As a result, a heat conductive sheet similar to that shown in FIG. can get. This is slit into a predetermined width by a slitter 24, cut into a predetermined length by a cutter 25, and wound as a product 27 on a winder 26.

【0013】[0013]

【実施例】以下、本発明の具体的態様を実施例により説
明する。 (実施例1)まず、付加反応型シリコーンゲル KE-104G
EL(信越化学工業社製、商品名) 100重量部に、アルミ
ナ粉末 150重量部を混入し、熱伝導率が 2.5×10-3cal/
cm・sec・℃、稠度が30、粘度が 200Pである、未硬化の
熱伝導性シリコーンゲルを準備した。他方、厚さ0.05m
m、大きさ 300mm× 300mm、熱伝導率 5.6×10-1cal/cm・
sec・℃のアルミニウム箔の両面に、シランカップリン
グ剤 KBM-403(同前)を塗布し、 150℃で3分間乾燥さ
せたものを準備した。あらかじめ離型処理剤として界面
活性剤を塗布・乾燥させた厚さ0.05mmのキャリアとして
のポリエステルフィルムに、#100メッシュのスクリーン
を取り付けたスクリーン印刷機にて上記未硬化の熱伝導
性シリコーンゲルを、厚さ 0.225mmの層となるように印
刷した。このポリエステルフィルムを、上記アルミニウ
ム箔の両面に、上記印刷面を向けて貼り合わせ、 120℃
で15分間加熱処理して熱伝導性のシリコーンゲル層を硬
化・形成すると共にアルミニウム箔に接着させ、図1
(b)に示したのと同様の、アルミニウム箔の両面に熱
伝導性のシリコーンゲル層が一体に形成されていて(厚
さ0.50mm)、さらにその両面にポリエステルフィルムが
密着している構造の熱伝導シート(全体の厚さは0.60m
m)を得た。
EXAMPLES Hereinafter, specific embodiments of the present invention will be described with reference to examples. (Example 1) First, addition reaction type silicone gel KE-104G
100 parts by weight of EL (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) is mixed with 150 parts by weight of alumina powder, and the thermal conductivity is 2.5 × 10 -3 cal /
An uncured thermally conductive silicone gel having a cm · sec · ° C., a consistency of 30, and a viscosity of 200 P was prepared. On the other hand, thickness is 0.05m
m, size 300 mm × 300 mm, thermal conductivity 5.6 × 10 -1 cal / cm ・
A silane coupling agent KBM-403 (same as above) was applied to both surfaces of an aluminum foil at sec. ° C, and dried at 150 ° C for 3 minutes to prepare a product. On a polyester film as a carrier with a thickness of 0.05 mm, which was previously coated with a surfactant as a release agent and dried, the above uncured thermally conductive silicone gel was applied with a screen printer equipped with a # 100 mesh screen. , And was printed to form a layer with a thickness of 0.225 mm. This polyester film is attached to both sides of the aluminum foil with the printed side facing, 120 ° C
Heat treatment for 15 minutes to cure and form a thermally conductive silicone gel layer and adhere it to an aluminum foil.
Similar to the structure shown in (b), a structure in which a thermally conductive silicone gel layer is integrally formed on both sides of an aluminum foil (thickness 0.50 mm), and a polyester film is adhered on both sides of the structure. Thermal conductive sheet (total thickness is 0.60m
m).

【0014】これを両面のポリエステルフィルムを残し
て、所定の大きさ、例えば、20mm×20mmに切断または打
ち抜き、複数個の熱伝導シートが1枚のポリエステルフ
ィルム上に格子状に配列されているものとした。上記切
断または打ち抜き前の熱伝導シートを、50mm×50mmの大
きさに切断し、その熱伝導性能を図3に示すモデルヒー
タ試験装置(10W)を用いて、経過時間(分、横軸)ご
とのヒータの温度上昇(℃、縦軸)を調べたところ、図
4に実線で示す結果が得られた。なお、図中の点線は従
来のの方法による場合、鎖線は放熱部材を使用しなか
った場合である。また、図3(a)はモデルヒータ試験
装置の概略正面図、図3(b)は図3(a)における○
部分の拡大正面図、図中の31は放熱板、32は熱伝導シー
ト、33はヒータ、34はヒータ表面温度測定用熱電対であ
る。
This is cut or punched into a predetermined size, for example, 20 mm × 20 mm, leaving the polyester films on both sides, and a plurality of heat conductive sheets are arranged in a lattice on one polyester film. And The heat conductive sheet before cutting or punching is cut into a size of 50 mm × 50 mm, and its heat transfer performance is measured with the model heater test device (10 W) shown in FIG. 3 at each elapsed time (minutes, horizontal axis). When the temperature rise (° C., vertical axis) of the heater was examined, the results shown by the solid line in FIG. 4 were obtained. The dotted line in the figure shows the case of the conventional method, and the chain line shows the case of not using the heat dissipation member. 3 (a) is a schematic front view of the model heater test apparatus, and FIG. 3 (b) is a circle in FIG. 3 (a).
An enlarged front view of a portion, in which 31 is a heat sink, 32 is a heat conductive sheet, 33 is a heater, and 34 is a thermocouple for measuring the heater surface temperature.

【0015】(実施例2)上記実施例1において、熱伝
導性シリコーンゲルの厚さを変えたほかは同様にして熱
伝導シートを作製し、実施例1と同じモデルヒータ試験
装置を用いて、シリコーンゲル層の厚さと30分後におけ
るヒータの温度上昇との関係を調べたところ、図5に示
す結果が得られた。
Example 2 A thermal conductive sheet was prepared in the same manner as in Example 1 except that the thickness of the thermally conductive silicone gel was changed, and the same model heater test apparatus as in Example 1 was used. When the relationship between the thickness of the silicone gel layer and the temperature rise of the heater after 30 minutes was examined, the results shown in FIG. 5 were obtained.

【0016】(実施例3)実施例1において、長尺のア
ルミニウム箔11に替えて、厚さ0.20mm、幅 300mm、熱伝
導率 2.0× 10-3cal/cm・sec・℃の長尺のシリコーンゴム
シートを用い、熱伝導性シリコーンゲル層の厚さを 0.2
25mmとしたほかは同様にして、シリコーンゴムシートの
両面に熱伝導性のシリコーンゲル層と厚さ0.05mmのポリ
エステルフィルムとがラミネートされた構造の長尺の熱
伝導シート(全体の厚さが0.75mm)を得た。これを30mm
×30mmの大きさに切断し、その熱伝導性を図3に示すモ
デルヒータ試験装置(6W)を用いて、経過時間(分、
横軸)ごとのヒータの温度上昇(℃、縦軸)を調べたと
ころ、図6に点線で示す結果が得られた。なお、図中の
実線は実施例1で得られた熱伝導シートを用いた場合で
ある。
(Example 3) In Example 1, the long aluminum foil 11 was replaced with a long one having a thickness of 0.20 mm, a width of 300 mm and a thermal conductivity of 2.0 × 10 -3 cal / cm · sec · ° C. Use a silicone rubber sheet and reduce the thickness of the thermally conductive silicone gel layer to 0.2.
In the same manner except that the length was set to 25 mm, a long heat-conducting sheet (total thickness of 0.75 mm) with a structure in which a heat-conducting silicone gel layer and a 0.05 mm-thick polyester film were laminated on both sides of a silicone rubber sheet. mm). 30mm for this
Cut into a size of × 30 mm, and its thermal conductivity was measured using a model heater test device (6 W) shown in FIG.
When the temperature rise (° C., vertical axis) of the heater was examined for each horizontal axis, the results shown by the dotted line in FIG. 6 were obtained. The solid line in the figure shows the case where the heat conductive sheet obtained in Example 1 is used.

【0017】図7はいずれも本発明の熱伝導シート71の
応用例を縦断面図で示すもので、図7(a)はICパッ
ケージ73への装着例で、ICパッケージ73の熱を熱伝導
シート71を介してヒートシンク体72に伝達し、上方に放
熱している。図7(b)はプリント基板74への装着例
で、ICパッケージ73の熱を熱伝導シート71を介してプ
リント基板74の開口部より下方へ放熱している。図7
(c)は別の態様のICパッケージ73への装着例で、多
数のICパッケージ73の熱を熱伝導シート71を介してヒ
ートシンク体72より上方に放熱している。
7A and 7B are vertical sectional views showing examples of application of the heat conductive sheet 71 of the present invention. FIG. 7A shows an example of attachment to the IC package 73. It is transmitted to the heat sink body 72 via the sheet 71 and radiates heat upward. FIG. 7B shows an example of mounting on the printed circuit board 74, and the heat of the IC package 73 is radiated downward from the opening of the printed circuit board 74 via the heat conductive sheet 71. FIG.
(C) is an example of mounting to the IC package 73 of another mode, and the heat of a large number of IC packages 73 is radiated upward from the heat sink body 72 via the heat conductive sheet 71.

【0018】[0018]

【発明の効果】本発明の熱伝導シートは、 ヒータおよび放熱板表面の凹凸を吸収し、接触熱抵抗
を低減することができ、良好な放熱効果が得られる。 グリースを塗布する方法に比べて非常に取扱いが容易
であり、作業性がよい。 接触面が粘着性を有するシリコーンゲルであるため、
ヒートシンク体を機械的に固定する必要がない。
EFFECTS OF THE INVENTION The heat conductive sheet of the present invention can absorb the irregularities on the surface of the heater and the heat radiating plate and reduce the contact heat resistance, and can obtain a good heat radiating effect. It is much easier to handle and easier to work than the method of applying grease. Since the contact surface is a silicone gel with adhesiveness,
There is no need to mechanically fix the heat sink body.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図(a)、(b)はそれぞれ本発明の熱伝導シ
ートの異なる実施態様を例示する縦断面正面図である。
FIG. 1A and FIG. 1B are vertical cross-sectional front views illustrating different embodiments of the heat conductive sheet of the present invention.

【図2】本発明の熱伝導シートの製造工程の一例を示す
概略説明図である。
FIG. 2 is a schematic explanatory view showing an example of a manufacturing process of the heat conductive sheet of the present invention.

【図3】図(a)は熱伝導性能測定用のモデルヒータ試
験装置の概略正面図、図(b)は図(a)における○部
分の拡大正面図である。
FIG. 3 (a) is a schematic front view of a model heater test device for measuring heat conduction performance, and FIG. 3 (b) is an enlarged front view of a portion ◯ in FIG.

【図4】実施例1で得られた本発明の熱伝導シート(実
線)と従来法による場合(点線および鎖線)との、ヒー
タの温度上昇と経過時間(分)との関係を示すグラフで
ある。
FIG. 4 is a graph showing the relationship between the temperature rise of the heater and the elapsed time (minutes) between the heat conductive sheet of the present invention (solid line) obtained in Example 1 and the case of the conventional method (dotted line and chain line). is there.

【図5】実施例2でシリコーンゲル層の厚さを変えて作
製した熱伝導シートについて、シリコーンゲル層の厚さ
と30分後におけるヒータの温度上昇との関係を示すグラ
フである。
FIG. 5 is a graph showing the relationship between the thickness of the silicone gel layer and the temperature rise of the heater after 30 minutes for the heat conductive sheets produced in Example 2 with the thickness of the silicone gel layer changed.

【図6】実施例1(実線)および実施例3(点線)で得
られた本発明の熱伝導シートについて、ヒータの温度上
昇と経過時間(分)との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the temperature rise of the heater and the elapsed time (minutes) for the heat conductive sheets of the present invention obtained in Example 1 (solid line) and Example 3 (dotted line).

【図7】いずれも本発明の熱伝導シートの応用例を縦断
面図で示すもので、図(a)はICパッケージへの装着
例、図(b)はプリント基板への装着例、図(c)は別
の態様のICパッケージへの装着例である。
7A and 7B are vertical cross-sectional views showing examples of application of the heat conductive sheet of the present invention. FIG. 7A shows an example of mounting on an IC package, FIG. 7B shows an example of mounting on a printed circuit board, and FIG. c) is an example of attachment to an IC package of another aspect.

【符号の説明】[Explanation of symbols]

1…支持体、2…シリコーンゲル層、3…プラスチック
フィルム、11…支持体、12、20、23、26…巻取り機、13
…吹き付け装置、14…シランカップリング剤、15…乾燥
炉、16…塗布装置、17…シリコーンゲル、18…硬化装
置、19…ラミネータ、21…プラスチックフィルム、22…
中間品、24…スリッタ、25…カッタ、27…熱伝導シー
ト、31…放熱板、32…熱伝導シート、33…ヒータ、34…
熱電対、71…熱伝導シート、72…ヒートシンク体、73…
ICパッケージ、74…プリント基板。
1 ... Support, 2 ... Silicone gel layer, 3 ... Plastic film, 11 ... Support, 12, 20, 23, 26 ... Winding machine, 13
... Spraying device, 14 ... Silane coupling agent, 15 ... Drying furnace, 16 ... Coating device, 17 ... Silicone gel, 18 ... Curing device, 19 ... Laminator, 21 ... Plastic film, 22 ...
Intermediate product, 24 ... Slitter, 25 ... Cutter, 27 ... Heat conduction sheet, 31 ... Heat radiation plate, 32 ... Heat conduction sheet, 33 ... Heater, 34 ...
Thermocouple, 71 ... Thermal conductive sheet, 72 ... Heat sink body, 73 ...
IC package, 74 ... Printed circuit board.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】熱伝導率が1× 10-4cal/cm・sec・℃以上の
支持体の両面に、熱伝導率が1×10-3〜5× 10-3cal/c
m・sec・℃で稠度が10〜80であるシリコーンゲル層を設け
てなることを特徴とする熱伝導シート。
1. A thermal conductivity of 1 × 10 −3 to 5 × 10 −3 cal / c on both sides of a support having a thermal conductivity of 1 × 10 −4 cal / cm · sec · ° C. or higher.
A heat conductive sheet comprising a silicone gel layer having a consistency of 10 to 80 at m · sec · ° C.
【請求項2】シリコーンゲル層が、0.05〜 1.0mmの厚さ
である請求項1に記載の熱伝導シート。
2. The heat conductive sheet according to claim 1, wherein the silicone gel layer has a thickness of 0.05 to 1.0 mm.
【請求項3】シリコーンゲル層の表面に、プラスチック
フィルムがラミネートされてなる請求項1または2のい
ずれかに記載の熱伝導シート。
3. The heat conductive sheet according to claim 1, wherein a plastic film is laminated on the surface of the silicone gel layer.
JP8086398A 1995-04-28 1996-04-09 Heat condition sheet Pending JPH0917923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8086398A JPH0917923A (en) 1995-04-28 1996-04-09 Heat condition sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-106271 1995-04-28
JP10627195 1995-04-28
JP8086398A JPH0917923A (en) 1995-04-28 1996-04-09 Heat condition sheet

Publications (1)

Publication Number Publication Date
JPH0917923A true JPH0917923A (en) 1997-01-17

Family

ID=26427531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8086398A Pending JPH0917923A (en) 1995-04-28 1996-04-09 Heat condition sheet

Country Status (1)

Country Link
JP (1) JPH0917923A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040032623A (en) * 2002-10-10 2004-04-17 김재호 Silicone heat-releasing sheet and manufacturing method using polymer form
US6794030B1 (en) 1999-11-30 2004-09-21 3M Innovative Properties Company Heat conductive sheet and method of producing the sheet
JP2006041435A (en) * 2004-07-30 2006-02-09 Toshiyuki Arai Heat sink for electric component
US7416923B2 (en) 2005-12-09 2008-08-26 International Business Machines Corporation Underfill film having thermally conductive sheet
JP2008291220A (en) * 2007-04-24 2008-12-04 Hitachi Chem Co Ltd Thermally conductive film
JP2009081253A (en) * 2007-09-26 2009-04-16 Nitto Shinko Kk Insulation sheet
JP2009114299A (en) * 2007-11-06 2009-05-28 Sliontec Corp Pressure-sensitive adhesive double coated tape or sheet and method for producing the same
JP2010010599A (en) * 2008-06-30 2010-01-14 Fuji Polymer Industries Co Ltd Heat diffusion sheet
JP2011025676A (en) * 2009-06-29 2011-02-10 Shin-Etsu Chemical Co Ltd Heat-conductive silicone rubber composite sheet
JP2013102180A (en) * 2012-12-28 2013-05-23 Fuji Polymer Industries Co Ltd Thermal diffusion sheet
JP2014003141A (en) * 2012-06-18 2014-01-09 Shin Etsu Chem Co Ltd Thermally conductive sheet, and electronic apparatus
JP2014138132A (en) * 2013-01-18 2014-07-28 Shin Etsu Chem Co Ltd Thermally conductive composite sheet
JP2021036560A (en) * 2019-08-30 2021-03-04 株式会社イノアックコーポレーション Heat dissipation sheet and method for manufacturing the same
JP2023103147A (en) * 2022-01-13 2023-07-26 宸寰科技有限公司 Internal, intermediate, and external thermal interface thin film material for electronic component

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6794030B1 (en) 1999-11-30 2004-09-21 3M Innovative Properties Company Heat conductive sheet and method of producing the sheet
KR20040032623A (en) * 2002-10-10 2004-04-17 김재호 Silicone heat-releasing sheet and manufacturing method using polymer form
JP2006041435A (en) * 2004-07-30 2006-02-09 Toshiyuki Arai Heat sink for electric component
US7943435B2 (en) 2005-12-09 2011-05-17 International Business Machines Corporation Underfill film having thermally conductive sheet
US7416923B2 (en) 2005-12-09 2008-08-26 International Business Machines Corporation Underfill film having thermally conductive sheet
JP2008291220A (en) * 2007-04-24 2008-12-04 Hitachi Chem Co Ltd Thermally conductive film
JP2009081253A (en) * 2007-09-26 2009-04-16 Nitto Shinko Kk Insulation sheet
JP2009114299A (en) * 2007-11-06 2009-05-28 Sliontec Corp Pressure-sensitive adhesive double coated tape or sheet and method for producing the same
JP2010010599A (en) * 2008-06-30 2010-01-14 Fuji Polymer Industries Co Ltd Heat diffusion sheet
JP2011025676A (en) * 2009-06-29 2011-02-10 Shin-Etsu Chemical Co Ltd Heat-conductive silicone rubber composite sheet
JP2014003141A (en) * 2012-06-18 2014-01-09 Shin Etsu Chem Co Ltd Thermally conductive sheet, and electronic apparatus
JP2013102180A (en) * 2012-12-28 2013-05-23 Fuji Polymer Industries Co Ltd Thermal diffusion sheet
JP2014138132A (en) * 2013-01-18 2014-07-28 Shin Etsu Chem Co Ltd Thermally conductive composite sheet
JP2021036560A (en) * 2019-08-30 2021-03-04 株式会社イノアックコーポレーション Heat dissipation sheet and method for manufacturing the same
JP2023103147A (en) * 2022-01-13 2023-07-26 宸寰科技有限公司 Internal, intermediate, and external thermal interface thin film material for electronic component

Similar Documents

Publication Publication Date Title
JP3976166B2 (en) PDP panel
KR100242138B1 (en) Heat conductive sheet
JPH0917923A (en) Heat condition sheet
KR100812290B1 (en) Heat sink sheet and fabrication method therefor
US5904796A (en) Adhesive thermal interface and method of making the same
CN101740353B (en) Dicing die-bonding film and process for producing semiconductor device
CN101740351B (en) Dicing die-bonding film and process for producing semiconductor device
KR20020070449A (en) Heat conductive sheet and method of producing the sheet
JP2008251746A (en) Heat transfer sheet laminate
JP2009054932A (en) Electrostatic chuck
JP2010149509A (en) Heat diffusion sheet and its mounting method
JP7013875B2 (en) Laminated body, manufacturing method of laminated body, manufacturing method of flexible electronic device
JP2020059169A (en) Laminate and method for manufacturing laminate
JPWO2018110255A1 (en) Transfer sheet
JP3763710B2 (en) Wafer support with dustproof cover film and manufacturing method thereof
TW202026149A (en) Laminated film, edge cleaning device and method for manufacturing cleaned laminated film capable of suppressing generation of air bubbles between the vicinity of an outer periphery of a heat-resistant polymer film and a support body when the heat-resistant polymer film is attached to a support body
TWI228485B (en) Film lamination apparatus and method and a manufacturing method of a semiconductor apparatus
KR100615217B1 (en) Method of manufacturing flat panel display device
JP2005203735A (en) Thermally conductive composite sheet
JP2001162703A (en) Heat conductive sheet composite and method for attaching heat conductive sheet
CN210274985U (en) Ultra-thin type electronic equipment heat dissipation paster
JP2003089777A (en) Thermally peelable die-bonding sheet and method for fixing chiplike cut piece of work to carrier
JPH08134416A (en) Antistatic pressure-sensitive adhesive tape
JP2004095987A (en) Heat dissipating sheet and pdp panel
JPH0745849Y2 (en) Thermally conductive electrical insulation sheet for automatic mounting